前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[AngularJS 7 分页组件开发]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...并删除相应内容。 从开发人员到机器学习从业人员 14天 Python是应用机器学习发展最快的平台之一。 在本小课程中,您将发现如何在14天内使用Python入门,建立准确的模型以及自信地完成预测建模机器学习项目。 这是重要的职位。您可能要为其添加书签。 在我的新书中,通过16个循序渐进的教程,3个项目和完整的python代码,探索如何用熊猫准备数据,使用scikit-learn拟合和评估模型,以及更多内容。 让我们开始吧。 2016年10月更新:更新了sklearn v0.18的示例。 2018年2月更新:更新Python和库版本。 2018年3月更新:增加了备用链接以下载一些数据集,因为原始文件似乎已被删除。 2019年5月更新:修复了scikit-learn最新版本的警告消息。 Dave Young的 Python机器学习迷你课程 照片,保留一些权利。 迷你课程面向谁? 在开始之前,请确保您在正确的位置。 下面的列表提供了有关本课程针对谁的一些一般指导。 如果您没有完全匹配这些点,请不要惊慌,您可能只需要在一个或另一个区域刷牙以跟上。 知道如何编写一些代码的开发人员。这意味着,一旦您了解基本语法,就可以选择像Python这样的新编程语言,这对您来说并不重要。这并不意味着您是一名向导编码员,而是可以毫不费力地遵循基本的类似于C的语言。 懂一点机器学习的开发人员。这意味着您了解机器学习的基础知识,例如交叉验证,一些算法和偏差方差折衷。这并不意味着您是机器学习博士,而是您知道地标或知道在哪里查找。 这门迷你课程既不是Python的教科书,也不是机器学习的教科书。 从一个懂一点机器学习的开发人员到一个可以使用Python生态系统获得结果的开发人员,Python生态系统是专业机器学习的新兴平台。 在Python机器学习方面需要帮助吗? 参加我为期2周的免费电子邮件课程,发现数据准备,算法等(包括代码)。 单击立即注册,并获得该课程的免费PDF电子书版本。 立即开始免费的迷你课程! 迷你课程概述 该微型课程分为14节课。 您可以每天完成一堂课(推荐),也可以在一天内完成所有课程(核心!)。这实际上取决于您有空的时间和您的热情水平。 以下是14个课程,可帮助您入门并提高使用Python进行机器学习的效率: 第1课:下载并安装Python和SciPy生态系统。 第2课:深入了解Python,NumPy,Matplotlib和Pandas。 第3课:从CSV加载数据。 第4课:了解具有描述性统计信息的数据。 第5课:通过可视化了解数据。 第6课:通过预处理数据准备建模。 第7课:使用重采样方法进行算法评估。 第8课:算法评估指标。 第9课:现场检查算法。 第10课:模型比较和选择。 第11课:通过算法调整提高准确性。 第12课:利用集合预测提高准确性。 第13课:完成并保存模型。 第14课:Hello World端到端项目。 每节课可能需要您60秒钟或最多30分钟。花点时间按照自己的进度完成课程。提出问题,甚至在以下评论中发布结果。 这些课程希望您能开始学习并做事。我会给您提示,但每节课的重点是迫使您学习从哪里寻求有关Python平台的帮助(提示,我直接在此博客上获得了所有答案,请使用搜索特征)。 在早期课程中,我确实提供了更多帮助,因为我希望您树立一些信心和惯性。 挂在那里,不要放弃! 第1课:下载并安装Python和SciPy 您必须先访问平台才能开始使用Python进行机器学习。 今天的课程很简单,您必须在计算机上下载并安装Python 3.6平台。 访问Python主页并下载适用于您的操作系统(Linux,OS X或Windows)的Python。在计算机上安装Python。您可能需要使用特定于平台的软件包管理器,例如OS X上的macports或RedHat Linux上的yum。 您还需要安装SciPy平台和scikit-learn库。我建议使用与安装Python相同的方法。 您可以使用Anaconda一次安装所有内容(更加容易)。推荐给初学者。 通过在命令行中键入“ python”来首次启动Python。 使用以下代码检查所有您需要的版本: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Python version import sys print('Python: {}'.format(sys.version)) scipy import scipy print('scipy: {}'.format(scipy.__version__)) numpy import numpy print('numpy: {}'.format(numpy.__version__)) matplotlib import matplotlib print('matplotlib: {}'.format(matplotlib.__version__)) pandas import pandas print('pandas: {}'.format(pandas.__version__)) scikit-learn import sklearn print('sklearn: {}'.format(sklearn.__version__)) 如果有任何错误,请停止。现在该修复它们了。 需要帮忙?请参阅本教程: 如何使用Anaconda设置用于机器学习和深度学习的Python环境 第2课:深入了解Python,NumPy,Matplotlib和Pandas。 您需要能够读写基本的Python脚本。 作为开发人员,您可以很快选择新的编程语言。Python区分大小写,使用哈希(#)进行注释,并使用空格指示代码块(空格很重要)。 今天的任务是在Python交互环境中练习Python编程语言的基本语法和重要的SciPy数据结构。 练习作业,在Python中使用列表和流程控制。 练习使用NumPy数组。 练习在Matplotlib中创建简单图。 练习使用Pandas Series和DataFrames。 例如,以下是创建Pandas DataFrame的简单示例。 1 2 3 4 5 6 7 8 dataframe import numpy import pandas myarray = numpy.array([[1, 2, 3], [4, 5, 6]]) rownames = ['a', 'b'] colnames = ['one', 'two', 'three'] mydataframe = pandas.DataFrame(myarray, index=rownames, columns=colnames) print(mydataframe) 第3课:从CSV加载数据 机器学习算法需要数据。您可以从CSV文件加载自己的数据,但是当您开始使用Python进行机器学习时,应该在标准机器学习数据集上进行练习。 今天课程的任务是让您轻松地将数据加载到Python中并查找和加载标准的机器学习数据集。 您可以在UCI机器学习存储库上下载和练习许多CSV格式的出色标准机器学习数据集。 练习使用标准库中的CSV.reader()将CSV文件加载到Python 中。 练习使用NumPy和numpy.loadtxt()函数加载CSV文件。 练习使用Pandas和pandas.read_csv()函数加载CSV文件。 为了让您入门,下面是一个片段,该片段将直接从UCI机器学习存储库中使用Pandas来加载Pima Indians糖尿病数据集。 1 2 3 4 5 6 Load CSV using Pandas from URL import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) print(data.shape) 到现在为止做得很好!等一下 到目前为止有什么问题吗?在评论中提问。 第4课:使用描述性统计数据理解数据 将数据加载到Python之后,您需要能够理解它。 您越了解数据,可以构建的模型就越精确。了解数据的第一步是使用描述性统计数据。 今天,您的课程是学习如何使用描述性统计信息来理解您的数据。我建议使用Pandas DataFrame上提供的帮助程序功能。 使用head()函数了解您的数据以查看前几行。 使用shape属性查看数据的维度。 使用dtypes属性查看每个属性的数据类型。 使用describe()函数查看数据的分布。 使用corr()函数计算变量之间的成对相关性。 以下示例加载了皮马印第安人糖尿病发病数据集,并总结了每个属性的分布。 1 2 3 4 5 6 7 Statistical Summary import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) description = data.describe() print(description) 试试看! 第5课:通过可视化了解数据 从昨天的课程继续,您必须花一些时间更好地了解您的数据。 增进对数据理解的第二种方法是使用数据可视化技术(例如,绘图)。 今天,您的课程是学习如何在Python中使用绘图来单独理解属性及其相互作用。再次,我建议使用Pandas DataFrame上提供的帮助程序功能。 使用hist()函数创建每个属性的直方图。 使用plot(kind ='box')函数创建每个属性的箱须图。 使用pandas.scatter_matrix()函数创建所有属性的成对散点图。 例如,下面的代码片段将加载糖尿病数据集并创建数据集的散点图矩阵。 1 2 3 4 5 6 7 8 9 Scatter Plot Matrix import matplotlib.pyplot as plt import pandas from pandas.plotting import scatter_matrix url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) scatter_matrix(data) plt.show() 样本散点图矩阵 第6课:通过预处理数据准备建模 您的原始数据可能未设置为最佳建模形式。 有时您需要对数据进行预处理,以便最好地将问题的固有结构呈现给建模算法。在今天的课程中,您将使用scikit-learn提供的预处理功能。 scikit-learn库提供了两个用于转换数据的标准习语。每种变换在不同的情况下都非常有用:拟合和多重变换以及组合的拟合与变换。 您可以使用多种技术来准备数据以进行建模。例如,尝试以下一些方法 使用比例和中心选项将数值数据标准化(例如,平均值为0,标准偏差为1)。 使用范围选项将数值数据标准化(例如,范围为0-1)。 探索更高级的功能工程,例如Binarizing。 例如,下面的代码段加载了Pima Indians糖尿病发病数据集,计算了标准化数据所需的参数,然后创建了输入数据的标准化副本。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Standardize data (0 mean, 1 stdev) from sklearn.preprocessing import StandardScaler import pandas import numpy url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = pandas.read_csv(url, names=names) array = dataframe.values separate array into input and output components X = array[:,0:8] Y = array[:,8] scaler = StandardScaler().fit(X) rescaledX = scaler.transform(X) summarize transformed data numpy.set_printoptions(precision=3) print(rescaledX[0:5,:]) 第7课:使用重采样方法进行算法评估 用于训练机器学习算法的数据集称为训练数据集。用于训练算法的数据集不能用于为您提供有关新数据的模型准确性的可靠估计。这是一个大问题,因为创建模型的整个思路是对新数据进行预测。 您可以使用称为重采样方法的统计方法将训练数据集划分为子集,一些方法用于训练模型,而另一些则被保留,并用于估计看不见的数据的模型准确性。 今天课程的目标是练习使用scikit-learn中可用的不同重采样方法,例如: 将数据集分为训练集和测试集。 使用k倍交叉验证来估计算法的准确性。 使用留一法交叉验证来估计算法的准确性。 下面的代码段使用scikit-learn通过10倍交叉验证来评估Pima Indians糖尿病发作的Logistic回归算法的准确性。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Evaluate using Cross Validation from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') results = cross_val_score(model, X, Y, cv=kfold) print("Accuracy: %.3f%% (%.3f%%)") % (results.mean()100.0, results.std()100.0) 您获得了什么精度?在评论中让我知道。 您是否意识到这是中间点?做得好! 第8课:算法评估指标 您可以使用许多不同的指标来评估数据集上机器学习算法的技能。 您可以通过cross_validation.cross_val_score()函数在scikit-learn中指定用于测试工具的度量,默认值可用于回归和分类问题。今天课程的目标是练习使用scikit-learn软件包中可用的不同算法性能指标。 在分类问题上练习使用“准确性”和“ LogLoss”度量。 练习生成混淆矩阵和分类报告。 在回归问题上练习使用RMSE和RSquared指标。 下面的代码段演示了根据Pima Indians糖尿病发病数据计算LogLoss指标。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Cross Validation Classification LogLoss from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') scoring = 'neg_log_loss' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print("Logloss: %.3f (%.3f)") % (results.mean(), results.std()) 您得到了什么日志损失?在评论中让我知道。 第9课:抽查算法 您可能无法事先知道哪种算法对您的数据效果最好。 您必须使用反复试验的过程来发现它。我称之为现场检查算法。scikit-learn库提供了许多机器学习算法和工具的接口,以比较这些算法的估计准确性。 在本课程中,您必须练习抽查不同的机器学习算法。 对数据集进行抽查线性算法(例如线性回归,逻辑回归和线性判别分析)。 抽查数据集上的一些非线性算法(例如KNN,SVM和CART)。 抽查数据集上一些复杂的集成算法(例如随机森林和随机梯度增强)。 例如,下面的代码片段对Boston House Price数据集上的K最近邻居算法进行了抽查。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 KNN Regression from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsRegressor url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.data" names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] dataframe = read_csv(url, delim_whitespace=True, names=names) array = dataframe.values X = array[:,0:13] Y = array[:,13] kfold = KFold(n_splits=10, random_state=7) model = KNeighborsRegressor() scoring = 'neg_mean_squared_error' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print(results.mean()) 您得到的平方误差是什么意思?在评论中让我知道。 第10课:模型比较和选择 既然您知道了如何在数据集中检查机器学习算法,那么您需要知道如何比较不同算法的估计性能并选择最佳模型。 在今天的课程中,您将练习比较Python和scikit-learn中的机器学习算法的准确性。 在数据集上相互比较线性算法。 在数据集上相互比较非线性算法。 相互比较同一算法的不同配置。 创建比较算法的结果图。 下面的示例在皮马印第安人发病的糖尿病数据集中将Logistic回归和线性判别分析进行了比较。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Compare Algorithms from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis load dataset url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] prepare models models = [] models.append(('LR', LogisticRegression(solver='liblinear'))) models.append(('LDA', LinearDiscriminantAnalysis())) evaluate each model in turn results = [] names = [] scoring = 'accuracy' for name, model in models: kfold = KFold(n_splits=10, random_state=7) cv_results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) 哪种算法效果更好?你能做得更好吗?在评论中让我知道。 第11课:通过算法调整提高准确性 一旦找到一种或两种在数据集上表现良好的算法,您可能希望提高这些模型的性能。 提高算法性能的一种方法是将其参数调整为特定的数据集。 scikit-learn库提供了两种方法来搜索机器学习算法的参数组合。在今天的课程中,您的目标是练习每个。 使用您指定的网格搜索来调整算法的参数。 使用随机搜索调整算法的参数。 下面使用的代码段是一个示例,该示例使用网格搜索在Pima Indians糖尿病发病数据集上的Ridge回归算法。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Grid Search for Algorithm Tuning from pandas import read_csv import numpy from sklearn.linear_model import Ridge from sklearn.model_selection import GridSearchCV url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] alphas = numpy.array([1,0.1,0.01,0.001,0.0001,0]) param_grid = dict(alpha=alphas) model = Ridge() grid = GridSearchCV(estimator=model, param_grid=param_grid, cv=3) grid.fit(X, Y) print(grid.best_score_) print(grid.best_estimator_.alpha) 哪些参数取得最佳效果?你能做得更好吗?在评论中让我知道。 第12课:利用集合预测提高准确性 您可以提高模型性能的另一种方法是组合来自多个模型的预测。 一些模型提供了内置的此功能,例如用于装袋的随机森林和用于增强的随机梯度增强。可以使用另一种称为投票的合奏将来自多个不同模型的预测组合在一起。 在今天的课程中,您将练习使用合奏方法。 使用随机森林和多余树木算法练习装袋。 使用梯度增强机和AdaBoost算法练习增强合奏。 通过将来自多个模型的预测组合在一起来练习投票合奏。 下面的代码段演示了如何在Pima Indians糖尿病发病数据集上使用随机森林算法(袋装决策树集合)。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Random Forest Classification from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] num_trees = 100 max_features = 3 kfold = KFold(n_splits=10, random_state=7) model = RandomForestClassifier(n_estimators=num_trees, max_features=max_features) results = cross_val_score(model, X, Y, cv=kfold) print(results.mean()) 你能设计出更好的合奏吗?在评论中让我知道。 第13课:完成并保存模型 找到有关机器学习问题的良好模型后,您需要完成该模型。 在今天的课程中,您将练习与完成模型有关的任务。 练习使用模型对新数据(在训练和测试过程中看不到的数据)进行预测。 练习将经过训练的模型保存到文件中,然后再次加载。 例如,下面的代码片段显示了如何创建Logistic回归模型,将其保存到文件中,之后再加载它以及对看不见的数据进行预测。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Save Model Using Pickle from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import pickle url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] test_size = 0.33 seed = 7 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, random_state=seed) Fit the model on 33% model = LogisticRegression(solver='liblinear') model.fit(X_train, Y_train) save the model to disk filename = 'finalized_model.sav' pickle.dump(model, open(filename, 'wb')) some time later... load the model from disk loaded_model = pickle.load(open(filename, 'rb')) result = loaded_model.score(X_test, Y_test) print(result) 第14课:Hello World端到端项目 您现在知道如何完成预测建模机器学习问题的每个任务。 在今天的课程中,您需要练习将各个部分组合在一起,并通过端到端的标准机器学习数据集进行操作。 端到端遍历虹膜数据集(机器学习的世界) 这包括以下步骤: 使用描述性统计数据和可视化了解您的数据。 预处理数据以最好地揭示问题的结构。 使用您自己的测试工具抽查多种算法。 使用算法参数调整来改善结果。 使用集成方法改善结果。 最终确定模型以备将来使用。 慢慢进行,并记录结果。 您使用什么型号?您得到了什么结果?在评论中让我知道。 结束! (看你走了多远) 你做到了。做得好! 花一点时间,回头看看你已经走了多远。 您最初对机器学习感兴趣,并强烈希望能够使用Python练习和应用机器学习。 您可能是第一次下载,安装并启动Python,并开始熟悉该语言的语法。 在许多课程中,您逐渐地,稳定地学习了预测建模机器学习项目的标准任务如何映射到Python平台上。 基于常见机器学习任务的配方,您使用Python端到端解决了第一个机器学习问题。 使用标准模板,您所收集的食谱和经验现在可以自行解决新的和不同的预测建模机器学习问题。 不要轻描淡写,您在短时间内就取得了长足的进步。 这只是您使用Python进行机器学习的起点。继续练习和发展自己的技能。 喜欢点下关注,你的关注是我写作的最大支持 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37337849/article/details/104016531。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 10:04:06
