前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Docker镜像运行与容器创建 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...步。而是以异步的方式运行,互不干扰。其中硬件时间的运行,是靠Bios电池来维持,而系统时间,是用CPU 时钟来维持的。 在系统开机的时候,会自动从Bios中取得硬件时间,设置为系统时间。 1.1 date命令 用来查看和设置系统时间 date 查看系统当前时间sudo date -s "2023-03-18 11:16:10" 修改系统时间为 "xxxx-xx-xx xx:xx:xx"===============================================================================nvidia@nvidia-desktop:~$ dateВт мар 18 11:16:27 +08 2023nvidia@nvidia-desktop:~$nvidia@nvidia-desktop:~$nvidia@nvidia-desktop:~$ sudo date -s "2023-03-18 11:16:10"[sudo] password for nvidia:Вт мар 18 11:16:10 +08 2023nvidia@nvidia-desktop:~$ 硬件时间的设置,可以用hwclock 1.2 hwclock 命令 查看当前硬件时间 注意:hwclock 所有命令需要使用root 权限 nvidia@nvidia-desktop:~$ hwclockhwclock: Cannot access the Hardware Clock via any known method.hwclock: Use the --debug option to see the details of our search for an access method.nvidia@nvidia-desktop:~$nvidia@nvidia-desktop:~$nvidia@nvidia-desktop:~$ sudo hwclock2023-03-21 11:18:49.607690+0800nvidia@nvidia-desktop:~$ 将系统时间同步到硬件时间 hwclock -w 将硬件时间同步到系统时间 hwclock -s 二、不同机器间时间同步 为了避免主机时间因为长期运作下所导致的时间偏差,进行时间同步(synchronize)的工作是非常必要的。Linux系统下,一般使用ntp服务器来同步不同机器的时间。一台机器,可以同时是ntp服务器和ntp客户机。 2.1 ntpdate命令实现 ntpdate 安装: yum install ntpdate -y Centos系统======================================sudo apt install ntpdate Ubuntu系统 时间同步 sudo ntpdate -u cn.pool.ntp.org18 Mar 18:25:22 ntpdate[18673]: adjust time server 84.16.73.33 offset 0.015941 sec 使用ntpdate 只是强制将系统时间设置为ntp服务器时间,如果cpu tick有问题,时间还是会不准。所以,一般配合cron命令,来进行定期同步设置。比如,在crontab中添加: sudo crontab -e0 12 /usr/sbin/ntpdate 192.168.10.110 上述命令的意思是:每天的12点整,从192.168.10.110 ntp服务器同步一次时间(前提是 192.168.10.110有ntp服务)。 2.2 Ntp客户端代码实现 本质上还是创建socket连接去获取ntp服务的时间与本地时间比较,不一致修改本机时间即可。 NtpClient.h //// Created by lwang on 2023-03-18.//ifndef NTP_CLIENT_Hdefine NTP_CLIENT_Hinclude <stdio.h>include <stdlib.h>include <string.h>include <time.h>include <iostream>include <unistd.h>include <sys/select.h>include <sys/time.h>include <sys/socket.h>include <arpa/inet.h>include <netdb.h>include <errno.h>include <endian.h>include <map>include <string>include <mutex>using namespace std;define NTP_LI 0define NTP_VERSION_NUM 3define NTP_MODE_CLIENT 3define NTP_MODE_SERVER 4define NTP_STRATUM 0define NTP_POLL 4define NTP_PRECISION -6define NTP_MIN_LEN 48define NTP_SERVER_PORT 123define NTP_SERVER_ADDR "119.28.183.184"define TIMEOUT 2define BUFSIZE 1500define JAN_1970 0x83aa7e80define NTP_CONV_FRAC32(x) (uint64_t)((x) ((uint64_t)1 << 32))define NTP_REVE_FRAC32(x) ((double)((double)(x) / ((uint64_t)1 << 32)))define NTP_CONV_FRAC16(x) (uint32_t)((x) ((uint32_t)1 << 16))define NTP_REVE_FRAC16(x) ((double)((double)(x) / ((uint32_t)1 << 16)))define USEC2FRAC(x) ((uint32_t)NTP_CONV_FRAC32((x) / 1000000.0))define FRAC2USEC(x) ((uint32_t)NTP_REVE_FRAC32((x)1000000.0))define NTP_LFIXED2DOUBLE(x) ((double)(ntohl(((struct l_fixedpt )(x))->intpart) - JAN_1970 + FRAC2USEC(ntohl(((struct l_fixedpt )(x))->fracpart)) / 1000000.0))struct s_fixedpt{uint16_t intpart;uint16_t fracpart;};struct l_fixedpt{uint32_t intpart;uint32_t fracpart;};struct ntphdr{if __BYTE_ORDER == __BID_ENDIANunsigned int ntp_li : 2;unsigned int ntp_vn : 3;unsigned int ntp_mode : 3;endifif __BYTE_ORDER == __LITTLE_ENDIANunsigned int ntp_mode : 3;unsigned int ntp_vn : 3;unsigned int ntp_li : 2;endifuint8_t ntp_stratum;uint8_t ntp_poll;int8_t ntp_precision;struct s_fixedpt ntp_rtdelay;struct s_fixedpt ntp_rtdispersion;uint32_t ntp_refid;struct l_fixedpt ntp_refts;struct l_fixedpt ntp_orits;struct l_fixedpt ntp_recvts;struct l_fixedpt ntp_transts;};class NtpClient {public:NtpClient();virtual ~NtpClient();void GetNtpTime(std::string &ntpTime);in_addr_t HostTransfer(const char host);int PaddingNtpPackage(void buf, size_t size);double GetOffset(const struct ntphdr ntp, const struct timeval recvtv);private:int m_sockfd;};endif / NTP_CLIENT_H / NtpClient.cpp //// Created by lwang on 2023-03-18.//include "NtpClient.h"NtpClient::NtpClient() { }NtpClient::~NtpClient() {}in_addr_t NtpClient::HostTransfer(const char host){in_addr_t saddr;struct hostent hostent;if ((saddr = inet_addr(host)) == INADDR_NONE){if ((hostent = gethostbyname(host)) == NULL){return INADDR_NONE;}memmove(&saddr, hostent->h_addr, hostent->h_length);}return saddr;}int NtpClient::PaddingNtpPackage(void buf, size_t size) // 构建并发送NTP请求报文{if (!size)return -1;struct ntphdr ntp;struct timeval tv;memset(buf, 0, BUFSIZE);ntp = (struct ntphdr )buf;ntp->ntp_li = NTP_LI;ntp->ntp_vn = NTP_VERSION_NUM;ntp->ntp_mode = NTP_MODE_CLIENT;ntp->ntp_stratum = NTP_STRATUM;ntp->ntp_poll = NTP_POLL;ntp->ntp_precision = NTP_PRECISION;gettimeofday(&tv, NULL); // 把目前的时间用tv 结构体返回ntp->ntp_transts.intpart = htonl(tv.tv_sec + JAN_1970);ntp->ntp_transts.fracpart = htonl(USEC2FRAC(tv.tv_usec));size = NTP_MIN_LEN;return 0;}double NtpClient::GetOffset(const struct ntphdr ntp, const struct timeval recvtv) // 偏移量{double t1, t2, t3, t4;t1 = NTP_LFIXED2DOUBLE(&ntp->ntp_orits);t2 = NTP_LFIXED2DOUBLE(&ntp->ntp_recvts);t3 = NTP_LFIXED2DOUBLE(&ntp->ntp_transts);t4 = recvtv->tv_sec + recvtv->tv_usec / 1000000.0;return ((t2 - t1) + (t3 - t4)) / 2;}void NtpClient::GetNtpTime(std::string &ntpTime){char buffer[64] = {0};char cmd[128] = {0};tm local;char buf[BUFSIZE];size_t nbytes;int maxfd1;struct sockaddr_in servaddr;fd_set readfds;struct timeval timeout, recvtv, tv;double offset;servaddr.sin_family = AF_INET;servaddr.sin_port = htons(NTP_SERVER_PORT);servaddr.sin_addr.s_addr = HostTransfer(NTP_SERVER_ADDR);if ((m_sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0){perror("socket error");return ;}if (connect(m_sockfd, (struct sockaddr )&servaddr, sizeof(struct sockaddr)) != 0){perror("connect error");return ;}nbytes = BUFSIZE;if (PaddingNtpPackage(buf, &nbytes) != 0){fprintf(stderr, "construct ntp request error \n");exit(-1);}send(m_sockfd, buf, nbytes, 0);FD_ZERO(&readfds);FD_SET(m_sockfd, &readfds);maxfd1 = m_sockfd + 1;timeout.tv_sec = TIMEOUT;timeout.tv_usec = 0;if (select(maxfd1, &readfds, NULL, NULL, &timeout) > 0){if (FD_ISSET(m_sockfd, &readfds)){if ((nbytes = recv(m_sockfd, buf, BUFSIZE, 0)) < 0){perror("recv error");exit(-1);}// 计算C/S时间偏移量gettimeofday(&recvtv, NULL);offset = GetOffset((struct ntphdr )buf, &recvtv);gettimeofday(&tv, NULL);tv.tv_sec += (int)offset;tv.tv_usec += offset - (int)offset;local = localtime((time_t )&tv.tv_sec);strftime(buffer, 64, "%Y-%m-%d %H:%M:%S", local);ntpTime = std::string(buffer);} }return ;} main.cpp include "NtpClient.h"int main(){std::string ntpTime = "";char curBuf[64] = {0};struct timeval cur;tm local;NtpClient client;client.GetNtpTime(ntpTime);cout << "ntpTime: " << ntpTime << endl;gettimeofday(&cur, NULL);local = localtime((time_t )&cur.tv_sec);strftime(curBuf, 64, "%Y-%m-%d %H:%M:%S", local);std::string curTime = std::string(curBuf);cout << "curTime: " << curTime << endl;if (curTime != ntpTime){cout << "start time calibrate!" << endl;std::string cmd = "sudo date -s \"" + ntpTime + "\"";system(cmd.c_str());cout << "cmd: " << cmd << endl;}else{cout << "time seem" << endl;}return 0;} 推荐一个零声学院免费教程,个人觉得老师讲得不错, 分享给大家:[Linux,Nginx,ZeroMQ,MySQL,Redis, fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker, TCP/IP,协程,DPDK等技术内容,点击立即学习: 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_46935110/article/details/129683157。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-01 12:56:47
112
转载
转载文章
...产生野指针,导致程序运行时crash,如下面示例代码所示: auto_ptr<int> p1(new int(10));auto_ptr<int> p2 = p1; //转移控制权p1 += 10; //crash,p1为空指针,可以用p1->get判空做保护 因此在C++11又推出了unique_ptr、shared_ptr、weak_ptr三种智能指针,慢慢取代auto_ptr。 unique_ptr的使用 unique_ptr是auto_ptr的继承者,对于同一块内存只能有一个持有者,而unique_ptr和auto_ptr唯一区别就是unique_ptr不允许赋值操作,也就是不能放在等号的右边(函数的参数和返回值例外),这一定程度避免了一些误操作导致指针所有权转移,然而,unique_str依然有提供所有权转移的方法move,调用move后,原unique_ptr就会失效,再用其访问裸指针也会发生和auto_ptr相似的crash,如下面示例代码,所以,即使使用了unique_ptr,也要慎重使用move方法,防止指针所有权被转移。 unique_ptr<int> up(new int(5));//auto up2 = up; // 编译错误auto up2 = move(up);cout << up << endl; //crash,up已经失效,无法访问其裸指针 除了上述用法,unique_ptr还支持创建动态数组。在C++中,创建数组有很多方法,如下所示: // 静态数组,在编译时决定了数组大小int arr[10];// 通过指针创建在堆上的数组,可在运行时动态指定数组大小,但需要手动释放内存int arr = new int[10];// 通过std::vector容器创建动态数组,无需手动释放数组内存vector<int> arr(10);// 通过unique_ptr创建动态数组,也无需手动释放数组内存,比vector更轻量化unique_ptr<int[]> arr(new int[10]); 这里需要注意的是,不管vector还是unique_ptr,虽然可以帮我们自动释放数组内存,但如果数组的元素是复杂数据类型时,我们还需要在其析构函数中正确释放内存。 真正的智能指针:shared_ptr auto_ptr和unique_ptr都有或多或少的缺陷,因此C++11还推出了shared_ptr,这也是目前工程内使用最多最广泛的智能指针,他使用引用计数(感觉有参考Objective-C的嫌疑),实现对同一块内存可以有多个引用,在最后一个引用被释放时,指向的内存才释放,这也是和unique_ptr最大的区别。 另外,使用shared_ptr过程中有几点需要注意: 构造shared_ptr的方法,如下示例代码所示,我们尽量使用shared_ptr构造函数或者make_shared的方式创建shared_ptr,禁止使用裸指针赋值的方式,这样会shared_ptr难于管理指针的生命周期。 // 使用裸指针赋值构造,不推荐,裸指针被释放后,shared_ptr就野了,不能完全控制裸指针的生命周期,失去了智能指针价值int p = new int(10);shared_ptr<int>sp = p;delete p; // sp将成为野指针,使用sp将crash// 将裸指针作为匿名指针传入构造函数,一般做法,让shared_ptr接管裸指针的生命周期,更安全shared_ptr<int>sp1(new int(10));// 使用make_shared,推荐做法,更符合工厂模式,可以连代码中的所有new,更高效;方法的参数是用来初始化模板类shared_ptr<int>sp2 = make_shared<int>(10); 禁止使用指向shared_ptr的裸指针,也就是智能指针的指针,这听起来就很奇怪,但开发中我们还需要注意,使用shared_ptr的指针指向一个shared_ptr时,引用计数并不会加一,操作shared_ptr的指针很容易就发生野指针异常。 shared_ptr<int>sp = make_shared<int>(10);cout << sp.use_count() << endl; //输出1shared_ptr<int> sp1 = &sp;cout << (sp1).use_count() << endl; //输出依然是1(sp1).reset(); //sp成为野指针cout << sp << endl; //crash 使用shared_ptr创建动态数组,在介绍unique_ptr时我们就讲过创建动态数组,而shared_ptr同样可以做到,不过稍微复杂一点,如下代码所示,除了要显示指定析构方法外(因为默认是T的析构函数,不是T[]),另外对外的数据类型依然是shared_ptr<T>,非常有迷惑性,看不出来是数组,最后不能直接使用下标读写数组,要先get()获取裸指针才可以使用下标。所以,不推荐使用shared_ptr来创建动态数组,尽量使用unique_ptr,这可是unique_ptr为数不多的优势了。 template <typename T>shared_ptr<T> make_shared_array(size_t size) {return shared_ptr<T>(new T[size], default_delete<T[]>());}shared_ptr<int>sp = make_shared_array(10); //看上去是shared<int>类型,实际上是数组sp.get()[0] = 100; //不能直接使用下标读写数组元素,需要通过get()方法获取裸指针后再操作 用shared_ptr实现多态,在我们使用裸指针时,实现多态就免不了定义虚函数,那么用shared_ptr时也不例外,不过有一处是可以省下的,就是析构函数我们不需要定义为虚函数了,如下面代码所示: class A {public:~A() {cout << "dealloc A" << endl;} };class B : public A {public:~B() {cout << "dealloc B" << endl;} };int main(int argc, const char argv[]) {A a = new B();delete a; //只打印dealloc Ashared_ptr<A>spa = make_shared<B>(); //析构spa是会先打印dealloc B,再打印dealloc Areturn 0;} 循环引用,笔者最先接触引用计数的语言就是Objective-C,而OC中最常出现的内存问题就是循环引用,如下面代码所示,A中引用B,B中引用A,spa和spb的强引用计数永远大于等于1,所以直到程序退出前都不会被退出,这种情况有时候在正常的业务逻辑中是不可避免的,而解决循环引用的方法最有效就是改用weak_ptr,具体可见下一章。 class A {public:shared_ptr<B> b;};class B {public:shared_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb;spb->a = spa;return 0;} //main函数退出后,spa和spb强引用计数依然为1,无法释放 刚柔并济:weak_ptr 正如上一章提到,使用shared_ptr过程中有可能会出现循环引用,关键原因是使用shared_ptr引用一个指针时会导致强引用计数+1,从此该指针的生命周期就会取决于该shared_ptr的生命周期,然而,有些情况我们一个类A里面只是想引用一下另外一个类B的对象,类B对象的创建不在类A,因此类A也无需管理类B对象的释放,这个时候weak_ptr就应运而生了,使用shared_ptr赋值给一个weak_ptr不会增加强引用计数(strong_count),取而代之的是增加一个弱引用计数(weak_count),而弱引用计数不会影响到指针的生命周期,这就解开了循环引用,上一章最后的代码使用weak_ptr可改造为如下代码。 class A {public:shared_ptr<B> b;};class B {public:weak_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb; //spb强引用计数为2,弱引用计数为1spb->a = spa; //spa强引用计数为1,弱引用计数为2return 0;} //main函数退出后,spa先释放,spb再释放,循环解开了使用weak_ptr也有需要注意的点,因为既然weak_ptr不负责裸指针的生命周期,那么weak_ptr也无法直接操作裸指针,我们需要先转化为shared_ptr,这就和OC的Strong-Weak Dance有点像了,具体操作如下:shared_ptr<int> spa = make_shared<int>(10);weak_ptr<int> spb = spa; //weak_ptr无法直接使用裸指针创建if (!spb.expired()) { //weak_ptr最好判断是否过期,使用expired或use_count方法,前者更快spb.lock() += 10; //调用weak_ptr转化为shared_ptr后再操作裸指针}cout << spa << endl; //20 智能指针原理 看到这里,智能指针的用法基本介绍完了,后面笔者来粗浅地分析一下为什么智能指针可以有效帮我们管理裸指针的生命周期。 使用栈对象管理堆对象 在C++中,内存会分为三部分,堆、栈和静态存储区,静态存储区会存放全局变量和静态变量,在程序加载时就初始化,而堆是由程序员自行分配,自行释放的,例如我们使用裸指针分配的内存;而最后栈是系统帮我们分配的,所以也会帮我们自动回收。因此,智能指针就是利用这一性质,通过一个栈上的对象(shared_ptr或unique_ptr)来管理一个堆上的对象(裸指针),在shared_ptr或unique_ptr的析构函数中判断当前裸指针的引用计数情况来决定是否释放裸指针。 shared_ptr引用计数的原理 一开始笔者以为引用计数是放在shared_ptr这个模板类中,但是细想了一下,如果这样将shared_ptr赋值给另一个shared_ptr时,是怎么做到两个shared_ptr的引用计数同时加1呢,让等号两边的shared_ptr中的引用计数同时加1?不对,如果还有第二个shared_ptr再赋值给第三个shared_ptr那怎么办呢?或许通过下面的类图便清楚个中奥秘。 [ boost中shared_ptr与weak_ptr类图 ] 我们重点关注shared_ptr<T>的类图,它就是我们可以直接操作的类,这里面包含裸指针T,还有一个shared_count的对象,而shared_count对象还不是最终的引用计数,它只是包含了一个指向sp_counted_base的指针,这应该就是真正存放引用计数的地方,包括强应用计数和弱引用计数,而且shared_count中包含的是sp_counted_base的指针,不是对象,这也就意味着假如shared_ptr<T> a = b,那么a和b底层pi_指针指向的是同一个sp_counted_base对象,这就很容易做到多个shared_ptr的引用计数永远保持一致了。 多线程安全 本章所说的线程安全有两种情况: 多个线程操作多个不同的shared_ptr对象 C++11中声明了shared_ptr的计数操作具有原子性,不管是赋值导致计数增加还是释放导致计数减少,都是原子性的,这个可以参考sp_counted_base的源码,因此,基于这个特性,假如有多个shared_ptr共同管理一个裸指针,那么多个线程分别通过不同的shared_ptr进行操作是线程安全的。 多个线程操作同一个shared_ptr对象 同样的道理,既然C++11只负责sp_counted_base的原子性,那么shared_ptr本身就没有保证线程安全了,加入两个线程同时访问同一个shared_ptr对象,一个进行释放(reset),另一个读取裸指针的值,那么最后的结果就不确定了,很有可能发生野指针访问crash。 作者:腾讯技术工程 https://mp.weixin.qq.com/s?__biz=MjM5ODYwMjI2MA==&mid=2649743462&idx=1&sn=c9d94ddc25449c6a0052dc48392a33c2&utm_source=tuicool&utm_medium=referralmp.weixin.qq.com 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_31467557/article/details/113049179。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-24 18:25:46
141
转载
转载文章
...db的yum源,手动创建 mariadb.repo仓库文件 添加MariaDB源 vi /etc/yum.repos.d/MariaDB.repo 粘贴官方的或者阿里云的镜像: [mariadb]name = MariaDBbaseurl = http://yum.mariadb.org/10.3/centos7-amd64gpgkey=https://yum.mariadb.org/RPM-GPG-KEY-MariaDBgpgcheck=1[mariadb]name = MariaDBbaseurl = https://mirrors.aliyun.com/mariadb/yum/10.4/centos7-amd64/gpgkey=https://mirrors.aliyun.com/mariadb/yum/RPM-GPG-KEY-MariaDBgpgcheck=1 2.如果下载速度太慢,请删除 mariadb.repo,只是为了使用阿里云的yum源中的mariadb rm -rf /etc/yum.repos.d/Mariadb.repo然后清空yum 缓存yum clean all 3.通过yum安装mariadb软件,安装mariadb服务端和客户端 官方 yum install MariaDB-server MariaDB-client -y阿里云 yum install mariadb mariadb-server -y 4.安装完成后,启动mariadb服务端 systemctl start/stop/restart/status mariadbsystemctl enable mariadb 开机启动mariadb 5. mariadb初始化 这条命令可以初始化mysql,删除匿名用户,设置root密码等等....mysql_secure_installation1.输入当前密码,初次安装后是没有密码的,直接回车2.询问是否使用 'unix_socket' 进行身份验证: n3.为 root 设置密码:y4.输入 root 的新密码: root5.确认输入 root 的新密码: root6.是否移除匿名用户,这个随意,建议删除: y7.拒绝用户远程登录,这个建议开启:n8.删除 test 库,可以保留:n9.重新加载权限表:y 6. 设置mysql的中文编码支持,修改/etc/my.cnf 1.vi /etc/my.cnf在[mysqld]中添加参数,使得mariadb服务端支持中文[mysqld]character-set-server=utf8collation-server=utf8_general_ci2.重启mariadb服务,读取my.cnf新配置systemctl restart mariadb 3.登录数据库,查看字符编码mysql -uroot -p输入 \s 查看编码 7. mysql常用命 desc 查看表结构create database 数据库名create table 表名查看如何创建db的show create database 库名 查看如何创建table结构的show create table 表名; 修改mysql的密码set password = PASSWORD('redhat'); 创建mysql的普通用户,默认权限非常低create user zhang@'%' identified by '123456'; 查询mysql数据库中的用户信息use mysql;select host,user,password from user; 7. 给用户添加权限命令 对所有库和所有表授权所有权限grant all privileges on . to 账户@主机名 给zhang用户授予所有权限grant all privileges on . to zhang@'%'; 刷新授权表flush privileges; 8. 给用户添加权限命令 给zhangsan用户授予所有权限grant all privileges on . to zhangsan@'%'; 给与root权限授予远程登录的命令 'centos这是密码随意设置grant all privileges on . to root@'%' identified by '123456'; 此时可以在windows登录linux的数据库 连接服务器的mysqlmysql -uyining -p -h 服务器的地址 9. 数据备份与恢复 导出当前数据库的所有db,到一个文件中1.mysqldump -u root -p --all-databases > /data/AllMysql.dump2.登录mysql 导入数据mysql -u root -p> source /data/AllMysql.dump3.通过命令导入数据 在登录时候,导入数据文件,一样可以写入数据mysql -uroot -p < /data/AllMysql.dump 10. 修改Mariadb存储路径 10.1 首先确定MariaDB数据库能正常运行,确定正常后关闭服务 systemctl stop mariadb 10.2 建立要更改数据存放的目录,如:我这单独分了一个区/data存放MariaDB的数据 mkdir /data/mysql_data chown -R mysql:mysql /data/mysql_data 10.3 复制默认数据存放文件夹到/data/mysql_data cp -a /var/lib/mysql /data/mysql_data 10.4 修改/etc/my.cnf.d/server.cnf vim /etc/my.cnf.d/server.cnf 在[mysqld]标签下添加如下内容 datadir=/data/mysql_data/mysqlsocket=/var/lib/mysql/mysql.sockdefault-character-set=utf8character_set_server=utf8slow_query_log=onslow_query_log_file=/data/mysql_data/slow_query_log.loglong_query_time=2 10.5 配置MariaDB慢查询 touch /data/mysql_data/slow_query_log.logchown mysql:mysql /data/mysql_data/slow_query_log.log 10.6 重启数据库 systemctl start mariadb 10.7 注意: 1、配置文件my.cnf存在,但是修改的并不是my.cnf,而是/etc/my.cnf.d/server.cnf; 2、并没有更改mysql.sock的路径配置; 3、没有修改/etc/init.d/mysql中的内容; 4、没有修改mysql_safe中的内容; 5、增加了数据库的慢查询配置。 11. Mariadb主从复制 11.1 主从库初始化 这条命令可以初始化mysql,删除匿名用户,设置root密码等等....mysql_secure_installation1.输入当前密码,初次安装后是没有密码的,直接回车2.询问是否使用 'unix_socket' 进行身份验证: n3.为 root 设置密码:y4.输入 root 的新密码: root5.确认输入 root 的新密码: root6.是否移除匿名用户,这个随意,建议删除: y7.拒绝用户远程登录,这个建议开启:n8.删除 test 库,可以保留:n9.重新加载权限表:y 11.2 修改主库配置 [root@mster mysql] grep -Ev "^$|^" /etc/my.cnf.d/server.cnf[server][mysqld]character-set-server=utf8collation-server=utf8_general_ciserver_id = 13 一组主从组里的每个id必须是唯一值。推荐用ip位数log-bin= mysql-bin 二进制日志,后面指定存放位置。如果只是指定名字,默认存放在/var/lib/mysql下lower_case_table_names=1 不区分大小写binlog-format=ROW 二进制日志文件格式log-slave-updates=True slave更新是否记入日志sync-master-info=1 值为1确保信息不会丢失slave-parallel-threads=3 同时启动多少个复制线程,最多与要复制的数据库数量相等即可binlog-checksum=CRC32 效验码master-verify-checksum=1 启动主服务器效验slave-sql-verify-checksum=1 启动从服务器效验[galera][embedded][mariadb][mariadb-10.6][root@mster-k8s mysql] 11.2 修改从库配置 [mysqld]character-set-server=utf8collation-server=utf8_general_ciserver_id=14log-bin= mysql-bin log-bin是二进制文件relay_log = relay-bin 中继日志, 后面指定存放位置。如果只是指定名字,默认存放在/var/lib/mysql下lower_case_table_names=1 11.3 重启主库和从库服务 systemctl restart mariad 11.4 master节点配置 MariaDB [huawei]> grant replication slave, replication client on . to 'liu'@'%' identified by '123456';Query OK, 0 rows affected (0.001 sec)MariaDB [huawei]> show master status;+------------------+----------+--------------+------------------+| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |+------------------+----------+--------------+------------------+| mysql-bin.000001 | 4990 | | |+------------------+----------+--------------+------------------+1 row in set (0.000 sec)MariaDB [huawei]> select binlog_gtid_pos('mysql-bin.000001', 4990 );+-------------------------------------------+| binlog_gtid_pos('mysql-bin.000001', 4990) |+-------------------------------------------+| 0-13-80 |+-------------------------------------------+1 row in set (0.000 sec)MariaDB [huawei]> flush privileges; 11.5 slave节点配置 MariaDB [(none)]> set global gtid_slave_pos='0-13-80';Query OK, 0 rows affected (0.004 sec)MariaDB [(none)]> change master to master_host='101.34.141.216',master_user='liu',master_password='123456',master_use_gtid=slave_pos;Query OK, 0 rows affected (0.008 sec)MariaDB [(none)]> start slave;Query OK, 0 rows affected (0.005 sec)MariaDB [(none)]> 11.6 验证salve状态 MariaDB [(none)]> show slave status\G 1. row Slave_IO_State: Waiting for master to send eventMaster_Host: 101.34.141.216Master_User: liuMaster_Port: 3306Connect_Retry: 60Master_Log_File: mysql-bin.000001Read_Master_Log_Pos: 13260Relay_Log_File: relay-bin.000002Relay_Log_Pos: 10246Relay_Master_Log_File: mysql-bin.000001Slave_IO_Running: YesSlave_SQL_Running: YesReplicate_Do_DB: Replicate_Ignore_DB: Replicate_Do_Table: Replicate_Ignore_Table: Replicate_Wild_Do_Table: Replicate_Wild_Ignore_Table: Last_Errno: 0Last_Error: Skip_Counter: 0Exec_Master_Log_Pos: 13260Relay_Log_Space: 10549Until_Condition: NoneUntil_Log_File: Until_Log_Pos: 0Master_SSL_Allowed: NoMaster_SSL_CA_File: 本篇文章为转载内容。原文链接:https://blog.csdn.net/l363130002/article/details/126121255。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-12 10:11:01
310
转载
Ruby
...这样的噩梦:一个程序运行得很慢,我以为是硬件问题,结果发现是自己在并发编程上犯了错。嘿,今天咱们就来聊聊那些经常犯的小错吧!我呢,打算用一些接地气的例子,跟大家伙儿一起看看这些错误长啥样,顺便学学怎么躲开它们。毕竟谁也不想踩雷不是? --- 2. 什么是并发编程? 简单来说,并发编程就是让程序在同一时间执行多个任务。在Ruby中,我们可以用线程(Thread)来实现这一点。比如说啊,你正在倒腾一堆数据的时候,完全可以把它切成一小块一小块的,然后让每个线程去负责一块,这样一来,效率直接拉满,干活儿的速度蹭蹭往上涨! 但是,问题来了:并发编程虽然强大,但它并不是万能药。哎呀,经常会有这样的情况呢——自个儿辛辛苦苦改代码,还以为是在让程序变得更好,结果一不小心,又给它整出了新麻烦,真是“好心办坏事”的典型啊!接下来,我们来看几个具体的例子。 --- 3. 示例一 共享状态的混乱 场景描述: 假设你正在开发一个电商网站,需要统计用户的购买记录。你琢磨着干脆让多线程上阵,给这个任务提速,于是打算让每个线程各管一拨用户的活儿,分头行动效率肯定更高!看起来很合理对不对? 问题出现: 问题是,当你让多个线程共享同一个变量(比如一个全局计数器),事情就开始变得不可控了。Ruby 的线程可不是完全分开的,这就有点像几个人共用一个记事本,大家都能随便写东西上去。结果就是,这本子可能一会儿被这个写点,一会儿被那个划掉,最后你都不知道上面到底写了啥,数据就乱套了。 代码示例: ruby 错误的代码 counter = 0 threads = [] 5.times do |i| threads << Thread.new do 100_000.times { counter += 1 } end end threads.each(&:join) puts "Counter: {counter}" 分析: 这段代码看起来没什么问题,每个线程都只是简单地增加计数器。但实际情况却是,输出的结果经常不是期望的500_000,而是各种奇怪的数字。这就好比说,counter += 1 其实不是一步到位的简单操作,它得先“读一下当前的值”,再“给这个值加1”,最后再“把新的值存回去”。问题是,在这中间的每一个小动作,都可能被别的线程突然插队过来捣乱! 解决方案: 为了避免这种混乱,我们需要使用线程安全的操作,比如Mutex(互斥锁)。Mutex可以确保每次只有一个线程能够修改某个变量。 修正后的代码: ruby 正确的代码 require 'thread' counter = 0 mutex = Mutex.new threads = [] 5.times do |i| threads << Thread.new do 100_000.times do mutex.synchronize { counter += 1 } end end end threads.each(&:join) puts "Counter: {counter}" 总结: 这一段代码告诉我们,共享状态是一个雷区。如果你非要用共享变量,记得给它加上锁,不然后果不堪设想。 --- 4. 示例二 死锁的诅咒 场景描述: 有时候,我们会遇到更复杂的情况,比如两个线程互相等待对方释放资源。哎呀,这种情况就叫“死锁”,简直就像两只小猫抢一个玩具,谁都不肯让步,结果大家都卡在那里动弹不得,程序也就这样傻乎乎地停在原地,啥也干不了啦! 问题出现: 想象一下,你有两个线程,A线程需要获取锁X,B线程需要获取锁Y。想象一下,A和B两个人都想打开两把锁——A拿到了锁X,B拿到了锁Y。然后呢,A心想:“我得等B先把他的锁Y打开,我才能继续。”而B也在想:“等A先把她的锁X打开,我才能接着弄。”结果俩人就这么干等着,谁也不肯先放手,最后就成了“死锁”——就像两个人在拔河,谁都不松手,僵在那里啥也干不成。 代码示例: ruby 死锁的代码 lock_a = Mutex.new lock_b = Mutex.new thread_a = Thread.new do lock_a.synchronize do puts "Thread A acquired lock A" sleep(1) lock_b.synchronize do puts "Thread A acquired lock B" end end end thread_b = Thread.new do lock_b.synchronize do puts "Thread B acquired lock B" sleep(1) lock_a.synchronize do puts "Thread B acquired lock A" end end end thread_a.join thread_b.join 分析: 在这段代码中,两个线程都在尝试获取两个不同的锁,但由于它们的顺序不同,最终导致了死锁。运行这段代码时,你会发现程序卡住了,没有任何输出。 解决方案: 为了避免死锁,我们需要遵循“总是按照相同的顺序获取锁”的原则。比如,在上面的例子中,我们可以强制让所有线程都先获取锁A,再获取锁B。 修正后的代码: ruby 避免死锁的代码 lock_a = Mutex.new lock_b = Mutex.new thread_a = Thread.new do [lock_a, lock_b].each do |lock| lock.synchronize do puts "Thread A acquired lock {lock.object_id}" end end end thread_b = Thread.new do [lock_a, lock_b].each do |lock| lock.synchronize do puts "Thread B acquired lock {lock.object_id}" end end end thread_a.join thread_b.join 总结: 死锁就像一只隐形的手,随时可能掐住你的喉咙。记住,保持一致的锁顺序是关键! --- 5. 示例三 不恰当的线程池 场景描述: 线程池是一种管理线程的方式,它可以复用线程,减少频繁创建和销毁线程的开销。但在实际使用中,很多人会因为配置不当而导致性能下降甚至崩溃。 问题出现: 假设你创建了一个线程池,但线程池的大小设置得不合理。哎呀,这就好比做饭时锅不够大,菜都堆在那儿煮不熟,菜要是放太多呢,锅又会冒烟、潽得到处都是,最后饭也没做好。线程池也一样,太小了任务堆成山,程序半天没反应;太大了吧,电脑资源直接被榨干,啥事也干不成,还得收拾烂摊子! 代码示例: ruby 线程池的错误用法 require 'thread' pool = Concurrent::FixedThreadPool.new(2) 20.times do |i| pool.post do sleep(1) puts "Task {i} completed" end end pool.shutdown pool.wait_for_termination 分析: 在这个例子中,线程池的大小被设置为2,但有20个任务需要执行。哎呀,这就好比你请了个帮手,但他一次只能干两件事,其他事儿就得排队等着,得等前面那两件事儿干完了,才能轮到下一件呢!这种情况下,整个程序的执行时间会显著延长。 解决方案: 为了优化线程池的性能,我们需要根据系统的负载情况动态调整线程池的大小。可以使用Concurrent::CachedThreadPool,它会根据当前的任务数量自动调整线程的数量。 修正后的代码: ruby 使用缓存线程池 require 'concurrent' pool = Concurrent::CachedThreadPool.new 20.times do |i| pool.post do sleep(1) puts "Task {i} completed" end end sleep(10) 给线程池足够的时间完成任务 pool.shutdown pool.wait_for_termination 总结: 线程池就像一把双刃剑,用得好可以提升效率,用不好则会成为负担。记住,线程池的大小要根据实际情况灵活调整。 --- 6. 示例四 忽略异常的代价 场景描述: 并发编程的一个常见问题是,线程中的异常不容易被察觉。如果你没有妥善处理这些异常,程序可能会因为一个小错误而崩溃。 问题出现: 假设你有一个线程在执行某个操作时抛出了异常,但你没有捕获它,那么整个线程池可能会因此停止工作。 代码示例: ruby 忽略异常的代码 threads = [] 5.times do |i| threads << Thread.new do raise "Error in thread {i}" if i == 2 puts "Thread {i} completed" end end threads.each(&:join) 分析: 在这个例子中,当i == 2时,线程会抛出一个异常。哎呀糟糕!因为我们没抓住这个异常,程序直接就挂掉了,别的线程啥的也别想再跑了。 解决方案: 为了防止这种情况发生,我们应该在每个线程中添加异常捕获机制。比如,可以用begin-rescue-end结构来捕获异常并进行处理。 修正后的代码: ruby 捕获异常的代码 threads = [] 5.times do |i| threads << Thread.new do begin raise "Error in thread {i}" if i == 2 puts "Thread {i} completed" rescue => e puts "Thread {i} encountered an error: {e.message}" end end end threads.each(&:join) 总结: 异常就像隐藏在暗处的敌人,稍不注意就会让你措手不及。学会捕获和处理异常,是成为一个优秀的并发编程者的关键。 --- 7. 结语 好了,今天的分享就到这里啦!并发编程确实是一项强大的技能,但也需要谨慎对待。大家看看今天这个例子,是不是觉得有点隐患啊?希望能引起大家的注意,也学着怎么避开这些坑,别踩雷了! 最后,我想说的是,编程是一门艺术,也是一场冒险。每次遇到新挑战,我都觉得像打开一个神秘的盲盒,既兴奋又紧张。不过呢,光有好奇心还不够,还得有点儿耐心,就像种花一样,得一点点浇水施肥,不能急着看结果。相信只要我们不断学习、不断反思,就一定能写出更加优雅、高效的代码! 祝大家编码愉快!
2025-04-25 16:14:17
32
凌波微步
转载文章
... 下载源码 1.2 创建虚拟环境及安装依赖库 1.3 编译TVM源码 1.4 验证安装是否成功 2. 配置vscode 3. 安装FFI Navigator 结束语 前言 本篇文章介绍一下 tvm 在linux环境下的安装与编译,以及如何使用vscode来配置tvm的远程连接调试环境。 所需软硬件环境: 环境 版本 local system windows 10 service system ubuntu 18.04 tvm latest(0.9.dev0) python(conda) python 3.8.13 local IDE vscode 1. 安装TVM 1.1 下载源码 从github上拉取源码git clone --recursive https://github.com/apache/tvm tvm --recursive指令:由于tvm依赖了很多第三方的开源库(子模块) 加入该参数之后也将相应的子模块一起进行clone 或者直接下载源码https://tvm.apache.org/download 1.2 创建虚拟环境及安装依赖库 使用conda创建tvm的虚拟python环境,python版本为3.8,虚拟环境名为tvmenv: conda create -n tvmenv python=3.8 编辑tvm目录下的conda/build-environment.yaml文件: conda/build-environment.yaml Build environment that can be used to build tvm.name: tvmenv The conda channels to lookup the dependencieschannels:- anaconda- conda-forge 将name的值改为刚刚创建的虚拟环境名tvmenv 执行下面的指令,将构建tvm所需的环境依赖更新到当前虚拟环境中: conda env update -f conda/build-environment.yaml conda env update -n tvmenv -f conda/build-environment.yaml 设置完之后需要重新deactivate/activate对环境进行激活 如果上述命令执行较慢,可以将conda换成国内源(建议使用北京外国语大学的开源镜像站):参考连接 然后修改conda/build-environment.yaml文件: channels:- defaults - anaconda - conda-forge 安装python依赖库: pip install decorator tornado psutil 'xgboost<1.6.0' cloudpickle -i https://pypi.tuna.tsinghua.edu.cn/simple 如果使用onnx或者pytorch作为原始模型,则还需要安装相应的依赖库pip install onnx onnxruntime -i https://pypi.tuna.tsinghua.edu.cn/simplepip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 -i https://pypi.tuna.tsinghua.edu.cn/simple 在当前虚拟环境中添加用于tvm debug的环境变量: conda env config vars set TVM_LOG_DEBUG="ir/transform.cc=1,relay/ir/transform.cc=1" conda env config vars set TVM_LOG_DEBUG="ir/transform.cc=1,relay/ir/transform.cc=1" -n tvmenv 设置完之后需要重新deactivate/activate对环境进行激活是环境变量生效 使用这种方式设置环境变量的好处是:只有当前环境被激活(conda activate)时,自定义设置的环境变量才起作用,当conda deactivate后自定义的环境变量会自动清除。 当然,也可以更简单粗暴一些: export TVM_LOG_DEBUG="ir/transform.cc=1,relay/ir/transform.cc=1" 在当前虚拟环境中添加用于tvm python的环境变量: export TVM_HOME=your tvm pathexport PYTHONPATH=$TVM_HOME/python:${PYTHONPATH} 1.3 编译TVM源码 如果linux上没有安装C/C++的编译环境,需要进行安装: 更新软件apt-get update 安装apt-get install build-essential 安装cmakeapt-get install cmake 在tvm目录下创建build文件夹,并将cmake/config.cmake文件复制到此文件夹中: mkdir buildcp cmake/config.cmake build/ 编辑build/config.cmake进行相关配置: 本次是在cpu上进行测试,因此没有配置cudaset(USE_LLVM ON) line 136set(USE_RELAY_DEBUG ON) line 285(建议先 OFF) 在末尾添加一个cmake的编译宏,确保编译出来的是debug版本set(CMAKE_BUILD_TYPE Debug) 编译tvm,这里开启了16个线程: cd buildcmake ..make -j 16 建议开多个线程,否则编译速度很慢哦 大约5分钟,即可生成我们需要的两个共享链接库:libtvm.so 和 libtvm_runtime.so 1.4 验证安装是否成功 tvm版本验证: import tvmprint(tvm.__version__) pytorch模型验证: from_pytorch.py https://tvm.apache.org/docs/how_to/compile_models/from_pytorch.html ps: TVM supports PyTorch 1.7 and 1.4. Other versions may be unstable.import tvmfrom tvm import relayfrom tvm.contrib.download import download_testdataimport numpy as np PyTorch importsimport torchimport torchvision Load a pretrained PyTorch model -------------------------------model_name = "resnet18"model = getattr(torchvision.models, model_name)(pretrained=True) or model = torchvision.models.resnet18(pretrained=True) or pth_file = 'resnet18-f37072fd.pth' model = torchvision.models.resnet18() ckpt = torch.load(pth_file) model.load_state_dict(ckpt)model = model.eval() We grab the TorchScripted model via tracinginput_shape = [1, 3, 224, 224]input_data = torch.randn(input_shape)scripted_model = torch.jit.trace(model, input_data).eval() Load a test image ----------------- Classic cat example!from PIL import Image img_url = "https://github.com/dmlc/mxnet.js/blob/main/data/cat.png?raw=true" img_path = download_testdata(img_url, "cat.png", module="data")img_path = 'cat.png'img = Image.open(img_path).resize((224, 224)) Preprocess the image and convert to tensorfrom torchvision import transformsmy_preprocess = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])img = my_preprocess(img)img = np.expand_dims(img, 0) Import the graph to Relay ------------------------- Convert PyTorch graph to Relay graph. The input name can be arbitrary.input_name = "input0"shape_list = [(input_name, img.shape)]mod, params = relay.frontend.from_pytorch(scripted_model, shape_list) Relay Build ----------- Compile the graph to llvm target with given input specification.target = tvm.target.Target("llvm", host="llvm")dev = tvm.cpu(0)with tvm.transform.PassContext(opt_level=3):lib = relay.build(mod, target=target, params=params) Execute the portable graph on TVM --------------------------------- Now we can try deploying the compiled model on target.from tvm.contrib import graph_executordtype = "float32"m = graph_executor.GraphModule(lib["default"](dev)) Set inputsm.set_input(input_name, tvm.nd.array(img.astype(dtype))) Executem.run() Get outputstvm_output = m.get_output(0) Look up synset name ------------------- Look up prediction top 1 index in 1000 class synset. synset_url = "".join( [ "https://raw.githubusercontent.com/Cadene/", "pretrained-models.pytorch/master/data/", "imagenet_synsets.txt", ] ) synset_name = "imagenet_synsets.txt" synset_path = download_testdata(synset_url, synset_name, module="data") https://raw.githubusercontent.com/Cadene/pretrained-models.pytorch/master/data/imagenet_synsets.txtsynset_path = 'imagenet_synsets.txt'with open(synset_path) as f:synsets = f.readlines()synsets = [x.strip() for x in synsets]splits = [line.split(" ") for line in synsets]key_to_classname = {spl[0]: " ".join(spl[1:]) for spl in splits} class_url = "".join( [ "https://raw.githubusercontent.com/Cadene/", "pretrained-models.pytorch/master/data/", "imagenet_classes.txt", ] ) class_name = "imagenet_classes.txt" class_path = download_testdata(class_url, class_name, module="data") https://raw.githubusercontent.com/Cadene/pretrained-models.pytorch/master/data/imagenet_classes.txtclass_path = 'imagenet_classes.txt'with open(class_path) as f:class_id_to_key = f.readlines()class_id_to_key = [x.strip() for x in class_id_to_key] Get top-1 result for TVMtop1_tvm = np.argmax(tvm_output.numpy()[0])tvm_class_key = class_id_to_key[top1_tvm] Convert input to PyTorch variable and get PyTorch result for comparisonwith torch.no_grad():torch_img = torch.from_numpy(img)output = model(torch_img) Get top-1 result for PyTorchtop1_torch = np.argmax(output.numpy())torch_class_key = class_id_to_key[top1_torch]print("Relay top-1 id: {}, class name: {}".format(top1_tvm, key_to_classname[tvm_class_key]))print("Torch top-1 id: {}, class name: {}".format(top1_torch, key_to_classname[torch_class_key])) 2. 配置vscode 安装两个vscode远程连接所需的两个插件,具体如下图所示: 安装完成之后,在左侧工具栏会出现一个图标,点击图标进行ssh配置: ssh yourname@yourip -A 然后右键选择在当前窗口进行连接: 除此之外,还可以设置免费登录,具体可参考这篇文章。 当然,也可以使用windows本地的WSL2,vscode连接WSL还需要安装WSL和Dev Containers这两个插件。 在服务器端执行code .会自动安装vscode server,安装位置在用户的根目录下: 3. 安装FFI Navigator 由于TVM是由Python和C++混合开发,且大多数的IDE仅支持在同一种语言中查找函数定义,因此对于跨语言的FFI 调用,即Python跳转到C++或者C++跳转到Python,vscode是做不到的。虽然解决这个问题在技术上可能非常具有挑战性,但我们可以通过构建一个与FFI注册码模式匹配并恢复必要信息的项目特定分析器来解决这个问题,FFI Navigator就这样诞生了,作者仍然是陈天奇博士。 安装方式如下: 建议使用源码安装git clone https://github.com/tqchen/ffi-navigator.git 安装python依赖cd ffi-navigator/pythonpython setyp.py install vscode需要安装FFI Navigator插件,直接搜索安装即可(安装到服务器端)。 最后需要在.vscode/setting.json进行配置,内容如下: {"python.analysis.extraPaths": ["${workspaceFolder}/python"], // 添加额外导入路径, 告诉pylance自定义的python库在哪里"ffi_navigator.pythonpath": "/home/liyanpeng/anaconda3/envs/tvmenv/bin/python", // 配置FFI Navigator"python.defaultInterpreterPath": "/home/liyanpeng/anaconda3/envs/tvmenv/bin/python","files.associations": {"type_traits": "cpp","fstream": "cpp","thread": "cpp",".tcc": "cpp"} } 更详细内容可以参考项目链接。 结束语 对于vscode的使用技巧及C/C++相关的配置,这里不再详细的介绍了,感兴趣的小伙伴们可以了解下。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_42730750/article/details/126723224。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-12 20:04:26
87
转载
转载文章
...Quartz可以用来创建简单或为运行十个,百个,甚至是好几万个Jobs这样复杂的程序。Jobs可以做成标准的Java组件或 EJBs。Quartz 是个开源的作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。Quartz 允许开发人员根据时间间隔(或天)来调度作业。它实现了作业和触发器的多对多关系,还能把多个作业与不同的触发器关联。整合了 Quartz 的应用程序可以重用来自不同事件的作业,还可以为一个事件组合多个作业。虽然可以通过属性文件(在属性文件中可以指定 JDBC 事务的数据源、全局作业和/或触发器侦听器、插件、线程池,以及更多)配置 Quartz,但它根本没有与应用程序服务器的上下文或引用集成在一起。结果就是作业不能访问 Web 服务器的内部函数;例如,在使用 WebSphere 应用服务器时,由 Quartz 调度的作业并不能影响服务器的动态缓存和数据源。 二、java中实现定时任务分类 从实现的技术上来分类,目前主要有三种技术(或者说有三种产品): Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务。使用这种方式可以让你的程序按照某一个频度执行,但不能在指定时间运行。一般用的较少,这篇文章将不做详细介绍。 使用Quartz,这是一个功能比较强大的的调度器,可以让你的程序在指定时间执行,也可以按照某一个频度执行,配置起来稍显复杂,稍后会详细介绍。 Spring3.0以后自带的task,可以将它看成一个轻量级的Quartz,而且使用起来比Quartz简单许多,稍后会介绍。 从作业类的继承方式来讲,可以分为两类: 作业类需要继承自特定的作业类基类,如Quartz中需要继承自org.springframework.scheduling.quartz.QuartzJobBean;java.util.Timer中需要继承自java.util.TimerTask。 作业类即普通的java类,不需要继承自任何基类。 注:个人推荐使用第二种方式,因为这样所以的类都是普通类,不需要事先区别对待。 从任务调度的触发时机来分,这里主要是针对作业使用的触发器,主要有以下两种: 每隔指定时间则触发一次,在Quartz中对应的触发器为:org.springframework.scheduling.quartz.SimpleTriggerBean 每到指定时间则触发一次,在Quartz中对应的调度器为:org.springframework.scheduling.quartz.CronTriggerBean 注:并非每种任务都可以使用这两种触发器,如java.util.TimerTask任务就只能使用第一种。Quartz和spring task都可以支持这两种触发条件。 三、Quartz与Spring的集成 第一种,作业类继承自特定的基类:org.springframework.scheduling.quartz.QuartzJobBean。 第一步:定义作业类 Java代码 import org.quartz.JobExecutionContext; import org.quartz.JobExecutionException; import org.springframework.scheduling.quartz.QuartzJobBean; public class Job1 extends QuartzJobBean { private int timeout; private static int i = 0; //调度工厂实例化后,经过timeout时间开始执行调度 public void setTimeout(int timeout) { this.timeout = timeout; } / 要调度的具体任务 / @Override protected void executeInternal(JobExecutionContext context) throws JobExecutionException { System.out.println("定时任务执行中…"); } } 第二步:spring配置文件中配置作业类JobDetailBean Xml代码 <bean name="job1" class="org.springframework.scheduling.quartz.JobDetailBean"> <property name="jobClass" value="com.gy.Job1" /> <property name="jobDataAsMap"> <map> <entry key="timeout" value="0" /> </map> </property> </bean> 说明:org.springframework.scheduling.quartz.JobDetailBean有两个属性,jobClass属性即我们在java代码中定义的任务类,jobDataAsMap属性即该任务类中需要注入的属性值。 第三步:配置作业调度的触发方式(触发器) Quartz的作业触发器有两种,分别是 org.springframework.scheduling.quartz.SimpleTriggerBean org.springframework.scheduling.quartz.CronTriggerBean 第一种SimpleTriggerBean,只支持按照一定频度调用任务,如每隔30分钟运行一次。 配置方式如下: Xml代码 <bean id="simpleTrigger" class="org.springframework.scheduling.quartz.SimpleTriggerBean"> <property name="jobDetail" ref="job1" /> <property name="startDelay" value="0" /><!-- 调度工厂实例化后,经过0秒开始执行调度 --> <property name="repeatInterval" value="2000" /><!-- 每2秒调度一次 --> </bean> 第二种CronTriggerBean,支持到指定时间运行一次,如每天12:00运行一次等。 配置方式如下: Xml代码 <bean id="cronTrigger" class="org.springframework.scheduling.quartz.CronTriggerBean"> <property name="jobDetail" ref="job1" /> <!—每天12:00运行一次 --> <property name="cronExpression" value="0 0 12 ?" /> </bean> 关于cronExpression表达式的语法参见附录。 第四步:配置调度工厂 Xml代码 <bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean"> <property name="triggers"> <list> <ref bean="cronTrigger" /> </list> </property> </bean> 说明:该参数指定的就是之前配置的触发器的名字。 第五步:启动你的应用即可,即将工程部署至tomcat或其他容器。 第二种,作业类不继承特定基类。 Spring能够支持这种方式,归功于两个类: org.springframework.scheduling.timer.MethodInvokingTimerTaskFactoryBean org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean 这两个类分别对应spring支持的两种实现任务调度的方式,即前文提到到java自带的timer task方式和Quartz方式。这里我只写MethodInvokingJobDetailFactoryBean的用法,使用该类的好处是,我们的任务类不再需要继承自任何类,而是普通的pojo。 第一步:编写任务类 Java代码 public class Job2 { public void doJob2() { System.out.println("不继承QuartzJobBean方式-调度进行中..."); } } 可以看出,这就是一个普通的类,并且有一个方法。 第二步:配置作业类 Xml代码 <bean id="job2" class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean"> <property name="targetObject"> <bean class="com.gy.Job2" /> </property> <property name="targetMethod" value="doJob2" /> <property name="concurrent" value="false" /><!-- 作业不并发调度 --> </bean> 说明:这一步是关键步骤,声明一个MethodInvokingJobDetailFactoryBean,有两个关键属性:targetObject指定任务类,targetMethod指定运行的方法。往下的步骤就与方法一相同了,为了完整,同样贴出。 第三步:配置作业调度的触发方式(触发器) Quartz的作业触发器有两种,分别是 org.springframework.scheduling.quartz.SimpleTriggerBean org.springframework.scheduling.quartz.CronTriggerBean 第一种SimpleTriggerBean,只支持按照一定频度调用任务,如每隔30分钟运行一次。 配置方式如下: Xml代码 <bean id="simpleTrigger" class="org.springframework.scheduling.quartz.SimpleTriggerBean"> <property name="jobDetail" ref="job2" /> <property name="startDelay" value="0" /><!-- 调度工厂实例化后,经过0秒开始执行调度 --> <property name="repeatInterval" value="2000" /><!-- 每2秒调度一次 --> </bean> 第二种CronTriggerBean,支持到指定时间运行一次,如每天12:00运行一次等。 配置方式如下: Xml代码 <bean id="cronTrigger" class="org.springframework.scheduling.quartz.CronTriggerBean"> <property name="jobDetail" ref="job2" /> <!—每天12:00运行一次 --> <property name="cronExpression" value="0 0 12 ?" /> </bean> 以上两种调度方式根据实际情况,任选一种即可。 第四步:配置调度工厂 Xml代码 <bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean"> <property name="triggers"> <list> <ref bean="cronTrigger" /> </list> </property> </bean> 说明:该参数指定的就是之前配置的触发器的名字。 第五步:启动你的应用即可,即将工程部署至tomcat或其他容器。 到此,spring中Quartz的基本配置就介绍完了,当然了,使用之前,要导入相应的spring的包与Quartz的包,这些就不消多说了。 其实可以看出Quartz的配置看上去还是挺复杂的,没有办法,因为Quartz其实是个重量级的工具,如果我们只是想简单的执行几个简单的定时任务,有没有更简单的工具,有! 四、Spring-Task 上节介绍了在Spring 中使用Quartz,本文介绍Spring3.0以后自主开发的定时任务工具,spring task,可以将它比作一个轻量级的Quartz,而且使用起来很简单,除spring相关的包外不需要额外的包,而且支持注解和配置文件两种 形式,下面将分别介绍这两种方式。 第一种:配置文件方式 第一步:编写作业类 即普通的pojo,如下: Java代码 import org.springframework.stereotype.Service; @Service public class TaskJob { public void job1() { System.out.println(“任务进行中。。。”); } } 第二步:在spring配置文件头中添加命名空间及描述 Xml代码 <beans xmlns="http://www.springframework.org/schema/beans" xmlns:task="http://www.springframework.org/schema/task" 。。。。。。 xsi:schemaLocation="http://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task-3.0.xsd"> 第三步:spring配置文件中设置具体的任务 Xml代码 <task:scheduled-tasks> <task:scheduled ref="taskJob" method="job1" cron="0 ?"/> </task:scheduled-tasks> <context:component-scan base-package=" com.gy.mytask " /> 说明:ref参数指定的即任务类,method指定的即需要运行的方法,cron及cronExpression表达式,具体写法这里不介绍了,详情见上篇文章附录。 <context:component-scan base-package="com.gy.mytask" />这个配置不消多说了,spring扫描注解用的。 到这里配置就完成了,是不是很简单。 第二种:使用注解形式 也许我们不想每写一个任务类还要在xml文件中配置下,我们可以使用注解@Scheduled,我们看看源文件中该注解的定义: Java代码 @Target({java.lang.annotation.ElementType.METHOD, java.lang.annotation.ElementType.ANNOTATION_TYPE}) @Retention(RetentionPolicy.RUNTIME) @Documented public @interface Scheduled { public abstract String cron(); public abstract long fixedDelay(); public abstract long fixedRate(); } 可以看出该注解有三个方法或者叫参数,分别表示的意思是: cron:指定cron表达式 fixedDelay:官方文档解释:An interval-based trigger where the interval is measured from the completion time of the previous task. The time unit value is measured in milliseconds.