92
转载
转载文章
...实,人类从解放双手,开发智力,使用工具,到探索宇宙,最大的进步莫过于发现自己其实仍处于囚笼之中。要怪就怪这囚笼建造地太过美好。而创建这一囚笼的“上帝”,把我们关在肉体这个囚笼里面,并且把我们的感知限制在有限的范围内,有限的嗅觉,16至20000赫兹的听觉,400纳米到700纳米的视觉,在感知中隔绝了我们对我们的唯一存在——“灵魂”的感知。 第二个问题,对于自己本身来说,表征自己存在的“灵魂”自己是可以确定的,而对于其他人,因为限制了对“灵魂”的感知,所以无法确认别人,别的生物体内这一旁观者的存在。也可以这么理解,你知道自己被关在一间囚笼里面,而不知道隔壁囚笼是否也关了一个存在。那么世界这个大监狱里面,可能只有一小部分,甚至只有你一个孤独的存在。而究竟为何我们或我被困于此,我不得而知,可能就像我们做研究的时候的小白鼠一样,“上帝”也在观察着我们或我的一举一动,这也是我这篇文章取这个题目的原因。小白鼠的逆袭,一开始我只是平凡的活着,说实在的其实做一个平凡人安安稳稳的一生还是很不错的,但是知道了这个囚笼的存在,就总想着打破它,因为在想到可能只有自己一个存在的时候,会是多么的孤独。就像一个人去看电影,哪怕电影的内容再精彩,再引人入胜,但当电影结束的时候,你才发现,原来我是一个人来的呀。 联系作者 有志向联系读者的:1612860@mail.nankai.edu.cn 未完待续。。。 本篇文章相当于《小白鼠的逆袭》的导读,下一篇我会出逆袭第一步:《思考的最简单模型及其编程实现》,可能用C++,也可能用Java,Python,看作者的心情吧。预计近几个月出吧,快则个把月,多则不知道了,毕竟作者本身还是比较忙的,忙七忙八也不知道在忙什么,嗯,就这样。 小号:在有多个游戏账号的前提下,等级高的号叫作大号,等级较低或者新创建的号叫作小号。 ↩︎ https://baijiahao.baidu.com/s?id=1586028525096880374&wfr=spider&for=pc. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://www.lwlm.com/sixiangzhexue/201704/840820.htm. ↩︎ 详细讨论请参见:《未来简史:从智人到智神》第三章:人类的特质。 ↩︎ “Unconscious determinants of free decisions in the human brain” in nature neuroscience, http://www.rifters.com/real/articles/NatureNeuroScience_Soon_et_al.pdf. ↩︎ 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_39384184/article/details/79288150。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-02 11:30:59
620
转载
转载文章
...网络技术的发展,内核开发者正不断强化Linux系统对各种网卡芯片组的支持,特别是针对无线网卡和高速以太网卡的驱动程序更新频繁,确保用户在网络环境中的稳定连接与高效传输。 此外,针对Linux下多媒体播放方面,VLC团队宣布其跨平台媒体播放器将在下一个版本中增强对高清视频流和蓝光盘的支持,进一步丰富了Linux用户的娱乐选择。 对于那些热衷于Linux游戏的用户来说,Steam Proton项目持续取得突破,使得越来越多Windows原生游戏能够在Linux环境下无缝运行,这一进展无疑极大增强了Linux作为游戏平台的吸引力。 总之,无论是从底层硬件驱动到上层应用软件,Linux生态系统都在快速发展和进化中,为用户提供更为友好和全面的使用体验。而了解并掌握这些最新的设置技巧和功能更新,将有助于广大Linux爱好者及专业用户更好地发挥系统的潜能,享受更加便捷、高效的工作与娱乐环境。
2023-10-27 09:27:49
255
转载
转载文章
...模型参数服务器是内部开发的一套高性能的系统,因为头条数据规模增长太快,类似的开源系统稳定性和性能无法满足,而我们自研的系统底层做了很多针对性的优化,提供了完善运维工具,更适配现有的业务场景。 目前,头条的推荐算法模型在世界范围内也是比较大的,包含几百亿原始特征和数十亿向量特征。 整体的训练过程是线上服务器记录实时特征,导入到Kafka文件队列中,然后进一步导入Storm集群消费Kafka数据,客户端回传推荐的label构造训练样本,随后根据最新样本进行在线训练更新模型参数,最终线上模型得到更新。 这个过程中主要的延迟在用户的动作反馈延时,因为文章推荐后用户不一定马上看,不考虑这部分时间,整个系统是几乎实时的。 但因为头条目前的内容量非常大,加上小视频内容有千万级别,推荐系统不可能所有内容全部由模型预估。 所以需要设计一些召回策略,每次推荐时从海量内容中筛选出千级别的内容库。召回策略最重要的要求是性能要极致,一般超时不能超过50毫秒。 召回策略种类有很多,我们主要用的是倒排的思路。离线维护一个倒排,这个倒排的key可以是分类,topic,实体,来源等。 排序考虑热度、新鲜度、动作等。线上召回可以迅速从倒排中根据用户兴趣标签对内容做截断,高效的从很大的内容库中筛选比较靠谱的一小部分内容。 二、内容分析 内容分析包括文本分析,图片分析和视频分析。头条一开始主要做资讯,今天我们主要讲一下文本分析。文本分析在推荐系统中一个很重要的作用是用户兴趣建模。 没有内容及文本标签,无法得到用户兴趣标签。举个例子,只有知道文章标签是互联网,用户看了互联网标签的文章,才能知道用户有互联网标签,其他关键词也一样。 另一方面,文本内容的标签可以直接帮助推荐特征,比如魅族的内容可以推荐给关注魅族的用户,这是用户标签的匹配。 如果某段时间推荐主频道效果不理想,出现推荐窄化,用户会发现到具体的频道推荐(如科技、体育、娱乐、军事等)中阅读后,再回主feed,推荐效果会更好。 因为整个模型是打通的,子频道探索空间较小,更容易满足用户需求。只通过单一信道反馈提高推荐准确率难度会比较大,子频道做的好很重要。而这也需要好的内容分析。 上图是今日头条的一个实际文本case。可以看到,这篇文章有分类、关键词、topic、实体词等文本特征。 当然不是没有文本特征,推荐系统就不能工作,推荐系统最早期应用在Amazon,甚至沃尔玛时代就有,包括Netfilx做视频推荐也没有文本特征直接协同过滤推荐。 但对资讯类产品而言,大部分是消费当天内容,没有文本特征新内容冷启动非常困难,协同类特征无法解决文章冷启动问题。 今日头条推荐系统主要抽取的文本特征包括以下几类。首先是语义标签类特征,显式为文章打上语义标签。 这部分标签是由人定义的特征,每个标签有明确的意义,标签体系是预定义的。 此外还有隐式语义特征,主要是topic特征和关键词特征,其中topic特征是对于词概率分布的描述,无明确意义;而关键词特征会基于一些统一特征描述,无明确集合。 另外文本相似度特征也非常重要。在头条,曾经用户反馈最大的问题之一就是为什么总推荐重复的内容。这个问题的难点在于,每个人对重复的定义不一样。 举个例子,有人觉得这篇讲皇马和巴萨的文章,昨天已经看过类似内容,今天还说这两个队那就是重复。 但对于一个重度球迷而言,尤其是巴萨的球迷,恨不得所有报道都看一遍。解决这一问题需要根据判断相似文章的主题、行文、主体等内容,根据这些特征做线上策略。 同样,还有时空特征,分析内容的发生地点以及时效性。比如武汉限行的事情推给北京用户可能就没有意义。 最后还要考虑质量相关特征,判断内容是否低俗,色情,是否是软文,鸡汤? 上图是头条语义标签的特征和使用场景。他们之间层级不同,要求不同。 分类的目标是覆盖全面,希望每篇内容每段视频都有分类;而实体体系要求精准,相同名字或内容要能明确区分究竟指代哪一个人或物,但不用覆盖很全。 概念体系则负责解决比较精确又属于抽象概念的语义。这是我们最初的分类,实践中发现分类和概念在技术上能互用,后来统一用了一套技术架构。 目前,隐式语义特征已经可以很好的帮助推荐,而语义标签需要持续标注,新名词新概念不断出现,标注也要不断迭代。其做好的难度和资源投入要远大于隐式语义特征,那为什么还需要语义标签? 有一些产品上的需要,比如频道需要有明确定义的分类内容和容易理解的文本标签体系。语义标签的效果是检查一个公司NLP技术水平的试金石。 今日头条推荐系统的线上分类采用典型的层次化文本分类算法。 最上面Root,下面第一层的分类是像科技、体育、财经、娱乐,体育这样的大类,再下面细分足球、篮球、乒乓球、网球、田径、游泳…,足球再细分国际足球、中国足球,中国足球又细分中甲、中超、国家队…,相比单独的分类器,利用层次化文本分类算法能更好地解决数据倾斜的问题。 有一些例外是,如果要提高召回,可以看到我们连接了一些飞线。这套架构通用,但根据不同的问题难度,每个元分类器可以异构,像有些分类SVM效果很好,有些要结合CNN,有些要结合RNN再处理一下。 上图是一个实体词识别算法的case。基于分词结果和词性标注选取候选,期间可能需要根据知识库做一些拼接,有些实体是几个词的组合,要确定哪几个词结合在一起能映射实体的描述。 如果结果映射多个实体还要通过词向量、topic分布甚至词频本身等去歧,最后计算一个相关性模型。 三、用户标签 内容分析和用户标签是推荐系统的两大基石。内容分析涉及到机器学习的内容多一些,相比而言,用户标签工程挑战更大。 今日头条常用的用户标签包括用户感兴趣的类别和主题、关键词、来源、基于兴趣的用户聚类以及各种垂直兴趣特征(车型,体育球队,股票等)。还有性别、年龄、地点等信息。 性别信息通过用户第三方社交账号登录得到。年龄信息通常由模型预测,通过机型、阅读时间分布等预估。 常驻地点来自用户授权访问位置信息,在位置信息的基础上通过传统聚类的方法拿到常驻点。 常驻点结合其他信息,可以推测用户的工作地点、出差地点、旅游地点。这些用户标签非常有助于推荐。 当然最简单的用户标签是浏览过的内容标签。但这里涉及到一些数据处理策略。 主要包括: 一、过滤噪声。通过停留时间短的点击,过滤标题党。 二、热点惩罚。对用户在一些热门文章(如前段时间PG One的新闻)上的动作做降权处理。理论上,传播范围较大的内容,置信度会下降。 三、时间衰减。用户兴趣会发生偏移,因此策略更偏向新的用户行为。因此,随着用户动作的增加,老的特征权重会随时间衰减,新动作贡献的特征权重会更大。 四、惩罚展现。如果一篇推荐给用户的文章没有被点击,相关特征(类别,关键词,来源)权重会被惩罚。当 然同时,也要考虑全局背景,是不是相关内容推送比较多,以及相关的关闭和dislike信号等。 用户标签挖掘总体比较简单,主要还是刚刚提到的工程挑战。头条用户标签第一版是批量计算框架,流程比较简单,每天抽取昨天的日活用户过去两个月的动作数据,在Hadoop集群上批量计算结果。 但问题在于,随着用户高速增长,兴趣模型种类和其他批量处理任务都在增加,涉及到的计算量太大。 2014年,批量处理任务几百万用户标签更新的Hadoop任务,当天完成已经开始勉强。集群计算资源紧张很容易影响其它工作,集中写入分布式存储系统的压力也开始增大,并且用户兴趣标签更新延迟越来越高。 面对这些挑战。2014年底今日头条上线了用户标签Storm集群流式计算系统。改成流式之后,只要有用户动作更新就更新标签,CPU代价比较小,可以节省80%的CPU时间,大大降低了计算资源开销。 同时,只需几十台机器就可以支撑每天数千万用户的兴趣模型更新,并且特征更新速度非常快,基本可以做到准实时。这套系统从上线一直使用至今。 当然,我们也发现并非所有用户标签都需要流式系统。像用户的性别、年龄、常驻地点这些信息,不需要实时重复计算,就仍然保留daily更新。 四、评估分析 上面介绍了推荐系统的整体架构,那么如何评估推荐效果好不好? 有一句我认为非常有智慧的话,“一个事情没法评估就没法优化”。对推荐系统也是一样。 事实上,很多因素都会影响推荐效果。比如侯选集合变化,召回模块的改进或增加,推荐特征的增加,模型架构的改进在,算法参数的优化等等,不一一举例。 评估的意义就在于,很多优化最终可能是负向效果,并不是优化上线后效果就会改进。 全面的评估推荐系统,需要完备的评估体系、强大的实验平台以及易用的经验分析工具。 所谓完备的体系就是并非单一指标衡量,不能只看点击率或者停留时长等,需要综合评估。 很多公司算法做的不好,并非是工程师能力不够,而是需要一个强大的实验平台,还有便捷的实验分析工具,可以智能分析数据指标的置信度。 一个良好的评估体系建立需要遵循几个原则,首先是兼顾短期指标与长期指标。我在之前公司负责电商方向的时候观察到,很多策略调整短期内用户觉得新鲜,但是长期看其实没有任何助益。 其次,要兼顾用户指标和生态指标。既要为内容创作者提供价值,让他更有尊严的创作,也有义务满足用户,这两者要平衡。 还有广告主利益也要考虑,这是多方博弈和平衡的过程。 另外,要注意协同效应的影响。实验中严格的流量隔离很难做到,要注意外部效应。 强大的实验平台非常直接的优点是,当同时在线的实验比较多时,可以由平台自动分配流量,无需人工沟通,并且实验结束流量立即回收,提高管理效率。 这能帮助公司降低分析成本,加快算法迭代效应,使整个系统的算法优化工作能够快速往前推进。 这是头条A/B Test实验系统的基本原理。首先我们会做在离线状态下做好用户分桶,然后线上分配实验流量,将桶里用户打上标签,分给实验组。 举个例子,开一个10%流量的实验,两个实验组各5%,一个5%是基线,策略和线上大盘一样,另外一个是新的策略。 实验过程中用户动作会被搜集,基本上是准实时,每小时都可以看到。但因为小时数据有波动,通常是以天为时间节点来看。动作搜集后会有日志处理、分布式统计、写入数据库,非常便捷。 在这个系统下工程师只需要设置流量需求、实验时间、定义特殊过滤条件,自定义实验组ID。系统可以自动生成:实验数据对比、实验数据置信度、实验结论总结以及实验优化建议。 当然,只有实验平台是远远不够的。线上实验平台只能通过数据指标变化推测用户体验的变化,但数据指标和用户体验存在差异,很多指标不能完全量化。 很多改进仍然要通过人工分析,重大改进需要人工评估二次确认。 五、内容安全 最后要介绍今日头条在内容安全上的一些举措。头条现在已经是国内最大的内容创作与分发凭条,必须越来越重视社会责任和行业领导者的责任。如果1%的推荐内容出现问题,就会产生较大的影响。 现在,今日头条的内容主要来源于两部分,一是具有成熟内容生产能力的PGC平台 一是UGC用户内容,如问答、用户评论、微头条。这两部分内容需要通过统一的审核机制。如果是数量相对少的PGC内容,会直接进行风险审核,没有问题会大范围推荐。 UGC内容需要经过一个风险模型的过滤,有问题的会进入二次风险审核。审核通过后,内容会被真正进行推荐。这时如果收到一定量以上的评论或者举报负向反馈,还会再回到复审环节,有问题直接下架。 整个机制相对而言比较健全,作为行业领先者,在内容安全上,今日头条一直用最高的标准要求自己。 分享内容识别技术主要鉴黄模型,谩骂模型以及低俗模型。今日头条的低俗模型通过深度学习算法训练,样本库非常大,图片、文本同时分析。 这部分模型更注重召回率,准确率甚至可以牺牲一些。谩骂模型的样本库同样超过百万,召回率高达95%+,准确率80%+。如果用户经常出言不讳或者不当的评论,我们有一些惩罚机制。 泛低质识别涉及的情况非常多,像假新闻、黑稿、题文不符、标题党、内容质量低等等,这部分内容由机器理解是非常难的,需要大量反馈信息,包括其他样本信息比对。 目前低质模型的准确率和召回率都不是特别高,还需要结合人工复审,将阈值提高。目前最终的召回已达到95%,这部分其实还有非常多的工作可以做。别平台。 如果需要机器学习视频,可以在公众号后台聊天框回复【机器学习】,可以免费获取编程视频 。 你可能还喜欢 数学在机器学习中到底有多重要? AI 新手学习路线,附上最详细的资源整理! 提升机器学习数学基础,推荐7本书 酷爆了!围观2020年十大科技趋势 机器学习该如何入门,听听过来人的经验! 长按加入T圈,接触人工智能 觉得内容还不错的话,给我点个“在看”呗 本篇文章为转载内容。原文链接:https://blog.csdn.net/itcodexy/article/details/109574173。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-13 09:21:23
322
转载
转载文章
...能会导致操作系统中的分页。注意,在32位系统上,每个进程的用户级内存可能被限制在2-3.5G,所以不要设置得太高。 innodb_buffer_pool_size=20M Size of each log file in a log group. You should set the combined size of log files to about 25%-100% of your buffer pool size to avoid unneeded buffer pool flush activity on log file overwrite. However, note that a larger logfile size will increase the time needed for the recovery process. 日志组中每个日志文件的大小。您应该将日志文件的合并大小设置为缓冲池大小的25%-100%,以避免在覆盖日志文件时出现不必要的缓冲池刷新活动。但是,请注意,较大的日志文件大小将增加恢复过程所需的时间。 innodb_log_file_size=48M Number of threads allowed inside the InnoDB kernel. The optimal value depends highly on the application, hardware as well as the OS scheduler properties. A too high value may lead to thread thrashing. InnoDB内核中允许的线程数。最优值在很大程度上取决于应用程序、硬件以及OS调度程序属性。过高的值可能导致线程抖动。 innodb_thread_concurrency=9 The increment size (in MB) for extending the size of an auto-extend InnoDB system tablespace file when it becomes full. 增量大小(以MB为单位),用于在表空间满时扩展自动扩展的InnoDB系统表空间文件的大小。 innodb_autoextend_increment=128 The number of regions that the InnoDB buffer pool is divided into. For systems with buffer pools in the multi-gigabyte range, dividing the buffer pool into separate instances can improve concurrency, by reducing contention as different threads read and write to cached pages. InnoDB缓冲池划分的区域数。对于具有多gb缓冲池的系统,将缓冲池划分为单独的实例可以提高并发性,因为不同的线程对缓存页面的读写会减少争用。 innodb_buffer_pool_instances=8 Determines the number of threads that can enter InnoDB concurrently. 确定可以同时进入InnoDB的线程数 innodb_concurrency_tickets=5000 Specifies how long in milliseconds (ms) a block inserted into the old sublist must stay there after its first access before it can be moved to the new sublist. 指定插入到旧子列表中的块必须在第一次访问之后停留多长时间(毫秒),然后才能移动到新子列表。 innodb_old_blocks_time=1000 It specifies the maximum number of .ibd files that MySQL can keep open at one time. The minimum value is 10. 它指定MySQL一次可以打开的.ibd文件的最大数量。最小值是10。 innodb_open_files=300 When this variable is enabled, InnoDB updates statistics during metadata statements. 当启用此变量时,InnoDB会在元数据语句期间更新统计信息。 innodb_stats_on_metadata=0 When innodb_file_per_table is enabled (the default in 5.6.6 and higher), InnoDB stores the data and indexes for each newly created table in a separate .ibd file, rather than in the system tablespace. 当启用innodb_file_per_table(5.6.6或更高版本的默认值)时,InnoDB将每个新创建的表的数据和索引存储在单独的.ibd文件中,而不是系统表空间中。 innodb_file_per_table=1 Use the following list of values: 0 for crc32, 1 for strict_crc32, 2 for innodb, 3 for strict_innodb, 4 for none, 5 for strict_none. 使用以下值列表:0表示crc32, 1表示strict_crc32, 2表示innodb, 3表示strict_innodb, 4表示none, 5表示strict_none。 innodb_checksum_algorithm=0 The number of outstanding connection requests MySQL can have. This option is useful when the main MySQL thread gets many connection requests in a very short time. It then takes some time (although very little) for the main thread to check the connection and start a new thread. The back_log value indicates how many requests can be stacked during this short time before MySQL momentarily stops answering new requests. You need to increase this only if you expect a large number of connections in a short period of time. MySQL可以有多少未完成连接请求。当MySQL主线程在很短的时间内收到许多连接请求时,这个选项非常有用。然后,主线程需要一些时间(尽管很少)来检查连接并启动一个新线程。back_log值表示在MySQL暂时停止响应新请求之前的短时间内可以堆多少个请求。只有当您预期在短时间内会有大量连接时,才需要增加这个值。 back_log=80 If this is set to a nonzero value, all tables are closed every flush_time seconds to free up resources and synchronize unflushed data to disk. This option is best used only on systems with minimal resources. 如果将该值设置为非零值,则每隔flush_time秒关闭所有表,以释放资源并将未刷新的数据同步到磁盘。这个选项最好只在资源最少的系统上使用。 flush_time=0 The minimum size of the buffer that is used for plain index scans, range index scans, and joins that do not use 用于普通索引扫描、范围索引扫描和不使用索引执行全表扫描的连接的缓冲区的最小大小。 indexes and thus perform full table scans. join_buffer_size=200M The maximum size of one packet or any generated or intermediate string, or any parameter sent by the mysql_stmt_send_long_data() C API function. 