即表示从上一个任务完成开始到下一个任务开始的间隔,单位是毫秒。 fixedRate:官方文档解释:An interval-based trigger where the interval is measured from the start time of the previous task. The time unit value is measured in milliseconds.即从上一个任务开始到下一个任务开始的间隔,单位是毫秒。 下面我来配置一下。 第一步:编写pojo Java代码 import org.springframework.scheduling.annotation.Scheduled; import org.springframework.stereotype.Component; @Component(“taskJob”) public class TaskJob { @Scheduled(cron = "0 0 3 ?") public void job1() { System.out.println(“任务进行中。。。”); } } 第二步:添加task相关的配置: Xml代码 <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:context="http://www.springframework.org/schema/context" xmlns:tx="http://www.springframework.org/schema/tx" xmlns:task="http://www.springframework.org/schema/task" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-3.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/jdbc/spring-jdbc-3.0.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-3.0.xsd http://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task-3.0.xsd" default-lazy-init="false"> <context:annotation-config /> <!—spring扫描注解的配置 --> <context:component-scan base-package="com.gy.mytask" /> <!—开启这个配置,spring才能识别@Scheduled注解 --> <task:annotation-driven scheduler="qbScheduler" mode="proxy"/> <task:scheduler id="qbScheduler" pool-size="10"/> 说明:理论上只需要加上<task:annotation-driven />这句配置就可以了,这些参数都不是必须的。 Ok配置完毕,当然spring task还有很多参数,我就不一一解释了,具体参考xsd文档http://www.springframework.org/schema/task/spring-task-3.0.xsd。 附录: cronExpression的配置说明,具体使用以及参数请百度google 字段 允许值 允许的特殊字符 秒 0-59 , - / 分 0-59 , - / 小时 0-23 , - / 日期 1-31 , - ? / L W C 月份 1-12 或者 JAN-DEC , - / 星期 1-7 或者 SUN-SAT , - ? / L C 年(可选) 留空, 1970-2099 , - / - 区间 通配符 ? 你不想设置那个字段 下面只例出几个式子 CRON表达式 含义 "0 0 12 ?" 每天中午十二点触发 "0 15 10 ? " 每天早上10:15触发 "0 15 10 ?" 每天早上10:15触发 "0 15 10 ? " 每天早上10:15触发 "0 15 10 ? 2005" 2005年的每天早上10:15触发 "0 14 ?" 每天从下午2点开始到2点59分每分钟一次触发 "0 0/5 14 ?" 每天从下午2点开始到2:55分结束每5分钟一次触发 "0 0/5 14,18 ?" 每天的下午2点至2:55和6点至6点55分两个时间段内每5分钟一次触发 "0 0-5 14 ?" 每天14:00至14:05每分钟一次触发 "0 10,44 14 ? 3 WED" 三月的每周三的14:10和14:44触发 "0 15 10 ? MON-FRI" 每个周一、周二、周三、周四、周五的10:15触发 Cron 表达式包括以下 7 个字段: 秒 分 小时 月内日期 月 周内日期 年(可选字段) 特殊字符 Cron 触发器利用一系列特殊字符,如下所示: 反斜线(/)字符表示增量值。例如,在秒字段中“5/15”代表从第 5 秒开始,每 15 秒一次。 问号(?)字符和字母 L 字符只有在月内日期和周内日期字段中可用。问号表示这个字段不包含具体值。所以,如果指定月内日期,可以在周内日期字段中插入“?”,表示周内日期值无关紧要。字母 L 字符是 last 的缩写。放在月内日期字段中,表示安排在当月最后一天执行。在周内日期字段中,如果“L”单独存在,就等于“7”,否则代表当月内周内日期的最后一个实例。所以“0L”表示安排在当月的最后一个星期日执行。 在月内日期字段中的字母(W)字符把执行安排在最靠近指定值的工作日。把“1W”放在月内日期字段中,表示把执行安排在当月的第一个工作日内。 井号()字符为给定月份指定具体的工作日实例。把“MON2”放在周内日期字段中,表示把任务安排在当月的第二个星期一。 星号()字符是通配字符,表示该字段可以接受任何可能的值。 字段 允许值 允许的特殊字符 秒 0-59 , - / 分 0-59 , - / 小时 0-23 , - / 日期 1-31 , - ? / L W C 月份 1-12 或者 JAN-DEC , - / 星期 1-7 或者 SUN-SAT , - ? / L C 年(可选) 留空, 1970-2099 , - / 表达式意义 "0 0 12 ?" 每天中午12点触发 "0 15 10 ? " 每天上午10:15触发 "0 15 10 ?" 每天上午10:15触发 "0 15 10 ? " 每天上午10:15触发 "0 15 10 ? 2005" 2005年的每天上午10:15触发 "0 14 ?" 在每天下午2点到下午2:59期间的每1分钟触发 "0 0/5 14 ?" 在每天下午2点到下午2:55期间的每5分钟触发 "0 0/5 14,18 ?" 在每天下午2点到2:55期间和下午6点到6:55期间的每5分钟触发 "0 0-5 14 ?" 在每天下午2点到下午2:05期间的每1分钟触发 "0 10,44 14 ? 3 WED" 每年三月的星期三的下午2:10和2:44触发 "0 15 10 ? MON-FRI" 周一至周五的上午10:15触发 "0 15 10 15 ?" 每月15日上午10:15触发 "0 15 10 L ?" 每月最后一日的上午10:15触发 "0 15 10 ? 6L" 每月的最后一个星期五上午10:15触发 "0 15 10 ? 6L 2002-2005" 2002年至2005年的每月的最后一个星期五上午10:15触发 "0 15 10 ? 63" 每月的第三个星期五上午10:15触发 每天早上6点 0 6 每两个小时 0 /2 晚上11点到早上8点之间每两个小时,早上八点 0 23-7/2,8 每个月的4号和每个礼拜的礼拜一到礼拜三的早上11点 0 11 4 1-3 1月1日早上4点 0 4 1 1 本篇文章为转载内容。原文链接:https://zhanghaiyang.blog.csdn.net/article/details/51397459。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-27 18:50:19
344
转载
转载文章
...r__(self) 运行时的字符串输出;内建repr() 和操作符 C.__unicode__(self) Unicode 字符串输出;内建unicode() C.__call__(self, args) 表示可调用的实例 C.__nonzero__(self) 为object 定义False 值;内建bool() (从2.2 版开始) C.__len__(self) “长度”(可用于类);内建len() 对象(值)比较 C.__cmp__(self, obj) 对象比较;内建cmp() C.__lt__(self, obj) C.__le__(self, obj) 小于/小于或等于;对应 C.__gt__(self, obj) C.__ge__(self, obj) 大于/大于或等于;对应>及>=操作符 C.__eq__(self, obj) C.__ne__(self, obj) 等于/不等于;对应==,!=及<>操作符 属性 C.__getattr__(self, attr) 获取属性;内建getattr();仅当属性没有找到时调用 C.__setattr__(self, attr, val) 设置属性 C.__delattr__(self, attr) 删除属性 C.__getattribute__(self, attr) 获取属性;内建getattr();总是被调用 C.__get__(self, attr) (描述符)获取属性 C.__set__(self, attr, val) (描述符)设置属性 C.__delete__(self, attr) (描述符)删除属性 数值类型:二进制操作符 C.__add__(self, obj) 加;+操作符 C.__sub__(self, obj) 减;-操作符 C.__mul__(self, obj) 乘;操作符 C.__div__(self, obj) 除;/操作符 C.__truediv__(self, obj) True 除;/操作符 C.__floordiv__(self, obj) Floor 除;//操作符 C.__mod__(self, obj) 取模/取余;%操作符 C.__divmod__(self, obj) 除和取模;内建divmod() C.__pow__(self, obj[, mod]) 乘幂;内建pow();操作符 C.__lshift__(self, obj) 左移位;< 数值类型:二进制操作符 C.__rshift__(self, obj) 右移;>>操作符 C.__and__(self, obj) 按位与;&操作符 C.__or__(self, obj) 按位或;|操作符 C.__xor__(self, obj) 按位与或;^操作符 数值类型:一元操作符 C.__neg__(self) 一元负 C.__pos__(self) 一元正 C.__abs__(self) 绝对值;内建abs() C.__invert__(self) 按位求反;~操作符 数值类型:数值转换 C.__complex__(self, com) 转为complex(复数);内建complex() C.__int__(self) 转为int;内建int() C.__long__(self) 转 .long;内建long() C.__float__(self) 转为float;内建float() 数值类型:基本表示法(String) C.__oct__(self) 八进制表示;内建oct() C.__hex__(self) 十六进制表示;内建hex() 数值类型:数值压缩 C.__coerce__(self, num) 压缩成同样的数值类型;内建coerce() C.__index__(self) 在有必要时,压缩可选的数值类型为整型(比如:用于切片索引等等) 序列类型 C.__len__(self) 序列中项的数目 C.__getitem__(self, ind) 得到单个序列元素 C.__setitem__(self, ind,val) 设置单个序列元素 C.__delitem__(self, ind) 删除单个序列元素 C.__getslice__(self, ind1,ind2) 得到序列片断 C.__setslice__(self, i1, i2,val) 设置序列片断 C.__delslice__(self, ind1,ind2) 删除序列片断 C.__contains__(self, val) 测试序列成员;内建in 关键字 C.__add__(self,obj) 串连;+操作符 C.__mul__(self,obj) 重复;操作符 C.__iter__(self) 创建迭代类;内建iter() 映射类型 C.__len__(self) mapping 中的项的数目 C.__hash__(self) 散列(hash)函数值 C.__getitem__(self,key) 得到给定键(key)的值 C.__setitem__(self,key,val) 设置给定键(key)的值 C.__delitem__(self,key) 删除给定键(key)的值 C.__missing__(self,key) 给定键如果不存在字典中,则提供一个默认值 一:简单定制 classRoundFloatManual(object):def __init__(self, val):assert isinstance(val, float), "Value must be a float!"self.value= round(val, 2)>>> rfm =RoundFloatManual(42) Traceback (mostrecent call last): File"", line 1, in? File"roundFloat2.py", line 5, in __init__assertisinstance(val, float), \ AssertionError: Value must be a float!>>> rfm =RoundFloatManual(4.2)>>>rfm >>> printrfm 它因输入非法而异常,但如果输入正确时,就没有任何输出了。在解释器中,我们得到一些信息,却不是我们想要的。print(使用str())和真正的字符串对象表示(使用repr())都没能显示更多有关我们对象的信息。这就需要实现__str__()和__repr__()二者之一,或者两者都实现。加入下面的方法: def __str__(self):return str(self.value) 现在我们得到下面的: >>> rfm = RoundFloatManual(5.590464)>>>rfm >>> printrfm5.59 >>> rfm = RoundFloatManual(5.5964)>>> printrfm5.6 但是在解释器中转储(dump)对象时,仍然显示的是默认对象符号,要修复它,只需要覆盖__repr__()。可以让__repr__()和__str__()具有相同的代码,但最好的方案是:__repr__ = __str__ 在带参数5.5964的第二个例子中,我们看到它舍入值刚好为5.6,但我们还是想显示带两位小数的数。可以这样修改: def __str__(self):return '%.2f' % self.value 这里就同时具备str()和repr()的输出了: >>> rfm =RoundFloatManual(5.5964)>>>rfm5.60 >>>printrfm5.60 所有代码如下: classRoundFloatManual(object):def __init__(self,val):assert isinstance(val, float), "Valuemust be a float!"self.value= round(val, 2)def __str__(self):return '%.2f' %self.value__repr__ = __str__ 二:数值定制 定义一个Time60,其中,将整数的小时和分钟作为输入传给构造器: classTime60(object):def __init__(self, hr, min): self.hr=hr self.min= min 1:显示 需要在显示实例的时候,得到一个有意义的输出,那么就要覆盖__str__()(如果有必要的话,__repr__()也要覆盖): def __str__(self):return '%d:%d' % (self.hr, self.min) 比如: >>> mon =Time60(10, 30)>>> tue =Time60(11, 15)>>> >>> printmon, tue10:30 11:15 2:加法 Python中的重载操作符很简单。像加号(+),只需要重载__add__()方法,如果合适,还可以用__radd__()及__iadd__()。注意,实现__add__()的时候,必须认识到它返回另一个Time60对象,而不修改原mon或tue: def __add__(self, other):return self.__class__(self.hr + other.hr, self.min + other.min) 在类中,一般不直接调用类名,而是使用self 的__class__属性,即实例化self 的那个类,并调用它。调用self.__class__()与调用Time60()是一回事。但self.__class__()的方式更好。 >>> mon = Time60(10, 30)>>> tue = Time60(11, 15)>>> mon +tue >>> print mon +tue21:45 如果没有定义相对应的特殊方法,但是却使用了该方法对应的运算,则会引起一个TypeError异常: >>> mon -tue Traceback (mostrecent call last): File"", line 1, in? TypeError:unsupported operand type(s)for -: 'Time60' and 'Time60' 3:原位加法 __iadd__(),是用来支持像mon += tue 这样的操作符,并把正确的结果赋给mon。重载一个__i__()方法的唯一秘密是它必须返回self: def __iadd__(self, other): self.hr+=other.hr self.min+=other.minreturn self 下面是结果输出: >>> mon = Time60(10,30)>>> tue = Time60(11,15)>>>mon10:30 >>>id(mon)401872 >>> mon +=tue>>>id(mon)401872 >>>mon21:45 下面是Time60的类的完全定义: classTime60(object):'Time60 - track hours and minutes' def __init__(self,hr, min):'Time60 constructor - takes hours andminutes'self.hr=hr self.min=mindef __str__(self):'Time60 - string representation' return '%d:%d' %(self.hr, self.min)__repr__ = __str__ def __add__(self, other):'Time60 - overloading the additionoperator' return self.__class__(self.hr + other.hr,self.min +other.min)def __iadd__(self,other):'Time60 - overloading in-place addition'self.hr+=other.hr self.min+=other.minreturn self 4:升华 在这个类中,还有很多需要优化和改良的地方。首先看下面的例子: >>> wed =Time60(12, 5)>>>wed12:5 正确的显示应该是:“12:05” >>> thu =Time60(10, 30)>>> fri =Time60(8, 45)>>> thu +fri18:75 正确的显示应该是:19:15 可以做出如下修改: def __str__(self):return '%02d:%02d'%(self.hr, self.min)__repr__ = __str__ def __add__(self, othertime): tmin= self.min +othertime.min thr= self.hr +othertime.hrreturn self.__class__(thr + tmin/60, tmin%60)def __iadd__(self, othertime): self.min+=othertime.min self.hr+=othertime.hr self.hr+= self.min/60self.min%= 60 return self 三:迭代器 迭代器对象本身需要支持以下两种方法,它们组合在一起形成迭代器协议: iterator.__iter__() 返回迭代器对象本身。 iterator.next() 从容器中返回下一个元素。 实现了__iter__()和next()方法的类就是一个迭代器。自定义迭代器的例子如下: RandSeq(Random Sequence),传入一个初始序列,__init__()方法执行前述的赋值操作。__iter__()仅返回self,这就是如何将一个对象声明为迭代器的方式,最后,调用next()来得到迭代器中连续的值。这个迭代器唯一的亮点是它没有终点。代码如下: classRandSeq(object):def __init__(self, seq): self.data=seqdef __iter__(self):returnselfdefnext(self):return choice(self.data) 运行它,将会看到下面的输出: >>> from randseq importRandSeq>>> for eachItem in RandSeq(('rock', 'paper', 'scissors')): ...printeachItem ... scissors scissors rock paper paper scissors ...... 四:多类型定制 现在创建另一个新类,NumStr,由一个数字-字符对组成,记为n和s,数值类型使用整型(integer)。用[n::s]来表示它,这两个数据元素构成一个整体。NumStr有下面的特征: 初始化: 类应当对数字和字符串进行初始化;如果其中一个(或两)没有初始化,则使用0和空字符串,也就是, n=0 且s=''作为默认。 加法: 定义加法操作符,功能是把数字加起来,把字符连在一起;比如,NumStr1=[n1::s1]且NumStr2=[n2::s2]。则NumStr1+NumStr2 表示[n1+n2::s1+s2],其中,+代表数字相加及字符相连接。 乘法: 类似的, 定义乘法操作符的功能为, 数字相乘,字符累积相连, 也就是,NumStr1NumStr2=[n1n::s1n]。 False 值:当数字的数值为 0 且字符串为空时,也就是当NumStr=[0::'']时,这个实体即有一个false值。 比较: 比较一对NumStr对象,比如,[n1::s1] vs. [n2::s2],有九种不同的组合。对数字和字符串,按照标准的数值和字典顺序的进行比较。 如果obj1< obj2,则cmp(obj1, obj2)的返回值是一个小于0 的整数, 当obj1 > obj2 时,比较的返回值大于0, 当两个对象有相同的值时, 比较的返回值等于0。 我们的类的解决方案是把这些值相加,然后返回结果。为了能够正确的比较对象,我们需要让__cmp__()在 (n1>n2) 且 (s1>s2)时,返回 1,在(n1s2),或相反),返回0. 反之亦然。代码如下: classNumStr(object):def __init__(self, num=0, string=''): self.__num =num self.__string =stringdef __str__(self):return '[%d :: %r]' % (self.__num, self.__string)__repr__ = __str__ def __add__(self, other):ifisinstance(other, NumStr):return self.__class__(self.__num + other.__num, self.__string + other.__string)else:raise TypeError, 'Illegal argument type for built-in operation' def __mul__(self, num):ifisinstance(num, int):return self.__class__(self.__num num, self.__string num)else:raise TypeError, 'Illegal argument type for built-inoperation' def __nonzero__(self):return self.__num or len(self.__string)def __norm_cval(self, cmpres):returncmp(cmpres, 0)def __cmp__(self, other):return self.__norm_cval(cmp(self.__num, other.__num))+\ self.__norm_cval(cmp(self.__string,other.__string)) 执行一些例子: >>> a =NumStr(3, 'foo')>>> b =NumStr(3, 'goo')>>> c =NumStr(2, 'foo')>>> d =NumStr()>>> e =NumStr(string='boo')>>> f =NumStr(1)>>>a [3 :: 'foo']>>>b [3 :: 'goo']>>>c [2 :: 'foo']>>>d [0 ::'']>>>e [0 ::'boo']>>>f [1 :: '']>>> a True>>> b False>>> a ==a True>>> b 2[6 :: 'googoo']>>> a 3[9 :: 'foofoofoo']>>> b +e [3 :: 'gooboo']>>> e +b [3 :: 'boogoo']>>> if d: 'not false'...>>> if e: 'not false'...'not false' >>>cmp(a, b)-1 >>>cmp(a, c)1 >>>cmp(a, a) 0 如果在__str__中使用“%s”,将导致字符串没有引号: return '[%d :: %s]' % (self.__num, self.__string)>>> printa [3 :: foo] 第二个元素是一个字符串,如果用户看到由引号标记的字符串时,会更加直观。要做到这点,使用“repr()”表示法对代码进行转换,把“%s”替换成“%r”。这相当于调用repr()或者使用单反引号来给出字符串的可求值版本--可求值版本的确要有引号: >>> printa [3 :: 'foo'] __norm_cval()不是一个特殊方法。它是一个帮助我们重载__cmp__()的助手函数:唯一的目的就是把cmp()返回的正值转为1,负值转为-1。cmp()基于比较的结果,通常返回任意的正数或负数(或0),但为了我们的目的,需要严格规定返回值为-1,0 和1。 对整数调用cmp()及与 0 比较,结果即是我们所需要的,相当于如下代码片断: def __norm_cval(self, cmpres):if cmpres<0:return -1 elif cmpres>0:return 1 else:return 0 两个相似对象的实际比较是比较数字,比较字符串,然后返回这两个比较结果的和。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30849865/article/details/112989450。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-19 14:30:42
132
转载
转载文章
...只是 32 位系统,运行着 Linux 2.2 版本(后来又升级到了 2.4 和 2.6,而 2.6 才支持 x86_64),只配置了很少的内存(2GB)和千兆网卡。 怎么在这样的系统中支持并发 1 万的请求呢? 从资源上来说,对 2GB 内存和千兆网卡的服务器来说,同时处理 10000 个请求,只要每个请求处理占用不到 200KB(2GB/10000)的内存和 100Kbit (1000Mbit/10000)的网络带宽就可以。 物理资源是足够的,是软件的问题,特别是网络的 I/O 模型问题。 I/O 的模型,文件 I/O和网络 I/O 模型也类似。 在 C10K 以前,Linux 中网络处理都用同步阻塞的方式,也就是每个请求都分配一个进程或者线程。 请求数只有 100 个时,这种方式自然没问题,但增加到 10000 个请求时,10000 个进程或线程的调度、上下文切换乃至它们占用的内存,都会成为瓶颈。 每个请求分配一个线程的方式不合适,为了支持 10000 个并发请求,有两个问题需要我们解决 第一,怎样在一个线程内处理多个请求,也就是要在一个线程内响应多个网络 I/O。以前的同步阻塞方式下,一个线程只能处理一个请求,到这里不再适用,是不是可以用非阻塞 I/O 或者异步 I/O 来处理多个网络请求呢? 第二,怎么更节省资源地处理客户请求,也就是要用更少的线程来服务这些请求。是不是可以继续用原来的 100 个或者更少的线程,来服务现在的 10000 个请求呢? I/O 模型优化 异步、非阻塞 I/O 的解决思路是我们在网络编程中经常用到的 I/O 多路复用(I/O Multiplexing) 两种 I/O 事件通知的方式:水平触发和边缘触发,它们常用在套接字接口的文件描述符中。 水平触发:只要文件描述符可以非阻塞地执行 I/O ,就会触发通知。也就是说,应用程序可以随时检查文件描述符的状态,然后再根据状态,进行 I/O 操作。 边缘触发:只有在文件描述符的状态发生改变(也就是 I/O 请求达到)时,才发送一次通知。这时候,应用程序需要尽可能多地执行 I/O,直到无法继续读写,才可以停止。如果 I/O 没执行完,或者因为某种原因没来得及处理,那么这次通知也就丢失了。 I/O 多路复用的方法有很多实现方法,我带你来逐个分析一下。 第一种,使用非阻塞 I/O 和水平触发通知,比如使用 select 或者 poll。 根据刚才水平触发的原理,select 和 poll 需要从文件描述符列表中,找出哪些可以执行 I/O ,然后进行真正的网络 I/O 读写。由于 I/O 是非阻塞的,一个线程中就可以同时监控一批套接字的文件描述符,这样就达到了单线程处理多请求的目的。所以,这种方式的最大优点,是对应用程序比较友好,它的 API 非常简单。 但是,应用软件使用 select 和 poll 时,需要对这些文件描述符列表进行轮询,这样,请求数多的时候就会比较耗时。并且,select 和 poll 还有一些其他的限制。 select 使用固定长度的位相量,表示文件描述符的集合,因此会有最大描述符数量的限制。比如,在 32 位系统中,默认限制是 1024。并且,在 select 内部,检查套接字状态是用轮询的方法,再加上应用软件使用时的轮询,就变成了一个 O(n^2) 的关系。 而 poll 改进了 select 的表示方法,换成了一个没有固定长度的数组,这样就没有了最大描述符数量的限制(当然还会受到系统文件描述符限制)。但应用程序在使用 poll 时,同样需要对文件描述符列表进行轮询,这样,处理耗时跟描述符数量就是 O(N) 的关系。 除此之外,应用程序每次调用 select 和 poll 时,还需要把文件描述符的集合,从用户空间传入内核空间,由内核修改后,再传出到用户空间中。这一来一回的内核空间与用户空间切换,也增加了处理成本。 有没有什么更好的方式来处理呢?答案自然是肯定的。 第二种,使用非阻塞 I/O 和边缘触发通知,比如 epoll。既然 select 和 poll 有那么多的问题,就需要继续对其进行优化,而 epoll 就很好地解决了这些问题。 epoll 使用红黑树,在内核中管理文件描述符的集合,这样,就不需要应用程序在每次操作时都传入、传出这个集合。 epoll 使用事件驱动的机制,只关注有 I/O 事件发生的文件描述符,不需要轮询扫描整个集合。 不过要注意,epoll 是在 Linux 2.6 中才新增的功能(2.4 虽然也有,但功能不完善)。由于边缘触发只在文件描述符可读或可写事件发生时才通知,那么应用程序就需要尽可能多地执行 I/O,并要处理更多的异常事件。 第三种,使用异步 I/O(Asynchronous I/O,简称为 AIO)。 在前面文件系统原理的内容中,我曾介绍过异步 I/O 与同步 I/O 的区别。异步 I/O 允许应用程序同时发起很多 I/O 操作,而不用等待这些操作完成。而在 I/O 完成后,系统会用事件通知(比如信号或者回调函数)的方式,告诉应用程序。这时,应用程序才会去查询 I/O 操作的结果。 异步 I/O 也是到了 Linux 2.6 才支持的功能,并且在很长时间里都处于不完善的状态,比如 glibc 提供的异步 I/O 库,就一直被社区诟病。同时,由于异步 I/O 跟我们的直观逻辑不太一样,想要使用的话,一定要小心设计,其使用难度比较高。 工作模型优化 了解了 I/O 模型后,请求处理的优化就比较直观了。 使用 I/O 多路复用后,就可以在一个进程或线程中处理多个请求,其中,又有下面两种不同的工作模型。 第一种,主进程 + 多个 worker 子进程,这也是最常用的一种模型。这种方法的一个通用工作模式就是:主进程执行 bind() + listen() 后,创建多个子进程;然后,在每个子进程中,都通过 accept() 或 epoll_wait() ,来处理相同的套接字。 比如,最常用的反向代理服务器 Nginx 就是这么工作的。它也是由主进程和多个 worker 进程组成。主进程主要用来初始化套接字,并管理子进程的生命周期;而 worker 进程,则负责实际的请求处理。我画了一张图来表示这个关系。 这里要注意,accept() 和 epoll_wait() 调用,还存在一个惊群的问题。换句话说,当网络 I/O 事件发生时,多个进程被同时唤醒,但实际上只有一个进程来响应这个事件,其他被唤醒的进程都会重新休眠。 其中,accept() 的惊群问题,已经在 Linux 2.6 中解决了; 而 epoll 的问题,到了 Linux 4.5 ,才通过 EPOLLEXCLUSIVE 解决。 为了避免惊群问题, Nginx 在每个 worker 进程中,都增加一个了全局锁(accept_mutex)。这些 worker 进程需要首先竞争到锁,只有竞争到锁的进程,才会加入到 epoll 中,这样就确保只有一个 worker 子进程被唤醒。 不过,根据前面 CPU 模块的学习,你应该还记得,进程的管理、调度、上下文切换的成本非常高。那为什么使用多进程模式的 Nginx ,却具有非常好的性能呢? 这里最主要的一个原因就是,这些 worker 进程,实际上并不需要经常创建和销毁,而是在没任务时休眠,有任务时唤醒。只有在 worker 由于某些异常退出时,主进程才需要创建新的进程来代替它。 当然,你也可以用线程代替进程:主线程负责套接字初始化和子线程状态的管理,而子线程则负责实际的请求处理。由于线程的调度和切换成本比较低,实际上你可以进一步把 epoll_wait() 都放到主线程中,保证每次事件都只唤醒主线程,而子线程只需要负责后续的请求处理。 第二种,监听到相同端口的多进程模型。在这种方式下,所有的进程都监听相同的接口,并且开启 SO_REUSEPORT 选项,由内核负责将请求负载均衡到这些监听进程中去。这一过程如下图所示。 由于内核确保了只有一个进程被唤醒,就不会出现惊群问题了。比如,Nginx 在 1.9.1 中就已经支持了这种模式。 不过要注意,想要使用 SO_REUSEPORT 选项,需要用 Linux 3.9 以上的版本才可以。 C1000K 基于 I/O 多路复用和请求处理的优化,C10K 问题很容易就可以解决。不过,随着摩尔定律带来的服务器性能提升,以及互联网的普及,你并不难想到,新兴服务会对性能提出更高的要求。 很快,原来的 C10K 已经不能满足需求,所以又有了 C100K 和 C1000K,也就是并发从原来的 1 万增加到 10 万、乃至 100 万。从 1 万到 10 万,其实还是基于 C10K 的这些理论,epoll 配合线程池,再加上 CPU、内存和网络接口的性能和容量提升。大部分情况下,C100K 很自然就可以达到。 那么,再进一步,C1000K 是不是也可以很容易就实现呢?这其实没有那么简单了。 首先从物理资源使用上来说,100 万个请求需要大量的系统资源。比如, 假设每个请求需要 16KB 内存的话,那么总共就需要大约 15 GB 内存。 而从带宽上来说,假设只有 20% 活跃连接,即使每个连接只需要 1KB/s 的吞吐量,总共也需要 1.6 Gb/s 的吞吐量。千兆网卡显然满足不了这么大的吞吐量,所以还需要配置万兆网卡,或者基于多网卡 Bonding 承载更大的吞吐量。 其次,从软件资源上来说,大量的连接也会占用大量的软件资源,比如文件描述符的数量、连接状态的跟踪(CONNTRACK)、网络协议栈的缓存大小(比如套接字读写缓存、TCP 读写缓存)等等。 最后,大量请求带来的中断处理,也会带来非常高的处理成本。这样,就需要多队列网卡、中断负载均衡、CPU 绑定、RPS/RFS(软中断负载均衡到多个 CPU 核上),以及将网络包的处理卸载(Offload)到网络设备(如 TSO/GSO、LRO/GRO、VXLAN OFFLOAD)等各种硬件和软件的优化。 C1000K 的解决方法,本质上还是构建在 epoll 的非阻塞 I/O 模型上。只不过,除了 I/O 模型之外,还需要从应用程序到 Linux 内核、再到 CPU、内存和网络等各个层次的深度优化,特别是需要借助硬件,来卸载那些原来通过软件处理的大量功能。 C10M 显然,人们对于性能的要求是无止境的。再进一步,有没有可能在单机中,同时处理 1000 万的请求呢?这也就是 C10M 问题。 实际上,在 C1000K 问题中,各种软件、硬件的优化很可能都已经做到头了。特别是当升级完硬件(比如足够多的内存、带宽足够大的网卡、更多的网络功能卸载等)后,你可能会发现,无论你怎么优化应用程序和内核中的各种网络参数,想实现 1000 万请求的并发,都是极其困难的。 究其根本,还是 Linux 内核协议栈做了太多太繁重的工作。从网卡中断带来的硬中断处理程序开始,到软中断中的各层网络协议处理,最后再到应用程序,这个路径实在是太长了,就会导致网络包的处理优化,到了一定程度后,就无法更进一步了。 要解决这个问题,最重要就是跳过内核协议栈的冗长路径,把网络包直接送到要处理的应用程序那里去。这里有两种常见的机制,DPDK 和 XDP。 第一种机制,DPDK,是用户态网络的标准。它跳过内核协议栈,直接由用户态进程通过轮询的方式,来处理网络接收。 说起轮询,你肯定会下意识认为它是低效的象征,但是进一步反问下自己,它的低效主要体现在哪里呢?是查询时间明显多于实际工作时间的情况下吧!那么,换个角度来想,如果每时每刻都有新的网络包需要处理,轮询的优势就很明显了。比如: 在 PPS 非常高的场景中,查询时间比实际工作时间少了很多,绝大部分时间都在处理网络包; 而跳过内核协议栈后,就省去了繁杂的硬中断、软中断再到 Linux 网络协议栈逐层处理的过程,应用程序可以针对应用的实际场景,有针对性地优化网络包的处理逻辑,而不需要关注所有的细节。 此外,DPDK 还通过大页、CPU 绑定、内存对齐、流水线并发等多种机制,优化网络包的处理效率。 第二种机制,XDP(eXpress Data Path),则是 Linux 内核提供的一种高性能网络数据路径。它允许网络包,在进入内核协议栈之前,就进行处理,也可以带来更高的性能。XDP 底层跟我们之前用到的 bcc-tools 一样,都是基于 Linux 内核的 eBPF 机制实现的。 XDP 的原理如下图所示: 你可以看到,XDP 对内核的要求比较高,需要的是 Linux 4.8 以上版本,并且它也不提供缓存队列。基于 XDP 的应用程序通常是专用的网络应用,常见的有 IDS(入侵检测系统)、DDoS 防御、 cilium 容器网络插件等。 总结 C10K 问题的根源,一方面在于系统有限的资源;另一方面,也是更重要的因素,是同步阻塞的 I/O 模型以及轮询的套接字接口,限制了网络事件的处理效率。Linux 2.6 中引入的 epoll ,完美解决了 C10K 的问题,现在的高性能网络方案都基于 epoll。 从 C10K 到 C100K ,可能只需要增加系统的物理资源就可以满足;但从 C100K 到 C1000K ,就不仅仅是增加物理资源就能解决的问题了。这时,就需要多方面的优化工作了,从硬件的中断处理和网络功能卸载、到网络协议栈的文件描述符数量、连接状态跟踪、缓存队列等内核的优化,再到应用程序的工作模型优化,都是考虑的重点。 再进一步,要实现 C10M ,就不只是增加物理资源,或者优化内核和应用程序可以解决的问题了。这时候,就需要用 XDP 的方式,在内核协议栈之前处理网络包;或者用 DPDK 直接跳过网络协议栈,在用户空间通过轮询的方式直接处理网络包。 当然了,实际上,在大多数场景中,我们并不需要单机并发 1000 万的请求。通过调整系统架构,把这些请求分发到多台服务器中来处理,通常是更简单和更容易扩展的方案。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_23864697/article/details/114626793。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-11 18:25:52
260
转载
转载文章
...,阿里云保持着良好的运行纪录 阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本 猿辅导、中泰证券、小米、媛福达、Soul和当贝,这些我们耳熟能详的APP或企业中,阿里云给他们提供了性能强大、安全、稳定的云产品与服务。 计算,容器,存储,网络与CDN,安全、中间件、数据库、大数据计算、人工智能与机器学习、媒体服务、企业服务与云通信、物联网、开发工具、迁移与运维管理和专有云等方面,阿里云都做的很不错。 2.2 证件照生成背景 传统做法:通常是人工进行P图,不仅费时费力,而且效果也很难保障,容易有瑕疵。 机器学习做法:通常利用边缘检测算法进行人物轮廓提取。 深度学习做法:通常使用分割算法进行人物分割。例如U-Net网络。 2.3 图像分割算法 《BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks》里的SeedNet网络是很经典的网络,它把分割任务转变成多个任务。作者的思想是:尽可能的通过多任务学习收拢语义,这样或许会分割的更好或姿态估计的更好。其实这个模型就是多阶段学习网络的一部分,作者想通过中间监督来提高网络的性能。 我提取bihand网络中的SeedNet与训练权重,进行分割结果展示如下 我是用的模型不是全程的,是第一阶段的。为了可视化出最好的效果,我把第一阶段也就是SeedNet网络的输出分别采用不同的方式可视化。 从左边数第一张图为原图,第二张图为sigmoid后利用plt.imshow(colored_mask, cmap=‘jet’)进行彩色映射。第三张图为网络输出的张量经过sigmoid后,二色分割图,阀闸值0.5。第四张为网络的直接输出,利用直接产生的张量图进行颜色映射。第五张为使用sigmoid处理张量后进行的颜色映射。第六张为使用sigmoid处理张量后进行0,1分割掩码映射。使用原模型和网络需要添加很多代码。下面为修改后的的代码: 下面为修改后的net_seedd代码: Copyright (c) Lixin YANG. All Rights Reserved.r"""Networks for heatmap estimation from RGB images using Hourglass Network"Stacked Hourglass Networks for Human Pose Estimation", Alejandro Newell, Kaiyu Yang, Jia Deng, ECCV 2016"""import numpy as npimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom skimage import io,transform,utilfrom termcolor import colored, cprintfrom bihand.models.bases.bottleneck import BottleneckBlockfrom bihand.models.bases.hourglass import HourglassBisectedimport bihand.utils.func as funcimport matplotlib.pyplot as pltfrom bihand.utils import miscimport matplotlib.cm as cmdef color_mask(output_ok): 颜色映射cmap = plt.cm.get_cmap('jet') 将张量转换为numpy数组mask_array = output_ok.detach().numpy() 创建彩色图像cmap = cm.get_cmap('jet')colored_mask = cmap(mask_array)return colored_mask 可视化 plt.imshow(colored_mask, cmap='jet') plt.axis('off') plt.show()def two_color(mask_tensor): 将张量转换为numpy数组mask_array = mask_tensor.detach().numpy() 将0到1之间的值转换为二值化掩码threshold = 0.5 阈值,大于阈值的为白色,小于等于阈值的为黑色binary_mask = np.where(mask_array > threshold, 1, 0)return binary_mask 可视化 plt.imshow(binary_mask, cmap='gray') plt.axis('off') plt.show()class SeedNet(nn.Module):def __init__(self,nstacks=2,nblocks=1,njoints=21,block=BottleneckBlock,):super(SeedNet, self).__init__()self.njoints = njointsself.nstacks = nstacksself.in_planes = 64self.conv1 = nn.Conv2d(3, self.in_planes, kernel_size=7, stride=2, padding=3, bias=True)self.bn1 = nn.BatchNorm2d(self.in_planes)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(2, stride=2)self.layer1 = self._make_residual(block, nblocks, self.in_planes, 2self.in_planes) current self.in_planes is 64 2 = 128self.layer2 = self._make_residual(block, nblocks, self.in_planes, 2self.in_planes) current self.in_planes is 128 2 = 256self.layer3 = self._make_residual(block, nblocks, self.in_planes, self.in_planes)ch = self.in_planes 256hg2b, res1, res2, fc1, _fc1, fc2, _fc2= [],[],[],[],[],[],[]hm, _hm, mask, _mask = [], [], [], []for i in range(nstacks): 2hg2b.append(HourglassBisected(block, nblocks, ch, depth=4))res1.append(self._make_residual(block, nblocks, ch, ch))res2.append(self._make_residual(block, nblocks, ch, ch))fc1.append(self._make_fc(ch, ch))fc2.append(self._make_fc(ch, ch))hm.append(nn.Conv2d(ch, njoints, kernel_size=1, bias=True))mask.append(nn.Conv2d(ch, 1, kernel_size=1, bias=True))if i < nstacks-1:_fc1.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_fc2.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_hm.append(nn.Conv2d(njoints, ch, kernel_size=1, bias=False))_mask.append(nn.Conv2d(1, ch, kernel_size=1, bias=False))self.hg2b = nn.ModuleList(hg2b) hgs: hourglass stackself.res1 = nn.ModuleList(res1)self.fc1 = nn.ModuleList(fc1)self._fc1 = nn.ModuleList(_fc1)self.res2 = nn.ModuleList(res2)self.fc2 = nn.ModuleList(fc2)self._fc2 = nn.ModuleList(_fc2)self.hm = nn.ModuleList(hm)self._hm = nn.ModuleList(_hm)self.mask = nn.ModuleList(mask)self._mask = nn.ModuleList(_mask)def _make_fc(self, in_planes, out_planes):bn = nn.BatchNorm2d(in_planes)conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False)return nn.Sequential(conv, bn, self.relu)def _make_residual(self, block, nblocks, in_planes, out_planes):layers = []layers.append( block( in_planes, out_planes) )self.in_planes = out_planesfor i in range(1, nblocks):layers.append(block( self.in_planes, out_planes))return nn.Sequential(layers)def forward(self, x):l_hm, l_mask, l_enc = [], [], []x = self.conv1(x) x: (N,64,128,128)x = self.bn1(x)x = self.relu(x)x = self.layer1(x)x = self.maxpool(x) x: (N,128,64,64)x = self.layer2(x)x = self.layer3(x)for i in range(self.nstacks): 2y_1, y_2, _ = self.hg2b[i](x)y_1 = self.res1[i](y_1)y_1 = self.fc1[i](y_1)est_hm = self.hm[i](y_1)l_hm.append(est_hm)y_2 = self.res2[i](y_2)y_2 = self.fc2[i](y_2)est_mask = self.mask[i](y_2)l_mask.append(est_mask)if i < self.nstacks-1:_fc1 = self._fc1[i](y_1)_hm = self._hm[i](est_hm)_fc2 = self._fc2[i](y_2)_mask = self._mask[i](est_mask)x = x + _fc1 + _fc2 + _hm + _maskl_enc.append(x)else:l_enc.append(x + y_1 + y_2)assert len(l_hm) == self.nstacksreturn l_hm, l_mask, l_encif __name__ == '__main__':a = torch.randn(10, 3, 256, 256) SeedNetmodel = SeedNet() output1,output2,output3 = SeedNetmodel(a) print(output1,output2,output3)total_params = sum(p.numel() for p in SeedNetmodel.parameters())/1000000print("Total parameters: ", total_params)pretrained_weights_path = 'E:/bihand/released_checkpoints/ckp_seednet_all.pth.tar'img_rgb_path=r"E:\FreiHAND\training\rgb\00000153.jpg"img=io.imread(img_rgb_path)resized_img = transform.resize(img, (256, 256), anti_aliasing=True)img256=util.img_as_ubyte(resized_img)plt.imshow(resized_img)plt.axis('off') 关闭坐标轴plt.show()''' implicit HWC -> CHW, 255 -> 1 '''img1 = func.to_tensor(img256).float() 转换为张量并且进行标准化处理''' 0-mean, 1 std, [0,1] -> [-0.5, 0.5] '''img2 = func.normalize(img1, [0.5, 0.5, 0.5], [1, 1, 1])img3 = torch.unsqueeze(img2, 0)ok=img3print(img.shape)SeedNetmodel = SeedNet()misc.load_checkpoint(SeedNetmodel, pretrained_weights_path)加载权重output1, output2, output3 = SeedNetmodel(img3)mask_tensor = torch.rand(1, 64, 64)output=output2[1] 1,1,64,64output_1=output[0] 1,64,64output_ok=torch.sigmoid(output_1[0])output_real=output_1[0].detach().numpy()直接产生的张量图color_mask=color_mask(output_ok) 显示彩色分割图two_color=two_color(output_ok)显示黑白分割图see=output_ok.detach().numpy() 使用Matplotlib库显示分割掩码 plt.imshow(see, cmap='gray') plt.axis('off') plt.show() print(output1, output2, output3)images = [resized_img, color_mask, two_color,output_real,see,see]rows = 1cols = 4 创建子图并展示图像fig, axes = plt.subplots(1, 6, figsize=(30, 5)) 遍历图像列表,并在每个子图中显示图像for i, image in enumerate(images):ax = axes[i] if cols > 1 else axes 如果只有一列,则直接使用axesif i ==5:ax.imshow(image, cmap='gray')else:ax.imshow(image)ax.imshowax.axis('off') 调整子图之间的间距plt.subplots_adjust(wspace=0.1, hspace=0.1) 展示图像plt.show() 上述的代码文件是在bihand/models/net_seed.py中,全部代码链接在https://github.com/lixiny/bihand。 把bihand/models/net_seed.p中的代码修改为我提供的代码即可使用作者训练好的模型和进行各种可视化。(预训练模型根据作者代码提示下载) 3.调用阿里云API进行证件照生成实例 3.1 准备工作 1.找到接口 进入下面链接即可快速访问 link 2.购买试用包 3.查看APPcode 4.下载代码 5.参数说明 3.2 实验代码 !/usr/bin/python encoding: utf-8"""===========================证件照制作接口==========================="""import requestsimport jsonimport base64import hashlibclass Idphoto:def __init__(self, appcode, timeout=7):self.appcode = appcodeself.timeout = timeoutself.make_idphoto_url = 'https://idp2.market.alicloudapi.com/idphoto/make'self.headers = {'Authorization': 'APPCODE ' + appcode,}def get_md5_data(self, body):"""md5加密:param body_json::return:"""md5lib = hashlib.md5()md5lib.update(body.encode("utf-8"))body_md5 = md5lib.digest()body_md5 = base64.b64encode(body_md5)return body_md5def get_photo_base64(self, file_path):with open(file_path, 'rb') as fp:photo_base64 = base64.b64encode(fp.read())photo_base64 = photo_base64.decode('utf8')return photo_base64def aiseg_request(self, url, data, headers):resp = requests.post(url=url, data=data, headers=headers, timeout=self.timeout)res = {"status_code": resp.status_code}try:res["data"] = json.loads(resp.text)return resexcept Exception as e:print(e)def make_idphoto(self, file_path, bk, spec="2"):"""证件照制作接口:param file_path::param bk::param spec::return:"""photo_base64 = self.get_photo_base64(file_path)body_json = {"photo": photo_base64,"bk": bk,"with_photo_key": 1,"spec": spec,"type": "jpg"}body = json.dumps(body_json)body_md5 = self.get_md5_data(body=body)self.headers.update({'Content-MD5': body_md5})data = self.aiseg_request(url=self.make_idphoto_url, data=body, headers=self.headers)return dataif __name__ == "__main__":file_path = "图片地址"idphoto = Idphoto(appcode="你的appcode")d = idphoto.make_idphoto(file_path, "red", "2")print(d) 3.3 实验结果与分析 原图片 背景为红色生成的证件照 背景为蓝色生成的证件照 另外尝试了使用柴犬照片做实验,也生成了证件照 原图 背景为红色生成的证件照 参考(可供参考的链接和引用文献) 1.参考:BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks(BMVC2020) 论文链接:https://arxiv.org/pdf/2008.05079.pdf 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37758063/article/details/131128967。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 23:36:51
131
转载
转载文章
...时查看logback运行状态。默认值为false。--><configuration scan="false" scanPeriod="60 seconds" debug="false"><!-- 定义日志的根目录 --><!-- <property name="LOG_HOME" value="/app/log" /> --><!-- 定义日志文件名称 --><property name="appName" value="netty"></property><!-- ch.qos.logback.core.ConsoleAppender 表示控制台输出 --><appender name="stdout" class="ch.qos.logback.core.ConsoleAppender"><Encoding>UTF-8</Encoding><!--日志输出格式:%d表示日期时间,%thread表示线程名,%-5level:级别从左显示5个字符宽度%logger{50} 表示logger名字最长50个字符,否则按照句点分割。 %msg:日志消息,%n是换行符--><encoder><pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern></encoder></appender><!-- 滚动记录文件,先将日志记录到指定文件,当符合某个条件时,将日志记录到其他文件 --> <appender name="appLogAppender" class="ch.qos.logback.core.rolling.RollingFileAppender"><Encoding>UTF-8</Encoding><!-- 指定日志文件的名称 --> <file>${appName}.log</file><!--当发生滚动时,决定 RollingFileAppender 的行为,涉及文件移动和重命名TimeBasedRollingPolicy: 最常用的滚动策略,它根据时间来制定滚动策略,既负责滚动也负责出发滚动。--><rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy"><!--滚动时产生的文件的存放位置及文件名称 %d{yyyy-MM-dd}:按天进行日志滚动 %i:当文件大小超过maxFileSize时,按照i进行文件滚动--><fileNamePattern>${appName}-%d{yyyy-MM-dd}-%i.log</fileNamePattern><!-- 可选节点,控制保留的归档文件的最大数量,超出数量就删除旧文件。假设设置每天滚动,且maxHistory是365,则只保存最近365天的文件,删除之前的旧文件。注意,删除旧文件是,那些为了归档而创建的目录也会被删除。--><MaxHistory>365</MaxHistory><!-- 当日志文件超过maxFileSize指定的大小是,根据上面提到的%i进行日志文件滚动 注意此处配置SizeBasedTriggeringPolicy是无法实现按文件大小进行滚动的,必须配置timeBasedFileNamingAndTriggeringPolicy--><timeBasedFileNamingAndTriggeringPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP"><maxFileSize>100MB</maxFileSize></timeBasedFileNamingAndTriggeringPolicy></rollingPolicy><!--日志输出格式:%d表示日期时间,%thread表示线程名,%-5level:级别从左显示5个字符宽度 %logger{50} 表示logger名字最长50个字符,否则按照句点分割。 %msg:日志消息,%n是换行符--> <encoder><pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [ %thread ] - [ %-5level ] [ %logger{50} : %line ] - %msg%n</pattern></encoder></appender><!-- logger主要用于存放日志对象,也可以定义日志类型、级别name:表示匹配的logger类型前缀,也就是包的前半部分level:要记录的日志级别,包括 TRACE < DEBUG < INFO < WARN < ERRORadditivity:作用在于children-logger是否使用 rootLogger配置的appender进行输出,false:表示只用当前logger的appender-ref,true:表示当前logger的appender-ref和rootLogger的appender-ref都有效--><!-- <logger name="edu.hyh" level="info" additivity="true"><appender-ref ref="appLogAppender" /></logger> --><!-- root与logger是父子关系,没有特别定义则默认为root,任何一个类只会和一个logger对应,要么是定义的logger,要么是root,判断的关键在于找到这个logger,然后判断这个logger的appender和level。 --><root level="debug"><appender-ref ref="stdout" /><appender-ref ref="appLogAppender" /></root></configuration> 2、余额宝代码 package com.zhuguang.jack.controller;import com.alibaba.fastjson.JSONObject;import com.zhuguang.jack.service.OrderService;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Controller;import org.springframework.web.bind.annotation.RequestMapping;import org.springframework.web.bind.annotation.ResponseBody;@Controller@RequestMapping("/order")public class OrderController {/ @Description TODO @param @return 参数 @return String 返回类型 @throws 模拟银行转账 userID:转账的用户ID amount:转多少钱/@AutowiredOrderService orderService;@RequestMapping("/transfer")public @ResponseBody String transferAmount(String userId, String amount) {try {orderService.updateAmount(Integer.valueOf(amount), userId);}catch (Exception e) {e.printStackTrace();return "===============================transferAmount failed===================";}return "===============================transferAmount successfull===================";} } 消息监听器 package com.zhuguang.jack.listener;import com.alibaba.fastjson.JSONObject;import com.zhuguang.jack.service.OrderService;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.http.client.SimpleClientHttpRequestFactory;import org.springframework.stereotype.Service;import org.springframework.transaction.annotation.Transactional;import org.springframework.web.client.RestTemplate;import javax.jms.JMSException;import javax.jms.Message;import javax.jms.MessageListener;import javax.jms.ObjectMessage;@Service("queueMessageListener")public class QueueMessageListener implements MessageListener {private Logger logger = LoggerFactory.getLogger(getClass());@AutowiredOrderService orderService;@Transactional(rollbackFor = Exception.class)@Overridepublic void onMessage(Message message) {if (message instanceof ObjectMessage) {ObjectMessage objectMessage = (ObjectMessage) message;try {com.zhuguang.jack.bean.Message message1 = (com.zhuguang.jack.bean.Message) objectMessage.getObject();String userId = message1.getUserId();int count = orderService.queryMessageCountByUserId(userId);if (count == 0) {orderService.updateAmount(message1.getAmount(), message1.getUserId());orderService.insertMessage(message1.getUserId(), message1.getMessageId(), message1.getAmount(), "ok");} else {logger.info("异常转账");}RestTemplate restTemplate = createRestTemplate();JSONObject jo = new JSONObject();jo.put("messageId", message1.getMessageId());jo.put("respCode", "OK");String url = "http://jack.bank_a.com:8080/alipay/order/callback?param="+ jo.toJSONString();restTemplate.getForObject(url,null);} catch (JMSException e) {e.printStackTrace();throw new RuntimeException("异常");} }}public RestTemplate createRestTemplate() {SimpleClientHttpRequestFactory simpleClientHttpRequestFactory = new SimpleClientHttpRequestFactory();simpleClientHttpRequestFactory.setConnectTimeout(3000);simpleClientHttpRequestFactory.setReadTimeout(2000);return new RestTemplate(simpleClientHttpRequestFactory);} } package com.zhuguang.jack.service;public interface OrderService {public void updateAmount(int amount, String userId);public int queryMessageCountByUserId(String userId);public int insertMessage(String userId,String messageId,int amount,String status);} package com.zhuguang.jack.service;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.http.client.SimpleClientHttpRequestFactory;import org.springframework.jdbc.core.JdbcTemplate;import org.springframework.stereotype.Service;import org.springframework.transaction.annotation.Transactional;import org.springframework.web.client.RestTemplate;@Service@Transactional(rollbackFor = Exception.class)public class OrderServiceImpl implements OrderService {private Logger logger = LoggerFactory.getLogger(getClass());@AutowiredJdbcTemplate jdbcTemplate;/ 更新数据库表,把账户余额减去amountd/@Overridepublic void updateAmount(int amount, String userId) {//1、农业银行转账3000,也就说农业银行jack账户要减3000String sql = "update account set amount = amount + ?,update_time=now() where user_id = ?";int count = jdbcTemplate.update(sql, new Object[] {amount, userId});if (count != 1) {throw new RuntimeException("订单创建失败,农业银行转账失败!");} }public RestTemplate createRestTemplate() {SimpleClientHttpRequestFactory simpleClientHttpRequestFactory = new SimpleClientHttpRequestFactory();simpleClientHttpRequestFactory.setConnectTimeout(3000);simpleClientHttpRequestFactory.setReadTimeout(2000);return new RestTemplate(simpleClientHttpRequestFactory);}@Overridepublic int queryMessageCountByUserId(String messageId) {String sql = "select count() from message where message_id = ?";int count = jdbcTemplate.queryForInt(sql, new Object[]{messageId});return count;}@Overridepublic int insertMessage(String userId, String message_id,int amount, String status) {String sql = "insert into message(user_id,message_id,amount,status) values(?,?,?)";int count = jdbcTemplate.update(sql, new Object[]{userId, message_id,amount, status});if(count == 1) {logger.info("Ok");}return count;} } activemq.xml <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xmlns:amq="http://activemq.apache.org/schema/core"xmlns:jms="http://www.springframework.org/schema/jms"xmlns:context="http://www.springframework.org/schema/context"xmlns:mvc="http://www.springframework.org/schema/mvc"xsi:schemaLocation="http://www.springframework.org/schema/beanshttp://www.springframework.org/schema/beans/spring-beans-4.1.xsdhttp://www.springframework.org/schema/contexthttp://www.springframework.org/schema/context/spring-context-4.1.xsdhttp://www.springframework.org/schema/mvchttp://www.springframework.org/schema/mvc/spring-mvc-4.1.xsdhttp://www.springframework.org/schema/jmshttp://www.springframework.org/schema/jms/spring-jms-4.1.xsdhttp://activemq.apache.org/schema/corehttp://activemq.apache.org/schema/core/activemq-core-5.12.1.xsd"><context:component-scan base-package="com.zhuguang.jack" /><mvc:annotation-driven /><amq:connectionFactory id="amqConnectionFactory"brokerURL="tcp://192.168.88.131:61616"userName="system"password="manager" /><!-- 配置JMS连接工长 --><bean id="connectionFactory"class="org.springframework.jms.connection.CachingConnectionFactory"><constructor-arg ref="amqConnectionFactory" /><property name="sessionCacheSize" value="100" /></bean><!-- 定义消息队列(Queue) --><bean id="demoQueueDestination" class="org.apache.activemq.command.ActiveMQQueue"><!-- 设置消息队列的名字 --><constructor-arg><value>zg.jack.queue</value></constructor-arg></bean><!-- 显示注入消息监听容器(Queue),配置连接工厂,监听的目标是demoQueueDestination,监听器是上面定义的监听器 --><bean id="queueListenerContainer"class="org.springframework.jms.listener.DefaultMessageListenerContainer"><property name="connectionFactory" ref="connectionFactory" /><property name="destination" ref="demoQueueDestination" /><property name="messageListener" ref="queueMessageListener" /></bean><!-- 配置JMS模板(Queue),Spring提供的JMS工具类,它发送、接收消息。 --><bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate"><property name="connectionFactory" ref="connectionFactory" /><property name="defaultDestination" ref="demoQueueDestination" /><property name="receiveTimeout" value="10000" /><!-- true是topic,false是queue,默认是false,此处显示写出false --><property name="pubSubDomain" value="false" /></bean></beans> OK~~~~~~~~~~~~大功告成!!!, 如果大家觉得满意并且对技术感兴趣请加群:171239762, 纯技术交流群,非诚勿扰。 本篇文章为转载内容。原文链接:https://blog.csdn.net/luoyang_java/article/details/84953241。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-16 22:34:52
499
转载
转载文章
...程序提供了快速构建和运行的解决方案。在该文章语境下,Spring Boot作为后端技术栈的核心部分,负责整个应用的启动、自动配置、组件扫描等功能,使得开发者能够快速搭建稳定、高效且易于维护的后端服务,例如定义Service和Controller层接口并实现相关业务逻辑。 Timestamp , Timestamp是一种数据库中的时间戳类型,表示从1970年1月1日(UTC/GMT的午夜)开始所经过的秒数,精确到微秒级别。在文中提到的SeckillGoods实体类中,startDate和endDate字段采用了Timestamp类型,以便精确记录秒杀活动的开始和结束时间,并使用DateTimeFormat注解进行格式化处理,确保与前端展示的时间格式一致。 VO(Value Object) , VO是值对象(Value Object)的简称,在面向对象编程领域中,VO通常用来封装从数据库查询或由用户输入的数据,仅包含属性以及它们的getter和setter方法,不包含行为。在本文中,创建了SeckillGoodsVo这个实体类VO,用于连表查询时接收和展示商品名字等多张表的关联数据,便于前后端之间的数据传输和展示。 前后端分离架构 , 前后端分离架构是一种常见的Web应用程序设计模式,其中前端专注于用户界面的设计和交互逻辑,而后端则关注业务逻辑处理、数据存储和API接口提供。在本篇文章中,前端通过Ajax请求调用后端提供的RESTful API获取数据并渲染页面,实现了前后端职责清晰、开发并行且可独立部署升级的现代Web应用架构。