由mysql_stmt_send_long_data() C API函数发送的一个包或任何生成的或中间字符串或任何参数的最大大小 max_allowed_packet=500M If more than this many successive connection requests from a host are interrupted without a successful connection, the server blocks that host from performing further connections. 如果在没有成功连接的情况下中断了来自主机的多个连续连接请求,则服务器将阻止主机执行进一步的连接。 max_connect_errors=100 Changes the number of file descriptors available to mysqld. You should try increasing the value of this option if mysqld gives you the error "Too many open files". 更改mysqld可用的文件描述符的数量。如果mysqld给您的错误是“打开的文件太多”,您应该尝试增加这个选项的值。 open_files_limit=4161 If you see many sort_merge_passes per second in SHOW GLOBAL STATUS output, you can consider increasing the sort_buffer_size value to speed up ORDER BY or GROUP BY operations that cannot be improved with query optimization or improved indexing. 如果在SHOW GLOBAL STATUS输出中每秒看到许多sort_merge_passes,可以考虑增加sort_buffer_size值,以加快ORDER BY或GROUP BY操作的速度,这些操作无法通过查询优化或改进索引来改进。 sort_buffer_size=1M The number of table definitions (from .frm files) that can be stored in the definition cache. If you use a large number of tables, you can create a large table definition cache to speed up opening of tables. The table definition cache takes less space and does not use file descriptors, unlike the normal table cache. The minimum and default values are both 400. 可以存储在定义缓存中的表定义的数量(来自.frm文件)。如果使用大量表,可以创建一个大型表定义缓存来加速表的打开。与普通的表缓存不同,表定义缓存占用更少的空间,并且不使用文件描述符。最小值和默认值都是400。 table_definition_cache=1400 Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped into events smaller than this size if possible. The value should be a multiple of 256. 指定基于行的二进制日志事件的最大大小,单位为字节。如果可能,将行分组为小于此大小的事件。这个值应该是256的倍数。 binlog_row_event_max_size=8K If the value of this variable is greater than 0, a replication slave synchronizes its master.info file to disk. (using fdatasync()) after every sync_master_info events. 如果该变量的值大于0,则复制奴隶将其主.info文件同步到磁盘。(在每个sync_master_info事件之后使用fdatasync())。 sync_master_info=10000 If the value of this variable is greater than 0, the MySQL server synchronizes its relay log to disk. (using fdatasync()) after every sync_relay_log writes to the relay log. 如果这个变量的值大于0,MySQL服务器将其中继日志同步到磁盘。(在每个sync_relay_log写入到中继日志之后使用fdatasync())。 sync_relay_log=10000 If the value of this variable is greater than 0, a replication slave synchronizes its relay-log.info file to disk. (using fdatasync()) after every sync_relay_log_info transactions. 如果该变量的值大于0,则复制奴隶将其中继日志.info文件同步到磁盘。(在每个sync_relay_log_info事务之后使用fdatasync())。 sync_relay_log_info=10000 Load mysql plugins at start."plugin_x ; plugin_y". 开始时加载mysql插件。“plugin_x;plugin_y” plugin_load The TCP/IP Port the MySQL Server X Protocol will listen on. MySQL服务器X协议将监听TCP/IP端口。 loose_mysqlx_port=33060 本篇文章为转载内容。原文链接:https://blog.csdn.net/mywpython/article/details/89499852。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-08 09:56:02
129
转载
转载文章
...”的特殊作用,它警示开发者在构建查询时需考虑潜在的安全风险,并合理配置数据库参数以增强安全性。 总的来说,无论是针对传统SQL注入手法的深入探究,还是紧跟CVE公告及时发现并修复新出现的安全漏洞,CTF比赛所涵盖的各种实战演练都是广大网络安全从业者及爱好者丰富知识库、提高实战技能的有效途径。同时,这也提醒我们应时刻保持警惕,密切关注业界动态,不断提升自身的安全防护能力,确保在网络空间的攻防对抗中立于不败之地。
2023-11-13 21:30:33
303
转载
转载文章
...过scheduler组件采用相应的算法计算出来的,这个过程是不受人工控制的; 调度规则 但是在实际使用中,我们想控制某些pod定向到达某个节点上,应该怎么做呢?其实k8s提供了四类调度规则 调度方式 描述 自动调度 通过scheduler组件采用相应的算法计算得出运行在哪个节点上 定向调度 运行到指定的node节点上,通过NodeName、NodeSelector实现 亲和性调度 跟谁关系好就调度到哪个节点上 1、nodeAffinity :节点亲和性,调度到关系好的节点上 2、podAffinity:pod亲和性,调度到关系好的pod所在的节点上 3、PodAntAffinity:pod反清河行,调度到关系差的那个pod所在的节点上 污点(容忍)调度 污点是站在node的角度上的,比如果nodeA有一个污点,大家都别来,此时nodeA会拒绝master调度过来的pod 定向调度 指的是利用在pod上声明nodeName或nodeSelector的方式将pod调度到指定的pod节点上,因为这种定向调度是强制性的,所以如果node节点不存在的话,也会向上面进行调度,只不过pod会运行失败; 1、定向调度-> nodeName nodeName 是将pod强制调度到指定名称的node节点上,这种方式跳过了scheduler的调度逻辑,直接将pod调度到指定名称的节点上,配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeName: node1 调度到node1节点上 2、定向调度 -> NodeSelector NodeSelector是将pod调度到添加了指定label标签的node节点上,它是通过k8s的label-selector机制实现的,也就是说,在创建pod之前,会由scheduler用matchNodeSelecto调度策略进行label标签的匹配,找出目标node,然后在将pod调度到目标node; 要实验NodeSelector,首先得给node节点加上label标签 kubectl label nodes node1 nodetag=node1 配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeSelector: nodetag: node1 调度到具有nodetag=node1标签的节点上 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_27184497/article/details/121765387。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-29 09:08:28
422
转载
转载文章
...校、本科、计算机专业开发者,占据着这个行业的主流 ◆c/c++、java使用人数最多,c居二,delphi位列第三 ◆企业信息化、通领域为人气最旺的两大热点 ◆31%的中小民营软件公司容纳了52%的开发者 ◆北京、上海、广州、深圳四地成为中国开发人员的聚集地 …… 时间进入2004年的尾声,作为本刊主角的软件人,今年收入几何?发展态势怎样?为了全面解析2004年中国程序员的收入与发展状况,本刊特别策划了这期专题。 按照整个社会的普遍共识,软件开发者是一个高薪的职业。事实情况何?高薪高到什么程度?究竟是什么人在赚取这些高薪?影响收入的决定性因素又是什么?为了取得真实数据,本刊用了2个月的时间进行深入调查与采访,希望这篇文章能在岁末年初之际,为大家带来深入的思考。 细分市场,其实软件从业人员除了程序员外,还囊括了很多的相关职业和角色,例如技术推广人、项目负责人、技术总监等,因此,凡与软件技术相关的工作或职业,都属于本专题关注之列。 程序员薪资调查报告 “软件人,今天薪资值多少?”大型网络调查活动从2004年10月初开始,在各大软件门户站点都开展了热点调查,截止11月底,在两个月的时间里,有近13000人参与并积极讨论了这个话题。 2004年,软件业人员结构处于什么分层? 2004年,开发人员实际收入多少? 2004年,开发人员使用最多的技术是什么? 2004年,影响收入的决定性因素到底是什么? …… 围绕以上种种问题,本刊设计了相关的调查与采访题目,在分析与统计开发者基本薪资情况下,还针对被调查者的专业背景、技术、软技能、公司福利以及影响薪资的关键因素做了相应的调查。 下面就让我们进入此次调查的数据现场。 2004年中国开发者平均月薪3500元 49%的开发者月薪不足3000,54%年薪不足4万(见表1、表2)。经历软件泡沫的投资家、管理者在对待员工的薪水上更为谨慎,但对开发者而言心理上却产生比较大的落差,在大环境如此的情况下,处于弱势的开发群体需要学会如何去适应环境,调整心态。 程序员占据大壁江山,升任技术总监者凤毛麟角 从本次的调查数据来看,程序员在所有调查者中占据主流,人数为一半还多,高级程序员也占了20%,这也是为什么开发者薪资普遍不高的主要原因之一。曾经业界大为盛行的国内缺乏高层次的软件人才的说法,这里似乎可以提供实在而有力的数据支持(见表3、表4)。 另外,从本次调查还得到了一个趋势:在做了3-5年的程序开发工作后,开始产生一定的人员分流现象。从有一定技术能力的程序员开始,到根据自己兴趣与爱好的二次择业,有相当部分的人员脱离编码一线,开始跨入技术主管、项目经理、技术支持、市场推广等角色。 不满者过半,普遍认为薪水太低 调查显示只有4%的人对薪水比较满意,近64%的人认为自己的薪水与社会同等能力开发人员相比偏低,这可以看出软件泡沫对开发人员造成的心理落差依然存在。人们普遍认为,软件业比较浮燥,所处其中的人也比较浮燥,但现在软件产业的发展越来越趋于理性和平和,只有先调整好自己的心态,平和地从基本功练起,薪水的价值才可能越来越得到不断提升。 软件开发,让女性走开 表5数据表明,开发者世界是一块绝对属于男性的天地,被调查者中有97%的人员属于男性。记者在采访中不止一次地发现,在软件公司中工作的女性很少,而从事一线编码工作的女性则是少之更少。一方面,软件开发这种技术创新与高挑战性、高压力的工作,男性更易于取得成果。另一方面,也有一部分中小企业对女性程序员不重视,甚至同工不同酬,也让一些希望就职此行业的女性永远地离开了这块阵地。 北京、上海、深圳、杭州成为程序员的最爱 地域对软件人员的薪资有很大的影响。北京以其政治、文化的优势集中了近19%的软件开发者,上海、深圳各占13%、10%,而杭州,以其良好的自然环境、人文环境及政府环境也吸引了5%的软件人才(见表6)。数据表明,拥有高校资源的城市先天性地占据着开发人才的绝对优势。而且,各项调查数据显示,地域也已不再是限制开发者流动的主要因素,尤其对于技术高手,他们几乎可以自由地在各大城市间来来往往。 情人虽好,糟糠之妻难下堂 哪些人在投资it企业,被调查者所在公司的规模如何?根据采访,几乎绝大多数的被调查者都将外企列在了第一选择,青睐之情溢于言表,但毕竟高高的门坎以及各种复杂因素,致使这些意愿大部分都难以实现。反而是那些遭到诸多抱怨的民营企业,尤其是占据31%的最高市场份额、员工数不足50人、管理不规范的中小软件公司,容纳了52%的开发者队伍。 c/c++、java成为翘楚,c实力强劲 调查显示,c/c++、java已是中国开发者的最爱,delphi依然延续着它的传奇之路,而c表现出了强大的后劲,相信这个微软公司推崇备至的开发利器在未来几年会如vb一样赢得开发者的信赖。 人气最旺的2大领域——企业信息化、通信 企业信息化、通信、通用软件开发、系统集成四大领域集中了目前开发者的大多数。加入wto之后,中国企业要与世界接轨,e化是必然的趋势,况且通信这个新兴行业以其门槛高、薪水高也吸引了许多开发者。企业信息化作为传统行业向网络化迈进的必然过程,容纳着很多软件人。另外,从市场角度看,移动、游戏开发、信息全三大热点领域对开发者也同样有极强诱惑力。 本科、计算机专业、部属院校大学毕业者成为中流砥柱 软件开发,并非只有计算机专业的人才能胜任,调查显示,有近40%的开发者是从其它相关或无关专业转行而来,但不可否认的是,占据60%者仍然为科班出身者。另外,尽管从来就崇尚高中毕业生就能成为软件天才,但这样的神话毕竟只是少数,支撑中国软件业的仍然是大学教育程度以上者。参与调查者中86%具有大专以上学历,另有8%的人具有硕士学历,数据表明中国开发者的整体教育水平较高。 综合实力的三大法宝:阅历、技术与沟通 59%的开发者从业期间做过的项目不超过5个,61%的人沟通能力较差,而近76%的开发者对自己比较自信,认为自己能力不弱于公司其它人员甚至更强。根据调查,在影响软件人薪资的因素中,阅历、技术强弱是决定性因素。另外,信息化时代普遍重视团队与项目整体实力,沟通能力成为影响程序员个人发展的一个重要因素。 软件人主体正处青春期 “程序员是吃青春饭的”,这个论断在本次调查中从另外一个角度得到验证。58%的软件开发者年龄不到25岁,48%的人在本领域工作时间不到3年,这些软件生力军未来5年必将成为引导中国软件发展潮流的主力军(见表18、表19)。另外,根据调查与采访,年龄在35岁左右的第二代软件人,现在已经成长为企业或项目的管理者,在各大软件公司担当着成熟、理性、有主见的软件开发带头人的角色。 待遇与福利走向正规化 有63%的公司会根据员工表现主动加薪(见表20),近80%的公司会为员工提供基本福利,如养老、医疗保险、住房补助、午餐补助等(见表21)。培训作为提升开发人员专业技能和实力的直接手段,越来越得到更多公司的重视。根据调查,项目奖金和固定假期基本成为以项目方式运作的公司的固定法宝,以鼓励和保障员工的士气和工作积极性。越来越多的中国软件企业,开始迈向规范化管理之路。 技术与眼光是决定薪水的至关要素 绝大部分被调查者都认为技术能力是决定薪资的最关键因素。但在采访过程中,却有更多的技术总监甚至公司总经理一级,认为短期内决定一个开发者薪水的因素中技术能力确实非常关键,但从长期来看,能对开发者的薪水带来长期且持久影响的,却不只是技术能力,更多的则是他本人对业界的了解度,即眼光是否开阔。这是一个很重要的信号,如果只在技术点上打转的人,除非是技术天才型,决大多数必须从综合能力等各方面来加强,而绝非技术这一点。可以说,在加强自身技术实力的前提下,开阔的视野、一定的沟通能力、自我管理与团队管理能力都对个人的发展起到至关重要的作用。(见表22) 现状解析:五维度立体定位开发者的薪资水平 结合以上调查结果以及本刊记者的深入采访,从宏观角度来看,有五个要素立体性地将软件人定位在了一定的薪资水平上。 这五个要素分别是:眼光技术、角色定位、公司性质、行业领域、地域因素。除第一、二要素是以个体原因占主体外,其他三个关键要素都取决于社会、产业、企业或公司本身的发展情况,但这些要素也不是一成不变的,在一定程度上,都是双向选择。 眼光技术是关键 一级:眼光与阅历 二级:核心技术 三级:专业与沟通 眼光开阔者得高薪 被采访者:王永刚 个人背景:软件公司cto 对于“决定薪资的最关键因素是什么”这个问题,王永刚用“是否适合职位”来回答,这一点与很多认为技术能力强就可以拿高薪的观点很不一样。他认为,多数职位分工不同,即便技术能力强但不适合职位,一样拿不到理想的薪水。他们公司在给员工定职定薪时,会与权威的咨询公司合作,从分析职位工作职责,到该职位所要求的人员素质,再到应聘员工对该职位的理解以及实际的工作情况,进行综合考虑。 专业与技术产生核心竞争力 被采访者:孙勇 个人背景:高级程序员,linux下c/c++开发 工作四年来,孙勇一直从事linux下使用c/c++进行的嵌入式开发,四年中跳过两次槽。跳槽前后的薪水变化很有意思,跳槽前月薪低年薪高,跳槽后月薪高但年薪却降了很多,原因是第一家公司项目奖金、年终分红很多,而第二家公司却没有其他方面的奖励机制。 孙勇自认为跳槽太过频繁,这样对自己技术能力的发展会产生较多的负面影响。在他看来,一个人薪资的高低终究取决于自己技术的核心竞争力,变动太大可能会造成技术上的不连续。所以孙勇说,未来五年内自己会沉浸于技术不考虑其它,目的只有一个,就是让自己更专业、更核心! 专家分析:眼光专业与核心竞争力是定位软件人层级的第一法码,其包含着很多的综合因素:专业背景、阅历、经验值、能力高下等等。趋势全球研发及资讯执行副总裁国屏认为,“技术很重要,但更重要的是市场和文化的配合。在个人的发展过程中,学习也会起到重要的作用。此外,还必须认同企业文化,具备技术、对工作、对解决问题的热情”。此外,学习能力和沟通能力也是专家们认为重要度很高的2个要素。当然,这其中,作为前提“最重要的还是兴趣,缘于自身对程序开发的热爱”,8848公司cto张研如是说。 角色大挪移 一级指标:cto、项目承包人 二级指标:架构师、部门主管/项目主管 三级指标:普通开发人员 从个人发展的角度和过程来看,这个指标应该是倒向。但从业界普遍的认识,无论是能力、阅历还是收入待遇,人们普遍对一级指标中的人员更多持赞赏态度。 被采访者:张齐生 个人背景:技术总监 起初,我只是在一家软件公司作java程序员,后来随着项目的进展以及工作时间的推移,自己的技术能力、项目管理能力也逐步加强,从最初的开发人员做到项目主管,2003年底的时候做到技术总监,工资范围也从最初的4000元到8000元,再到技术总监的万元,角色的改变确实带来了很多附加价值,当然,这个职位要求你带来的价值也会更多。 专家分析:出现这种工资结构是正常的。因为架构师、cto一般都是从普通开发人员过来的,具有深厚的业界开发经验和背景。联合信息集团移动应用开发部总经理熊军认为,开发人员必须“对自己能力的认识有一个准确的职业定位。认识自己,才能准确地职业定位,有了准确的职业定位,才能有短期、中期和长期的发展方向和动力。” 8848公司cto张研表示反对“学而优则士”、“不想当将军的士兵就不是好士兵”此类说法。同样,csdn网站、《程序员》杂志社总经理蒋涛也不建议所有程序员都向管理道路发展,因为相比之下,项目经理和cto必定具有一些独特的素质,比如沟通能力、项目管理能力,组织能力、计划能力以及产品和技术的眼光等,这些素质并不是每一个人都具备的。 公司对对碰 一级指标:外资、合资、民营大型it公司 二级指标:合资、中小软件公司 三级指标:国企、事业单位 采访中,有位叫王岩的资深开发人员一再强调,如果可能,一定要进外企。本次调查中,微软亚洲研究院,ibm研究院等外企几乎成了大部分开发人员所向往的圣地。 外企是我第一选择 被采访者:李文山 个人背景:技术支持 上海交大毕业的李文山,在校时就已经参与了很多社团活动,因此也见识了不少各种企业人员的做事风格与思想状态。外企大公司前沿的技术科研、严谨负责的处事态度都给他留下了深刻的印象。当然,丰富的培训、优厚的待遇、放心的福利也是必须考虑的因素。用他的话说,“身边全是一级的牛人,自己的发展自然就有了保障”。 中小软件企业机会多 被采访者:刘洋 个人背景:项目经理+程序员 天天加班加点,见到刘洋时他一脸的菜色,但心情不错。毕业不到一年,他就凭技术能力与管理能力当上了项目经理。虽然下面员工流动率高,但刘洋的薪水却是老板亲自钦点,比起毕业的同班同学绰绰有余。从项目最初的客户谈判、到中间执行,再到最后的交工,刘洋什么都做过,因此也锻炼得几乎成了全能手。对于未来,他希望公司业务做大后,能再规范一些,当然,随着公司的成长,自己上升的空间也很大。 三企走遍 被采访者:阿蒙(vchome.net) 个人背景:6年,通信行业,珠海 我很幸运,毕业时就进了美资软件公司,从事系统软件的开发工作,主要应用c/c++、x86汇编、mips汇编、ddk、sdk等技术,年薪四万多。在这家外企工作两年后,技术与处事能力大有提高,但开始心生厌倦,总觉得外面的世界很精彩。后来有一家从事通信软件产品开发的公司,答应年薪翻倍,一年后可走上管理层,怦然心动后就去新公司报到了。一年后,如愿以偿地走上管理层,两年后,技术管理能力以及行业业务能力有了质的飞跃,也越来越发现这个行业有前途,于是与朋友开始策划开公司,资金融到后就轰轰烈烈地创业了。没日没干了一年,由于资金与市场的原因,公司over,只好灰溜溜地去一家香港合资公司继续打工,仍做管理层。 我的感觉是,外企有一整套规章制度,薪金制度也较为完善,工作考评有客观的数值:月工作计划与总结、季度工作考核、上司的总体评价等,这些考核都很详细,细到完成的代码量、文档数、提过什么建议等等。国内企业也有计划与考核,但更多的是主观态度,而对工作的效果与过程并不具体细化,人际关系、表达能力等往往起着很微妙的关键作用。当然国内企业也有很多优点,比如制度灵活。 专家点评:人才的争夺,一方面是卯足了劲准备抢占有利地势和环境的个人开发者,另一方面,企业间的人才争夺战越演越烈。在此情况下,为了吸引国内的高素质人才,不少外企纷纷在中国开设研究院,走“曲线救国”道路。根据一份猎头资料,摩托罗拉研发中心、松下电器中国研究开发公司、ibm中国研究中心、朗讯公司贝尔实验室、微软中国研究院都是猎取高级科研、管理人才的大头。外企与外企、外企与国企、国企与民企,这个三角关系,虽然在早几年优劣非常明显,但现在,这种差距正在明显缩小。具体适合哪个企业,围城内外其实也并不是三重天(见下页表23)。 热点行业易淘金 一级推荐:移动开发、游戏开发 二级推荐:安全领域、企业信息化 三级推荐:通用软件、系统平台、项目开发等 专家点评:出现这种趋势主要是由市场对软件人才的供求决定的,因为目前在移动和游戏领域开发人员确实比较少,所以相对而言,他们的薪资较高,这就是所谓的“奇货可居”。但是,目前市场在成长,这些新兴或热点领域的开发人员数量也在逐渐增加,当达到一个平衡点时,他们的工资也会随之下降,这主要由市场对人才的供求关系决定。不建议开发人员轻易放弃自己原有的开发领域花大量时间和精力投向自己不熟悉的领域。 所以,熊军认为:这两个行业方向的长线发展看好,也需要更多的开发人员,但是年轻人都要根据自己的兴趣爱好、思维模式、技术能力选择更适合自己的行业方向,而且也有很多更有潜力的方向,建议年轻人从长远考虑。 地域火拼 一级指标:北京、上海 二级指标:深圳、杭州、广州 三级指标:成都、武汉、大连等 绝大多数的软件从业人员集中在北京、上海、广州和深圳四大城市,其中尤以北京的人数最为集中,但在另一项相关的调查中,上海却是程序员最向往的城市。在本次收入调查中,北京、上海的工资较高。武汉稍低于成都。 地域不同,薪资有别 被采访者:青润 个人背景:5年,电信行业、软件企业服务 我本人在北京、上海、深圳、成都四地都曾工作过。我基本上这样认为,对于刚刚大学毕业的软件人员,工资情况是这样:成都1500-2000元/月,上海2000元/月,深圳2000-2500元/月,北京2000-2500元/月。工作几年后,以成都系数为1来计,上海和其他地方为1.3-1.5倍于成都的收入。差异主要也是因为生活成本造成的。 相比而言,北京具有王者气氛,有着俯瞰全国的实力和影响力。上海是经济驱动的城市。深圳对人的友好度最好,它的优点是有各种各样的新技术公司,缺点是缺乏大公司的支撑。好山好水的成都,虽起步了很多软件公司,但大都在出川后倒下了,或者只是长居四川,足少出户,感觉比较舒适和懒散。 安逸的成都竞争的北京 被采访者:夏桅 个人背景:。