2023-02-25 23:20:34
121
转载
转载文章
...ws br-int 创建网络 openstack network create --share --external --provider-physical-network provider --provider-network-type flat provider $ openstack subnet create --network provider \ --allocation-pool start=192.168.56.100,end=192.168.56.200 \ --dns-nameserver 8.8.8.8 --gateway 192.168.56.1 \ --subnet-range 192.168.56.0/24 provider openstack network create selfservice $ openstack subnet create --network selfservice \ --dns-nameserver 8.8.8.8 --gateway 192.168.1.1 \ --subnet-range 192.168.1.0/24 selfservice openstack router create router openstack router add subnet router selfservice openstack router set router --external-gateway provider openstack port list --router router +--------------------------------------+------+-------------------+-------------------------------------------------------------------------------+--------+ | ID | Name | MAC Address | Fixed IP Addresses | Status | +--------------------------------------+------+-------------------+-------------------------------------------------------------------------------+--------+ | bff6605d-824c-41f9-b744-21d128fc86e1 | | fa:16:3e:2f:34:9b | ip_address='172.16.1.1', subnet_id='3482f524-8bff-4871-80d4-5774c2730728' | ACTIVE | | d6fe98db-ae01-42b0-a860-37b1661f5950 | | fa:16:3e:e8:c1:41 | ip_address='203.0.113.102', subnet_id='5cc70da8-4ee7-4565-be53-b9c011fca011' | ACTIVE | +--------------------------------------+------+-------------------+-------------------------------------------------------------------------------+--------+ $ ping -c 4 203.0.113.102 创建虚机 openstack keypair list $ ssh-keygen -q -N "" $ openstack keypair create --public-key ~/.ssh/id_rsa.pub mykey openstack flavor list openstack image list openstack network list openstack server create --flavor tiny --image cirros --nic net-id=27616098-0374-4ab4-95a8-b5bf4839dcf8 --key-name mykey provider-instance 网络配置 python /usr/lib/python2.7/site-packages/networking_odl/cmd/set_ovs_hostconfigs.py --ovs_hostconfigs='{ "ODL L2": { "allowed_network_types": [ "flat", "vlan", "vxlan" ], "bridge_mappings": { "provider": "br-int" }, "supported_vnic_types": [ { "vnic_type": "normal", "vif_type": "ovs", "vif_details": {} } ] }, "ODL L3": {} }' ovs-vsctl list open . [2019/1/16 19:09] 高正伟: ovs-vsctl set Open_vSwitch . other_config:local_ip=hostip ovs-vsctl set Open_vSwitch . other_config:local_ip=192.168.56.122 ovs-vsctl set Open_vSwitch . other_config:remote_ip=192.168.56.122 ovs-vsctl remove interface tunca7b782f232 options remote_ip ovs-vsctl set Open_vSwitch . other_config:provider_mappings=provider:br-ex ovs-vsctl set Open_vSwitch . external_ids:provider_mappings="{\"provider\": \"br-ex\"}" 清空 ovs-vsctl clear Open_vSwitch . external_ids ovs-vsctl set-manager tcp:10.13.80.34:6640 ovs-vsctl set-controller br-ex tcp:10.13.80.34:6640 ovs-vsctl del-controller br-ex sudo neutron-odl-ovs-hostconfig ovs-vsctl show ovs-vsctl add-port <bridge name> <port name> ovs-vsctl add-port br-ex enp0s10 ovs-vsctl del-port br-ex phy-br-ex ovs-vsctl del-port br-ex tun2ad7e9e91e4 重启odl后 systemctl restart openvswitch.service systemctl restart neutron-server.service systemctl stop neutron-server.service 创建虚机 openstack network create --share --external --provider-physical-network provider --provider-network-type flat provider openstack subnet create --network provider --allocation-pool start=192.168.56.2,end=192.168.56.100 --dns-nameserver 8.8.8.8 --gateway 192.168.56.1 --subnet-range 192.168.56.0/24 provider nova boot --image cirros --flavor tiny --nic net-id= --availability-zone nova:rcontroller01 vm-01 openstack server create --flavor tiny --image cirros --nic net-id= --key-name mykey test nova boot --image cirros --flavor tiny --nic net-id=0fe983c2-8178-403b-a00e-e8561580b210 --availability-zone nova:rcontroller01 vm-01 虚机可以学习到mac但是ping不通 抓包,先在虚机网卡上抓包, 然后在br-int上抓包 发现虚拟网卡上是发送了icmp请求报文的,但是br-int上没有 查看报文情况 [root@rcontroller01 ~] ovs-appctl dpif/dump-flows br-int recirc_id(0),tunnel(tun_id=0x0,src=192.168.56.102,dst=192.168.56.122,flags(-df-csum+key)),in_port(4),eth(),eth_type(0x0800),ipv4(proto=17,frag=no),udp(dst=3784), packets:266436, bytes:17584776, used:0.591s, actions:userspace(pid=4294962063,slow_path(bfd)) recirc_id(0xa0),in_port(5),ct_state(+new-est-rel-inv+trk),ct_mark(0/0x1),eth(),eth_type(0x0800),ipv4(frag=no), packets:148165, bytes:14520170, used:0.566s, actions:drop recirc_id(0),in_port(3),eth(),eth_type(0x0806), packets:1, bytes:60, used:5.228s, actions:drop recirc_id(0),tunnel(tun_id=0xb,src=192.168.56.102,dst=192.168.56.122,flags(-df-csum+key)),in_port(4),eth(dst=fa:16:3e:ab:ba:7e),eth_type(0x0806), packets:0, bytes:0, used:never, actions:5 recirc_id(0),in_port(5),eth(src=fa:16:3e:ab:ba:7e),eth_type(0x0800),ipv4(src=192.168.0.16,proto=1,frag=no), packets:148165, bytes:14520170, used:0.566s, actions:ct(zone=5004),recirc(0xa0) recirc_id(0),in_port(3),eth(),eth_type(0x0800),ipv4(frag=no), packets:886646, bytes:316947183, used:0.210s, flags:SFPR., actions:drop recirc_id(0),in_port(5),eth(src=fa:16:3e:ab:ba:7e,dst=fa:16:3e:7d:95:75),eth_type(0x0806),arp(sip=192.168.0.16,tip=192.168.0.5,op=1/0xff,sha=fa:16:3e:ab:ba:7e), packets:0, bytes:0, used:never, actions:userspace(pid=4294961925,controller(reason=4,dont_send=0,continuation=0,recirc_id=4618,rule_cookie=0x822002d,controller_id=0,max_len=65535)),set(tunnel(tun_id=0xb,src=192.168.56.122,dst=192.168.56.102,ttl=64,tp_dst=4789,flags(df|key))),4 安全组设置 openstack security group rule create --proto tcp 2e19a748-9086-49f8-9498-01abc1a964fe openstack security group rule create --proto tcp 6095293d-c2cd-433d-8a8f-e77ecb03609e openstack security group rule create --proto udp 2e19a748-9086-49f8-9498-01abc1a964fe openstack security group rule create --proto udp 6095293d-c2cd-433d-8a8f-e77ecb03609e ovs-vsctl add-port br-ex "ex-patch-int" ovs-vsctl set interface "ex-patch-int" type=patch ovs-vsctl set interface "ex-patch-int" options:peer=int-patch-ex ovs-vsctl add-port br-int "int-patch-ex" ovs-vsctl set interface "int-patch-ex" type=patch ovs-vsctl set interface "int-patch-ex" options:peer=ex-patch-int ovs-vsctl del-port br-ex "ex-patch-int" ovs-vsctl del-port br-int "int-patch-ex" ovs-vsctl del-port br-ex enp0s9 ovs-vsctl add-port br-int enp0s9 ovs-appctl ofproto/trace 重要命令 sudo ovs-ofctl -O OpenFlow13 show br-int sudo ovs-appctl ofproto/trace br-int "in_port=5,ip,nw_src=192.168.0.16,nw_dst=192.168.0.5" ovs-appctl dpctl/dump-conntrack 11.查看接口id等 ovs-appctl dpif/show 12.查看接口统计 ovs-ofctl dump-ports br-int 查看接口 sudo ovs-ofctl show br-int -O OpenFlow13 ovs常用命令 控制管理类 1.查看网桥和端口 ovs-vsctl show 1 2.创建一个网桥 ovs-vsctl add-br br0 ovs-vsctl set bridge br0 datapath_type=netdev 1 2 3.添加/删除一个端口 for system interfaces ovs-vsctl add-port br0 eth1 ovs-vsctl del-port br0 eth1 for DPDK ovs-vsctl add-port br0 dpdk1 -- set interface dpdk1 type=dpdk options:dpdk-devargs=0000:01:00.0 for DPDK bonds ovs-vsctl add-bond br0 dpdkbond0 dpdk1 dpdk2 \ -- set interface dpdk1 type=dpdk options:dpdk-devargs=0000:01:00.0 \ -- set interface dpdk2 type=dpdk options:dpdk-devargs=0000:02:00.0 1 2 3 4 5 6 7 8 9 4.设置/清除网桥的openflow协议版本 ovs-vsctl set bridge br0 protocols=OpenFlow13 ovs-vsctl clear bridge br0 protocols 1 2 5.查看某网桥当前流表 ovs-ofctl dump-flows br0 ovs-ofctl -O OpenFlow13 dump-flows br0 ovs-appctl bridge/dump-flows br0 1 2 3 6.设置/删除控制器 ovs-vsctl set-controller br0 tcp:1.2.3.4:6633 ovs-vsctl del-controller br0 1 2 7.查看控制器列表 ovs-vsctl list controller 1 8.设置/删除被动连接控制器 ovs-vsctl set-manager tcp:1.2.3.4:6640 ovs-vsctl get-manager ovs-vsctl del-manager 1 2 3 9.设置/移除可选选项 ovs-vsctl set Interface eth0 options:link_speed=1G ovs-vsctl remove Interface eth0 options link_speed 1 2 10.设置fail模式,支持standalone或者secure standalone(default):清除所有控制器下发的流表,ovs自己接管 secure:按照原来流表继续转发 ovs-vsctl del-fail-mode br0 ovs-vsctl set-fail-mode br0 secure ovs-vsctl get-fail-mode br0 1 2 3 11.查看接口id等 ovs-appctl dpif/show 1 12.查看接口统计 ovs-ofctl dump-ports br0 1 流表类 流表操作 1.添加普通流表 ovs-ofctl add-flow br0 in_port=1,actions=output:2 1 2.删除所有流表 ovs-ofctl del-flows br0 1 3.按匹配项来删除流表 ovs-ofctl del-flows br0 "in_port=1" 1 匹配项 1.匹配vlan tag,范围为0-4095 ovs-ofctl add-flow br0 priority=401,in_port=1,dl_vlan=777,actions=output:2 1 2.匹配vlan pcp,范围为0-7 ovs-ofctl add-flow br0 priority=401,in_port=1,dl_vlan_pcp=7,actions=output:2 1 3.匹配源/目的MAC ovs-ofctl add-flow br0 in_port=1,dl_src=00:00:00:00:00:01/00:00:00:00:00:01,actions=output:2 ovs-ofctl add-flow br0 in_port=1,dl_dst=00:00:00:00:00:01/00:00:00:00:00:01,actions=output:2 1 2 4.匹配以太网类型,范围为0-65535 ovs-ofctl add-flow br0 in_port=1,dl_type=0x0806,actions=output:2 1 5.匹配源/目的IP 条件:指定dl_type=0x0800,或者ip/tcp ovs-ofctl add-flow br0 ip,in_port=1,nw_src=10.10.0.0/16,actions=output:2 ovs-ofctl add-flow br0 ip,in_port=1,nw_dst=10.20.0.0/16,actions=output:2 1 2 6.匹配协议号,范围为0-255 条件:指定dl_type=0x0800或者ip ICMP ovs-ofctl add-flow br0 ip,in_port=1,nw_proto=1,actions=output:2 7.匹配IP ToS/DSCP,tos范围为0-255,DSCP范围为0-63 条件:指定dl_type=0x0800/0x86dd,并且ToS低2位会被忽略(DSCP值为ToS的高6位,并且低2位为预留位) ovs-ofctl add-flow br0 ip,in_port=1,nw_tos=68,actions=output:2 ovs-ofctl add-flow br0 ip,in_port=1,ip_dscp=62,actions=output:2 8.匹配IP ecn位,范围为0-3 条件:指定dl_type=0x0800/0x86dd ovs-ofctl add-flow br0 ip,in_port=1,ip_ecn=2,actions=output:2 9.匹配IP TTL,范围为0-255 ovs-ofctl add-flow br0 ip,in_port=1,nw_ttl=128,actions=output:2 10.匹配tcp/udp,源/目的端口,范围为0-65535 匹配源tcp端口179 ovs-ofctl add-flow br0 tcp,tcp_src=179/0xfff0,actions=output:2 匹配目的tcp端口179 ovs-ofctl add-flow br0 tcp,tcp_dst=179/0xfff0,actions=output:2 匹配源udp端口1234 ovs-ofctl add-flow br0 udp,udp_src=1234/0xfff0,actions=output:2 匹配目的udp端口1234 ovs-ofctl add-flow br0 udp,udp_dst=1234/0xfff0,actions=output:2 11.匹配tcp flags tcp flags=fin,syn,rst,psh,ack,urg,ece,cwr,ns ovs-ofctl add-flow br0 tcp,tcp_flags=ack,actions=output:2 12.匹配icmp code,范围为0-255 条件:指定icmp ovs-ofctl add-flow br0 icmp,icmp_code=2,actions=output:2 13.匹配vlan TCI TCI低12位为vlan id,高3位为priority,例如tci=0xf123则vlan_id为0x123和vlan_pcp=7 ovs-ofctl add-flow br0 in_port=1,vlan_tci=0xf123,actions=output:2 14.匹配mpls label 条件:指定dl_type=0x8847/0x8848 ovs-ofctl add-flow br0 mpls,in_port=1,mpls_label=7,actions=output:2 15.匹配mpls tc,范围为0-7 条件:指定dl_type=0x8847/0x8848 ovs-ofctl add-flow br0 mpls,in_port=1,mpls_tc=7,actions=output:2 1 16.匹配tunnel id,源/目的IP 匹配tunnel id ovs-ofctl add-flow br0 in_port=1,tun_id=0x7/0xf,actions=output:2 匹配tunnel源IP ovs-ofctl add-flow br0 in_port=1,tun_src=192.168.1.0/255.255.255.0,actions=output:2 匹配tunnel目的IP ovs-ofctl add-flow br0 in_port=1,tun_dst=192.168.1.0/255.255.255.0,actions=output:2 一些匹配项的速记符 速记符 匹配项 ip dl_type=0x800 ipv6 dl_type=0x86dd icmp dl_type=0x0800,nw_proto=1 icmp6 dl_type=0x86dd,nw_proto=58 tcp dl_type=0x0800,nw_proto=6 tcp6 dl_type=0x86dd,nw_proto=6 udp dl_type=0x0800,nw_proto=17 udp6 dl_type=0x86dd,nw_proto=17 sctp dl_type=0x0800,nw_proto=132 sctp6 dl_type=0x86dd,nw_proto=132 arp dl_type=0x0806 rarp dl_type=0x8035 mpls dl_type=0x8847 mplsm dl_type=0x8848 指令动作 1.动作为出接口 从指定接口转发出去 ovs-ofctl add-flow br0 in_port=1,actions=output:2 1 2.动作为指定group group id为已创建的group table ovs-ofctl add-flow br0 in_port=1,actions=group:666 1 3.动作为normal 转为L2/L3处理流程 ovs-ofctl add-flow br0 in_port=1,actions=normal 1 4.动作为flood 从所有物理接口转发出去,除了入接口和已关闭flooding的接口 ovs-ofctl add-flow br0 in_port=1,actions=flood 1 5.动作为all 从所有物理接口转发出去,除了入接口 ovs-ofctl add-flow br0 in_port=1,actions=all 1 6.动作为local 一般是转发给本地网桥 ovs-ofctl add-flow br0 in_port=1,actions=local 1 7.动作为in_port 从入接口转发回去 ovs-ofctl add-flow br0 in_port=1,actions=in_port 1 8.动作为controller 以packet-in消息上送给控制器 ovs-ofctl add-flow br0 in_port=1,actions=controller 1 9.动作为drop 丢弃数据包操作 ovs-ofctl add-flow br0 in_port=1,actions=drop 1 10.动作为mod_vlan_vid 修改报文的vlan id,该选项会使vlan_pcp置为0 ovs-ofctl add-flow br0 in_port=1,actions=mod_vlan_vid:8,output:2 1 11.动作为mod_vlan_pcp 修改报文的vlan优先级,该选项会使vlan_id置为0 ovs-ofctl add-flow br0 in_port=1,actions=mod_vlan_pcp:7,output:2 1 12.动作为strip_vlan 剥掉报文内外层vlan tag ovs-ofctl add-flow br0 in_port=1,actions=strip_vlan,output:2 1 13.动作为push_vlan 在报文外层压入一层vlan tag,需要使用openflow1.1以上版本兼容 ovs-ofctl add-flow -O OpenFlow13 br0 in_port=1,actions=push_vlan:0x8100,set_field:4097-\>vlan_vid,output:2 1 ps: set field值为4096+vlan_id,并且vlan优先级为0,即4096-8191,对应的vlan_id为0-4095 14.动作为push_mpls 修改报文的ethertype,并且压入一个MPLS LSE ovs-ofctl add-flow br0 in_port=1,actions=push_mpls:0x8847,set_field:10-\>mpls_label,output:2 1 15.动作为pop_mpls 剥掉最外层mpls标签,并且修改ethertype为非mpls类型 ovs-ofctl add-flow br0 mpls,in_port=1,mpls_label=20,actions=pop_mpls:0x0800,output:2 1 16.动作为修改源/目的MAC,修改源/目的IP 修改源MAC ovs-ofctl add-flow br0 in_port=1,actions=mod_dl_src:00:00:00:00:00:01,output:2 修改目的MAC ovs-ofctl add-flow br0 in_port=1,actions=mod_dl_dst:00:00:00:00:00:01,output:2 修改源IP ovs-ofctl add-flow br0 in_port=1,actions=mod_nw_src:192.168.1.1,output:2 修改目的IP ovs-ofctl add-flow br0 in_port=1,actions=mod_nw_dst:192.168.1.1,output:2 17.动作为修改TCP/UDP/SCTP源目的端口 修改TCP源端口 ovs-ofctl add-flow br0 tcp,in_port=1,actions=mod_tp_src:67,output:2 修改TCP目的端口 ovs-ofctl add-flow br0 tcp,in_port=1,actions=mod_tp_dst:68,output:2 修改UDP源端口 ovs-ofctl add-flow br0 udp,in_port=1,actions=mod_tp_src:67,output:2 修改UDP目的端口 ovs-ofctl add-flow br0 udp,in_port=1,actions=mod_tp_dst:68,output:2 18.动作为mod_nw_tos 条件:指定dl_type=0x0800 修改ToS字段的高6位,范围为0-255,值必须为4的倍数,并且不会去修改ToS低2位ecn值 ovs-ofctl add-flow br0 ip,in_port=1,actions=mod_nw_tos:68,output:2 1 19.动作为mod_nw_ecn 条件:指定dl_type=0x0800,需要使用openflow1.1以上版本兼容 修改ToS字段的低2位,范围为0-3,并且不会去修改ToS高6位的DSCP值 ovs-ofctl add-flow br0 ip,in_port=1,actions=mod_nw_ecn:2,output:2 1 20.动作为mod_nw_ttl 修改IP报文ttl值,需要使用openflow1.1以上版本兼容 ovs-ofctl add-flow -O OpenFlow13 br0 in_port=1,actions=mod_nw_ttl:6,output:2 1 21.动作为dec_ttl 对IP报文进行ttl自减操作 ovs-ofctl add-flow br0 in_port=1,actions=dec_ttl,output:2 1 22.动作为set_mpls_label 对报文最外层mpls标签进行修改,范围为20bit值 ovs-ofctl add-flow br0 in_port=1,actions=set_mpls_label:666,output:2 1 23.动作为set_mpls_tc 对报文最外层mpls tc进行修改,范围为0-7 ovs-ofctl add-flow br0 in_port=1,actions=set_mpls_tc:7,output:2 1 24.动作为set_mpls_ttl 对报文最外层mpls ttl进行修改,范围为0-255 ovs-ofctl add-flow br0 in_port=1,actions=set_mpls_ttl:255,output:2 1 25.动作为dec_mpls_ttl 对报文最外层mpls ttl进行自减操作 ovs-ofctl add-flow br0 in_port=1,actions=dec_mpls_ttl,output:2 1 26.动作为move NXM字段 使用move参数对NXM字段进行操作 将报文源MAC复制到目的MAC字段,并且将源MAC改为00:00:00:00:00:01 ovs-ofctl add-flow br0 in_port=1,actions=move:NXM_OF_ETH_SRC[]-\>NXM_OF_ETH_DST[],mod_dl_src:00:00:00:00:00:01,output:2 1 2 ps: 常用NXM字段参照表 NXM字段 报文字段 NXM_OF_ETH_SRC 源MAC NXM_OF_ETH_DST 目的MAC NXM_OF_ETH_TYPE 以太网类型 NXM_OF_VLAN_TCI vid NXM_OF_IP_PROTO IP协议号 NXM_OF_IP_TOS IP ToS值 NXM_NX_IP_ECN IP ToS ECN NXM_OF_IP_SRC 源IP NXM_OF_IP_DST 目的IP NXM_OF_TCP_SRC TCP源端口 NXM_OF_TCP_DST TCP目的端口 NXM_OF_UDP_SRC UDP源端口 NXM_OF_UDP_DST UDP目的端口 NXM_OF_SCTP_SRC SCTP源端口 NXM_OF_SCTP_DST SCTP目的端口 27.动作为load NXM字段 使用load参数对NXM字段进行赋值操作 push mpls label,并且把10(0xa)赋值给mpls label ovs-ofctl add-flow br0 in_port=1,actions=push_mpls:0x8847,load:0xa-\>OXM_OF_MPLS_LABEL[],output:2 对目的MAC进行赋值 ovs-ofctl add-flow br0 in_port=1,actions=load:0x001122334455-\>OXM_OF_ETH_DST[],output:2 1 2 3 4 28.动作为pop_vlan 弹出报文最外层vlan tag ovs-ofctl add-flow br0 in_port=1,dl_type=0x8100,dl_vlan=777,actions=pop_vlan,output:2 1 meter表 常用操作 由于meter表是openflow1.3版本以后才支持,所以所有命令需要指定OpenFlow1.3版本以上 ps: 在openvswitch-v2.8之前的版本中,还不支持meter 在v2.8版本之后已经实现,要正常使用的话,需要注意的是datapath类型要指定为netdev,band type暂时只支持drop,还不支持DSCP REMARK 1.查看当前设备对meter的支持 ovs-ofctl -O OpenFlow13 meter-features br0 2.查看meter表 ovs-ofctl -O OpenFlow13 dump-meters br0 3.查看meter统计 ovs-ofctl -O OpenFlow13 meter-stats br0 4.创建meter表 限速类型以kbps(kilobits per second)计算,超过20kb/s则丢弃 ovs-ofctl -O OpenFlow13 add-meter br0 meter=1,kbps,band=type=drop,rate=20 同上,增加burst size参数 ovs-ofctl -O OpenFlow13 add-meter br0 meter=2,kbps,band=type=drop,rate=20,burst_size=256 同上,增加stats参数,对meter进行计数统计 ovs-ofctl -O OpenFlow13 add-meter br0 meter=3,kbps,stats,band=type=drop,rate=20,burst_size=256 限速类型以pktps(packets per second)计算,超过1000pkt/s则丢弃 ovs-ofctl -O OpenFlow13 add-meter br0 meter=4,pktps,band=type=drop,rate=1000 5.删除meter表 删除全部meter表 ovs-ofctl -O OpenFlow13 del-meters br0 删除meter id=1 ovs-ofctl -O OpenFlow13 del-meter br0 meter=1 6.创建流表 ovs-ofctl -O OpenFlow13 add-flow br0 in_port=1,actions=meter:1,output:2 group表 由于group表是openflow1.1版本以后才支持,所以所有命令需要指定OpenFlow1.1版本以上 常用操作 group table支持4种类型 all:所有buckets都执行一遍 select: 每次选择其中一个bucket执行,常用于负载均衡应用 ff(FAST FAILOVER):快速故障修复,用于检测解决接口等故障 indirect:间接执行,类似于一个函数方法,被另一个group来调用 1.查看当前设备对group的支持 ovs-ofctl -O OpenFlow13 dump-group-features br0 2.查看group表 ovs-ofctl -O OpenFlow13 dump-groups br0 3.创建group表 类型为all ovs-ofctl -O OpenFlow13 add-group br0 group_id=1,type=all,bucket=output:1,bucket=output:2,bucket=output:3 类型为select ovs-ofctl -O OpenFlow13 add-group br0 group_id=2,type=select,bucket=output:1,bucket=output:2,bucket=output:3 类型为select,指定hash方法(5元组,OpenFlow1.5+) ovs-ofctl -O OpenFlow15 add-group br0 group_id=3,type=select,selection_method=hash,fields=ip_src,bucket=output:2,bucket=output:3 4.删除group表 ovs-ofctl -O OpenFlow13 del-groups br0 group_id=2 5.创建流表 ovs-ofctl -O OpenFlow13 add-flow br0 in_port=1,actions=group:2 goto table配置 数据流先从table0开始匹配,如actions有goto_table,再进行后续table的匹配,实现多级流水线,如需使用goto table,则创建流表时,指定table id,范围为0-255,不指定则默认为table0 1.在table0中添加一条流表条目 ovs-ofctl add-flow br0 table=0,in_port=1,actions=goto_table=1 2.在table1中添加一条流表条目 ovs-ofctl add-flow br0 table=1,ip,nw_dst=10.10.0.0/16,actions=output:2 tunnel配置 如需配置tunnel,必需确保当前系统对各tunnel的remote ip网络可达 gre 1.创建一个gre接口,并且指定端口id=1001 ovs-vsctl add-port br0 gre1 -- set Interface gre1 type=gre options:remote_ip=1.1.1.1 ofport_request=1001 2.可选选项 将tos或者ttl在隧道上继承,并将tunnel id设置成123 ovs-vsctl set Interface gre1 options:tos=inherit options:ttl=inherit options:key=123 3.创建关于gre流表 封装gre转发 ovs-ofctl add-flow br0 ip,in_port=1,nw_dst=10.10.0.0/16,actions=output:1001 解封gre转发 ovs-ofctl add-flow br0 in_port=1001,actions=output:1 vxlan 1.创建一个vxlan接口,并且指定端口id=2001 ovs-vsctl add-port br0 vxlan1 -- set Interface vxlan1 type=vxlan options:remote_ip=1.1.1.1 ofport_request=2001 2.可选选项 将tos或者ttl在隧道上继承,将vni设置成123,UDP目的端为设置成8472(默认为4789) ovs-vsctl set Interface vxlan1 options:tos=inherit options:ttl=inherit options:key=123 options:dst_port=8472 3.创建关于vxlan流表 封装vxlan转发 ovs-ofctl add-flow br0 ip,in_port=1,nw_dst=10.10.0.0/16,actions=output:2001 解封vxlan转发 ovs-ofctl add-flow br0 in_port=2001,actions=output:1 sflow配置 1.对网桥br0进行sflow监控 agent: 与collector通信所在的网口名,通常为管理口 target: collector监听的IP地址和端口,端口默认为6343 header: sFlow在采样时截取报文头的长度 polling: 采样时间间隔,单位为秒 ovs-vsctl -- --id=@sflow create sflow agent=eth0 target=\"10.0.0.1:6343\" header=128 sampling=64 polling=10 -- set bridge br0 sflow=@sflow 2.查看创建的sflow ovs-vsctl list sflow 3.删除对应的网桥sflow配置,参数为sFlow UUID ovs-vsctl remove bridge br0 sflow 7b9b962e-fe09-407c-b224-5d37d9c1f2b3 4.删除网桥下所有sflow配置 ovs-vsctl -- clear bridge br0 sflow 1 QoS配置 ingress policing 1.配置ingress policing,对接口eth0入流限速10Mbps ovs-vsctl set interface eth0 ingress_policing_rate=10000 ovs-vsctl set interface eth0 ingress_policing_burst=8000 2.清除相应接口的ingress policer配置 ovs-vsctl set interface eth0 ingress_policing_rate=0 ovs-vsctl set interface eth0 ingress_policing_burst=0 3.查看接口ingress policer配置 ovs-vsctl list interface eth0 4.查看网桥支持的Qos类型 ovs-appctl qos/show-types br0 端口镜像配置 1.配置eth0收到/发送的数据包镜像到eth1 ovs-vsctl -- set bridge br0 mirrors=@m \ -- --id=@eth0 get port eth0 \ -- --id=@eth1 get port eth1 \ -- --id=@m create mirror name=mymirror select-dst-port=@eth0 select-src-port=@eth0 output-port=@eth1 2.删除端口镜像配置 ovs-vsctl -- --id=@m get mirror mymirror -- remove bridge br0 mirrors @m 3.清除网桥下所有端口镜像配置 ovs-vsctl clear bridge br0 mirrors 4.查看端口镜像配置 ovs-vsctl get bridge br0 mirrors Open vSwitch中有多个命令,分别有不同的作用,大致如下: ovs-vsctl用于控制ovs db ovs-ofctl用于管理OpenFlow switch 的 flow ovs-dpctl用于管理ovs的datapath ovs-appctl用于查询和管理ovs daemon 转载于:https://www.cnblogs.com/liuhongru/p/10336849.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30876945/article/details/99916308。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-08 17:13:19