net开发人员 夏桅毕业之后就来到北京从事软件开发工作。但他时常怀念起成都的生活,那里的山,那里的水,还有怡然自得的成都人都给他留下了深刻的印象。 但夏桅还是不后悔。一方面,安逸的环境对自己发展不利,适度的竞争可以发掘自身的潜力。而且,眼界开阔了,薪水也高不少。当然,在北京的生活绝对说不上舒服,但机会多,可有多种选择,极大地改观了自己的现状。 一眼可以看到头的武汉,但我喜欢 被采访者:刘如宁 个人背景:大学教师、项目主管 在武汉工作了10多年,刘如宁感觉还是比较惬意。比收入,武汉可能还不如成都,更别提北京和上海,但武汉的生活成本比较低,几块钱就够一天的伙食了。在高校担当大学教师的刘如宁,科研任务不重,而且还有足够的时间去外面承接项目,用自己喜欢的软件开发技术赚取外快。“我不是一个特别喜欢接受挑战的人,这种做自己喜欢的事情、宁静而富裕的生活,我还是比较满足”,有房、有车,生活安定富足的刘如宁如是说。 专家点评:比“营利”,必须是一个闭环。有收入比较,还得有支出比较,两者对比后才是最终收获。在地域这个问题上,大城市,确实收入比较高,但相对的,生活成本也较高。 趋势全球研发及资讯执行副总裁梁国屏表示,趋势的薪资结构体系在全世界都是一样的,具体数值要根据各地的市场来调整。比如一个经理,他的等级可能是10,那么不论在中国、日本还是美国,他的等级都是10.但这个等级的薪水具体是多少,就要看当地的市场了,趋势会和当地的薪资调查单位合作,来确定系数,然后计算出具体的薪水。 除薪水外,地域的附加价值会更重要一些。第一,对于技术发展比较迅速的it业,在大城市,整体的环境和氛围相对会好一些,例如在北京和上海等地,几乎每天都会有技术论坛、开发者大会、大厂商的开发日、各领域大师的巡回讲座等。其次,作的机会也会比较多,因为集中了各种类型的公司和企业,总会找到适合你条件的合适职位和选择。第三,可以参与比较大的技术团体,形成独特的生活与社交圈。用8848公司cto张研的话来说,“如果周围都是高手,你不是高手也难”,所以地域对人影响最大的是提供了一个环境,其次才是机会和薪水。 对此,telelogic公司北方区总经理任群力建议说,“如果开发人员能够善于利用互联网,并有决心多学习,这种地域差异会得到弱化。” 我拿青春赌明天 在本次专题组织中,大部分被采访人都明确表示,自己会在软件业领域一直奋斗下去,因为从中得到了很多的快乐与激情。但明天是否一定会更好,这需要从两个角度去考虑:一是从个人角度讲,年轻的软件人一定要有个人职业的规划,而且这种规划要从自己特点或专长出发,与当前业界相适应。另外,更重要的是,个人发展到什么程度,还需要同整个软件大环境和社会环境挂钩。 个人职业要规划 现在广州做了4年delphi/c行业开发、年薪10万的王旋说,“工作后所得到的收获就是,学习和工作要有相对明确的目标,不能因为一时心动而去学习某一技术。在真正下决定之前,我通常会考虑更多因素,包括长期的发展、个人路线的规划、需要付出的代价、可能遇到的困难以及解决的办法等等,在决定后还会制定更加明确的计划,包括短期、中期和长期的,身边可以利用到的资源,以及每一个阶段是怎么过渡到更高阶段的计划。” 现在,越来越多的在职人员意识到,未来的职业细分市场中,只有在某一领域确实比较深入、具有专长和资源的人会得到企业的重视,浪里淘沙勇者胜。 中国软件业面临困境 中国的软件业发展目前面临两难境地。上至国家,下至各城市都给予了相当的政策优惠,但整体软件业的发展却一直雷声大,雨点小。对此,北航软件学院院长孙伟忧心忡忡,“很多人从心里看不起印度,但印度的软件业却有数家2万、3万员工规模的大企业,放眼中国,规模最大的东软集团、用友公司,真正的软件开发者也不过两、三千人,这种差别太巨大了,我们一定要好好思考,中国的软件业究竟出了什么问题?” 对此,很多专家认为,中国软件业已经面临一个新的转折点,随着信息化在各行各业的深入运用,软件业有机会深度专业化,由边缘而进入核心,从而形成以深度专业化为特征的核心竞争力。无论个人还是公司,我们都有幸在第一时间站在了软件业这块前沿阵地,但明天是否会更好,还有待于中国软件业的整体发展,在这颇为沉闷的时刻,我们期望“让暴风雨来得更猛烈些吧”! 参考资料:http://www.w-training.com/viewc.asp?id=23922 ====================================================== 在最后,我邀请大家参加新浪APP,就是新浪免费送大家的一个空间,支持PHP+MySql,免费二级域名,免费域名绑定 这个是我邀请的地址,您通过这个链接注册即为我的好友,并获赠云豆500个,价值5元哦!短网址是http://t.cn/SXOiLh我创建的小站每天访客已经达到2000+了,每天挂广告赚50+元哦,呵呵,饭钱不愁了,\(^o^)/ 本篇文章为转载内容。原文链接:https://blog.csdn.net/javazhuanzai/article/details/7189396。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-24 09:01:26
286
转载
转载文章
...接口在课程管理服务中开发,供学习服务进行远程调用。 在学习服务中远程调用 课程计划媒资信息查询接口,获取该课程计划的视频播放的 m3u8 url地址,并返回给前端,前端使用该 url 进行视频的在线播放。 在线学习完整的测试流程:媒资信息的上传、选择、发布到前端门户、搜索门户测试,在线学习的播放视频。 目录 内容会比较多,小伙伴门可以根据目录进行按需查阅。 文章目录 😎 知识点概览 目录 一、学习页面:查询课程计划 0x01 需求分析 0x02 Api接口 0x03 服务端开发 Controller Service 测试 0x04 前端开发 配置NGINX虚拟主机 前端 API 方法 前端 API 方法调用 测试 二、学习页面:获取视频播放地址 0x01 需求分析 0x02 课程发布:储存媒资信息 需求分析 数据模型 Dao Service 测试 0x03 Logstash:扫描课程计划媒资 创建索引 创建模板文件 配置 mysql.conf 启动 logstash.bat Logstash多实例运行 0x04 搜素服务:查询课程媒资接口 需求分析 Api接口定义 Service Controller 测试 三、在线学习:接口开发 0x01 需求分析 0x02 搭建开发环境 0x03 Api接口 0x04 服务端开发 需求分析 搜索服务注册Eureka 搜索服务客户端 自定义错误代码 Service Controller 测试 0x05 前端开发 需求分析 api方法 配置代理 视频播放页面 简单的测试 完整的测试 1、上传文件 一些问题 ~~方案1:删除本地分块文件重新尝试上传~~ 方案2:检查前端提交的MD5值是否正确 2、为课程计划选择媒资信息 3、前端门户测试 四、待完善的一些功能 😁 认识作者 一、学习页面:查询课程计划 0x01 需求分析 到目前为止,我们已可以编辑课程计划信息并上传课程视频,下一步我们要实现在线学习页面动态读取章节对应的视频并进行播放。在线学习页面所需要的信息有两类: 课程计划信息 课程学习信息(视频地址、学习进度等) 如下图: 在线学习集成媒资管理的需求如下: 1、在线学习页面显示课程计划 2、点击课程计划播放该课程计划对应的视频 本章节实现学习页面动态显示课程计划,进入不同课程的学习页面右侧动态显示当前课程的课程计划。 0x02 Api接口 课程计划信息从哪里获取? 在课程发布完成后会自动发布到一个 course_pub 的表中,logstash 会自动将课程发布后的信息自动采集到 ES 索引库中,这些信息也包含课程计划信息。 所以考虑性能要求,课程发布后对课程的查询统一从 ES 索引库中查询。 前端通过请求 搜索服务 获取课程信息,需要单独在 搜索服务 中定义课程信息查询接口。 本接口接收课程id,查询课程所有信息返回给前端。 我们在搜素服务 API 下添加以下方法 @ApiOperation("根据id搜索课程发布信息")public Map<String,CoursePub> getdetail(String id); 返回的课程信息为 json 结构:key 为课程id,value 为课程内容。 0x03 服务端开发 在搜索服务中开发查询课程信息接口。 Controller 在搜素服务下添加以下方法 / 根据id搜索课程发布信息 @param id 课程id @return JSON数据/@Override@GetMapping("/getdetail/{id}")public Map<String, CoursePub> getdetail(@PathVariable("id")String id) {return esCourseService.getdetail(id);} Service / 根据id搜索课程发布信息 @param id 课程id @return JSON数据/public Map<String, CoursePub> getdetail(String id) {//设置索引SearchRequest searchRequest = new SearchRequest(es_index);//设置类型searchRequest.types(es_type);//创建搜索源对象SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();//设置查询条件,根据id进行查询searchSourceBuilder.query(QueryBuilders.termQuery("id",id));//这里不使用source的原字段过滤,查询所有字段// searchSourceBuilder.fetchSource(new String[]{"name", "grade", "charge","pic"}, newString[]{});//设置搜索源对象searchRequest.source(searchSourceBuilder);//执行搜索SearchResponse searchResponse = null;try {searchResponse = restHighLevelClient.search(searchRequest);} catch (IOException e) {e.printStackTrace();}//获取搜索结果SearchHits hits = searchResponse.getHits();SearchHit[] searchHits = hits.getHits(); //获取最优结果Map<String,CoursePub> map = new HashMap<>();for (SearchHit hit: searchHits) {//从搜索结果中取值并添加到coursePub对象Map<String, Object> sourceAsMap = hit.getSourceAsMap();String courseId = (String) sourceAsMap.get("id");String name = (String) sourceAsMap.get("name");String grade = (String) sourceAsMap.get("grade");String charge = (String) sourceAsMap.get("charge");String pic = (String) sourceAsMap.get("pic");String description = (String) sourceAsMap.get("description");String teachplan = (String) sourceAsMap.get("teachplan");CoursePub coursePub = new CoursePub();coursePub.setId(courseId);coursePub.setName(name);coursePub.setPic(pic);coursePub.setGrade(grade);coursePub.setTeachplan(teachplan);coursePub.setDescription(description);//设置map对象map.put(courseId,coursePub);}return map;} 测试 使用 swagger-ui 或 postman 测试查询课程信息接口。 0x04 前端开发 配置NGINX虚拟主机 学习中心的二级域名为 ucenter.xuecheng.com ,我们在 nginx 中配置 ucenter 虚拟主机。 学成网用户中心server {listen 80;server_name ucenter.xuecheng.com;个人中心location / {proxy_pass http://ucenter_server_pool;} } 前端ucenterupstream ucenter_server_pool{server 127.0.0.1:7081 weight=10;server 127.0.0.1:13000 weight=10;} 在学习中心要调用搜索的 API,使用 Nginx 解决代理,如下图: 在 ucenter 虚拟主机下配置搜索 Api 代理路径 后台搜索(公开api)upstream search_server_pool{server 127.0.0.1:40100 weight=10;} 学成网用户中心server {listen 80;server_name ucenter.xuecheng.com;个人中心location / {proxy_pass http://ucenter_server_pool;}后端搜索服务location /openapi/search/ {proxy_pass http://search_server_pool/search/;} } 前端 API 方法 在学习中心 xc-ui-pc-leanring 对课程信息的查询属于基础常用功能,所以我们将课程查询的 api 方法定义在base 模块下,如下图: 在system.js 中定义课程查询方法: import http from './public'export const course_view = id => {return http.requestGet('/openapi/search/course/getdetail/'+id);} 前端 API 方法调用 在 learning_video.vue 页面中调用课程信息查询接口得到课程计划,将课程计划json 串转成对象。 xc-ui-pc-leanring/src/module/course/page/learning_video.vue 1、定义视图 课程计划 <!--课程计划部分代码--><div class="navCont"><div class="course-weeklist"><div class="nav nav-stacked" v-for="(teachplan_first, index) in teachplanList"><div class="tit nav-justified text-center"><i class="pull-left glyphicon glyphicon-th-list"></i>{ {teachplan_first.pname} }<i class="pull-right"></i></div><li v-if="teachplan_first.children!=null" v-for="(teachplan_second, index) in teachplan_first.children"><i class="glyphicon glyphicon-check"></i><a :href="url" @click="study(teachplan_second.id)">{ {teachplan_second.pname} }</a></li><!-- <div class="tit nav-justified text-center"><i class="pull-left glyphicon glyphicon-th-list"></i>第一章<i class="pull-right"></i></div><li ><i class="glyphicon glyphicon-check"></i><a :href="url" >第一节</a></li>--><!--<li><i class="glyphicon glyphicon-unchecked"></i>为什么分为A、B、C部分</li>--></div></div></div> 课程名称 <div class="top text-center">{ {coursename} }</div> 定义数据对象 data() {return {url:'',//当前urlcourseId:'',//课程idchapter:'',//章节Idcoursename:'',//课程名称coursepic:'',//课程图片teachplanList:[],//课程计划playerOptions: {//播放参数autoplay: false,controls: true,sources: [{type: "application/x-mpegURL",src: ''}]},} } 在 created 钩子方法中获取课程信息 created(){//当前请求的urlthis.url = window.location//课程idthis.courseId = this.$route.params.courseId//章节idthis.chapter = this.$route.params.chapter//查询课程信息systemApi.course_view(this.courseId).then((view_course)=>{if(!view_course || !view_course[this.courseId]){this.$message.error("获取课程信息失败,请重新进入此页面!")return ;} let courseInfo = view_course[this.courseId]console.log(courseInfo)this.coursename = courseInfo.nameif(courseInfo.teachplan){let teachplan = JSON.parse(courseInfo.teachplan);this.teachplanList = teachplan.children;} })}, 测试 在浏览器请求:http://ucenter.xuecheng.com//learning/4028e581617f945f01617f9dabc40000/0 4028e581617f945f01617f9dabc40000:第一个参数为课程 id,测试时从 ES索引库找一个课程 id 0:第二个参数为课程计划 id,此参数用于点击课程计划播放视频。 如果出现跨域问题,但是确定已经配置了跨域,请尝试结束所以 nginx.exe 的进程 和 清空浏览器缓存。 如果还没有解决?重启电脑试试。 二、学习页面:获取视频播放地址 0x01 需求分析 用户进入在线学习页面,点击课程计划将播放该课程计划对应的教学视频。 业务流程如下: 业务流程说明: 1、用户进入在线学习页面,页面请求搜索服务获取课程信息(包括课程计划信息)并且在页面展示。 2、在线学习请求学习服务获取视频播放地址。 3、学习服务校验当前用户是否有权限学习,如果没有权限学习则提示用户。 4、学习服务校验通过,请求搜索服务获取课程媒资信息。 5、搜索服务请求ElasticSearch获取课程媒资信息。 为什么要请求 ElasticSearch 查询课程媒资信息? 出于性能的考虑,公开查询课程信息从搜索服务查询,分摊 mysql 数据库的访问压力。 什么时候将课程媒资信息存储到 ElasticSearch 中? 课程媒资信息是在课程发布的时候存入 ElasticSearch,因为课程发布后课程信息将基本不再修改。 0x02 课程发布:储存媒资信息 需求分析 课程媒资信息是在课程发布的时候存入 ElasticSearch 索引库,因为课程发布后课程信息将基本不再修改,具体的业务流程如下。 1、课程发布,向课程媒资信息表写入数据。 1)根据课程 id 删除 teachplanMediaPub 中的数据 2)根据课程 id 查询 teachplanMedia 数据 3)将查询到的 teachplanMedia 数据插入到 teachplanMediaPub 中 2、Logstash 定时扫描课程媒资信息表,并将课程媒资信息写入索引库。 数据模型 在 xc_course 数据库创建课程计划媒资发布表: CREATE TABLE teachplan_media_pub (teachplan_id varchar(32) NOT NULL COMMENT '课程计划id',media_id varchar(32) NOT NULL COMMENT '媒资文件id',media_fileoriginalname varchar(128) NOT NULL COMMENT '媒资文件的原始名称',media_url varchar(256) NOT NULL COMMENT '媒资文件访问地址',courseid varchar(32) NOT NULL COMMENT '课程Id',timestamp timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT'logstash使用',PRIMARY KEY (teachplan_id)) ENGINE=InnoDB DEFAULT CHARSET=utf8 数据模型类如下: package com.xuecheng.framework.domain.course;import lombok.Data;import lombok.ToString;import org.hibernate.annotations.GenericGenerator;import javax.persistence.;import java.io.Serializable;import java.util.Date;@Data@ToString@Entity@Table(name="teachplan_media_pub")@GenericGenerator(name = "jpa-assigned", strategy = "assigned")public class TeachplanMediaPub implements Serializable {private static final long serialVersionUID = -916357110051689485L;@Id@GeneratedValue(generator = "jpa-assigned")@Column(name="teachplan_id")private String teachplanId;@Column(name="media_id")private String mediaId;@Column(name="media_fileoriginalname")private String mediaFileOriginalName;@Column(name="media_url")private String mediaUrl;@Column(name="courseid")private String courseId;@Column(name="timestamp")private Date timestamp;//时间戳} Dao 创建 TeachplanMediaPub 表的 Dao,向 TeachplanMediaPub 存储信息采用先删除该课程的媒资信息,再添加该课程的媒资信息,所以这里定义根据课程 id 删除课程计划媒资方法: public interface TeachplanMediaPubRepository extends JpaRepository<TeachplanMediaPub, String> {//根据课程id删除课程计划媒资信息long deleteByCourseId(String courseId);} 从TeachplanMedia查询课程计划媒资信息 //从TeachplanMedia查询课程计划媒资信息public interface TeachplanMediaRepository extends JpaRepository<TeachplanMedia, String> {List<TeachplanMedia> findByCourseId(String courseId);} Service 编写保存课程计划媒资信息方法,并在课程发布时调用此方法。 