294
转载
转载文章
...2410]);//创建软引用,分配10M//m = null;System.out.println(m.get());//获取System.gc();//垃圾回收try {Thread.sleep(500);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(m.get());//再分配一个数组,heap将装不下,这时候系统会垃圾回收,先回收一次,如果不够,会把软引用干掉byte[] b = new byte[1024102415];System.out.println(m.get());} }//软引用非常适合缓存使用 2、弱引用 public class M {@Overrideprotected void finalize() throws Throwable {System.out.println("finalize");} } 上图中,tl对象强引用指向ThreadLocal,map中key弱引用指向ThreadLocal,当tl=null时,强引用消失,此时弱引用也将自动被回收,但是此时key=null,value指向10M这个就永远访问不到,既内存泄露 下图中,18行到20行为解决内存泄露问题的,那就是通过remove()将它消除了 / 弱引用遭到gc就会回收/import java.lang.ref.WeakReference;public class T03_WeakReference {public static void main(String[] args) {WeakReference<M> m = new WeakReference<>(new M());System.out.println(m.get());System.gc();System.out.println(m.get());ThreadLocal<M> tl = new ThreadLocal<>();tl.set(new M());tl.remove();} } 3、虚引用 虚引用 虚引用不是给开发人员用的,一般是给写JVM(java虚拟机,没有它java程序运行不了),Netty等技术大牛用的 虚引用,对象当被回收时,会将其放在队列中,此时我们监听到队列中有新值了,就知道有虚引用被回收了 此时我们要做相应的处理,虚引用指向的值,是无法直接get()获取的 虚引用使用场景 一般情况(其它情况暂时没什么用),虚引用指向堆外内存(直接被操作系统管理的内存),JVM无法对其回收 当虚引用对象被回收时,JVM的垃圾回收无法自动回收堆外内存, 但是此时,虚引用对象被回收,会将其放在队列中 操作人员,看到队列中有对象被回收,就进行相应操作,回收堆内存 如何回收堆外内存 C和C++有函数可以用 java现在也提供了Unsafe类可以操作堆外内存,具体请参考上一篇博客,总之,JDK1.8只能通过反射来用,JDK1.9以上可以通过new Unsafe对象来用 Unsafe类的方法有: copyMemory():直接访问内存 allocateMemory():直接分配内存,这就必须手动回收内存了 freeMemory():回收内存 下面是一个虚引用例子,自己看吧,懂得自然懂,现在看不懂的,先收藏或者保存上,以后回来看 / 一个对象是否有虚引用的存在,完全不会对其生存时间构成影响, 也无法通过虚引用来获取一个对象的实例。 为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。 虚引用和弱引用对关联对象的回收都不会产生影响,如果只有虚引用活着弱引用关联着对象, 那么这个对象就会被回收。它们的不同之处在于弱引用的get方法,虚引用的get方法始终返回null, 弱引用可以使用ReferenceQueue,虚引用必须配合ReferenceQueue使用。 jdk中直接内存的回收就用到虚引用,由于jvm自动内存管理的范围是堆内存, 而直接内存是在堆内存之外(其实是内存映射文件,自行去理解虚拟内存空间的相关概念), 所以直接内存的分配和回收都是有Unsafe类去操作,java在申请一块直接内存之后, 会在堆内存分配一个对象保存这个堆外内存的引用, 这个对象被垃圾收集器管理,一旦这个对象被回收, 相应的用户线程会收到通知并对直接内存进行清理工作。 事实上,虚引用有一个很重要的用途就是用来做堆外内存的释放, DirectByteBuffer就是通过虚引用来实现堆外内存的释放的。/import java.lang.ref.PhantomReference;import java.lang.ref.Reference;import java.lang.ref.ReferenceQueue;import java.util.LinkedList;import java.util.List;public class T04_PhantomReference {private static final List<Object> LIST = new LinkedList<>();private static final ReferenceQueue<M> QUEUE = new ReferenceQueue<>();public static void main(String[] args) {PhantomReference<M> phantomReference = new PhantomReference<>(new M(), QUEUE);new Thread(() -> {while (true) {LIST.add(new byte[1024 1024]);try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();Thread.currentThread().interrupt();}System.out.println(phantomReference.get());} }).start();new Thread(() -> {while (true) {Reference<? extends M> poll = QUEUE.poll();if (poll != null) {System.out.println("--- 虚引用对象被jvm回收了 ---- " + poll);} }}).start();try {Thread.sleep(500);} catch (InterruptedException e) {e.printStackTrace();} }} 2、容器 1、发展历史(一定要了解) map容器你需要了解的历史 JDK早期,java提供了Vector和Hashtable两个容器,这两个容器,很多操作都加了锁Synchronized,对于某些不需要用锁的情况下,就显得十分影响性能,所以现在基本没人用这两个容器,但是面试经常问这两个容器里面的数据结构等内容 后来,出现了HashMap,此容器完全不加锁,是用的最多的容器 但是完全不加锁未免不完善,所以java提供了如下方式,将HashMap变为加锁的 //通过Collections.synchronizedMap(HashMap)方法,将其变为加锁Map集合,其中泛型随意,UUID只是举例。static Map<UUID, UUID> m = Collections.synchronizedMap(new HashMap<UUID, UUID>()); 通过阅读源码发现,上面方法将HashMap变为加锁,也是使用Synchronized,只是锁的内容更细,但并不比HashTable效率高多少 所以衍生除了新的容器ConcurrentHashMap ConcurrentHashMap 此容器,插入效率不如上面的,因为它做了各种判断和CAS,但是差距不是特别大 读取效率很高,100个线程同时访问,每个线程读取一百万次实测 Hashtable 39s ,SynchronizedHashMap 38s ,ConcurrentHashMap 1.7s 前两个将近40秒,ConcurrentHashMap只需要不到2s,由此可见此容器读取效率极高 2、为什么推荐使用Queue来做高并发 为什么推荐Queue(队列) Queue接口提供了很多针对多线程非常友好的API(offer ,peek和poll,其中BlockingQueue还添加了put和take可以阻塞),可以说专门为多线程高并发而创造的接口,所以一般我们使用Queue而不用List 以下代码分别使用链表LinkList和ConcurrentQueue,对比一下速度 LinkList用了5s多,ConcurrentQueue几乎瞬间完成 Concurrent接口就是专为多线程设计,多线程设计要多考虑Queue(高并发用)的使用,少使用List / 有N张火车票,每张票都有一个编号 同时有10个窗口对外售票 请写一个模拟程序 分析下面的程序可能会产生哪些问题? 重复销售?超量销售? 使用Vector或者Collections.synchronizedXXX 分析一下,这样能解决问题吗? 就算操作A和B都是同步的,但A和B组成的复合操作也未必是同步的,仍然需要自己进行同步 就像这个程序,判断size和进行remove必须是一整个的原子操作 @author 马士兵/import java.util.LinkedList;import java.util.List;import java.util.concurrent.TimeUnit;public class TicketSeller3 {static List<String> tickets = new LinkedList<>();static {for(int i=0; i<1000; i++) tickets.add("票 编号:" + i);}public static void main(String[] args) {for(int i=0; i<10; i++) {new Thread(()->{while(true) {synchronized(tickets) {if(tickets.size() <= 0) break;try {TimeUnit.MILLISECONDS.sleep(10);} catch (InterruptedException e) {e.printStackTrace();}System.out.println("销售了--" + tickets.remove(0));} }}).start();} }} 队列 import java.util.Queue;import java.util.concurrent.ConcurrentLinkedQueue;public class TicketSeller4 {static Queue<String> tickets = new ConcurrentLinkedQueue<>();static {for(int i=0; i<1000; i++) tickets.add("票 编号:" + i);}public static void main(String[] args) {for(int i=0; i<10; i++) {new Thread(()->{while(true) {String s = tickets.poll();if(s == null) break;else System.out.println("销售了--" + s);} }).start();} }} 3、多线程常用容器 1、ConcurrentHashMap(无序)和ConcurrentSkipListMap(有序,链表,使用跳表数据结构,让查询更快) 跳表:http://blog.csdn.net/sunxianghuang/article/details/52221913 import java.util.;import java.util.concurrent.ConcurrentHashMap;import java.util.concurrent.ConcurrentSkipListMap;import java.util.concurrent.CountDownLatch;public class T01_ConcurrentMap {public static void main(String[] args) {Map<String, String> map = new ConcurrentHashMap<>();//Map<String, String> map = new ConcurrentSkipListMap<>(); //高并发并且排序//Map<String, String> map = new Hashtable<>();//Map<String, String> map = new HashMap<>(); //Collections.synchronizedXXX//TreeMapRandom r = new Random();Thread[] ths = new Thread[100];CountDownLatch latch = new CountDownLatch(ths.length);long start = System.currentTimeMillis();for(int i=0; i<ths.length; i++) {ths[i] = new Thread(()->{for(int j=0; j<10000; j++) map.put("a" + r.nextInt(100000), "a" + r.nextInt(100000));latch.countDown();});}Arrays.asList(ths).forEach(t->t.start());try {latch.await();} catch (InterruptedException e) {e.printStackTrace();}long end = System.currentTimeMillis();System.out.println(end - start);System.out.println(map.size());} } 2、CopyOnWriteList(写时复制)和CopyOnWriteSet 适用于,高并发是,读的多,写的少的情况 当我们写的时候,将容器复制,让写线程去复制的线程写(写的时候加锁) 而读线程依旧去读旧的(读的时候不加锁) 当写完,将对象指向复制后的已经写完的容器,原来容器销毁 大大提高读的效率 / 写时复制容器 copy on write 多线程环境下,写时效率低,读时效率高 适合写少读多的环境 @author 马士兵/import java.util.ArrayList;import java.util.Arrays;import java.util.List;import java.util.Random;import java.util.Vector;import java.util.concurrent.CopyOnWriteArrayList;public class T02_CopyOnWriteList {public static void main(String[] args) {List<String> lists = //new ArrayList<>(); //这个会出并发问题!//new Vector();new CopyOnWriteArrayList<>();Random r = new Random();Thread[] ths = new Thread[100];for(int i=0; i<ths.length; i++) {Runnable task = new Runnable() {@Overridepublic void run() {for(int i=0; i<1000; i++) lists.add("a" + r.nextInt(10000));} };ths[i] = new Thread(task);}runAndComputeTime(ths);System.out.println(lists.size());}static void runAndComputeTime(Thread[] ths) {long s1 = System.currentTimeMillis();Arrays.asList(ths).forEach(t->t.start());Arrays.asList(ths).forEach(t->{try {t.join();} catch (InterruptedException e) {e.printStackTrace();} });long s2 = System.currentTimeMillis();System.out.println(s2 - s1);} } 3、synchronizedList和ConcurrentLinkedQueue package com.mashibing.juc.c_025;import java.util.ArrayList;import java.util.Collections;import java.util.List;import java.util.Queue;import java.util.concurrent.ConcurrentLinkedQueue;public class T04_ConcurrentQueue {public static void main(String[] args) {List<String> strsList = new ArrayList<>();List<String> strsSync = Collections.synchronizedList(strsList);//加锁ListQueue<String> strs = new ConcurrentLinkedQueue<>();//Concurrent链表队列,就是读快for(int i=0; i<10; i++) {strs.offer("a" + i); //add添加,但是不同点是,此方法会返回一个布尔值}System.out.println(strs);System.out.println(strs.size());System.out.println(strs.poll());//取出,取完后将元素去除System.out.println(strs.size());System.out.println(strs.peek());//取出,但是不会将元素从队列删除System.out.println(strs.size());//双端队列Deque} } 4、LinkedBlockingQueue 链表阻塞队列(无界链表,可以一直装东西,直到内存满(其实,也不是无限,其长度Integer.MaxValue就是上限,毕竟最大就这么大)) 主要体现在put和take方法,put添加的时候,如果队列满了,就阻塞当前线程,直到队列有空位,继续插入。take方法取的时候,如果没有值,就阻塞,等有值了,立马去取 import java.util.Random;import java.util.concurrent.BlockingQueue;import java.util.concurrent.LinkedBlockingQueue;import java.util.concurrent.TimeUnit;public class T05_LinkedBlockingQueue {static BlockingQueue<String> strs = new LinkedBlockingQueue<>();static Random r = new Random();public static void main(String[] args) {new Thread(() -> {for (int i = 0; i < 100; i++) {try {strs.put("a" + i); //如果满了,当前线程就会等待(实现阻塞),等多会有空位,将值插入TimeUnit.MILLISECONDS.sleep(r.nextInt(1000));} catch (InterruptedException e) {e.printStackTrace();} }}, "p1").start();for (int i = 0; i < 5; i++) {new Thread(() -> {for (;;) {try {System.out.println(Thread.currentThread().getName() + " take -" + strs.take()); //取内容,如果空了,当前线程就会等待(实现阻塞)} catch (InterruptedException e) {e.printStackTrace();} }}, "c" + i).start();} }} 5、ArrayBlockingQueue 有界阻塞队列(因为Array需要指定长度) import java.util.Random;import java.util.concurrent.ArrayBlockingQueue;import java.util.concurrent.BlockingQueue;import java.util.concurrent.TimeUnit;public class T06_ArrayBlockingQueue {static BlockingQueue<String> strs = new ArrayBlockingQueue<>(10);static Random r = new Random();public static void main(String[] args) throws InterruptedException {for (int i = 0; i < 10; i++) {strs.put("a" + i);}//strs.put("aaa"); //满了就会等待,程序阻塞//strs.add("aaa");//strs.offer("aaa");strs.offer("aaa", 1, TimeUnit.SECONDS);System.out.println(strs);} } 6、特殊的阻塞队列1:DelayQueue 延时队列(按时间进行调度,就是隔多长时间运行,谁隔的少,谁先) 以下例子中,我们添加线程到队列顺序为t12345,正常情况下,会按照顺序运行,但是这里有了延时时间,也就是时间越短,越先执行 步骤很简单,拿到延时队列 指定构造方法 继承 implements Delayed 重写 compareTo和getDelay import java.util.Calendar;import java.util.Random;import java.util.concurrent.BlockingQueue;import java.util.concurrent.DelayQueue;import java.util.concurrent.Delayed;import java.util.concurrent.TimeUnit;public class T07_DelayQueue {static BlockingQueue<MyTask> tasks = new DelayQueue<>();static Random r = new Random();static class MyTask implements Delayed {String name;long runningTime;MyTask(String name, long rt) {this.name = name;this.runningTime = rt;}@Overridepublic int compareTo(Delayed o) {if(this.getDelay(TimeUnit.MILLISECONDS) < o.getDelay(TimeUnit.MILLISECONDS))return -1;else if(this.getDelay(TimeUnit.MILLISECONDS) > o.getDelay(TimeUnit.MILLISECONDS)) return 1;else return 0;}@Overridepublic long getDelay(TimeUnit unit) {return unit.convert(runningTime - System.currentTimeMillis(), TimeUnit.MILLISECONDS);}@Overridepublic String toString() {return name + " " + runningTime;} }public static void main(String[] args) throws InterruptedException {long now = System.currentTimeMillis();MyTask t1 = new MyTask("t1", now + 1000);MyTask t2 = new MyTask("t2", now + 2000);MyTask t3 = new MyTask("t3", now + 1500);MyTask t4 = new MyTask("t4", now + 2500);MyTask t5 = new MyTask("t5", now + 500);tasks.put(t1);tasks.put(t2);tasks.put(t3);tasks.put(t4);tasks.put(t5);System.out.println(tasks);for(int i=0; i<5; i++) {System.out.println(tasks.take());//获取的是toString方法返回值} }} 7、特殊的阻塞队列2:PriorityQueque 优先队列(二叉树算法,就是排序) import java.util.PriorityQueue;public class T07_01_PriorityQueque {public static void main(String[] args) {PriorityQueue<String> q = new PriorityQueue<>();q.add("c");q.add("e");q.add("a");q.add("d");q.add("z");for (int i = 0; i < 5; i++) {System.out.println(q.poll());} }} 8、特殊的阻塞队列3:SynchronusQueue 同步队列(线程池用处非常大) 此队列容量为0,当插入元素时,必须同时有个线程往外取 就是说,当你往这个队列里面插入一个元素,它就拿着这个元素站着(阻塞),直到有个取元素的线程来,它就把元素交给它 就是用来同步数据的,也就是线程间交互数据用的一个特殊队列 package com.mashibing.juc.c_025;import java.util.concurrent.BlockingQueue;import java.util.concurrent.SynchronousQueue;public class T08_SynchronusQueue { //容量为0public static void main(String[] args) throws InterruptedException {BlockingQueue<String> strs = new SynchronousQueue<>();new Thread(()->{//这个线程就是消费者,来取值try {System.out.println(strs.take());//和同步队列要值} catch (InterruptedException e) {e.printStackTrace();} }).start();strs.put("aaa"); //阻塞等待消费者消费,就拿着aaa站着,等线程来取//strs.put("bbb");//strs.add("aaa");System.out.println(strs.size());} } 9、特殊的阻塞队列4:TransferQueue 传递队列 此队列加入了一个方法transfer()用来向队列添加元素 但是和put()方法不同的是,put添加完元素就走了 而这个方法,添加完自己就阻塞了,直到有人将这个元素取走,它才继续工作(省去我们手动阻塞) import java.util.concurrent.LinkedTransferQueue;public class T09_TransferQueue {public static void main(String[] args) throws InterruptedException {LinkedTransferQueue<String> strs = new LinkedTransferQueue<>();new Thread(() -> {try {System.out.println(strs.take());} catch (InterruptedException e) {e.printStackTrace();} }).start();strs.transfer("aaa");//放东西到队列,同时阻塞等待消费者线程,取走元素//strs.put("aaa");//如果用put就和普通队列一样,放完东西就走了/new Thread(() -> {try {System.out.println(strs.take());} catch (InterruptedException e) {e.printStackTrace();} }).start();/} } 3、线程池 线程池 由于单独创建线程,十分影响效率,而且无法对线程集中管理,一旦疏落,可能线程无限执行,浪费资源 线程池就是一个存储线程的游泳池,而每个线程就是池子里面的赛道 池子里的线程不执行任何任务,只是提供一个资源 而谁提交了任务,比如我想来游泳,那么池子就给你一个赛道,让你游泳 比如它想练憋气,那么给它一个赛道练憋气 当他们用完,走了,那么后面其它人再过来继续用 这就是线程池,始终只有这几个线程,不做实现,而是借用这几个线程的用户,自己掌控用这些线程资源做什么(提交任务给线程,线程空闲就帮他们完成任务) 线程池的两种类型(两类,不是两个) ThreadPoolExecutor(简称TPE) ForkJoinPool(分解汇总任务(将任务细化,最后汇总结果),少量线程执行多个任务(子任务,TPE做不到先执行子任务),CPU密集型) Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 1、常用类 Executor ExecutorService 扩展了execute方法,具有一个返回值 规定了异步执行机制,提供了一些执行器方法,比如shutdown()关闭等 但是它不知道执行器中的线程何时执行完 Callable 对Runnable进行了扩展,实现Callable的调用,可以有返回值,表示线程的状态 但是无法返回线程执行结果 Future 获得未来线程执行结果 由此,我们可以得知线程池基本的一个使用步骤 其中service.submit():为异步提交,也就是说,主线程该干嘛干嘛,我是异步执行的,和同步不一样(当前线程执行完,主线程才能继续执行,叫同步) futuer.get():获取结果集结果,此时因为异步,主线程执行到这里,结果集可能还没封装好,所以此时如果没有值,就阻塞,直到结果集出来 public static void main(String[] args) throws ExecutionException, InterruptedException {Callable<String> c = new Callable() {@Overridepublic String call() throws Exception {return "Hello Callable";} };ExecutorService service = Executors.newCachedThreadPool();Future<String> future = service.submit(c); //异步System.out.println(future.get());//阻塞service.shutdown();} 2、FutureTask 可充当任务的结果集 上面我们介绍Future是用来得到任务的执行结果的 而FutureTask,可以当做一个任务用,并且返回任务的结果,也就是可以跑线程,然后还可以得到线程结果 public static void main(String[] args) throws InterruptedException, ExecutionException {FutureTask<Integer> task = new FutureTask<>(()->{TimeUnit.MILLISECONDS.sleep(500);return 1000;}); //new Callable () { Integer call();}new Thread(task).start();System.out.println(task.get()); //阻塞} 3、CompletableFuture 非常灵活的任务结果集 一个非常灵活的结果集 他可以将很多执行不同任务的线程的结果进行汇总 比如一个网站,它可以启动多个线程去各大电商网站,比如淘宝,京东,收集某些或某一个商品的价格 最后,将获取的数据进行整合封装 最终,客户就可以通过此网站,获取某类商品在各网站的价格信息 / 假设你能够提供一个服务 这个服务查询各大电商网站同一类产品的价格并汇总展示 @author 马士兵 http://mashibing.com/import java.io.IOException;import java.util.Random;import java.util.concurrent.CompletableFuture;import java.util.concurrent.ExecutionException;import java.util.concurrent.TimeUnit;public class T06_01_CompletableFuture {public static void main(String[] args) throws ExecutionException, InterruptedException {long start, end;/start = System.currentTimeMillis();priceOfTM();priceOfTB();priceOfJD();end = System.currentTimeMillis();System.out.println("use serial method call! " + (end - start));/start = System.currentTimeMillis();CompletableFuture<Double> futureTM = CompletableFuture.supplyAsync(()->priceOfTM());CompletableFuture<Double> futureTB = CompletableFuture.supplyAsync(()->priceOfTB());CompletableFuture<Double> futureJD = CompletableFuture.supplyAsync(()->priceOfJD());CompletableFuture.allOf(futureTM, futureTB, futureJD).join();//当所有结果集都获取到,才汇总阻塞CompletableFuture.supplyAsync(()->priceOfTM()).thenApply(String::valueOf).thenApply(str-> "price " + str).thenAccept(System.out::println);end = System.currentTimeMillis();System.out.println("use completable future! " + (end - start));try {System.in.read();} catch (IOException e) {e.printStackTrace();} }private static double priceOfTM() {delay();return 1.00;}private static double priceOfTB() {delay();return 2.00;}private static double priceOfJD() {delay();return 3.00;}/private static double priceOfAmazon() {delay();throw new RuntimeException("product not exist!");}/private static void delay() {int time = new Random().nextInt(500);try {TimeUnit.MILLISECONDS.sleep(time);} catch (InterruptedException e) {e.printStackTrace();}System.out.printf("After %s sleep!\n", time);} } 4、TPE型线程池1:ThreadPoolExecutor 原理及其参数 线程池由两个集合组成,一个集合存储线程,一个集合存储任务 存储线程:可以规定大小,最多可以有多少个,以及指定核心线程数量(不会被回收) 任务队列:存储任务 细节:初始线程池没有线程,当有一个任务来,线程池起一个线程,又有一个任务来,再起一个线程,直到达到核心线程数量 核心线程数量达到时,新来的任务将存储到任务队列中等待核心线程处理完成,直到任务队列也满了 当任务队列满了,此时再次启动一个线程(非核心线程,一旦空闲,达到指定时间将会消失),直到达到线程最大数量 当线程容器和任务容器都满了,又来了线程,将会执行拒绝策略 上面的细节涉及的所有步骤内容,均由创建线程池的参数执行 下面是ThreadPoolExecutor构造方法参数的源码注释 / 用给定的初始值,创建一个新的线程池 @param corePoolSize 核心线程数量 @param maximumPoolSize 最大线程数量 @param keepAliveTime 当线程数大于核心线程数量时,空闲的线程可生存的时间 @param unit 时间单位 @param workQueue 任务队列,只能包含由execute提交的Runnable任务 @param threadFactory 工厂,用于创建线程给线程池调度的工厂,可以自定义 @param handler 拒绝策略(可以自定义,JDK默认提供4种),当线程边界和队列容量已经满了,新来线程被阻塞时使用的处理程序/public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) JDK提供的4种拒绝策略,不常用,一般都是自己定义拒绝策略 Abort:抛异常 Discard:扔掉,不抛异常 DiscardOldest:扔掉排队时间最久的(将队列中排队时间最久的扔掉,然后让新来的进来) CallerRuns:调用者处理任务(谁通过execute方法提交任务,谁处理) ThreadPoolExecutor继承关系 继承关系:ThreadPoolExecutor->AbstractExectorService类->ExectorService接口->Exector接口 Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 看看下面创建线程池,哪里用到了它 使用实例 import java.io.IOException;import java.util.concurrent.;public class T05_00_HelloThreadPool {static class Task implements Runnable {private int i;public Task(int i) {this.i = i;}@Overridepublic void run() {System.out.println(Thread.currentThread().getName() + " Task " + i);try {System.in.read();} catch (IOException e) {e.printStackTrace();} }@Overridepublic String toString() {return "Task{" +"i=" + i +'}';} }public static void main(String[] args) {ThreadPoolExecutor tpe = new ThreadPoolExecutor(2, 4,60, TimeUnit.SECONDS,new ArrayBlockingQueue<Runnable>(4),Executors.defaultThreadFactory(),new ThreadPoolExecutor.CallerRunsPolicy());//创建线程池,核心2个,最大4个,空闲线程存活时间60s,任务队列容量4,使用默认线程工程,创建线程。