1、保存课程计划媒资信息方法 本方法采用先删除该课程的媒资信息,再添加该课程的媒资信息,在 CourseService 下定义该方法 //保存课程计划媒资信息private void saveTeachplanMediaPub(String courseId){//查询课程媒资信息List<TeachplanMedia> byCourseId = teachplanMediaRepository.findByCourseId(courseId);if(byCourseId == null) return; //没有查询到媒资数据则直接结束该方法//将课程计划媒资信息储存到待索引表//删除原有的索引信息teachplanMediaPubRepository.deleteByCourseId(courseId);//一个课程可能会有多个媒资信息,遍历并使用list进行储存List<TeachplanMediaPub> teachplanMediaPubList = new ArrayList<>();for (TeachplanMedia teachplanMedia: byCourseId) {TeachplanMediaPub teachplanMediaPub = new TeachplanMediaPub();BeanUtils.copyProperties(teachplanMedia, teachplanMediaPub);teachplanMediaPubList.add(teachplanMediaPub);}//保存所有信息teachplanMediaPubRepository.saveAll(teachplanMediaPubList);} 2、课程发布时调用此方法 修改课程发布的 coursePublish 方法: ....//保存课程计划媒资信息到待索引表saveTeachplanMediaPub(courseId);//页面urlString pageUrl = cmsPostPageResult.getPageUrl();return new CoursePublishResult(CommonCode.SUCCESS,pageUrl);..... 测试 测试课程发布后是否成功将课程媒资信息存储到 teachplan_media_pub 中,测试流程如下: 1、指定一个课程 2、为课程计划添加课程媒资 3、执行课程发布 4、观察课程计划媒资信息是否存储至 teachplan_media_pub 中 注意:由于此测试仅用于测试发布课程计划媒资信息的功能,可暂时将 cms页面发布的功能暂时屏蔽,提高测试效率。 测试结果如下 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Vrzs5589-1595567273126)(https://qnoss.codeyee.com/20200704_15/image7)] 0x03 Logstash:扫描课程计划媒资 Logstash 定时扫描课程媒资信息表,并将课程媒资信息写入索引库。 创建索引 1、创建 xc_course_media 索引 2、并向此索引创建如下映射 POST: http://localhost:9200/xc_course_media/doc/_mapping {"properties" : {"courseid" : {"type" : "keyword"},"teachplan_id" : {"type" : "keyword"},"media_id" : {"type" : "keyword"},"media_url" : {"index" : false,"type" : "text"},"media_fileoriginalname" : {"index" : false,"type" : "text"} }} 索引创建成功 创建模板文件 在 logstach 的 config 目录文件 xc_course_media_template.json 文件路径为 %ES_ROOT_DIR%/logstash6.8.8/config/xc_course_media_template.json %ES_ROOT_DIR% 为 ElasticSearch 和 logstash 的安装目录 内容如下: {"mappings" : {"doc" : {"properties" : {"courseid" : {"type" : "keyword"},"teachplan_id" : {"type" : "keyword"},"media_id" : {"type" : "keyword"},"media_url" : {"index" : false,"type" : "text"},"media_fileoriginalname" : {"index" : false,"type" : "text"} }},"template" : "xc_course_media"} } 配置 mysql.conf 在logstash的 config 目录下配置 mysql_course_media.conf 文件供 logstash 使用,logstash 会根据 mysql_course_media.conf 文件的配置的地址从 MySQL 中读取数据向 ES 中写入索引。 参考https://www.elastic.co/guide/en/logstash/current/plugins-inputs-jdbc.html 配置输入数据源和输出数据源。 input {stdin {} jdbc {jdbc_connection_string => "jdbc:mysql://localhost:3306/xc_course?useUnicode=true&characterEncoding=utf-8&useSSL=true&serverTimezone=UTC" 数据库信息jdbc_user => "root"jdbc_password => "123123" MYSQL 驱动地址,修改为maven仓库对应的位置jdbc_driver_library => "D:/soft/apache-maven-3.5.4/repository/mysql/mysql-connector-java/5.1.40/mysql-connector-java-5.1.40.jar" the name of the driver class for mysqljdbc_driver_class => "com.mysql.jdbc.Driver"jdbc_paging_enabled => "true"jdbc_page_size => "50000"要执行的sql文件statement_filepath => "/conf/course.sql"statement => "select from teachplan_media_pub where timestamp > date_add(:sql_last_value,INTERVAL 8 HOUR)"定时配置schedule => " "record_last_run => truelast_run_metadata_path => "D:/soft/elasticsearch/logstash-6.8.8/config/xc_course_media_metadata"} } output {elasticsearch {ES的ip地址和端口hosts => "localhost:9200"hosts => ["localhost:9200","localhost:9202","localhost:9203"]ES索引库名称index => "xc_course_media"document_id => "%{teachplan_id}"document_type => "doc"template => "D:/soft/elasticsearch/logstash-6.8.8/config/xc_course_media_template.json"template_name =>"xc_course_media"template_overwrite =>"true"} stdout {日志输出codec => json_lines} } 启动 logstash.bat 启动 logstash.bat 采集 teachplan_media_pub 中的数据,向 ES 写入索引。 logstash.bat -f ../config/mysql_course_media.conf 课程发布成功后,Logstash 会自动参加 teachplan_media_pub 表中新增的数据,效果如下 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ILPBxfXi-1595567273134)(https://qnoss.codeyee.com/20200704_15/image10)] Logstash多实例运行 由于之前我们还启动了一个 Logstash 对课程的发布信息进行采集,所以如果想两个 logstash 实例同时运行,因为每个实例都有一个.lock文件,所以不能使用同一个目录来存放数据,所以我们需要使用 --path.data= 为每个实例指定单独的数据目录,具体的代码如下: 该配置是在windows下进行的 课程发布实例 logstash_start_course_pub.bat @title logstash in course_publogstash.bat -f ..\config\mysql.conf --path.data=../data/course_pub 课程计划媒体发布实例 logstash_start_teachplan_media.bat @title logstash i n teachplan_media_publogstash.bat -f ../config/mysql_course_media.conf --path.data=../data/teachplan_media/ 同时运行效果如下 0x04 搜素服务:查询课程媒资接口 需求分析 搜索服务 提供查询课程媒资接口,此接口供学习服务调用。 Api接口定义 @ApiOperation("根据课程计划查询媒资信息")public TeachplanMediaPub getmedia(String teachplanId); Service 1、配置课程计划媒资索引库等信息 在 application.yml 中配置 xuecheng:elasticsearch:hostlist: ${eshostlist:127.0.0.1:9200} 多个结点中间用逗号分隔course:index: xc_coursetype: docsource_field: id,name,grade,mt,st,charge,valid,pic,qq,price,price_old,status,studymodel,teachmode,expires,pub_time,start_time,end_timemedia:index: xc_course_mediatype: docsource_field: courseid,media_id,media_url,teachplan_id,media_fileoriginalname 2、service 方法开发 在 课程搜索服务 中定义课程媒资查询接口,为了适应后续需求,service 参数定义为数组,可一次查询多个课程计划的媒资信息。 / 根据一个或者多个课程计划id查询媒资信息 @param teachplanIds 课程id @return QueryResponseResult/public QueryResponseResult<TeachplanMediaPub> getmedia(String [] teachplanIds){//设置索引SearchRequest searchRequest = new SearchRequest(media_index);//设置类型searchRequest.types(media_type);//创建搜索源对象SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();//源字段过滤String[] media_index_arr = media_field.split(",");searchSourceBuilder.fetchSource(media_index_arr, new String[]{});//查询条件,根据课程计划id查询(可以传入多个课程计划id)searchSourceBuilder.query(QueryBuilders.termsQuery("teachplan_id", teachplanIds));searchRequest.source(searchSourceBuilder);SearchResponse searchResponse = null;try {searchResponse = restHighLevelClient.search(searchRequest);} catch (IOException e) {e.printStackTrace();}//获取结果SearchHits hits = searchResponse.getHits();long totalHits = hits.getTotalHits();SearchHit[] searchHits = hits.getHits();//数据列表List<TeachplanMediaPub> teachplanMediaPubList = new ArrayList<>();for(SearchHit hit:searchHits){TeachplanMediaPub teachplanMediaPub =new TeachplanMediaPub();Map<String, Object> sourceAsMap = hit.getSourceAsMap();//取出课程计划媒资信息String courseid = (String) sourceAsMap.get("courseid");String media_id = (String) sourceAsMap.get("media_id");String media_url = (String) sourceAsMap.get("media_url");String teachplan_id = (String) sourceAsMap.get("teachplan_id");String media_fileoriginalname = (String) sourceAsMap.get("media_fileoriginalname");teachplanMediaPub.setCourseId(courseid);teachplanMediaPub.setMediaUrl(media_url);teachplanMediaPub.setMediaFileOriginalName(media_fileoriginalname);teachplanMediaPub.setMediaId(media_id);teachplanMediaPub.setTeachplanId(teachplan_id);//将对象加入到列表中teachplanMediaPubList.add(teachplanMediaPub);}//构建返回课程媒资信息对象QueryResult<TeachplanMediaPub> queryResult = new QueryResult<>();queryResult.setList(teachplanMediaPubList);queryResult.setTotal(totalHits);return new QueryResponseResult<TeachplanMediaPub>(CommonCode.SUCCESS,queryResult);} Controller / 根据课程计划id搜索发布后的媒资信息 @param teachplanId @return/@GetMapping(value="/getmedia/{teachplanId}")@Overridepublic TeachplanMediaPub getmedia(@PathVariable("teachplanId") String teachplanId) {//为了service的拓展性,所以我们service接收的是数组作为参数,以便后续开发查询多个ID的接口String[] teachplanIds = new String[]{teachplanId};//通过service查询ES获取课程媒资信息QueryResponseResult<TeachplanMediaPub> mediaPubQueryResponseResult = esCourseService.getmedia(teachplanIds);QueryResult<TeachplanMediaPub> queryResult = mediaPubQueryResponseResult.getQueryResult();if(queryResult!=null&& queryResult.getList()!=null&& queryResult.getList().size()>0){//返回课程计划对应课程媒资return queryResult.getList().get(0);} return new TeachplanMediaPub();} 测试 使用 swagger-ui 和 postman 测试课程媒资查询接口。 三、在线学习:接口开发 0x01 需求分析 根据下边的业务流程,本章节完成前端学习页面请求学习服务获取课程视频地址,并自动播放视频。 0x02 搭建开发环境 1、创建数据库 创建 xc_learning 数据库,学习数据库将记录学生的选课信息、学习信息。 导入:资料/xc_learning.sql 2、创建学习服务工程 参考课程管理服务工程结构,创建学习服务工程: 导入:资料/xc-service-learning.zip 项目工程结构如下 0x03 Api接口 此 api 接口是课程学习页面请求学习服务获取课程学习地址。 定义返回值类型: package com.xuecheng.framework.domain.learning.response;import com.xuecheng.framework.model.response.ResponseResult;import com.xuecheng.framework.model.response.ResultCode;import lombok.Data;import lombok.NoArgsConstructor;import lombok.ToString;@Data@ToString@NoArgsConstructorpublic class GetMediaResult extends ResponseResult {public GetMediaResult(ResultCode resultCode, String fileUrl) {super(resultCode);this.fileUrl = fileUrl;}//媒资文件播放地址private String fileUrl;} 定义接口,学习服务根据传入课程 ID、章节 Id(课程计划 ID)来取学习地址。 @Api(value = "录播课程学习管理",description = "录播课程学习管理")public interface CourseLearningControllerApi {@ApiOperation("获取课程学习地址")public GetMediaResult getMediaPlayUrl(String courseId,String teachplanId);} 0x04 服务端开发 需求分析 学习服务根据传入课程ID、章节Id(课程计划ID)请求搜索服务获取学习地址。 搜索服务注册Eureka 学习服务要调用搜索服务查询课程媒资信息,所以需要将搜索服务注册到 eureka 中。 1、查看服务名称是否为 xc-service-search 注意修改application.xml中的服务名称:spring:application:name: xc‐service‐search 2、配置搜索服务的配置文件 application.yml,加入 Eureka 配置 如下: eureka:client:registerWithEureka: true 服务注册开关fetchRegistry: true 服务发现开关serviceUrl: Eureka客户端与Eureka服务端进行交互的地址,多个中间用逗号分隔defaultZone: ${EUREKA_SERVER:http://localhost:50101/eureka/,http://localhost:50102/eureka/}instance:prefer-ip-address: true 将自己的ip地址注册到Eureka服务中ip-address: ${IP_ADDRESS:127.0.0.1}instance-id: ${spring.application.name}:${server.port} 指定实例idribbon:MaxAutoRetries: 2 最大重试次数,当Eureka中可以找到服务,但是服务连不上时将会重试,如果eureka中找不到服务则直接走断路器MaxAutoRetriesNextServer: 3 切换实例的重试次数OkToRetryOnAllOperations: false 对所有操作请求都进行重试,如果是get则可以,如果是post,put等操作没有实现幂等的情况下是很危险的,所以设置为falseConnectTimeout: 5000 请求连接的超时时间ReadTimeout: 6000 请求处理的超时时间 3、添加 eureka 依赖 <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring‐cloud‐starter‐netflix‐eureka‐client</artifactId></dependency> 4、修改启动类,在class上添加如下注解: @EnableDiscoveryClient 搜索服务客户端 在 学习服务 创建搜索服务的客户端接口,此接口会生成代理对象,调用搜索服务: package com.xuecheng.learning.client;import com.xuecheng.framework.domain.course.TeachplanMediaPub;import org.springframework.cloud.openfeign.FeignClient;import org.springframework.web.bind.annotation.GetMapping;import org.springframework.web.bind.annotation.PathVariable;@FeignClient(value = "xc‐service‐search")public interface CourseSearchClient {@GetMapping(value="/getmedia/{teachplanId}")public TeachplanMediaPub getmedia(@PathVariable("teachplanId") String teachplanId);} 自定义错误代码 我们在 com.xuecheng.framework.domain.learning.response 包下自定义一个错误消息模型 package com.xuecheng.framework.domain.learning.response;import com.xuecheng.framework.model.response.ResultCode;import lombok.ToString;@ToStringpublic enum LearningCode implements ResultCode {LEARNING_GET_MEDIA_ERROR(false,23001,"学习中心获取媒资信息错误!");//操作代码boolean success;//操作代码int code;//提示信息String message;private LearningCode(boolean success, int code, String message){this.success = success;this.code = code;this.message = message;}@Overridepublic boolean success() {return success;}@Overridepublic int code() {return code;}@Overridepublic String message() {return message;} } 该消息模型基于 ResultCode 来实现,代码如下 package com.xuecheng.framework.model.response;/ Created by mrt on 2018/3/5. 10000-- 通用错误代码 22000-- 媒资错误代码 23000-- 用户中心错误代码 24000-- cms错误代码 25000-- 文件系统/public interface ResultCode {//操作是否成功,true为成功,false操作失败boolean success();//操作代码int code();//提示信息String message(); 从 ResultCode 中我们可以看出,我们约定了用户中心的错误代码使用 23000,所以我们定义的一些错误信息的代码就从 23000 开始计数。 Service 在学习服务中定义 service 方法,此方法远程请求课程管理服务、媒资管理服务获取课程学习地址。 