拒绝策略是JDK提供的for (int i = 0; i < 8; i++) {tpe.execute(new Task(i));//供提交8次任务}System.out.println(tpe.getQueue());//查看任务队列tpe.execute(new Task(100));//提交新的任务System.out.println(tpe.getQueue());tpe.shutdown();//关闭线程池} } 5、TPE型线程池2:SingleThreadPool 单例线程池(只有一个线程) 为什么有单例线程池 有任务队列,有线程池管理机制 Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 看看下面哪里用到了它 /创建单例线程池,扔5个任务进去,查看输出结果,看看有几个线程执行任务/import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class T07_SingleThreadPool {public static void main(String[] args) {ExecutorService service = Executors.newSingleThreadExecutor();for(int i=0; i<5; i++) {final int j = i;service.execute(()->{System.out.println(j + " " + Thread.currentThread().getName());});} }} 6、TPE型线程池3:CachedPool 缓存,存储线程池 此线程池没有核心线程,来一个任务启动一个线程(最多Integer.MaxValue,不会放在任务队列,因为任务队列容量为0),每个线程空闲后,只能活60s 实例 import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class T07_SingleThreadPool {public static void main(String[] args) {ExecutorService service = Executors.newSingleThreadExecutor();//通过Executors获取池子for(int i=0; i<5; i++) {final int j = i;service.execute(()->{//提交任务System.out.println(j + " " + Thread.currentThread().getName());});}service.shutdown();} } 7、TPE型线程池4:FixedThreadPool 固定线程池 此线次池,用于创建一个固定线程数量的线程池,不会回收 实例 import java.util.ArrayList;import java.util.List;import java.util.concurrent.Callable;import java.util.concurrent.ExecutionException;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.Future;public class T09_FixedThreadPool {public static void main(String[] args) throws InterruptedException, ExecutionException {//并发执行long start = System.currentTimeMillis();getPrime(1, 200000); long end = System.currentTimeMillis();System.out.println(end - start);//输出并发执行耗费时间final int cpuCoreNum = 4;//并行执行ExecutorService service = Executors.newFixedThreadPool(cpuCoreNum);MyTask t1 = new MyTask(1, 80000); //1-5 5-10 10-15 15-20MyTask t2 = new MyTask(80001, 130000);MyTask t3 = new MyTask(130001, 170000);MyTask t4 = new MyTask(170001, 200000);Future<List<Integer>> f1 = service.submit(t1);Future<List<Integer>> f2 = service.submit(t2);Future<List<Integer>> f3 = service.submit(t3);Future<List<Integer>> f4 = service.submit(t4);start = System.currentTimeMillis();f1.get();f2.get();f3.get();f4.get();end = System.currentTimeMillis();System.out.println(end - start);//输出并行耗费时间}static class MyTask implements Callable<List<Integer>> {int startPos, endPos;MyTask(int s, int e) {this.startPos = s;this.endPos = e;}@Overridepublic List<Integer> call() throws Exception {List<Integer> r = getPrime(startPos, endPos);return r;} }static boolean isPrime(int num) {for(int i=2; i<=num/2; i++) {if(num % i == 0) return false;}return true;}static List<Integer> getPrime(int start, int end) {List<Integer> results = new ArrayList<>();for(int i=start; i<=end; i++) {if(isPrime(i)) results.add(i);}return results;} } 8、TPE型线程池5:ScheduledPool 预定,延时线程池 根据延时时间(隔多长时间后运行),排序,哪个线程先执行,用户只需要指定核心线程数量 此线程池返回的池对象,和提交任务方法都不一样,比较涉及到时间 import java.util.Random;import java.util.concurrent.Executors;import java.util.concurrent.ScheduledExecutorService;import java.util.concurrent.TimeUnit;public class T10_ScheduledPool {public static void main(String[] args) {ScheduledExecutorService service = Executors.newScheduledThreadPool(4);service.scheduleAtFixedRate(()->{//提交延时任务try {TimeUnit.MILLISECONDS.sleep(new Random().nextInt(1000));} catch (InterruptedException e) {e.printStackTrace();}System.out.println(Thread.currentThread().getName());}, 0, 500, TimeUnit.MILLISECONDS);//指定延时时间和单位,第一个任务延时0毫秒,之后的任务,延时500毫秒} } 9、手写拒绝策略小例子 import java.util.concurrent.;public class T14_MyRejectedHandler {public static void main(String[] args) {ExecutorService service = new ThreadPoolExecutor(4, 4,0, TimeUnit.SECONDS, new ArrayBlockingQueue<>(6),Executors.defaultThreadFactory(),new MyHandler());//将手写拒绝策略传入}static class MyHandler implements RejectedExecutionHandler {//1、继承RejectedExecutionHandler@Overridepublic void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {//2、重写方法//log("r rejected")//伪代码,表示通过log4j.log()报一下日志,拒绝的时间,线程名//save r kafka mysql redis//可以尝试保存队列//try 3 times //可以尝试几次,比如3次,重新去抢队列,3次还不行就丢弃if(executor.getQueue().size() < 10000) {//尝试条件,如果size>10000了,就执行拒绝策略//try put again();//如果小于10000,尝试将其放到队列中} }} } 10、ForkJoinPool线程池1:ForkJoinPool 前面我们讲过线程分为两大类,TPE和FJP ForkJoinPool(分解汇总任务(将任务细化,最后汇总结果),少量线程执行多个任务(子任务,TPE做不到先执行子任务),CPU密集型) 适合将大任务切分成多个小任务运行 两个方法,fork():分子任务,将子任务分配到线程池中 join():当前任务的计算结果,如果有子任务,等子任务结果返回后再汇总 下面实例实现,一百万个随机数求和,由两种方法实现,一种ForkJoinPool分任务并行,一种使用单线程做 import java.io.IOException;import java.util.Arrays;import java.util.Random;import java.util.concurrent.ForkJoinPool;import java.util.concurrent.RecursiveAction;import java.util.concurrent.RecursiveTask;public class T12_ForkJoinPool {//1000000个随机数求和static int[] nums = new int[1000000];//一堆数static final int MAX_NUM = 50000;//分任务时,每个任务的操作量不能多于50000个,否则就继续细分static Random r = new Random();//使用随机数将数组初始化static {for(int i=0; i<nums.length; i++) {nums[i] = r.nextInt(100);}System.out.println("---" + Arrays.stream(nums).sum()); //stream api 单线程就这么做,一个一个加}//分任务,需要继承,可以继承RecursiveAction(不需要返回值,一般用在不需要返回值的场景)或//RecursiveTask(需要返回值,我们用这个,因为我们需要最后获取求和结果)两个更好实现的类,//他俩继承与ForkJoinTaskstatic class AddTaskRet extends RecursiveTask<Long> {private static final long serialVersionUID = 1L;int start, end;AddTaskRet(int s, int e) {start = s;end = e;}@Overrideprotected Long compute() {if(end-start <= MAX_NUM) {//如果任务操作数小于规定的最大操作数,就进行运算,long sum = 0L;for(int i=start; i<end; i++) sum += nums[i];return sum;//返回结果} //如果分配的操作数大于规定,就继续细分(简单的重中点分,两半)int middle = start + (end-start)/2;//获取中间值AddTaskRet subTask1 = new AddTaskRet(start, middle);//传入起始值和中间值,表示一个子任务AddTaskRet subTask2 = new AddTaskRet(middle, end);//中间值和结尾值,表示一个子任务subTask1.fork();//分任务subTask2.fork();//分任务return subTask1.join() + subTask2.join();//最后返回结果汇总} }public static void main(String[] args) throws IOException {/ForkJoinPool fjp = new ForkJoinPool();AddTask task = new AddTask(0, nums.length);fjp.execute(task);/ForkJoinPool fjp = new ForkJoinPool();//创建线程池AddTaskRet task = new AddTaskRet(0, nums.length);//创建任务fjp.execute(task);//传入任务long result = task.join();//返回汇总结果System.out.println(result);//System.in.read();} } 11、ForkJoinPool线程池2:WorkStealingPool 任务偷取线程池 原来的线程池,都是有一个任务队列,而这个不同,它给每个线程都分配了一个任务队列 当某一个线程的任务队列没有任务,并且自己空闲,它就去其它线程的任务队列中偷任务,所以叫任务偷取线程池 细节:当线程自己从自己的任务队列拿任务时,不需要加锁,但是偷任务时,因为有两个线程,可能发生同步问题,需要加锁 此线程继承FJP 实例 import java.io.IOException;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.TimeUnit;public class T11_WorkStealingPool {public static void main(String[] args) throws IOException {ExecutorService service = Executors.newWorkStealingPool();System.out.println(Runtime.getRuntime().availableProcessors());service.execute(new R(1000));service.execute(new R(2000));service.execute(new R(2000));service.execute(new R(2000)); //daemonservice.execute(new R(2000));//由于产生的是精灵线程(守护线程、后台线程),主线程不阻塞的话,看不到输出System.in.read(); }static class R implements Runnable {int time;R(int t) {this.time = t;}@Overridepublic void run() {try {TimeUnit.MILLISECONDS.sleep(time);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(time + " " + Thread.currentThread().getName());} }} 12、流式API:ParallelStreamAPI 不懂的请参考:https://blog.csdn.net/grd_java/article/details/110265219 实例 import java.util.ArrayList;import java.util.List;import java.util.Random;public class T13_ParallelStreamAPI {public static void main(String[] args) {List<Integer> nums = new ArrayList<>();Random r = new Random();for(int i=0; i<10000; i++) nums.add(1000000 + r.nextInt(1000000));//System.out.println(nums);long start = System.currentTimeMillis();nums.forEach(v->isPrime(v));long end = System.currentTimeMillis();System.out.println(end - start);//使用parallel stream apistart = System.currentTimeMillis();nums.parallelStream().forEach(T13_ParallelStreamAPI::isPrime);//并行流,将任务切分成子任务执行end = System.currentTimeMillis();System.out.println(end - start);}static boolean isPrime(int num) {for(int i=2; i<=num/2; i++) {if(num % i == 0) return false;}return true;} } 13、总结 总结 Callable相当于一Runnable但是它有返回值 Future:存储执行完产生的结果 FutureTask 相当于Future+Runnable,既可以执行任务,又能获取任务执行的Future结果 CompletableFuture 可以多任务异步,并对多任务控制,整合任务结果,细化完美,比如可以一个任务完成就可以整合结果,也可以所有任务完成才整合结果 4、ThreadPoolExecutor源码解析 依然只讲重点,实际还需要大家按照上篇博客中看源码的方式来看 1、常用变量的解释 // 1. ctl,可以看做一个int类型的数字,高3位表示线程池状态,低29位表示worker数量private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));// 2. COUNT_BITS,Integer.SIZE为32,所以COUNT_BITS为29private static final int COUNT_BITS = Integer.SIZE - 3;// 3. CAPACITY,线程池允许的最大线程数。1左移29位,然后减1,即为 2^29 - 1private static final int CAPACITY = (1 << COUNT_BITS) - 1;// runState is stored in the high-order bits// 4. 线程池有5种状态,按大小排序如下:RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATEDprivate static final int RUNNING = -1 << COUNT_BITS;private static final int SHUTDOWN = 0 << COUNT_BITS;private static final int STOP = 1 << COUNT_BITS;private static final int TIDYING = 2 << COUNT_BITS;private static final int TERMINATED = 3 << COUNT_BITS;// Packing and unpacking ctl// 5. runStateOf(),获取线程池状态,通过按位与操作,低29位将全部变成0private static int runStateOf(int c) { return c & ~CAPACITY; }// 6. workerCountOf(),获取线程池worker数量,通过按位与操作,高3位将全部变成0private static int workerCountOf(int c) { return c & CAPACITY; }// 7. ctlOf(),根据线程池状态和线程池worker数量,生成ctl值private static int ctlOf(int rs, int wc) { return rs | wc; }/ Bit field accessors that don't require unpacking ctl. These depend on the bit layout and on workerCount being never negative./// 8. runStateLessThan(),线程池状态小于xxprivate static boolean runStateLessThan(int c, int s) {return c < s;}// 9. runStateAtLeast(),线程池状态大于等于xxprivate static boolean runStateAtLeast(int c, int s) {return c >= s;} 2、构造方法 public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) {// 基本类型参数校验if (corePoolSize < 0 ||maximumPoolSize <= 0 ||maximumPoolSize < corePoolSize ||keepAliveTime < 0)throw new IllegalArgumentException();// 空指针校验if (workQueue == null || threadFactory == null || handler == null)throw new NullPointerException();this.corePoolSize = corePoolSize;this.maximumPoolSize = maximumPoolSize;this.workQueue = workQueue;// 根据传入参数unit和keepAliveTime,将存活时间转换为纳秒存到变量keepAliveTime 中this.keepAliveTime = unit.toNanos(keepAliveTime);this.threadFactory = threadFactory;this.handler = handler;} 3、提交执行task的过程 public void execute(Runnable command) {if (command == null)throw new NullPointerException();/ Proceed in 3 steps: 1. If fewer than corePoolSize threads are running, try to start a new thread with the given command as its first task. The call to addWorker atomically checks runState and workerCount, and so prevents false alarms that would add threads when it shouldn't, by returning false. 2. If a task can be successfully queued, then we still need to double-check whether we should have added a thread (because existing ones died since last checking) or that the pool shut down since entry into this method. So we recheck state and if necessary roll back the enqueuing if stopped, or start a new thread if there are none. 3. If we cannot queue task, then we try to add a new thread. If it fails, we know we are shut down or saturated and so reject the task./int c = ctl.get();// worker数量比核心线程数小,直接创建worker执行任务if (workerCountOf(c) < corePoolSize) {if (addWorker(command, true))return;c = ctl.get();}// worker数量超过核心线程数,任务直接进入队列if (isRunning(c) && workQueue.offer(command)) {int recheck = ctl.get();// 线程池状态不是RUNNING状态,说明执行过shutdown命令,需要对新加入的任务执行reject()操作。// 这儿为什么需要recheck,是因为任务入队列前后,线程池的状态可能会发生变化。if (! isRunning(recheck) && remove(command))reject(command);// 这儿为什么需要判断0值,主要是在线程池构造方法中,核心线程数允许为0else if (workerCountOf(recheck) == 0)addWorker(null, false);}// 如果线程池不是运行状态,或者任务进入队列失败,则尝试创建worker执行任务。// 这儿有3点需要注意:// 1. 线程池不是运行状态时,addWorker内部会判断线程池状态// 2. addWorker第2个参数表示是否创建核心线程// 3. addWorker返回false,则说明任务执行失败,需要执行reject操作else if (!addWorker(command, false))reject(command);} 4、addworker源码解析 private boolean addWorker(Runnable firstTask, boolean core) {retry:// 外层自旋for (;;) {int c = ctl.get();int rs = runStateOf(c);// 这个条件写得比较难懂,我对其进行了调整,和下面的条件等价// (rs > SHUTDOWN) || // (rs == SHUTDOWN && firstTask != null) || // (rs == SHUTDOWN && workQueue.isEmpty())// 1. 线程池状态大于SHUTDOWN时,直接返回false// 2. 线程池状态等于SHUTDOWN,且firstTask不为null,直接返回false// 3. 线程池状态等于SHUTDOWN,且队列为空,直接返回false// Check if queue empty only if necessary.if (rs >= SHUTDOWN &&! (rs == SHUTDOWN &&firstTask == null &&! workQueue.isEmpty()))return false;// 内层自旋for (;;) {int wc = workerCountOf(c);// worker数量超过容量,直接返回falseif (wc >= CAPACITY ||wc >= (core ? corePoolSize : maximumPoolSize))return false;// 使用CAS的方式增加worker数量。// 若增加成功,则直接跳出外层循环进入到第二部分if (compareAndIncrementWorkerCount(c))break retry;c = ctl.get(); // Re-read ctl// 线程池状态发生变化,对外层循环进行自旋if (runStateOf(c) != rs)continue retry;// 其他情况,直接内层循环进行自旋即可// else CAS failed due to workerCount change; retry inner loop} }boolean workerStarted = false;boolean workerAdded = false;Worker w = null;try {w = new Worker(firstTask);final Thread t = w.thread;if (t != null) {final ReentrantLock mainLock = this.mainLock;// worker的添加必须是串行的,因此需要加锁mainLock.lock();try {// Recheck while holding lock.// Back out on ThreadFactory failure or if// shut down before lock acquired.// 这儿需要重新检查线程池状态int rs = runStateOf(ctl.get());if (rs < SHUTDOWN ||(rs == SHUTDOWN && firstTask == null)) {// worker已经调用过了start()方法,则不再创建workerif (t.isAlive()) // precheck that t is startablethrow new IllegalThreadStateException();// worker创建并添加到workers成功workers.add(w);// 更新largestPoolSize变量int s = workers.size();if (s > largestPoolSize)largestPoolSize = s;workerAdded = true;} } finally {mainLock.unlock();}// 启动worker线程if (workerAdded) {t.start();workerStarted = true;} }} finally {// worker线程启动失败,说明线程池状态发生了变化(关闭操作被执行),需要进行shutdown相关操作if (! workerStarted)addWorkerFailed(w);}return workerStarted;} 5、线程池worker任务单元 private final class Workerextends AbstractQueuedSynchronizerimplements Runnable{/ This class will never be serialized, but we provide a serialVersionUID to suppress a javac warning./private static final long serialVersionUID = 6138294804551838833L;/ Thread this worker is running in. Null if factory fails. /final Thread thread;/ Initial task to run. Possibly null. /Runnable firstTask;/ Per-thread task counter /volatile long completedTasks;/ Creates with given first task and thread from ThreadFactory. @param firstTask the first task (null if none)/Worker(Runnable firstTask) {setState(-1); // inhibit interrupts until runWorkerthis.firstTask = firstTask;// 这儿是Worker的关键所在,使用了线程工厂创建了一个线程。传入的参数为当前workerthis.thread = getThreadFactory().newThread(this);}/ Delegates main run loop to outer runWorker /public void run() {runWorker(this);}// 省略代码...} 6、核心线程执行逻辑-runworker final void runWorker(Worker w) {Thread wt = Thread.currentThread();Runnable task = w.firstTask;w.firstTask = null;// 调用unlock()是为了让外部可以中断w.unlock(); // allow interrupts// 这个变量用于判断是否进入过自旋(while循环)boolean completedAbruptly = true;try {// 这儿是自旋// 1. 如果firstTask不为null,则执行firstTask;// 2. 如果firstTask为null,则调用getTask()从队列获取任务。// 3. 阻塞队列的特性就是:当队列为空时,当前线程会被阻塞等待while (task != null || (task = getTask()) != null) {// 这儿对worker进行加锁,是为了达到下面的目的// 1. 降低锁范围,提升性能// 2. 保证每个worker执行的任务是串行的w.lock();// If pool is stopping, ensure thread is interrupted;// if not, ensure thread is not interrupted. This// requires a recheck in second case to deal with// shutdownNow race while clearing interrupt// 如果线程池正在停止,则对当前线程进行中断操作if ((runStateAtLeast(ctl.get(), STOP) ||(Thread.interrupted() &&runStateAtLeast(ctl.get(), STOP))) &&!wt.isInterrupted())wt.interrupt();// 执行任务,且在执行前后通过beforeExecute()和afterExecute()来扩展其功能。// 这两个方法在当前类里面为空实现。try {beforeExecute(wt, task);Throwable thrown = null;try {task.run();} catch (RuntimeException x) {thrown = x; throw x;} catch (Error x) {thrown = x; throw x;} catch (Throwable x) {thrown = x; throw new Error(x);} finally {afterExecute(task, thrown);} } finally {// 帮助gctask = null;// 已完成任务数加一 w.completedTasks++;w.unlock();} }completedAbruptly = false;} finally {// 自旋操作被退出,说明线程池正在结束processWorkerExit(w, completedAbruptly);} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/grd_java/article/details/113116244。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-21 16:19:45
328
转载
转载文章