package com.xuecheng.learning.service.impl;import com.netflix.discovery.converters.Auto;import com.xuecheng.framework.domain.course.TeachplanMediaPub;import com.xuecheng.framework.domain.learning.response.GetMediaResult;import com.xuecheng.framework.exception.ExceptionCast;import com.xuecheng.framework.model.response.CommonCode;import com.xuecheng.learning.client.CourseSearchClient;import com.xuecheng.learning.service.LearningService;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Service;@Servicepublic class LearningServiceImpl implements LearningService {@AutowiredCourseSearchClient courseSearchClient;/ 远程调用搜索服务获取已发布媒体信息中的url @param courseId 课程id @param teachplanId 媒体信息id @return/@Overridepublic GetMediaResult getMediaPlayUrl(String courseId, String teachplanId) {//校验学生权限,是否已付费等//远程调用搜索服务进行查询媒体信息TeachplanMediaPub mediaPub = courseSearchClient.getmedia(teachplanId);if(mediaPub == null) ExceptionCast.cast(CommonCode.FAIL);return new GetMediaResult(CommonCode.SUCCESS, mediaPub.getMediaUrl());} } Controller 调用 service 根据课程计划 id 查询视频播放地址: @RestController@RequestMapping("/learning/course")public class CourseLearningController implements CourseLearningControllerApi {@AutowiredLearningService learningService;@Override@GetMapping("/getmedia/{courseId}/{teachplanId}")public GetMediaResult getMediaPlayUrl(@PathVariable String courseId, @PathVariable String teachplanId) {//获取课程学习地址return learningService.getMedia(courseId, teachplanId);} } 测试 使用 swagger-ui 或postman 测试学习服务查询课程视频地址接口。 0x05 前端开发 需求分析 需要在学习中心前端页面需要完成如下功能: 1、进入课程学习页面需要带上 课程 Id参数及课程计划Id的参数,其中 课程 Id 参数必带,课程计划 Id 可以为空。 2、进入页面根据 课程 Id 取出该课程的课程计划显示在右侧。 3、进入页面后判断如果请求参数中有课程计划 Id 则播放该章节的视频。 4、进入页面后判断如果 课程计划id 为0则需要取出本课程第一个 课程计划的Id,并播放第一个课程计划的视频。 进入到模块 xc-ui-pc-leanring/src/module/course api方法 let sysConfig = require('@/../config/sysConfig')let apiUrl = sysConfig.xcApiUrlPre;/获取播放地址/export const get_media = (courseId,chapter) => {return http.requestGet(apiUrl+'/api/learning/course/getmedia/'+courseId+'/'+chapter);} 配置代理 在 Nginx 中的 ucenter.xuecheng.com 虚拟主机中配置 /api/learning/ 的路径转发,此url 请转发到学习服务。 学习服务upstream learning_server_pool{server 127.0.0.1:40600 weight=10;}学成网用户中心server {listen 80;server_name ucenter.xuecheng.com;个人中心location / {proxy_pass http://ucenter_server_pool;}后端搜索服务location /openapi/search/ {proxy_pass http://search_server_pool/search/; }学习服务location ^~ /api/learning/ {proxy_pass http://learning_server_pool/learning/;} } 视频播放页面 1、如果传入的课程计划id为0则取出第一个课程计划id 在 created 钩子方法中完成 created(){//当前请求的urlthis.url = window.location//课程idthis.courseId = this.$route.params.courseId//章节idthis.chapter = this.$route.params.chapter//查询课程信息systemApi.course_view(this.courseId).then((view_course)=>{if(!view_course || !view_course[this.courseId]){this.$message.error("获取课程信息失败,请重新进入此页面!")return ;}let courseInfo = view_course[this.courseId]console.log(courseInfo)this.coursename = courseInfo.nameif(courseInfo.teachplan){console.log("准备开始播放视频")let teachplan = JSON.parse(courseInfo.teachplan);this.teachplanList = teachplan.children;//开始学习if(this.chapter == "0" || !this.chapter){//取出第一个教学计划this.chapter = this.getFirstTeachplan();console.log("第一个教学计划id为 ",this.chapter);this.study(this.chapter);}else{this.study(this.chapter);} }})}, 取出第一个章节 id,用户未输入课程计划 id 或者输入为 0 时,播放第一个。 //取出第一个章节getFirstTeachplan(){for(var i=0;i<this.teachplanList.length;i++){let firstTeachplan = this.teachplanList[i];//如果当前children存在,则取出第一个返回if(firstTeachplan.children && firstTeachplan.children.length>0){let secondTeachplan = firstTeachplan.children[0];return secondTeachplan.id;} }return ;}, 开始学习: //开始学习study(chapter){// 获取播放地址courseApi.get_media(this.courseId,chapter).then((res)=>{if(res.success){let fileUrl = sysConfig.videoUrl + res.fileUrl//播放视频this.playvideo(fileUrl)}else if(res.message){this.$message.error(res.message)}else{this.$message.error("播放视频失败,请刷新页面重试")} }).catch(res=>{this.$message.error("播放视频失败,请刷新页面重试")});}, 2、点击右侧课程章节切换播放 在原有代码基础上添加 click 事件,点击调用开始学习方法(study)。 <li v‐if="teachplan_first.children!=null" v‐for="(teachplan_second, index) inteachplan_first.children"><i class="glyphicon glyphicon‐check"></i><a :href="url" @click="study(teachplan_second.id)">{ {teachplan_second.pname} }</a></li> 3、地址栏路由url变更 这里需要注意一个问题,在用户点击课程章节切换播放时,地址栏的 url 也应该同步改变为当前所选择的课程计划 id 4、在线学习按钮 将 learnstatus 默认更改为 1,这样就能显示出马上学习的按钮,方便我们后续的集成测试。 文件路径为 xc-ui-pc-static-portal/include/course_detail_dynamic.html 部分代码块如下 <script>var body= new Vue({ //创建一个Vue的实例el: "body", //挂载点是id="app"的地方data: {editLoading: false,title:'测试',courseId:'',charge:'',//203001免费,203002收费learnstatus: 1 ,//课程状态,1:马上学习,2:立即报名、3:立即购买course:{},companyId:'template',company_stat:[],course_stat:{"s601001":"","s601002":"","s601003":""} }, 简单的测试 访问在线学习页面:http://ucenter.xuecheng.com//learning/课程id/课程计划id 通过 url 传入两个参数:课程id 和 课程计划id 如果没有课程计划则传入0 测试项目如下: 1、传入正确的课程id、课程计划id,自动播放本章节的视频 2、传入正确的课程id、课程计划id传入0,自动播放第一个视频 3、传入错误的课程id 或 课程计划id,提示错误信息。 4、通过右侧章节目录切换章节及播放视频。 访问: http://ucenter.xuecheng.com//learning/4028e58161bcf7f40161bcf8b77c0000/4028e58161bd18ea0161bd1f73190008 传入正确的课程id、课程计划id,自动播放本章节的视频 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ef0xxym7-1595567273153)(https://qnoss.codeyee.com/20200704_15/image17)] 传入正确的课程id、课程计划id传入0,自动播放第一个视频 访问 http://ucenter.xuecheng.com//learning/4028e58161bcf7f40161bcf8b77c0000/0 识别出第一个课程计划的 id 需要注意的是这里的 chapter 参数是我自己在 study 函数里加上去的,可以忽略。 传入错误的课程id或课程计划id,提示错误信息。 通过右侧章节目录切换章节及播放视频。 点击章节即可播放,但是点击制定章节后 url 没有发生改变,这个问题暂时还没有解决,关注笔记后面的内容。 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TOGdxwb4-1595567273158)(https://qnoss.codeyee.com/20200704_15/image20)] 完整的测试 准备工作 启动 RabbitMQ,启动 Logstash、ElasticSearch 建议把所有后端服务都开起来 启动 前端静态门户、启动 nginx 、启动课程管理前端 我们整理一下测试的流程 上传两个媒资视频文件,用于测试 进入到课程管理,为课程计划选择媒资信息 发布课程,等待 logstash 将数据采集到 ElasticSearch 的索引库中 进入学成网主页,点击课程,进入到搜索门户页面 搜索课程,进入到课程详情页面 点击开始学习,进入到课程学习页面,选择课程计划中的一个章节进行学习。 1、上传文件 首先我们使用之前开发的媒资管理模块,上传两个视频文件用于测试。 第一个文件上传成功 一些问题 在上传第二个文件时,发生了错误,我们来检查一下问题出在了哪里 在媒体服务的控制台中可以看到,在 mergeChunks 方法在校验文件 md5 时候抛出了异常 我们在 MD5 校验这里打个断点,重新上传文件,分析一下问题所在。 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OpEMZGI8-1595567273166)(https://qnoss.codeyee.com/20200704_15/image23)] 单步调试后发现,合并文件后的MD5值与用户上传的源文件值不相等 方案1:删除本地分块文件重新尝试上传 考虑到可能是在用户上传完 视频的分块文件时发生了一些问题,导致合并文件后与源文件的大小不等,导致MD5也不相同,这里我们把这个视频上传到本地的文件全部删除,在媒资上传页面重新上传文件。 对比所有分块文件的字节大小和本地源文件的大小,完全是相等的 删除所有文件后重新上传,md5值还是不等,考虑从调试一下文件合并的代码。 方案2:检查前端提交的MD5值是否正确 在查阅是否有其他的MD5值获取方案时,发现了一个使用 windows 本地命令获取文件MD5值的方法 certutil -hashfile .\19-在线学习接口-集成测试.avi md5 惊奇的发现,TM的原来是前端那边转换的MD5值不正确,后端这边是没有问题的。 从前面的图可以看出,本地和后端转换的都是以一个 f6f0 开头的MD5值 那么问题就出现在前端了,还需要花一些时间去分析一下,这里暂时就先告一段落,因为上传了几个文件测试中只有这一个文件出现了问题。 2、为课程计划选择媒资信息 进入到一个课程的管理页面 http://localhost:12000//course/manage/baseinfo/4028e58161bcf7f40161bcf8b77c0000 将刚才我们上传的媒资文件的信息和课程计划绑定 选择效果如下 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-epKaqzCD-1595567273178)(https://qnoss.codeyee.com/20200704_15/image29)] 2、发布课程,等待 logstash 从 course_pub 以及 teachplan_media_pub 表中采集数据到 ElasticSearch 当中 发布成功后,我们可以从 teachplan_media_pub 表中看到刚才我们发布的媒资信息 再观察 Logstash 的控制台,发现两个 Logstash 的实例都对更新的课程发布信息进行了采集 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hTUve2ik-1595567273183)(https://qnoss.codeyee.com/20200704_15/image32)] 3、前端门户测试 打开我们的门户主站 http://www.xuecheng.com/ [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4wZe9R84-1595567273185)(https://qnoss.codeyee.com/20200704_15/image33)] 点击导航栏的课程,进入到我们的搜索门户页面 如果无法进入到搜索门户,请检查你的 xc-ui-pc-portal 前端工程是否已经启动 进入到搜索门户后,可以看到一些初始化时搜索的课程数据,默认是搜索第一页的数据,每页2个课程。 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BJ1AKoJb-1595567273187)(https://qnoss.codeyee.com/20200704_15/image34)] 我们可以测试搜索一下前面我们选择媒资信息时所用的课程 点击课程,进入到课程详情页面,然后再点击开始学习。 点击马上学习后,会进入到该课程的在线学习页面,默认自动播放我们第一个课程计划中的视频。 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tcuLWnf2-1595567273193)(https://qnoss.codeyee.com/20200704_15/image37)] 我们可以在右侧的目录中选择第二个课程计划,会自动播放所选的课程计划所对应的媒资视频播放地址,该 播放地址正是我们刚才通过 Logstash 自动采集到 ElasticSearch 的索引信息,效果图如下 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Cvi9Dr0Y-1595567273195)(https://qnoss.codeyee.com/20200704_15/image38)] 四、待完善的一些功能 课程发布前,校验课程计划里面是否包含二级课程计划 课程发布前,校验课程计划信息里面是否全部包含媒资信息 删除媒资信息,并且同步删除ES中的索引 在获取该课程的播放地址时校验用户的合法、 在线学习页面,点击右侧目录中的课程计划同时改变url中的课程计划地址 视频文件 19-在线学习接口-集成测试.avi 前端上传时提交的MD5值不正确 😁 认识作者 作者:👦 LCyee ,全干型代码🐕 自建博客:https://www.codeyee.com 记录学习以及项目开发过程中的笔记与心得,记录认知迭代的过程,分享想法与观点。 CSDN 博客:https://blog.csdn.net/codeyee 记录和分享一些开发过程中遇到的问题以及解决的思路。 欢迎加入微服务练习生的队伍,一起交流项目学习过程中的一些问题、分享学习心得等,不定期组织一起刷题、刷项目,共同见证成长。 本篇文章为转载内容。原文链接:https://blog.csdn.net/codeyee/article/details/107558901。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-16 12:41:01
73
转载
转载文章
...S 的一种,虽然现在开发 ActionScript 的产品线几乎没有了,但还是提一句吧,AS 脚本可以接受用户输入并操作 cookie,攻击者可以配合其他 XSS(持久型或者非持久型)方法将恶意 swf 文件嵌入页面中。主要是因为 AS 有时候需要和 JS 传参交互,攻击者会通过恶意的 XSS 注入篡改参数,窃取并操作cookie。 避免方法: 严格管理 cookie 的读写权限 对 Flash 能接受用户输入的参数进行过滤 escape 转义处理 未经验证的跳转 XSS 有一些场景是后端需要对一个传进来的待跳转的 URL 参数进行一个 302 跳转,可能其中会带有一些用户的敏感(cookie)信息。如果服务器端做302 跳转,跳转的地址来自用户的输入,攻击者可以输入一个恶意的跳转地址来执行脚本。 这时候需要通过以下方式来防止这类漏洞: 对待跳转的 URL 参数做白名单或者某种规则过滤 后端注意对敏感信息的保护, 比如 cookie 使用来源验证。 CSRF CSRF(Cross-Site Request Forgery),中文名称:跨站请求伪造攻击 那么 CSRF 到底能够干嘛呢?你可以这样简单的理解:攻击者可以盗用你的登陆信息,以你的身份模拟发送各种请求。攻击者只要借助少许的社会工程学的诡计,例如通过 QQ 等聊天软件发送的链接(有些还伪装成短域名,用户无法分辨),攻击者就能迫使 Web 应用的用户去执行攻击者预设的操作。例如,当用户登录网络银行去查看其存款余额,在他没有退出时,就点击了一个 QQ 好友发来的链接,那么该用户银行帐户中的资金就有可能被转移到攻击者指定的帐户中。 所以遇到 CSRF 攻击时,将对终端用户的数据和操作指令构成严重的威胁。当受攻击的终端用户具有管理员帐户的时候,CSRF 攻击将危及整个 Web 应用程序。 CSRF 原理 下图大概描述了 CSRF 攻击的原理,可以理解为有一个小偷在你配钥匙的地方得到了你家的钥匙,然后拿着要是去你家想偷什么偷什么。 csrf原理 完成 CSRF 攻击必须要有三个条件: 用户已经登录了站点 A,并在本地记录了 cookie 在用户没有登出站点 A 的情况下(也就是 cookie 生效的情况下),访问了恶意攻击者提供的引诱危险站点 B (B 站点要求访问站点A)。 站点 A 没有做任何 CSRF 防御 你也许会问:「如果我不满足以上三个条件中的任意一个,就不会受到 CSRF 的攻击」。其实可以这么说的,但你不能保证以下情况不会发生: 你不能保证你登录了一个网站后,不再打开一个 tab 页面并访问另外的网站,特别现在浏览器都是支持多 tab 的。 你不能保证你关闭浏览器了后,你本地的 cookie 立刻过期,你上次的会话已经结束。 上图中所谓的攻击网站 B,可能是一个存在其他漏洞的可信任的经常被人访问的网站。 预防 CSRF CSRF 的防御可以从服务端和客户端两方面着手,防御效果是从服务端着手效果比较好,现在一般的 CSRF 防御也都在服务端进行。服务端的预防 CSRF 攻击的方式方法有多种,但思路上都是差不多的,主要从以下两个方面入手: 正确使用 GET,POST 请求和 cookie 在非 GET 请求中增加 token 一般而言,普通的 Web 应用都是以 GET、POST 请求为主,还有一种请求是 cookie 方式。我们一般都是按照如下规则设计应用的请求: GET 请求常用在查看,列举,展示等不需要改变资源属性的时候(数据库 query 查询的时候) POST 请求常用在 From 表单提交,改变一个资源的属性或者做其他一些事情的时候(数据库有 insert、update、delete 的时候) 当正确的使用了 GET 和 POST 请求之后,剩下的就是在非 GET 方式的请求中增加随机数,这个大概有三种方式来进行: 为每个用户生成一个唯一的 cookie token,所有表单都包含同一个伪随机值,这种方案最简单,因为攻击者不能获得第三方的 cookie(理论上),所以表单中的数据也就构造失败,但是由于用户的 cookie 很容易由于网站的 XSS 漏洞而被盗取,所以这个方案必须要在没有 XSS 的情况下才安全。 每个 POST 请求使用验证码,这个方案算是比较完美的,但是需要用户多次输入验证码,用户体验比较差,所以不适合在业务中大量运用。 渲染表单的时候,为每一个表单包含一个 csrfToken,提交表单的时候,带上 csrfToken,然后在后端做 csrfToken 验证。 CSRF 的防御可以根据应用场景的不同自行选择。CSRF 的防御工作确实会在正常业务逻辑的基础上带来很多额外的开发量,但是这种工作量是值得的,毕竟用户隐私以及财产安全是产品最基础的根本。 SQL 注入 SQL 注入漏洞(SQL Injection)是 Web 开发中最常见的一种安全漏洞。可以用它来从数据库获取敏感信息,或者利用数据库的特性执行添加用户,导出文件等一系列恶意操作,甚至有可能获取数据库乃至系统用户最高权限。 而造成 SQL 注入的原因是因为程序没有有效的转义过滤用户的输入,使攻击者成功的向服务器提交恶意的 SQL 查询代码,程序在接收后错误的将攻击者的输入作为查询语句的一部分执行,导致原始的查询逻辑被改变,额外的执行了攻击者精心构造的恶意代码。 很多 Web 开发者没有意识到 SQL 查询是可以被篡改的,从而把 SQL 查询当作可信任的命令。殊不知,SQL 查询是可以绕开访问控制,从而绕过身份验证和权限检查的。更有甚者,有可能通过 SQL 查询去运行主机系统级的命令。 SQL 注入原理 下面将通过一些真实的例子来详细讲解 SQL 注入的方式的原理。 考虑以下简单的管理员登录表单: <form action="/login" method="POST"><p>Username: <input type="text" name="username" /></p><p>Password: <input type="password" name="password" /></p><p><input type="submit" value="登陆" /></p></form> 后端的 SQL 语句可能是如下这样的: let querySQL = SELECT FROM userWHERE username='${username}'AND psw='${password}'; // 接下来就是执行 sql 语句… 目的就是来验证用户名和密码是不是正确,按理说乍一看上面的 SQL 语句也没什么毛病,确实是能够达到我们的目的,可是你只是站在用户会老老实实按照你的设计来输入的角度来看问题,如果有一个恶意攻击者输入的用户名是 zoumiaojiang’ OR 1 = 1 --,密码随意输入,就可以直接登入系统了。WFT! 冷静下来思考一下,我们之前预想的真实 SQL 语句是: SELECT FROM user WHERE username='zoumiaojiang' AND psw='mypassword' 可以恶意攻击者的奇怪用户名将你的 SQL 语句变成了如下形式: SELECT FROM user WHERE username='zoumiaojiang' OR 1 = 1 --' AND psw='xxxx' 在 SQL 中,-- 是注释后面的内容的意思,所以查询语句就变成了: SELECT FROM user WHERE username='zoumiaojiang' OR 1 = 1 这条 SQL 语句的查询条件永远为真,所以意思就是恶意攻击者不用我的密码,就可以登录进我的账号,然后可以在里面为所欲为,然而这还只是最简单的注入,牛逼的 SQL 注入高手甚至可以通过 SQL 查询去运行主机系统级的命令,将你主机里的内容一览无余,这里我也没有这个能力讲解的太深入,毕竟不是专业研究这类攻击的,但是通过以上的例子,已经了解了 SQL 注入的原理,我们基本已经能找到防御 SQL 注入的方案了。 如何预防 SQL 注入 防止 SQL 注入主要是不能允许用户输入的内容影响正常的 SQL 语句的逻辑,当用户的输入的信息将要用来拼接 SQL 语句的话,我们应该永远选择不相信,任何内容都必须进行转义过滤,当然做到这个还是不够的,下面列出防御 SQL 注入的几点注意事项: 严格限制Web应用的数据库的操作权限,给此用户提供仅仅能够满足其工作的最低权限,从而最大限度的减少注入攻击对数据库的危害 后端代码检查输入的数据是否符合预期,严格限制变量的类型,例如使用正则表达式进行一些匹配处理。 对进入数据库的特殊字符(’,",\,<,>,&,,; 等)进行转义处理,或编码转换。基本上所有的后端语言都有对字符串进行转义处理的方法,比如 lodash 的 lodash._escapehtmlchar 库。 所有的查询语句建议使用数据库提供的参数化查询接口,参数化的语句使用参数而不是将用户输入变量嵌入到 SQL 语句中,即不要直接拼接 SQL 语句。例如 Node.js 中的 mysqljs 库的 query 方法中的 ? 占位参数。 mysql.query(SELECT FROM user WHERE username = ? AND psw = ?, [username, psw]); 在应用发布之前建议使用专业的 SQL 注入检测工具进行检测,以及时修补被发现的 SQL 注入漏洞。网上有很多这方面的开源工具,例如 sqlmap、SQLninja 等。 避免网站打印出 SQL 错误信息,比如类型错误、字段不匹配等,把代码里的 SQL 语句暴露出来,以防止攻击者利用这些错误信息进行 SQL 注入。 不要过于细化返回的错误信息,如果目的是方便调试,就去使用后端日志,不要在接口上过多的暴露出错信息,毕竟真正的用户不关心太多的技术细节,只要话术合理就行。 碰到要操作的数据库的代码,一定要慎重,小心使得万年船,多找几个人多来几次 code review,将问题都暴露出来,而且要善于利用工具,操作数据库相关的代码属于机密,没事不要去各种论坛晒自家站点的 SQL 语句,万一被人盯上了呢? 命令行注入 命令行注入漏洞,指的是攻击者能够通过 HTTP 请求直接侵入主机,执行攻击者预设的 shell 命令,听起来好像匪夷所思,这往往是 Web 开发者最容易忽视但是却是最危险的一个漏洞之一,看一个实例: 假如现在需要实现一个需求:用户提交一些内容到服务器,然后在服务器执行一些系统命令去产出一个结果返回给用户,接口的部分实现如下: // 以 Node.js 为例,假如在接口中需要从 github 下载用户指定的 repoconst exec = require('mz/child_process').exec;let params = {/ 用户输入的参数 /};exec(git clone ${params.repo} /some/path); 这段代码确实能够满足业务需求,正常的用户也确实能从指定的 git repo 上下载到想要的代码,可是和 SQL 注入一样,这段代码在恶意攻击者眼中,简直就是香饽饽。 如果 params.repo 传入的是 https://github.com/zoumiaojiang/zoumiaojiang.github.io.git 当然没问题了。 可是如果 params.repo 传入的是 https://github.com/xx/xx.git && rm -rf / && 恰好你的服务是用 root 权限起的就惨了。 具体恶意攻击者能用命令行注入干什么也像 SQL 注入一样,手法是千变万化的,比如「反弹 shell 注入」等,但原理都是一样的,我们绝对有能力防止命令行注入发生。防止命令行注入需要做到以下几件事情: 后端对前端提交内容需要完全选择不相信,并且对其进行规则限制(比如正则表达式)。 在调用系统命令前对所有传入参数进行命令行参数转义过滤。 不要直接拼接命令语句,借助一些工具做拼接、转义预处理,例如 Node.js 的 shell-escape npm 包。 还是前面的例子,我们可以做到如下: const exec = require('mz/child_process').exec;// 借助 shell-escape npm 包解决参数转义过滤问题const shellescape = require('shell-escape');let params = {/ 用户输入的参数 /};// 先过滤一下参数,让参数符合预期if (!/正确的表达式/.test(params.repo)) {return;}let cmd = shellescape(['git','clone',params.repo,'/some/path']);// cmd 的值: git clone 'https://github.com/xx/xx.git && rm -rf / &&' /some/path// 这样就不会被注入成功了。exec(cmd); DDoS 攻击 DDoS 又叫分布式拒绝服务,全称 Distributed Denial of Service,其原理就是利用大量的请求造成资源过载,导致服务不可用,这个攻击应该不能算是安全问题,这应该算是一个另类的存在,因为这种攻击根本就是耍流氓的存在,「伤敌一千,自损八百」的行为。出于保护 Web App 不受攻击的攻防角度,还是介绍一下 DDoS 攻击吧,毕竟也是挺常见的。 DDoS 攻击可以理解为:「你开了一家店,隔壁家点看不惯,就雇了一大堆黑社会人员进你店里干坐着,也不消费,其他客人也进不来,导致你营业惨淡」。为啥说 DDoS 是个「伤敌一千,自损八百」的行为呢?毕竟隔壁店还是花了不少钱雇黑社会但是啥也没得到不是?DDoS 攻击的目的基本上就以下几个: 深仇大恨,就是要干死你 敲诈你,不给钱就干你 忽悠你,不买我防火墙服务就会有“人”继续干你 也许你的站点遭受过 DDoS 攻击,具体什么原因怎么解读见仁见智。DDos 攻击从层次上可分为网络层攻击与应用层攻击,从攻击手法上可分为快型流量攻击与慢型流量攻击,但其原理都是造成资源过载,导致服务不可用。 网络层 DDoS 网络层 DDos 攻击包括 SYN Flood、ACK Flood、UDP Flood、ICMP Flood 等。 SYN Flood 攻击 SYN flood 攻击主要利用了 TCP 三次握手过程中的 Bug,我们都知道 TCP 三次握手过程是要建立连接的双方发送 SYN,SYN + ACK,ACK 数据包,而当攻击方随意构造源 IP 去发送 SYN 包时,服务器返回的 SYN + ACK 就不能得到应答(因为 IP 是随意构造的),此时服务器就会尝试重新发送,并且会有至少 30s 的等待时间,导致资源饱和服务不可用,此攻击属于慢型 DDoS 攻击。 ACK Flood 攻击 ACK Flood 攻击是在 TCP 连接建立之后,所有的数据传输 TCP 报文都是带有 ACK 标志位的,主机在接收到一个带有 ACK 标志位的数据包的时候,需要检查该数据包所表示的连接四元组是否存在,如果存在则检查该数据包所表示的状态是否合法,然后再向应用层传递该数据包。如果在检查中发现该数据包不合法,例如该数据包所指向的目的端口在本机并未开放,则主机操作系统协议栈会回应 RST 包告诉对方此端口不存在。 UDP Flood 攻击 UDP flood 攻击是由于 UDP 是一种无连接的协议,因此攻击者可以伪造大量的源 IP 地址去发送 UDP 包,此种攻击属于大流量攻击。正常应用情况下,UDP 包双向流量会基本相等,因此发起这种攻击的攻击者在消耗对方资源的时候也在消耗自己的资源。 ICMP Flood 攻击 ICMP Flood 攻击属于大流量攻击,其原理就是不断发送不正常的 ICMP 包(所谓不正常就是 ICMP 包内容很大),导致目标带宽被占用,但其本身资源也会被消耗。目前很多服务器都是禁 ping 的(在防火墙在可以屏蔽 ICMP 包),因此这种攻击方式已经落伍。 网络层 DDoS 防御 网络层的 DDoS 攻击究其本质其实是无法防御的,我们能做得就是不断优化服务本身部署的网络架构,以及提升网络带宽。当然,还是做好以下几件事也是有助于缓解网络层 DDoS 攻击的冲击: 网络架构上做好优化,采用负载均衡分流。 确保服务器的系统文件是最新的版本,并及时更新系统补丁。 添加抗 DDos 设备,进行流量清洗。 限制同时打开的 SYN 半连接数目,缩短 SYN 半连接的 Timeout 时间。 限制单 IP 请求频率。 防火墙等防护设置禁止 ICMP 包等。 严格限制对外开放的服务器的向外访问。 运行端口映射程序或端口扫描程序,要认真检查特权端口和非特权端口。 关闭不必要的服务。 认真检查网络设备和主机/服务器系统的日志。只要日志出现漏洞或是时间变更,那这台机器就可能遭到了攻击。 限制在防火墙外与网络文件共享。这样会给黑客截取系统文件的机会,主机的信息暴露给黑客,无疑是给了对方入侵的机会。 加钱堆机器。。 报警。。 应用层 DDoS 应用层 DDoS 攻击不是发生在网络层,是发生在 TCP 建立握手成功之后,应用程序处理请求的时候,现在很多常见的 DDoS 攻击都是应用层攻击。应用层攻击千变万化,目的就是在网络应用层耗尽你的带宽,下面列出集中典型的攻击类型。 CC 攻击 当时绿盟为了防御 DDoS 攻击研发了一款叫做 Collapasar 的产品,能够有效的防御 SYN Flood 攻击。黑客为了挑衅,研发了一款 Challenge Collapasar 攻击工具(简称 CC)。 CC 攻击的原理,就是针对消耗资源比较大的页面不断发起不正常的请求,导致资源耗尽。因此在发送 CC 攻击前,我们需要寻找加载比较慢,消耗资源比较多的网页,比如需要查询数据库的页面、读写硬盘文件的等。通过 CC 攻击,使用爬虫对某些加载需要消耗大量资源的页面发起 HTTP 请求。 DNS Flood DNS Flood 攻击采用的方法是向被攻击的服务器发送大量的域名解析请求,通常请求解析的域名是随机生成或者是网络世界上根本不存在的域名,被攻击的DNS 服务器在接收到域名解析请求的时候首先会在服务器上查找是否有对应的缓存,如果查找不到并且该域名无法直接由服务器解析的时候,DNS 服务器会向其上层 DNS 服务器递归查询域名信息。域名解析的过程给服务器带来了很大的负载,每秒钟域名解析请求超过一定的数量就会造成 DNS 服务器解析域名超时。 根据微软的统计数据,一台 DNS 服务器所能承受的动态域名查询的上限是每秒钟 9000 个请求。而我们知道,在一台 P3 的 PC 机上可以轻易地构造出每秒钟几万个域名解析请求,足以使一台硬件配置极高的 DNS 服务器瘫痪,由此可见 DNS 服务器的脆弱性。 HTTP 慢速连接攻击 针对 HTTP 协议,先建立起 HTTP 连接,设置一个较大的 Conetnt-Length,每次只发送很少的字节,让服务器一直以为 HTTP 头部没有传输完成,这样连接一多就很快会出现连接耗尽。 应用层 DDoS 防御 判断 User-Agent 字段(不可靠,因为可以随意构造) 针对 IP + cookie,限制访问频率(由于 cookie 可以更改,IP 可以使用代理,或者肉鸡,也不可靠) 关闭服务器最大连接数等,合理配置中间件,缓解 DDoS 攻击。 请求中添加验证码,比如请求中有数据库操作的时候。 编写代码时,尽量实现优化,并合理使用缓存技术,减少数据库的读取操作。 加钱堆机器。。 报警。。 应用层的防御有时比网络层的更难,因为导致应用层被 DDoS 攻击的因素非常多,有时往往是因为程序员的失误,导致某个页面加载需要消耗大量资源,有时是因为中间件配置不当等等。而应用层 DDoS 防御的核心就是区分人与机器(爬虫),因为大量的请求不可能是人为的,肯定是机器构造的。因此如果能有效的区分人与爬虫行为,则可以很好地防御此攻击。 其他 DDoS 攻击 发起 DDoS 也是需要大量的带宽资源的,但是互联网就像森林,林子大了什么鸟都有,DDoS 攻击者也能找到其他的方式发起廉价并且极具杀伤力的 DDoS 攻击。 利用 XSS 举个例子,如果 12306 页面有一个 XSS 持久型漏洞被恶意攻击者发现,只需在春节抢票期间在这个漏洞中执行脚本使得往某一个小站点随便发点什么请求,然后随着用户访问的增多,感染用户增多,被攻击的站点自然就会迅速瘫痪了。这种 DDoS 简直就是无本万利,不用惊讶,现在大站有 XSS 漏洞的不要太多。 来自 P2P 网络攻击 大家都知道,互联网上的 P2P 用户和流量都是一个极为庞大的数字。如果他们都去一个指定的地方下载数据,成千上万的真实 IP 地址连接过来,没有哪个设备能够支撑住。拿 BT 下载来说,伪造一些热门视频的种子,发布到搜索引擎,就足以骗到许多用户和流量了,但是这只是基础攻击。 高级的 P2P 攻击,是直接欺骗资源管理服务器。如迅雷客户端会把自己发现的资源上传到资源管理服务器,然后推送给其它需要下载相同资源的用户,这样,一个链接就发布出去。通过协议逆向,攻击者伪造出大批量的热门资源信息通过资源管理中心分发出去,瞬间就可以传遍整个 P2P 网络。更为恐怖的是,这种攻击是无法停止的,即使是攻击者自身也无法停止,攻击一直持续到 P2P 官方发现问题更新服务器且下载用户重启下载软件为止。 最后总结下,DDoS 不可能防的住,就好比你的店只能容纳 50 人,黑社会有 100 人,你就换一家大店,能容纳 500 人,然后黑社会又找来了 1000 人,这种堆人头的做法就是 DDoS 本质上的攻防之道,「道高一尺,魔高一丈,魔高一尺,道高一丈」,讲真,必要的时候就答应勒索你的人的条件吧,实在不行就报警吧。 流量劫持 流量劫持应该算是黑产行业的一大经济支柱了吧?简直是让人恶心到吐,不吐槽了,还是继续谈干货吧,流量劫持基本分两种:DNS 劫持 和 HTTP 劫持,目的都是一样的,就是当用户访问 zoumiaojiang.com 的时候,给你展示的并不是或者不完全是 zoumiaojiang.com 提供的 “内容”。 DNS 劫持 DNS 劫持,也叫做域名劫持,可以这么理解,「你打了一辆车想去商场吃饭,结果你打的车是小作坊派来的,直接给你拉到小作坊去了」,DNS 的作用是把网络地址域名对应到真实的计算机能够识别的 IP 地址,以便计算机能够进一步通信,传递网址和内容等。如果当用户通过某一个域名访问一个站点的时候,被篡改的 DNS 服务器返回的是一个恶意的钓鱼站点的 IP,用户就被劫持到了恶意钓鱼站点,然后继而会被钓鱼输入各种账号密码信息,泄漏隐私。 dns劫持 这类劫持,要不就是网络运营商搞的鬼,一般小的网络运营商与黑产勾结会劫持 DNS,要不就是电脑中毒,被恶意篡改了路由器的 DNS 配置,基本上做为开发者或站长却是很难察觉的,除非有用户反馈,现在升级版的 DNS 劫持还可以对特定用户、特定区域等使用了用户画像进行筛选用户劫持的办法,另外这类广告显示更加随机更小,一般站长除非用户投诉否则很难觉察到,就算觉察到了取证举报更难。无论如何,如果接到有 DNS 劫持的反馈,一定要做好以下几件事: 取证很重要,时间、地点、IP、拨号账户、截屏、URL 地址等一定要有。 可以跟劫持区域的电信运营商进行投诉反馈。 如果投诉反馈无效,直接去工信部投诉,一般来说会加白你的域名。 HTTP 劫持 HTTP 劫持您可以这么理解,「你打了一辆车想去商场吃饭,结果司机跟你一路给你递小作坊的广告」,HTTP 劫持主要是当用户访问某个站点的时候会经过运营商网络,而不法运营商和黑产勾结能够截获 HTTP 请求返回内容,并且能够篡改内容,然后再返回给用户,从而实现劫持页面,轻则插入小广告,重则直接篡改成钓鱼网站页面骗用户隐私。能够实施流量劫持的根本原因,是 HTTP 协议没有办法对通信对方的身份进行校验以及对数据完整性进行校验。如果能解决这个问题,则流量劫持将无法轻易发生。所以防止 HTTP 劫持的方法只有将内容加密,让劫持者无法破解篡改,这样就可以防止 HTTP 劫持了。 HTTPS 协议就是一种基于 SSL 协议的安全加密网络应用层协议,可以很好的防止 HTTP 劫持。这里有篇 文章 讲的不错。HTTPS 在这就不深讲了,后面有机会我会单独好好讲讲 HTTPS。如果不想站点被 HTTP 劫持,赶紧将你的站点全站改造成 HTTPS 吧。 服务器漏洞 服务器除了以上提到的那些大名鼎鼎的漏洞和臭名昭著的攻击以外,其实还有很多其他的漏洞,往往也很容易被忽视,在这个小节也稍微介绍几种。 越权操作漏洞 如果你的系统是有登录控制的,那就要格外小心了,因为很有可能你的系统越权操作漏洞,越权操作漏洞可以简单的总结为 「A 用户能看到或者操作 B 用户的隐私内容」,如果你的系统中还有权限控制就更加需要小心了。所以每一个请求都需要做 userid 的判断 以下是一段有漏洞的后端示意代码: // ctx 为请求的 context 上下文let msgId = ctx.params.msgId;mysql.query('SELECT FROM msg_table WHERE msg_id = ?',[msgId]); 以上代码是任何人都可以查询到任何用户的消息,只要有 msg_id 就可以,这就是比较典型的越权漏洞,需要如下这么改进一下: // ctx 为请求的 context 上下文let msgId = ctx.params.msgId;let userId = ctx.session.userId; // 从会话中取出当前登陆的 userIdmysql.query('SELECT FROM msg_table WHERE msg_id = ? AND user_id = ?',[msgId, userId]); 嗯,大概就是这个意思,如果有更严格的权限控制,那在每个请求中凡是涉及到数据库的操作都需要先进行严格的验证,并且在设计数据库表的时候需要考虑进 userId 的账号关联以及权限关联。 目录遍历漏洞 目录遍历漏洞指通过在 URL 或参数中构造 …/,./ 和类似的跨父目录字符串的 ASCII 编码、unicode 编码等,完成目录跳转,读取操作系统各个目录下的敏感文件,也可以称作「任意文件读取漏洞」。 目录遍历漏洞原理:程序没有充分过滤用户输入的 …/ 之类的目录跳转符,导致用户可以通过提交目录跳转来遍历服务器上的任意文件。使用多个… 符号,不断向上跳转,最终停留在根 /,通过绝对路径去读取任意文件。 目录遍历漏洞几个示例和测试,一般构造 URL 然后使用浏览器直接访问,或者使用 Web 漏洞扫描工具检测,当然也可以自写程序测试。 http://somehost.com/../../../../../../../../../etc/passwdhttp://somehost.com/some/path?file=../../Windows/system.ini 借助 %00 空字符截断是一个比较经典的攻击手法http://somehost.com/some/path?file=../../Windows/system.ini%00.js 使用了 IIS 的脚本目录来移动目录并执行指令http://somehost.com/scripts/..%5c../Windows/System32/cmd.exe?/c+dir+c:\ 防御 方法就是需要对 URL 或者参数进行 …/,./ 等字符的转义过滤。 物理路径泄漏 物理路径泄露属于低风险等级缺陷,它的危害一般被描述为「攻击者可以利用此漏洞得到信息,来对系统进一步地攻击」,通常都是系统报错 500 的错误信息直接返回到页面可见导致的漏洞。得到物理路径有些时候它能给攻击者带来一些有用的信息,比如说:可以大致了解系统的文件目录结构;可以看出系统所使用的第三方软件;也说不定会得到一个合法的用户名(因为很多人把自己的用户名作为网站的目录名)。 防止这种泄漏的方法就是做好后端程序的出错处理,定制特殊的 500 报错页面。 源码暴露漏洞 和物理路径泄露类似,就是攻击者可以通过请求直接获取到你站点的后端源代码,然后就可以对系统进一步研究攻击。那么导致源代码暴露的原因是什么呢?基本上就是发生在服务器配置上了,服务器可以设置哪些路径的文件才可以被直接访问的,这里给一个 koa 服务起的例子,正常的 koa 服务器可以通过 koa-static 中间件去指定静态资源的目录,好让静态资源可以通过路径的路由访问。比如你的系统源代码目录是这样的: |- project|- src|- static|- ...|- server.js 你想要将 static 的文件夹配成静态资源目录,你应该会在 server.js 做如下配置: const Koa = require('koa');const serve = require('koa-static');const app = new Koa();app.use(serve(__dirname + '/project/static')); 但是如果配错了静态资源的目录,可能就出大事了,比如: // ...app.use(serve(__dirname + '/project')); 这样所有的源代码都可以通过路由访问到了,所有的服务器都提供了静态资源机制,所以在通过服务器配置静态资源目录和路径的时候,一定要注意检验,不然很可能产生漏洞。 最后,希望 Web 开发者们能够管理好自己的代码隐私,注意代码安全问题,比如不要将产品的含有敏感信息的代码放到第三方外部站点或者暴露给外部用户,尤其是前端代码,私钥类似的保密性的东西不要直接输出在代码里或者页面中。也许还有很多值得注意的点,但是归根结底还是绷住安全那根弦,对待每一行代码都要多多推敲。 请关注我的订阅号 本篇文章为转载内容。原文链接:https://blog.csdn.net/MrCoderStack/article/details/88547919。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-03 14:51:12
493
转载
转载文章