...oogle Docs创建了协作页面,邀请大家共同探讨书中技术名词的中译名。从中我们可以一窥他作为译者的慎重。 三年之后,有幸在出版之前就拿到了完整的译本。这是一本用LaTeX精心排版的800页的电子书,我只花了一周时间,几乎是一口气读完。流畅的阅读享受,绝对不仅仅是因为原著精彩的内容,精美的版面和翔实的译注也加了不少分。 在阅读本书的过程中,我不只一次地获得共鸣。例如在第5章的内存管理系统的介绍中,作者介绍的几种游戏特有的内存管理方法我都曾在项目中用过,而这是第一次有书籍专门将这些方法详尽记录;又如第11章动画系统的介绍,我们也同样在3D引擎开发过程中改进原有动画片段混合方法的经历。虽然书中介绍的每个技术点,都可能可以在某篇论文,某本其他的书的章节,某篇网络blog上见过,但之前却无一本书可以把这些东西放在一起相互参照。对于从事游戏引擎开发的程序员来说,了解各种引擎在处理每个具体问题时的方案是相当重要的。而每种方案又各有利弊,即使不做引擎开发工作而是在某一特定游戏引擎上做游戏开发,从中也可以理解引擎的局限性以及可能的改进方法。尤其是第14章介绍的对游戏性相关系统的设计,各个开发人员几乎都是凭经验设计,很少见有书籍对这些做总结。对于基于渲染引擎做开发的游戏程序员,这是必须面对的工作,这一章会有很大的借鉴意义。 本书作者是业内资深的游戏引擎开发人,他所参于的《神秘海域》和《最后生还者》都是我的个人最爱。在玩游戏的过程中,作为游戏程序员的天性,自然会不断地猜想各个技术点是如何实现的,背后需要怎样的工具支持。能在书中一一得到印证是件特别开心的事情。作者反复强调代码实践的重要性,在书中遍布着C++代码。我不认为这些代码有直接取来使用的价值,但它们极大地帮助了读者理解书中的技术点。书中列出的顽皮狗工作室用lisp方言作为游戏配置脚本的范例也给我很大的启发,有了这些具体的代码示例以及作者本身的一线工程师背景,也让我确信书中那些关于主机游戏开发相关等,我所没有接触过的内容都也绝非泛泛而谈。 国内的游戏开发社区的壮大,主要是随最近十年的MMO风潮而生。而就在大型网络游戏在中国有些畸形发展,让这类游戏偏离电子游戏游戏性的趋势时,我们有幸迎来了为移动设备开发游戏的大潮。游戏开发的重心重新回到游戏性本身。我们更需要去借鉴单机游戏是如何为玩家带来更纯粹的游戏体验,我相信书中记录的各种技术点会变的更有帮助。 资深游戏开发及创业者 云风 @简悦云风 推荐序2 在我认识的许多游戏业开发同仁中,只有少数香港同胞,Milo Yip(叶劲峰)却正是这样一位给我印象非常深刻的优秀香港游戏开发者。我俩认识,是在Milo加入腾讯互动娱乐研发部引擎技术中心后,说来到现在也只是两年多时间。其间,他为人的谦逊务实,对待技术问题的严谨求真态度,对算法设计和性能优化的娴熟技术,都为人所称道。Milo一丝不苟的工作风格,甚至表现在对待技术文档排版这类事情上(Milo常执著地用LaTeX将技术文档排到完美),我想这一定是他在香港读大学、硕士及在香港理工大学的多媒体创新中心从事研究员,一贯沿袭至今的好作风。 我很高兴腾讯游戏有实力吸引到这样优秀的技术专家;即使在其已从上海迁回香港家中,依然选择到深圳腾讯互动娱乐总部工作。叶兄从此工作日每天早晚过关,来往香港和深圳两地,虽有舟车劳顿,但是兼顾了对家庭的照顾和在游戏引擎方面的专业研究,希望这样的状况是令他满意的。 认识叶兄当时,我便知道他在进行Jason Gregory所著《游戏引擎架构》一书的中译工作。因为自己从前也有业余翻译游戏开发有关书籍的经历,所以我能理解其中的辛苦和责任重大,对叶兄也更多一分钦佩。我以为,本书以及本书的中文读者最大的幸运便是,遇到叶兄这位对游戏有着如同对家对国般强烈责任感,犹如“游戏科学工作者”般的专业译者! 现在(2013年年末)无疑是游戏史上对独立游戏制作者最友好的年代。开发设备方便获得(相对过往仅由主机厂商授权才能获得专利开发设备,现在有一台智能手机和一台个人电脑就可以开发)、技术工具友好、调试过程简单方便,且互联网上有丰富的例程和开源代码参考,也有网上社区便于交流。很多爱好者能够很快地制作出可运行的游戏原型,其中一些也能发布到应用商店。 但是不全面掌握各方面知识,尤其是游戏引擎架构知识,往往只能停留在勉强修改、凑合重用别人提供的资源的应用程度上,难以做极限的性能改进,更妄谈革命式的架构创新。这样的程度是很难在成千上万的游戏中脱颖而出的。我们所认可的真正的游戏大作,必定是在某方面大幅超越用户期待的产品。为了打造这样的产品,游戏内容创作者(策划、美术等)需要“戴着镣铐跳舞”(在当前的机能下争取更多的创作自由度),而引擎架构合理的游戏可以经得起──也值得进行──反复优化,最终可以提供更多的自由度,这是大作出现的技术前提。 书的作者、译者、出版社的编者,加上读者,大家是因书而结缘的有缘人。因叶兄这本《游戏引擎架构》译著而在线上线下相识的读者们,你们是不是因“了解游戏引擎架构,从而制作/优化好游戏”这样的理想而结了缘呢? 亲爱的读者,愿你的游戏有一天因谜题巧妙绝伦、趣味超凡、虚拟世界气势磅礴、视觉效果逼真精美等专业因素取得业界褒奖,并得到玩家真诚的赞美。希望届时曾读叶兄这本《游戏引擎架构》译作的你,也可以回馈社会,回馈游戏开发的学习社区,帮助新人。希望你也可以建立微信公众号、博客等,或翻译游戏开发书籍,造福外语不好的读者,所以如果你的外语(英语、日语、韩语之于游戏行业比较重要)水平仍需精进,现在也可以同步加油了! 腾讯《天天爱消除》游戏团队Leader 沙鹰 @也是沙鹰 译序 数千年以来,艺术家们通过文学、绘画、雕塑、建筑、音乐、舞蹈、戏剧等传统艺术形式充实人类的精神层面。自20世纪中叶,计算机的普及派生出另一种艺术形式──电子游戏。游戏结合了上述传统艺术以及近代科技派生的其他艺术(如摄影、电影、动画),并且完全脱离了艺术欣赏这种单向传递的方式──游戏必然是互动的,“玩家”并不是“读者”、“观众”或“听众”,而是进入游戏世界、感知并对世界做出反应的参与者。 基于游戏的互动本质,游戏的制作通常比其他大众艺术复杂。商业游戏的制作通常需要各种人才的参与,而他们则需要依赖各种工具及科技。游戏引擎便是专门为游戏而设计的工具及科技集成。之所以称为引擎,如同交通工具中的引擎,提供了最核心的技术部分。因为复杂,研发成本高,人们不希望制作每款游戏(或车款)时都重新设计引擎,重用性是游戏引擎的一个重要设计目标。 然而,各游戏本身的性质以及平台的差异,使研发完全通用的游戏引擎变得极困难,甚至不可能。市面上出售的游戏引擎,有一些虽然已经达到很高的技术水平,但在商业应用中,很多时候还是需要因应个别游戏项目对引擎改造、整合、扩展及优化。因此,即使能使用市面上最好的商用引擎或自研引擎,我们仍需要理解当中的架构、各种机制和技术,并且分析及解决在制作中遇到的问题。这些也是译者曾任于上海两家工作室时的主要工作范畴。 选择翻译此著作,主要原因是在阅读中得到共鸣,并且能知悉一些知名游戏作品实际上所采用的方案。有感坊间大部分游戏开发书籍并不是由业内人士执笔,内容只足够应付一些最简单的游戏开发,欠缺宏观比较各种方案,技术与当今实际情况也有很大差距。而一些Gems类丛书虽然偶有好文章,但受形式所限欠缺系统性、全面性。难得本书原作者身为世界一流游戏工作室的资深游戏开发者(注1),在繁重的游戏开发工作外,还在大学教授游戏开发课程以至编写本著作。此外,从与内地同事的交流中,了解到许多从业者不愿意阅读外文书籍。为了普及知识及反馈业界社会,希望能尽绵力。 或许有些人以为本著作是针对单机/游戏机游戏的,并不适合国内以网游为主的环境。但译者认为这是一种误解,许多游戏本身所涉及的技术是具通用性的。例如游戏性相关的游戏性系统、场景管理、人工智能、物理模拟等部分,许多时候也会同时用于网游的前台和后台。现时,一些动作为主、非MMO的国内端游甚至会直接在后台运行传统意义上的游戏引擎。至于前台相关的技术,单机和端游的区别更少。此外,随着近年移动终端的兴起,其硬件性能已超越传统掌上游戏机,开发手游所需的技术与传统掌上游戏机并无太大差异。还可预料,现时单机/游戏机的一些较高级的架构及技术,将在不远的未来着陆移动终端平台。 译者认为,本书涵括游戏开发技术的方方面面,同时适合入门及经验丰富的游戏程序员。书名中的架构二字,并不单是给出一个系统结构图,而是描述每个子系统的需求、相关技术及与其他子系统的关系。对译者本人而言,本书的第11章(动画系统)及第14章(运行时游戏性基础系统)是本书特別精彩之处,含有许多少见于其他书籍的内容。而第10章(渲染引擎)由于是游戏引擎中的一个极大的部分,有限的篇幅可能未能覆盖广度及深度,推荐读者参考[1](注2),人工智能方面也需参考其他专著。 本译作采用LaTeX排版(注3),以Inkscape编译矢量图片。为了令阅读更流畅,内文中的网址都统一改以脚注标示。另外,由于现时游戏开发相关的文献以英文为主,而且游戏开发涉及的知识面很广,本译作尽量以括号形式保留英文术语。为了方便读者查找内容,在附录中增设中英文双向索引(索引条目与原著的不同)。 本人在香港成长学习及工作,至2008年才赴内地游戏工作室工作,不黯内地的中文写作及用字习惯,翻译中曾遇到不少困难。有幸得到出版社人员以及良师益友的帮助,才能完成本译作。特别感谢周筠老师支持本作的提案,并耐心地给予协助及鼓励。编辑张春雨老师和卢鸫翔老师,以及好友余晟给予了大量翻译上的知识及指导。也感谢游戏业界专家云风、大宝和Dave给予了许多宝贵意见。此书的翻译及排版工作比预期更花时间,感谢妻子及儿女们的体谅。此次翻译工作历时三年半,因工作及家庭事宜导致严重延误,唯有在翻译及排版工作上更尽心尽力,希望求得等待此译作的读者们谅解。无论是批评或建议,诚希阁下通过电邮miloyip@gmail.com、新浪微博、豆瓣等渠道不吝赐教。 叶劲峰(Milo Yip) 2013年10月 原作者是顽皮狗(Naughty Dog)《神秘海域(Uncharted)》系列的通才程序员、《最后生还者(The Last of Us)》的首席程序员,之前还曾在EA和Midway工作。 中括号表示引用附录中的参考文献。一些参考条目加入了其中译本的信息。 具体是使用CTEX套装,它是在MiKTeX的基础上增加中文的支持。 前言 最早的电子游戏完全由硬件构成,但微处理器(microprocessor)的高速发展完全改变了游戏的面貌。现在的游戏是在多用途的PC和专门的电子游戏主机(video game console)上玩的,凭借软件带来绝妙的游戏体验。从最初的游戏诞生至今已有半个世纪,但很多人仍然认为游戏是一个未成熟的产业。即使游戏可能是个年轻的产业,若仔细观察,也会发现它正在高速发展。 现时游戏已成为一个上百亿美元的产业,覆盖不同年龄、性别的广泛受众。 千变万化的游戏,可以分为从纸牌游戏到大型多人在线游戏(massively multiplayer online game,MMOG)等多个种类(category)和“类型(genre)”(注1),也可以运行在任何装有微芯片(microchip)的设备上 。你现在可以在PC、手机及多种特别为游戏而设计的手持/电视游戏主机上玩游戏。家用电视游戏通常代表最尖端的游戏科技,又由于它们是周期性地推出新版本,因此有游戏机“世代”(generation)的说法。最新一代(注2)的游戏机包括微软的Xbox 360和索尼的PlayStation 3,但一定不可忽视长盛不衰的PC,以及最近非常流行的任天堂Wii。 最近,剧增的下载式休闲游戏,使这个多样化的商业游戏世界变得更复杂。虽然如此,大型游戏仍然是一门大生意。今天的游戏平台非常复杂,有难以置信的运算能力,这使软件的复杂度得以进一步提升。所有这些先进的软件都需要由人创造出来,这导致团队人数增加,开发成本上涨。随着产业变得成熟,开发团队要寻求更好、更高效的方式去制作产品,可复用软件(reusable software)和中间件(middleware)便应运而生,以补偿软件复杂度的提升。 由于有这么多风格迥异的游戏及多种游戏平台,因此不可能存在单一理想的软件方案。然而,业界已经发展出一些模式 ,也有大量的潜在方案可供选择。现今的问题是如何找到一个合适的方案去迎合某个项目的需要。再进一步,开发团队必须考虑项目的方方面面,以及如何把各方面集成。对于一个崭新的游戏设计,鲜有可能找到一个完美搭配游戏设计各方面的软件包。 现时业界内的老手,入行时都是“开荒牛”。我们这代人很少是计算机科学专业出身(Matt的专业是航空工程、Jason的专业是系统设计工程),但现时很多学院已设有游戏开发的课程和学位。时至今日,为了获取有用的游戏开发信息,学生和开发者必须找到好的途径。对于高端的图形技术,从研究到实践都有大量高质量的信息。可是,这些信息经常不能直接应用到游戏的生产环境,或者没有一个生产级质量的实现。对于图形以外的游戏开发技术,市面上有一些所谓的入门书籍,没提及参考文献就描述很多内容细节,像自己发明的一样。这种做法根本没有用处,甚至经常带有不准确的内容。另一方面,市场上有一些高端的专门领域书籍,例如物理、碰撞、人工智能等。可是,这类书或者啰嗦到让你难以忍受,或者高深到让部分读者无法理解,又或者内容过于零散而难于融会贯通。有一些甚至会直接和某项技术挂钩,软硬件一旦改动,其内容就会迅速过时。 此外,互联网也是收集相关知识的绝佳工具。可是,除非你确实知道要找些什么,否则断链、不准确的资料、质量差的内容也会成为学习障碍。 好在,我们有Jason Gregory,他是一位拥有在顽皮狗(Naughty Dog)工作经验的业界老手,而顽皮狗是全球高度瞩目的游戏工作室之一。Jason在南加州大学教授游戏编程课程时,找不到概括游戏架构的教科书。值得庆幸的是,他承担了这个任务,填补了这个空白。 Jason把应用到实际发行游戏的生产级别知识,以及整个游戏开发的大局编集于本书。他凭经验,不仅融汇了游戏开发的概念和技巧,还用实际的代码示例及实现例子去说明怎样贯通知识来制作游戏。本书的引用及参考文献可以让读者更深入探索游戏开发过程的各方面。虽然例子经常是基于某些技术的,但是概念和技巧是用来实际创作游戏的,它们可以超越个别引擎或API的束缚。 本书是一本我们入行做游戏时想要的书。我们认为本书能让入门者增长知识,也能为有经验者开拓更大的视野。 Jeff Lander(注3) Matthew Whiting(注4) 译注:Genre一词在文学中为体裁。电影和游戏里通常译作类型。不同的游戏类型可见1.2节。 译注:按一般说法,2005年至今属于第7个游戏机世代。这3款游戏机的发行年份为Xbox 360(2005)、PlayStation 3(2006)、Wii(2006)。有关游戏机世代可参考维基百科。 译注:Jeff Lander现时为Darwin 3D公司的首席技术总监、Game Tech公司创始人,曾为艺电首席程序员、Luxoflux公司游戏性及动画技术程序员。 译注:Matthew Whiting现时为Wholesale Algorithms公司程序员,曾为Luxoflux公司首席软件工程师、Insomniac Games公司程序员。 序言 欢迎来到《游戏引擎架构》世界。本书旨在全面探讨典型商业游戏引擎的主要组件。游戏编程是一个庞大的主题,有许多内容需要讨论。不过相信你会发现,我们讨论的深度将足以使你充分理解本书所涵盖的工程理论及常用实践的方方面面。话虽如此,令人着迷的漫长游戏编程之旅其实才刚刚启程。与此相关的每项技术都包含丰富内容,本书将为你打下基础,并引领你进入更广阔的学习空间。 本书焦点在于游戏引擎的技术及架构。我们会探讨商业游戏引擎中,各个子系统的相关理论,以及实现这些理论所需要的典型数据结构、算法和软件接口。游戏引擎与游戏的界限颇为模糊。我们将把注意力集中在引擎本身,包括多个低阶基础系统(low-level foundation system)、渲染引擎(rendering engine)、碰撞系统(collision system)、物理模拟(physics simulation)、人物动画(character animation),及一个我称为游戏性基础层(gameplay foundation layer)的深入讨论。此层包括游戏对象模型(game object model)、世界编辑器(world editor)、事件系统(event system)及脚本系统(scripting system)。我们也将会接触游戏性编程(gameplay programming)的多个方面,包括玩家机制(player mechanics)、摄像机(camera)及人工智能(artificial intelligence,AI)。然而,这类讨论会被限制在游戏性系统和引擎接口范围。 本书可以作为大学中等级游戏程序设计中两到三门课程的教材。当然,本书也适合软件工程师、业余爱好者、自学的游戏程序员,以及游戏行业从业人员。通过阅读本书,资历较浅的游戏程序员可以巩固他们所学的游戏数学、引擎架构及游戏科技方面的知识。专注某一领域的资深程序员也能从本书更为全面的介绍中获益。 为了更好地学习本书内容,你需要掌握基本的面向对象编程概念并至少拥有一些C++编程经验。尽管游戏行业已经开始尝试使用一些新的、令人兴奋的编程语言,然而工业级的3D游戏引擎仍然是用C或C++编写的,任何认真的游戏程序员都应该掌握C++。我们将在第3章重温一些面向对象编程的基本原则,毫无疑问,你还会从本书学到一些C++的小技巧,不过C++的基础最好还是通过阅读[39]、[31]及[32]来获得。如果你对C++已经有点生疏,建议你在阅读本书的同时,最好能重温这几本或者类似书籍。如果你完全没有C++经验,在看本书之前,可以考虑先阅读[39]的前几章,或者尝试学习一些C++的在线教程。 学习编程技能最好的方法就是写代码。在阅读本书时,强烈建议你选择一些特别感兴趣的主题付诸实践。举例来说,如果你觉得人物动画很有趣,那么可以首先安装OGRE,并测试一下它的蒙皮动画示范。接着还可以尝试用OGRE实现本书谈及的一些动画混合技巧。下一步你可能会打算用游戏手柄控制人物在平面上行走。等你能玩转一些简单的东西了,就应该以此为基础,继续前进!之后可以转移到另一个游戏技术范畴,周而复始。这些项目是什么并不重要,重要的是你在实践游戏编程的艺术,而不是纸上谈兵。 游戏科技是一个活生生、会呼吸的家伙 ,永远不可能将之束缚于书本之上 。因此,附加的资源、勘误、更新、示例代码、项目构思等已经发到本书的网站。 目录 推荐序1 iii推荐序2 v译序 vii序言 xvii前言 xix致谢 xxi第一部分 基础 1第1章 导论 31.1 典型游戏团队的结构 41.2 游戏是什么 71.3 游戏引擎是什么 101.4 不同游戏类型中的引擎差异 111.5 游戏引擎概观 221.6 运行时引擎架构 271.7 工具及资产管道 46第2章 专业工具 532.1 版本控制 532.2 微软Visual Studio 612.3 剖析工具 782.4 内存泄漏和损坏检测 792.5 其他工具 80第3章 游戏软件工程基础 833.1 重温C++及最佳实践 833.2 C/C++的数据、代码及内存 903.3 捕捉及处理错误 118第4章 游戏所需的三维数学 1254.1 在二维中解决三维问题 1254.2 点和矢量 1254.3 矩阵 1394.4 四元数 1564.5 比较各种旋转表达方式 1644.6 其他数学对象 1684.7 硬件加速的SIMD运算 1734.8 产生随机数 180第二部分 低阶引擎系统 183第5章 游戏支持系统 1855.1 子系统的启动和终止 1855.2 内存管理 1935.3 容器 2085.4 字符串 2255.5 引擎配置 234第6章 资源及文件系统 2416.1 文件系统 2416.2 资源管理器 251第7章 游戏循环及实时模拟 2777.1 渲染循环 2777.2 游戏循环 2787.3 游戏循环的架构风格 2807.4 抽象时间线 2837.5 测量及处理时间 2857.6 多处理器的游戏循环 2967.7 网络多人游戏循环 304第8章 人体学接口设备(HID) 3098.1 各种人体学接口设备 3098.2 人体学接口设备的接口技术 3118.3 输入类型 3128.4 输出类型 3168.5 游戏引擎的人体学接口设备系统 3188.6 人体学接口设备使用实践 332第9章 调试及开发工具 3339.1 日志及跟踪 3339.2 调试用的绘图功能 3379.3 游戏内置菜单 3449.4 游戏内置主控台 3479.5 调试用摄像机和游戏暂停 3489.6 作弊 3489.7 屏幕截图及录像 3499.8 游戏内置性能剖析 3499.9 游戏内置的内存统计和泄漏检测 356第三部分 图形及动画 359第10章 渲染引擎 36110.1 采用深度缓冲的三角形光栅化基础 36110.2 渲染管道 40410.3 高级光照及全局光照 42610.4 视觉效果和覆盖层 43810.5 延伸阅读 446第11章 动画系统 44711.1 角色动画的类型 44711.2 骨骼 45211.3 姿势 45411.4 动画片段 45911.5 蒙皮及生成矩阵调色板 47111.6 动画混合 47611.7 后期处理 49311.8 压缩技术 49611.9 动画系统架构 50111.10 动画管道 50211.11 动作状态机 51511.12 动画控制器 535第12章 碰撞及刚体动力学 53712.1 你想在游戏中加入物理吗 53712.2 碰撞/物理中间件 54212.3 碰撞检测系统 54412.4 刚体动力学 56912.5 整合物理引擎至游戏 60112.6 展望:高级物理功能 616第四部分 游戏性 617第13章 游戏性系统简介 61913.1 剖析游戏世界 61913.2 实现动态元素:游戏对象 62313.3 数据驱动游戏引擎 62613.4 游戏世界编辑器 627第14章 运行时游戏性基础系统 63714.1 游戏性基础系统的组件 63714.2 各种运行时对象模型架构 64014.3 世界组块的数据格式 65714.4 游戏世界的加载和串流 66314.5 对象引用与世界查询 67014.6 实时更新游戏对象 67614.7 事件与消息泵 69014.8 脚本 70714.9 高层次的游戏流程 726第五部分 总结 727第15章 还有更多内容吗 72915.1 一些未谈及的引擎系统 72915.2 游戏性系统 730参考文献 733中文索引 737英文索引 755 参考文献 Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. Real-Time Rendering (3rd Edition). Wellesley, MA: A K Peters, 2008. 中译本:《实时计算机图形学(第2版)》,普建涛译,北京大学出版社,2004. Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns Applied. Resding, MA: Addison-Wesley, 2001. 中译本:《C++设计新思维:泛型编程与设计模式之应用》,侯捷/於春景译,华中科技大学出版社,2003. Grenville Armitage, Mark Claypool and Philip Branch. Networking and Online Games: Understanding and Engineering Multiplayer Internet Games. New York, NY: John Wiley and Sons, 2006. James Arvo (editor). Graphics Gems II. San Diego, CA: Academic Press, 1991. Grady Booch, Robert A. Maksimchuk, Michael W. Engel, Bobbi J. Young, Jim Conallen, and Kelli A. Houston. Object-Oriented Analysis and Design with Applications (3rd Edition). Reading, MA: Addison-Wesley, 2007. 中译本:《面向对象分析与设计(第3版)》,王海鹏/潘加宇译,电子工业出版社,2012. Mark DeLoura (editor). Game Programming Gems. Hingham, MA: Charles River Media, 2000. 中译本:《游戏编程精粹 1》, 王淑礼译,人民邮电出版社,2004. Mark DeLoura (editor). Game Programming Gems 2. Hingham, MA: Charles River Media, 2001. 中译本:《游戏编程精粹 2》,袁国忠译,人民邮电出版社,2003. Philip Dutré, Kavita Bala and Philippe Bekaert. Advanced Global Illumination (2nd Edition). Wellesley, MA: A K Peters, 2006. David H. Eberly. 3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics. San Francisco, CA: Morgan Kaufmann, 2001. 国内英文版:《3D游戏引擎设计:实时计算机图形学的应用方法(第2版)》,人民邮电出版社,2009. David H. Eberly. 3D Game Engine Architecture: Engineering Real-Time Applications with Wild Magic. San Francisco, CA: Morgan Kaufmann, 2005. David H. Eberly. Game Physics. San Francisco, CA: Morgan Kaufmann, 2003. Christer Ericson. Real-Time Collision Detection. San Francisco, CA: Morgan Kaufmann, 2005. 中译本:《实时碰撞检测算法技术》,刘天慧译,清华大学出版社,2010. Randima Fernando (editor). GPU Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics. Reading, MA: Addison-Wesley, 2004. 中译本:《GPU精粹:实时图形编程的技术、技巧和技艺》,姚勇译,人民邮电出版社,2006. James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer Graphics: Principles and Practice in C (2nd Edition). Reading, MA: Addison-Wesley, 1995. 中译本:《计算机图形学原理及实践──C语言描述》,唐泽圣/董士海/李华/吴恩华/汪国平译,机械工业出版社,2004. Grant R. Fowles and George L. Cassiday. Analytical Mechanics (7th Edition). Pacific Grove, CA: Brooks Cole, 2005. John David Funge. AI for Games and Animation: A Cognitive Modeling Approach. Wellesley, MA: A K Peters, 1999. Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissiddes. Design Patterns: Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1994. 中译本:《设计模式:可复用面向对象软件的基础》,李英军/马晓星/蔡敏/刘建中译,机械工业出版社,2005. Andrew S. Glassner (editor). Graphics Gems I. San Francisco, CA: Morgan Kaufmann, 1990. Paul S. Heckbert (editor). Graphics Gems IV. San Diego, CA: Academic Press, 1994. Maurice Herlihy, Nir Shavit. The Art of Multiprocessor Programming. San Francisco, CA: Morgan Kaufmann, 2008. 中译本:《多处理器编程的艺术》,金海/胡侃译,机械工业出版社,2009. Roberto Ierusalimschy, Luiz Henrique de Figueiredo and Waldemar Celes. Lua 5.1 Reference Manual. Lua.org, 2006. Roberto Ierusalimschy. Programming in Lua, 2nd Edition. Lua.org, 2006. 中译本:《Lua程序设计(第2版)》,周惟迪译,电子工业出版社,2008. Isaac Victor Kerlow. The Art of 3-D Computer Animation and Imaging (2nd Edition). New York, NY: John Wiley and Sons, 2000. David Kirk (editor). Graphics Gems III. San Francisco, CA: Morgan Kaufmann, 1994. Danny Kodicek. Mathematics and Physics for Game Programmers. Hingham, MA: Charles River Media, 2005. Raph Koster. A Theory of Fun for Game Design. Phoenix, AZ: Paraglyph, 2004. 中译本:《快乐之道:游戏设计的黄金法则》,姜文斌等译,百家出版社,2005. John Lakos. Large-Scale C++ Software Design. Reading, MA: Addison-Wesley, 1995. 中译本:《大规模C++程序设计》,李师贤/明仲/曾新红/刘显明译,中国电力出版社,2003. Eric Lengyel. Mathematics for 3D Game Programming and Computer Graphics (2nd Edition). Hingham, MA: Charles River Media, 2003. Tuoc V. Luong, James S. H. Lok, David J. Taylor and Kevin Driscoll. Internationalization: Developing Software for Global Markets. New York, NY: John Wiley & Sons, 1995. Steve Maguire. Writing Solid Code: Microsoft's Techniques for Developing Bug Free C Programs. Bellevue, WA: Microsoft Press, 1993. 国内英文版:《编程精粹:编写高质量C语言代码》,人民邮电出版社,2009. Scott Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd Edition). Reading, MA: Addison-Wesley, 2005. 中译本:《Effective C++:改善程序与设计的55个具体做法(第3版)》,侯捷译,电子工业出版社,2011. Scott Meyers. More Effective C++: 35 New Ways to Improve Your Programs and Designs. Reading, MA: Addison-Wesley, 1996. 中译本:《More Effective C++:35个改善编程与设计的有效方法(中文版)》,侯捷译,电子工业出版社,2011. Scott Meyers. Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library. Reading, MA: Addison-Wesley, 2001. 中译本:《Effective STL:50条有效使用STL的经验》,潘爱民/陈铭/邹开红译,电子工业出版社,2013. Ian Millington. Game Physics Engine Development. San Francisco, CA: Morgan Kaufmann, 2007. Hubert Nguyen (editor). GPU Gems 3. Reading, MA: Addison-Wesley, 2007. 中译本:《GPU精粹3》,杨柏林/陈根浪/王聪译,清华大学出版社,2010. Alan W. Paeth (editor). Graphics Gems V. San Francisco, CA: Morgan Kaufmann, 1995. C. Michael Pilato, Ben Collins-Sussman, and Brian W. Fitzpatrick. Version Control with Subversion (2nd Edition). Sebastopol , CA: O'Reilly Media, 2008. (常被称作“The Subversion Book”,线上版本.) 国内英文版:《使用Subversion进行版本控制》,开明出版社,2009. Matt Pharr (editor). GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation. Reading, MA: Addison-Wesley, 2005. 中译本:《GPU精粹2:高性能图形芯片和通用计算编程技巧》,龚敏敏译,清华大学出版社,2007. Bjarne Stroustrup. The C++ Programming Language, Special Edition (3rd Edition). Reading, MA: Addison-Wesley, 2000. 中译本《C++程序设计语言(特别版)》,裘宗燕译,机械工业出版社,2010. Dante Treglia (editor). Game Programming Gems 3. Hingham, MA: Charles River Media, 2002. 中译本:《游戏编程精粹3》,张磊译,人民邮电出版社,2003. Gino van den Bergen. Collision Detection in Interactive 3D Environments. San Francisco, CA: Morgan Kaufmann, 2003. Alan Watt. 3D Computer Graphics (3rd Edition). Reading, MA: Addison Wesley, 1999. James Whitehead II, Bryan McLemore and Matthew Orlando. World of Warcraft Programming: A Guide and Reference for Creating WoW Addons. New York, NY: John Wiley & Sons, 2008. 中译本:《魔兽世界编程宝典:World of Warcraft Addons完全参考手册》,杨柏林/张卫星/王聪译,清华大学出版社,2010. Richard Williams. The Animator's Survival Kit. London, England: Faber & Faber, 2002. 中译本:《原动画基础教程:动画人的生存手册》,邓晓娥译,中国青年出版社,2006. 勘误 第1次印册(2014年2月) P.xviii: 译注中 Wholesale Algoithms -> Wholesale Algorithms P.10: 最后一段第一行 微软的媒体播放器 -> 微软的Windows Media Player (多谢读者OpenGPU来函指正) P.15: 1.4.3节第三点 按妞 -> 按钮 (多谢读者一个小小凡人来函指正) P.40: 正文最后一行 按扭 -> 按钮 P.50: 1.7.8节第二节第一行 同是 -> 同时 (多谢读者czfdd来函指正) P.98: 代码 writeExampleStruct(Example& ex, Stream& ex) 中 Stream& ex -> Stream& stream (多谢读者Snow来函指正) P.106: 第一段中有六处 BBS -> BSS,最后一段代码的注释也有同样错误 (多谢读者trout来函指正) P.119: 译注中 软体工程 -> 软件工程 (多谢读者Snow来函指正) P.214: 正文第一段有两处 虚内存 -> 虚拟内存 (多谢读者Snow来函指正) P.216: 脚注24应标明为译注 (多谢读者Snow来函指正) P.221: 第一段代码的第二个断言应为 ASSERT(link.m_pPrev != NULL); (多谢读者Snow来函指正) P.230: 5.4.4.1节 第二段 软体 -> 软件 P.286: 脚注4应标明为译注 (多谢读者Snow来函指正) P.322: 第二段 按扭事件字 -> 按钮事件 P.349: 9.8节第二段第二行两处 部析器 -> 剖析器 (多谢读者Snow来函指正) P.738-572: 双数页页眉 参考文献 -> 中文索引 P.755-772: 双数页页眉 参考文献 -> 英文索引 P.755: kd tree项应归入K而不是Symbols 以上的错误已于第2次印册中修正。 第2次印册及之前 P.11: 第四行 细致程度 -> 层次细节 (这是level-of-detail/LOD的内地通译,多谢读者OpenGPU来函指正) P.12: 正文第一段及图1.2标题 使命之唤 -> 使命召唤 (多谢读者OpenGPU来函指正) P.12: 正文第一段 战栗时空 -> 半条命 (多谢读者OpenGPU来函指正) P.16: 第一点 表面下散射 -> 次表面散射 (多谢读者OpenGPU来函指正) P.17: 1.4.4节第五行 次文化 -> 亚文化 (此译法在内地更常用。多谢读者OpenGPU来函提示) P.22: 战栗时空 -> 半条命 P.24: 战栗时空2 -> 半条命2 P.34: 1.6.8.2节第一行 提呈 -> 提交 (这术语在本书其他地方都写作提交。多谢读者OpenGPU来函提示) P.35: 第七行 提呈 -> 提交 (这术语在本书其他地方都写作提交。多谢读者OpenGPU来函提示) P.50: 战栗时空2 -> 半条命2 P.365: 第四段第二行: 细致程度 -> 层次细节 P.441: 10.4.3.2节第三行 细致程度 -> 层次细节 P.494: sinusiod -> sinusoid (多谢读者OpenGPU来函指正) P.511: 11.10.4节第一行 谈入 -> 淡入 (多谢读者Snow来函指正) P.541: 战栗时空2 -> 半条命2 P.627: 战栗时空2 -> 半条命2 P.654: 第二行 建康值 -> 血量 (原来是改正错别字,但译者发现应改作前后统一使用的“血量”。多谢读者Snow来函指正) P.692: 第二行 内部分式 -> 内部方式 (多谢读者Snow来函指正) P.696: 14.7.6节第四行 不设实际 -> 不切实际 (多谢读者Snow来函指正) 以上的错误已于第3次印册中修正。 其他意见 P.220: 正文第一段 m_root.m_pElement 和 P.218 第一段代码中的 m_pElem 不统一。原文有此问题,但因为它们是不同的struct,暂不列作错误。 (多谢读者Snow来函提示) P.331: 8.5.8节第二段中 “反覆”较常见的写法为“反复”,但前者也是正确的,暂不列作错误。 (多谢读者Snow来函提示) P.390: 10.1.3.3节静态光照第二段中“取而代之,我们会使用一张光照纹理贴到所有受光源影响范围内的物体上。这样做能令动态物体经过光源时得到正确的光照。” 后面的一句与前句好像难以一起理解。译者认为,作者应该是指,使用同一静态光源去为静态物件生成光照纹理,以及用于动态对象的光照,能使两者的效果维持一致性。译者会考虑对译文作出改善或加入译注解译。(多谢读者店残来函查询) P.689: 第五行 并行处理世代 -> 并行处理时代 是对era较准确的翻译。 (多谢读者Snow来函提示) 本篇文章为转载内容。原文链接:https://blog.csdn.net/mypongo/article/details/38388381。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-12 23:04:05
327
转载
Redis
... macOS 或 Docker 使用以下命令 sudo redis-cli config save docker-compose restart redis 4. 检查并监控Redis最大连接数 重启Redis服务后,通过info clients命令检查最大连接数是否已更新: redis-cli info clients 输出应包含connected_clients这一字段,显示当前活跃连接数量,以及maxClients显示允许的最大连接数。 5. 监控系统资源及文件描述符限制 在Linux环境下,可以通过ulimit -n查看当前可用的文件描述符限制,若仍需进一步增大连接数,请通过ulimit -n 设置并重加载限制,然后再重启Redis服务使其受益于新设置。 四、结论与注意事项 设置Redis最大连接数并非一劳永逸,随着业务发展和环境变化,定期评估并调整这一参数是必要的。同时,想要确保Redis既能满足业务需求又能始终保持流畅稳定运行,就得把系统资源监控、Redis的各项性能指标和调优策略一起用上,像拼图一样把它们完美结合起来。在这个过程中,我们巧妙地把实际操作中积累的经验和书本上的理论知识灵活融合起来,让Redis摇身一变,成了推动我们业务迅猛发展的超级好帮手。
2024-02-01 11:01:33
301
彩虹之上_t
JQuery插件下载
...JS,开发者可以轻松创建并动态管理树形结构数据,支持在运行时添加和删除节点,极大地增强了用户体验。其特色在于能够制作无限层级的树结构,每个节点都能够自定义图标以及右键上下文菜单,为用户提供丰富的交互选项。这一特性使得aimaraJS不仅适用于文件系统、组织架构展示,还能够应用于各种需要层次化导航和管理功能的场景,如设置界面、知识库体系或菜单管理等。总之,凭借高度可定制化与响应式设计,aimaraJS成为开发人员构建复杂目录树结构的理想工具之一。 点我下载 文件大小:41.09 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-01-28 10:21:37
87
本站
JQuery插件下载
...展示产品,还可以用于创建精美的幻灯片,让你的网站内容更具吸引力。其简洁而优雅的设计风格,能够与各种网站主题完美融合,提升整体视觉效果。此外,该插件响应迅速,运行流畅,不会拖慢页面加载速度,确保用户拥有最佳的浏览体验。无论你是个人博客主还是企业网站管理员,这款jQuery和CSS3圆形缩略图导航轮播图插件都能帮助你更好地展示内容,吸引访客的目光。安装简便,只需几行代码即可集成到现有项目中,让你的网站焕发出新的活力。 点我下载 文件大小:321.34 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2025-01-08 11:16:14
95
本站
JQuery插件下载
...是移动设备上都能流畅运行。它具备出色的图片响应式功能,能够根据不同的屏幕大小自动调整图片尺寸和布局,确保在任何设备上都能提供最佳的视觉体验。SangarSlider不仅适用于需要展示多张图片的网站,还可以用来创建动态幻灯片,增强网站的互动性和吸引力。它的触摸屏支持使得用户可以在手机或平板上轻松滑动浏览图片,为移动用户提供了极佳的操作体验。此外,SangarSlider还提供了丰富的自定义选项,用户可以根据自己的需求调整动画效果、过渡速度等参数,以满足不同场景下的使用需求。无论是作为独立的jQuery插件,还是通过WordPress插件的形式集成到你的网站中,SangarSlider都能为你带来出色的轮播图展示效果。它的易用性和灵活性使其成为网页设计师和开发者不可或缺的工具之一。 点我下载 文件大小:750.43 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-12-29 11:23:09
93
本站
JQuery插件下载
...小,使其完美适配其父容器的宽度与高度。无论用户是在桌面电脑、平板还是手机上浏览网页,adapttext.js都能确保文字内容清晰易读,无需手动调整字体大小。在响应式设计日益重要的今天,adapttext.js无疑是一个强大的工具。开发者只需简单地引入插件,然后指定需要应用此功能的文本元素,即可实现文字随屏幕尺寸变化而自动调整的效果。这不仅提升了用户体验,也简化了前端开发者的负担,让他们可以更专注于其他重要功能的实现。无论是新闻网站、博客平台还是企业官网,adapttext.js都能发挥其独特的优势,确保页面上的每一个文字都能够以最佳状态呈现给用户。通过使用adapttext.js,你可以轻松创建出既美观又实用的响应式网页布局,让访问者无论使用何种设备,都能获得一致且优秀的阅读体验。 点我下载 文件大小:122.17 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2025-02-11 11:10:08
60
本站
JQuery插件下载
...环境中。它允许开发者创建动态且灵活的右键菜单,不仅限于传统的鼠标右击,还支持左键菜单和位置定制。用户可以选择在特定元素或页面任何位置触发菜单,提供了丰富的自定义选项,以适应各种应用场景。其核心特点是轻量级,使得它能在移动设备上顺畅运行,同时保持高性能。BasicContext.js通过简单的API,让开发者能够根据需要添加个性化菜单项,比如关联操作、快捷功能等。无论是网站导航、内容管理还是数据分析,都能借助这个插件实现直观且高效的用户操作。总的来说,BasicContext.js是一款实用且高度可扩展的工具,为提升网页用户体验增添了一大助力。 点我下载 文件大小:72.04 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-06-04 21:11:58
88
本站
JQuery插件下载
...各个内容区块能够根据容器宽度自动调整位置与大小,填充最佳空间,从而提升视觉体验与内容展现效率。插件的核心特性在于其智能化处理不同尺寸内容块的能力,确保在不同屏幕分辨率下都能保持美观、有序且充分利用空间的布局。它通过预设断点来精准控制响应式行为,使得网页布局能在移动设备和平板到桌面显示器等各种设备上流畅切换,展现出完美的适应性。总之,mp-mansory.js是前端开发人员手中的一款强大工具,它极大地简化了基于Bootstrap的瀑布流布局实现过程,帮助开发者高效地创建出色、动态且完全响应式的网站界面。 点我下载 文件大小:44.12 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-02-08 12:20:21
78
本站
JQuery插件下载
...功能和简洁的API来创建平滑且高性能的动画过渡效果。通过集成tween.js库的优势,jQueryTween不仅简化了开发人员在处理各种补间动画时的操作流程,还利用硬件加速技术确保动画运行流畅不卡顿。使用jQueryTween,开发者能够轻松定义元素从起始状态到结束状态的动画过程,无论是改变位置、大小、透明度、颜色等CSS样式属性,还是实现更复杂的动态效果。该插件尤其适合那些希望增强用户体验,提升网站或应用动态视觉表现力的前端开发者。得益于其底层基于tween.js的实现机制,jQueryTween可以在保证动画质量的同时,降低对系统资源的占用,并确保动画在不同设备上的兼容性和一致性。通过简单的配置与调用,即便是不具备丰富动画制作经验的开发者也能快速构建出专业级别的补间动画效果。 点我下载 文件大小:93.83 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-12-27 17:06:08
266
本站
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
head -n 10 file.txt
- 查看文件前10行。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"