...LSHA 命令,允许开发者通过脚本内容的 SHA1 摘要来执行脚本。 如何缓存 Redis 在执行 script load 命令时会计算脚本的 SHA1 摘要并记录在脚本缓存中,执行 EVALSHA 命令时 Redis 会根据提供的摘要从脚本缓存中查找对应的脚本内容,如果找到了则执行脚本,否则会返回错误:“NOSCRIPT No matching script. Please use EVAL.” 127.0.0.1:6379> script load "return 'Hello World'" "470877a599ac74fbfda41caa908de682c5fc7d4b"127.0.0.1:6379> evalsha "470877a599ac74fbfda41caa908de682c5fc7d4b" 0 "Hello World" 3.2.5 自乘案例 Redis 有 incrby 这样的自增命令,但是没有自乘,比如乘以 3,乘以 5。我们可以写一个自乘的运算,让它乘以后面的参数: local curVal = redis.call("get", KEYS[1]) if curVal == false thencurVal = 0 elsecurVal = tonumber(curVal)endcurVal = curVal tonumber(ARGV[1]) redis.call("set", KEYS[1], curVal) return curVal 把这个脚本变成单行,语句之间使用分号隔开 local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal script load ‘命令’ 127.0.0.1:6379> script load 'local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal' "be4f93d8a5379e5e5b768a74e77c8a4eb0434441" 调用: 127.0.0.1:6379> set num 2OK127.0.0.1:6379> evalsha be4f93d8a5379e5e5b768a74e77c8a4eb0434441 1 num 6 (integer) 12 3.2.6 脚本超时 Redis 的指令执行本身是单线程的,这个线程还要执行客户端的 Lua 脚本,如果 Lua 脚本执行超时或者陷入了死循环,是不是没有办法为客户端提供服务了呢? eval 'while(true) do end' 0 为了防止某个脚本执行时间过长导致 Redis 无法提供服务,Redis 提供了 lua-time-limit 参数限制脚本的最长运行时间,默认为 5 秒钟。 lua-time-limit 5000(redis.conf 配置文件中) 当脚本运行时间超过这一限制后,Redis 将开始接受其他命令但不会执行(以确保脚本的原子性,因为此时脚本并没有被终止),而是会返回“BUSY”错误。 Redis 提供了一个 script kill 的命令来中止脚本的执行。新开一个客户端: script kill 如果当前执行的 Lua 脚本对 Redis 的数据进行了修改(SET、DEL 等),那么通过 script kill 命令是不能终止脚本运行的。 127.0.0.1:6379> eval "redis.call('set','gupao','666') while true do end" 0 因为要保证脚本运行的原子性,如果脚本执行了一部分终止,那就违背了脚本原子性的要求。最终要保证脚本要么都执行,要么都不执行。 127.0.0.1:6379> script kill(error) UNKILLABLE Sorry the script already executed write commands against the dataset. You can either wait the scripttermination or kill the server in a hard way using the SHUTDOWN NOSAVE command. 遇到这种情况,只能通过 shutdown nosave 命令来强行终止 redis。 shutdown nosave 和 shutdown 的区别在于 shutdown nosave 不会进行持久化操作,意味着发生在上一次快照后的数据库修改都会丢失。 4、Redis 为什么这么快? 4.1 Redis到底有多快? 根据官方的数据,Redis 的 QPS 可以达到 10 万左右(每秒请求数)。 4.2 Redis为什么这么快? 总结:1)纯内存结构、2)单线程、3)多路复用 4.2.1 内存 KV 结构的内存数据库,时间复杂度 O(1)。 第二个,要实现这么高的并发性能,是不是要创建非常多的线程? 恰恰相反,Redis 是单线程的。 4.2.2 单线程 单线程有什么好处呢? 1、没有创建线程、销毁线程带来的消耗 2、避免了上线文切换导致的 CPU 消耗 3、避免了线程之间带来的竞争问题,例如加锁释放锁死锁等等 4.2.3 异步非阻塞 异步非阻塞 I/O,多路复用处理并发连接。 4.3 Redis为什么是单线程的? 不是白白浪费了 CPU 的资源吗? 因为单线程已经够用了,CPU 不是 redis 的瓶颈。Redis 的瓶颈最有可能是机器内存或者网络带宽。既然单线程容易实现,而且 CPU 不会成为瓶颈,那就顺理成章地采用单线程的方案了。 4.4 单线程为什么这么快? 因为 Redis 是基于内存的操作,我们先从内存开始说起。 4.4.1 虚拟存储器(虚拟内存 Vitual Memory) 名词解释:主存:内存;辅存:磁盘(硬盘) 计算机主存(内存)可看作一个由 M 个连续的字节大小的单元组成的数组,每个字节有一个唯一的地址,这个地址叫做物理地址(PA)。早期的计算机中,如果 CPU 需要内存,使用物理寻址,直接访问主存储器。 这种方式有几个弊端: 1、在多用户多任务操作系统中,所有的进程共享主存,如果每个进程都独占一块物理地址空间,主存很快就会被用完。我们希望在不同的时刻,不同的进程可以共用同一块物理地址空间。 2、如果所有进程都是直接访问物理内存,那么一个进程就可以修改其他进程的内存数据,导致物理地址空间被破坏,程序运行就会出现异常。 为了解决这些问题,我们就想了一个办法,在 CPU 和主存之间增加一个中间层。CPU 不再使用物理地址访问,而是访问一个虚拟地址,由这个中间层把地址转换成物理地址,最终获得数据。这个中间层就叫做虚拟存储器(Virtual Memory)。 具体的操作如下所示: 在每一个进程开始创建的时候,都会分配一段虚拟地址,然后通过虚拟地址和物理地址的映射来获取真实数据,这样进程就不会直接接触到物理地址,甚至不知道自己调用的哪块物理地址的数据。 目前,大多数操作系统都使用了虚拟内存,如 Windows 系统的虚拟内存、Linux 系统的交换空间等等。Windows 的虚拟内存(pagefile.sys)是磁盘空间的一部分。 在 32 位的系统上,虚拟地址空间大小是 2^32bit=4G。在 64 位系统上,最大虚拟地址空间大小是多少? 是不是 2^64bit=10241014TB=1024PB=16EB?实际上没有用到 64 位,因为用不到这么大的空间,而且会造成很大的系统开销。Linux 一般用低 48 位来表示虚拟地址空间,也就是 2^48bit=256T。 cat /proc/cpuinfo address sizes : 40 bits physical, 48 bits virtual 实际的物理内存可能远远小于虚拟内存的大小。 总结:引入虚拟内存,可以提供更大的地址空间,并且地址空间是连续的,使得程序编写、链接更加简单。并且可以对物理内存进行隔离,不同的进程操作互不影响。还可以通过把同一块物理内存映射到不同的虚拟地址空间实现内存共享。 4.4.2 用户空间和内核空间 为了避免用户进程直接操作内核,保证内核安全,操作系统将虚拟内存划分为两部分,一部分是内核空间(Kernel-space)/ˈkɜːnl /,一部分是用户空间(User-space)。 内核是操作系统的核心,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的权限。 内核空间中存放的是内核代码和数据,而进程的用户空间中存放的是用户程序的代码和数据。不管是内核空间还是用户空间,它们都处于虚拟空间中,都是对物理地址的映射。 在 Linux 系统中, 内核进程和用户进程所占的虚拟内存比例是 1:3。 当进程运行在内核空间时就处于内核态,而进程运行在用户空间时则处于用户态。 进程在内核空间以执行任意命令,调用系统的一切资源;在用户空间只能执行简单的运算,不能直接调用系统资源,必须通过系统接口(又称 system call),才能向内核发出指令。 top 命令: us 代表 CPU 消耗在 User space 的时间百分比; sy 代表 CPU 消耗在 Kernel space 的时间百分比。 4.4.3 进程切换(上下文切换) 多任务操作系统是怎么实现运行远大于 CPU 数量的任务个数的? 当然,这些任务实际上并不是真的在同时运行,而是因为系统通过时间片分片算法,在很短的时间内,将 CPU 轮流分配给它们,造成多任务同时运行的错觉。 为了控制进程的执行,内核必须有能力挂起正在 CPU 上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。 什么叫上下文? 在每个任务运行前,CPU 都需要知道任务从哪里加载、又从哪里开始运行,也就是说,需要系统事先帮它设置好 CPU 寄存器和程序计数器(ProgramCounter),这个叫做 CPU 的上下文。 而这些保存下来的上下文,会存储在系统内核中,并在任务重新调度执行时再次加载进来。这样就能保证任务原来的状态不受影响,让任务看起来还是连续运行。 在切换上下文的时候,需要完成一系列的工作,这是一个很消耗资源的操作。 4.4.4 进程的阻塞 正在运行的进程由于提出系统服务请求(如 I/O 操作),但因为某种原因未得到操作系统的立即响应,该进程只能把自己变成阻塞状态,等待相应的事件出现后才被唤醒。 进程在阻塞状态不占用 CPU 资源。 4.4.5 文件描述符 FD Linux 系统将所有设备都当作文件来处理,而 Linux 用文件描述符来标识每个文件对象。 文件描述符(File Descriptor)是内核为了高效管理已被打开的文件所创建的索引,用于指向被打开的文件,所有执行 I/O 操作的系统调用都通过文件描述符;文件描述符是一个简单的非负整数,用以表明每个被进程打开的文件。 Linux 系统里面有三个标准文件描述符。 0:标准输入(键盘); 1:标准输出(显示器); 2:标准错误输出(显示器)。 4.4.6 传统 I/O 数据拷贝 以读操作为例: 当应用程序执行 read 系统调用读取文件描述符(FD)的时候,如果这块数据已经存在于用户进程的页内存中,就直接从内存中读取数据。如果数据不存在,则先将数据从磁盘加载数据到内核缓冲区中,再从内核缓冲区拷贝到用户进程的页内存中。(两次拷贝,两次 user 和 kernel 的上下文切换)。 I/O 的阻塞到底阻塞在哪里? 4.4.7 Blocking I/O 当使用 read 或 write 对某个文件描述符进行过读写时,如果当前 FD 不可读,系统就不会对其他的操作做出响应。从设备复制数据到内核缓冲区是阻塞的,从内核缓冲区拷贝到用户空间,也是阻塞的,直到 copy complete,内核返回结果,用户进程才解除 block 的状态。 为了解决阻塞的问题,我们有几个思路。 1、在服务端创建多个线程或者使用线程池,但是在高并发的情况下需要的线程会很多,系统无法承受,而且创建和释放线程都需要消耗资源。 2、由请求方定期轮询,在数据准备完毕后再从内核缓存缓冲区复制数据到用户空间 (非阻塞式 I/O),这种方式会存在一定的延迟。 能不能用一个线程处理多个客户端请求? 4.4.8 I/O 多路复用(I/O Multiplexing) I/O 指的是网络 I/O。 多路指的是多个 TCP 连接(Socket 或 Channel)。 复用指的是复用一个或多个线程。它的基本原理就是不再由应用程序自己监视连接,而是由内核替应用程序监视文件描述符。 客户端在操作的时候,会产生具有不同事件类型的 socket。在服务端,I/O 多路复用程序(I/O Multiplexing Module)会把消息放入队列中,然后通过文件事件分派器(File event Dispatcher),转发到不同的事件处理器中。 多路复用有很多的实现,以 select 为例,当用户进程调用了多路复用器,进程会被阻塞。内核会监视多路复用器负责的所有 socket,当任何一个 socket 的数据准备好了,多路复用器就会返回。这时候用户进程再调用 read 操作,把数据从内核缓冲区拷贝到用户空间。 所以,I/O 多路复用的特点是通过一种机制一个进程能同时等待多个文件描述符,而这些文件描述符(套接字描述符)其中的任意一个进入读就绪(readable)状态,select() 函数就可以返回。 Redis 的多路复用, 提供了 select, epoll, evport, kqueue 几种选择,在编译的时 候来选择一种。 evport 是 Solaris 系统内核提供支持的; epoll 是 LINUX 系统内核提供支持的; kqueue 是 Mac 系统提供支持的; select 是 POSIX 提供的,一般的操作系统都有支撑(保底方案); 源码 ae_epoll.c、ae_select.c、ae_kqueue.c、ae_evport.c 5、内存回收 Reids 所有的数据都是存储在内存中的,在某些情况下需要对占用的内存空间进行回 收。内存回收主要分为两类,一类是 key 过期,一类是内存使用达到上限(max_memory) 触发内存淘汰。 5.1 过期策略 要实现 key 过期,我们有几种思路。 5.1.1 定时过期(主动淘汰) 每个设置过期时间的 key 都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的 CPU 资源去处理过期的 数据,从而影响缓存的响应时间和吞吐量。 5.1.2 惰性过期(被动淘汰) 只有当访问一个 key 时,才会判断该 key 是否已过期,过期则清除。该策略可以最大化地节省 CPU 资源,却对内存非常不友好。极端情况可能出现大量的过期 key 没有再次被访问,从而不会被清除,占用大量内存。 例如 String,在 getCommand 里面会调用 expireIfNeeded server.c expireIfNeeded(redisDb db, robj key) 第二种情况,每次写入 key 时,发现内存不够,调用 activeExpireCycle 释放一部分内存。 expire.c activeExpireCycle(int type) 5.1.3 定期过期 源码:server.h typedef struct redisDb { dict dict; / 所有的键值对 /dict expires; / 设置了过期时间的键值对 /dict blocking_keys; dict ready_keys; dict watched_keys; int id;long long avg_ttl;list defrag_later; } redisDb; 每隔一定的时间,会扫描一定数量的数据库的 expires 字典中一定数量的 key,并清除其中已过期的 key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得 CPU 和内存资源达到最优的平衡效果。 Redis 中同时使用了惰性过期和定期过期两种过期策略。 5.2 淘汰策略 Redis 的内存淘汰策略,是指当内存使用达到最大内存极限时,需要使用淘汰算法来决定清理掉哪些数据,以保证新数据的存入。 5.2.1 最大内存设置 redis.conf 参数配置: maxmemory <bytes> 如果不设置 maxmemory 或者设置为 0,64 位系统不限制内存,32 位系统最多使用 3GB 内存。 动态修改: redis> config set maxmemory 2GB 到达最大内存以后怎么办? 5.2.2 淘汰策略 https://redis.io/topics/lru-cache redis.conf maxmemory-policy noeviction 先从算法来看: LRU,Least Recently Used:最近最少使用。判断最近被使用的时间,目前最远的数据优先被淘汰。 LFU,Least Frequently Used,最不常用,4.0 版本新增。 random,随机删除。 如果没有符合前提条件的 key 被淘汰,那么 volatile-lru、volatile-random、 volatile-ttl 相当于 noeviction(不做内存回收)。 动态修改淘汰策略: redis> config set maxmemory-policy volatile-lru 建议使用 volatile-lru,在保证正常服务的情况下,优先删除最近最少使用的 key。 5.2.3 LRU 淘汰原理 问题:如果基于传统 LRU 算法实现 Redis LRU 会有什么问题? 需要额外的数据结构存储,消耗内存。 Redis LRU 对传统的 LRU 算法进行了改良,通过随机采样来调整算法的精度。如果淘汰策略是 LRU,则根据配置的采样值 maxmemory_samples(默认是 5 个), 随机从数据库中选择 m 个 key, 淘汰其中热度最低的 key 对应的缓存数据。所以采样参数m配置的数值越大, 就越能精确的查找到待淘汰的缓存数据,但是也消耗更多的CPU计算,执行效率降低。 问题:如何找出热度最低的数据? Redis 中所有对象结构都有一个 lru 字段, 且使用了 unsigned 的低 24 位,这个字段用来记录对象的热度。对象被创建时会记录 lru 值。在被访问的时候也会更新 lru 的值。 但是不是获取系统当前的时间戳,而是设置为全局变量 server.lruclock 的值。 源码:server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; server.lruclock 的值怎么来的? Redis 中有个定时处理的函数 serverCron,默认每 100 毫秒调用函数 updateCachedTime 更新一次全局变量的 server.lruclock 的值,它记录的是当前 unix 时间戳。 源码:server.c void updateCachedTime(void) { time_t unixtime = time(NULL); atomicSet(server.unixtime,unixtime); server.mstime = mstime();struct tm tm; localtime_r(&server.unixtime,&tm);server.daylight_active = tm.tm_isdst; } 问题:为什么不获取精确的时间而是放在全局变量中?不会有延迟的问题吗? 这样函数 lookupKey 中更新数据的 lru 热度值时,就不用每次调用系统函数 time,可以提高执行效率。 OK,当对象里面已经有了 LRU 字段的值,就可以评估对象的热度了。 函数 estimateObjectIdleTime 评估指定对象的 lru 热度,思想就是对象的 lru 值和全局的 server.lruclock 的差值越大(越久没有得到更新),该对象热度越低。 源码 evict.c / Given an object returns the min number of milliseconds the object was never requested, using an approximated LRU algorithm. /unsigned long long estimateObjectIdleTime(robj o) {unsigned long long lruclock = LRU_CLOCK(); if (lruclock >= o->lru) {return (lruclock - o->lru) LRU_CLOCK_RESOLUTION; } else {return (lruclock + (LRU_CLOCK_MAX - o->lru)) LRU_CLOCK_RESOLUTION;} } server.lruclock 只有 24 位,按秒为单位来表示才能存储 194 天。当超过 24bit 能表 示的最大时间的时候,它会从头开始计算。 server.h define LRU_CLOCK_MAX ((1<<LRU_BITS)-1) / Max value of obj->lru / 在这种情况下,可能会出现对象的 lru 大于 server.lruclock 的情况,如果这种情况 出现那么就两个相加而不是相减来求最久的 key。 为什么不用常规的哈希表+双向链表的方式实现?需要额外的数据结构,消耗资源。而 Redis LRU 算法在 sample 为 10 的情况下,已经能接近传统 LRU 算法了。 问题:除了消耗资源之外,传统 LRU 还有什么问题? 如图,假设 A 在 10 秒内被访问了 5 次,而 B 在 10 秒内被访问了 3 次。因为 B 最后一次被访问的时间比 A 要晚,在同等的情况下,A 反而先被回收。 问题:要实现基于访问频率的淘汰机制,怎么做? 5.2.4 LFU server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; 当这 24 bits 用作 LFU 时,其被分为两部分: 高 16 位用来记录访问时间(单位为分钟,ldt,last decrement time) 低 8 位用来记录访问频率,简称 counter(logc,logistic counter) counter 是用基于概率的对数计数器实现的,8 位可以表示百万次的访问频率。 对象被读写的时候,lfu 的值会被更新。 db.c——lookupKey void updateLFU(robj val) {unsigned long counter = LFUDecrAndReturn(val); counter = LFULogIncr(counter);val->lru = (LFUGetTimeInMinutes()<<8) | counter;} 增长的速率由,lfu-log-factor 越大,counter 增长的越慢 redis.conf 配置文件。 lfu-log-factor 10 如果计数器只会递增不会递减,也不能体现对象的热度。没有被访问的时候,计数器怎么递减呢? 减少的值由衰减因子 lfu-decay-time(分钟)来控制,如果值是 1 的话,N 分钟没有访问就要减少 N。 redis.conf 配置文件 lfu-decay-time 1 6、持久化机制 https://redis.io/topics/persistence Redis 速度快,很大一部分原因是因为它所有的数据都存储在内存中。如果断电或者宕机,都会导致内存中的数据丢失。为了实现重启后数据不丢失,Redis 提供了两种持久化的方案,一种是 RDB 快照(Redis DataBase),一种是 AOF(Append Only File)。 6.1 RDB RDB 是 Redis 默认的持久化方案。当满足一定条件的时候,会把当前内存中的数据写入磁盘,生成一个快照文件 dump.rdb。Redis 重启会通过加载 dump.rdb 文件恢复数据。 什么时候写入 rdb 文件? 6.1.1 RDB 触发 1、自动触发 a)配置规则触发。 redis.conf, SNAPSHOTTING,其中定义了触发把数据保存到磁盘的触发频率。 如果不需要 RDB 方案,注释 save 或者配置成空字符串""。 save 900 1 900 秒内至少有一个 key 被修改(包括添加) save 300 10 400 秒内至少有 10 个 key 被修改save 60 10000 60 秒内至少有 10000 个 key 被修改 注意上面的配置是不冲突的,只要满足任意一个都会触发。 RDB 文件位置和目录: 文件路径,dir ./ 文件名称dbfilename dump.rdb 是否是LZF压缩rdb文件 rdbcompression yes 开启数据校验 rdbchecksum yes 问题:为什么停止 Redis 服务的时候没有 save,重启数据还在? RDB 还有两种触发方式: b)shutdown 触发,保证服务器正常关闭。 c)flushall,RDB 文件是空的,没什么意义(删掉 dump.rdb 演示一下)。 2、手动触发 如果我们需要重启服务或者迁移数据,这个时候就需要手动触 RDB 快照保存。Redis 提供了两条命令: a)save save 在生成快照的时候会阻塞当前 Redis 服务器, Redis 不能处理其他命令。如果内存中的数据比较多,会造成 Redis 长时间的阻塞。生产环境不建议使用这个命令。 为了解决这个问题,Redis 提供了第二种方式。 执行 bgsave 时,Redis 会在后台异步进行快照操作,快照同时还可以响应客户端请求。 具体操作是 Redis 进程执行 fork 操作创建子进程(copy-on-write),RDB 持久化过程由子进程负责,完成后自动结束。它不会记录 fork 之后后续的命令。阻塞只发生在 fork 阶段,一般时间很短。 用 lastsave 命令可以查看最近一次成功生成快照的时间。 6.1.2 RDB 数据的恢复(演示) 1、shutdown 持久化添加键值 添加键值 redis> set k1 1 redis> set k2 2 redis> set k3 3 redis> set k4 4 redis> set k5 5 停服务器,触发 save redis> shutdown 备份 dump.rdb 文件 cp dump.rdb dump.rdb.bak 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 啥都没有: redis> keys 3、通过备份文件恢复数据停服务器 redis> shutdown 重命名备份文件 mv dump.rdb.bak dump.rdb 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 查看数据 redis> keys 6.1.3 RDB 文件的优势和劣势 一、优势 1.RDB 是一个非常紧凑(compact)的文件,它保存了 redis 在某个时间点上的数据集。这种文件非常适合用于进行备份和灾难恢复。 2.生成 RDB 文件的时候,redis 主进程会 fork()一个子进程来处理所有保存工作,主进程不需要进行任何磁盘 IO 操作。 3.RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。 二、劣势 1、RDB 方式数据没办法做到实时持久化/秒级持久化。因为 bgsave 每次运行都要执行 fork 操作创建子进程,频繁执行成本过高。 2、在一定间隔时间做一次备份,所以如果 redis 意外 down 掉的话,就会丢失最后一次快照之后的所有修改(数据有丢失)。 如果数据相对来说比较重要,希望将损失降到最小,则可以使用 AOF 方式进行持久化。 6.2 AOF Append Only File AOF:Redis 默认不开启。AOF 采用日志的形式来记录每个写操作,并追加到文件中。开启后,执行更改 Redis 数据的命令时,就会把命令写入到 AOF 文件中。 Redis 重启时会根据日志文件的内容把写指令从前到后执行一次以完成数据的恢复工作。 6.2.1 AOF 配置 配置文件 redis.conf 开关appendonly no 文件名appendfilename "appendonly.aof" AOF 文件的内容(vim 查看): 问题:数据都是实时持久化到磁盘吗? 由于操作系统的缓存机制,AOF 数据并没有真正地写入硬盘,而是进入了系统的硬盘缓存。什么时候把缓冲区的内容写入到 AOF 文件? 问题:文件越来越大,怎么办? 由于 AOF 持久化是 Redis 不断将写命令记录到 AOF 文件中,随着 Redis 不断的进行,AOF 的文件会越来越大,文件越大,占用服务器内存越大以及 AOF 恢复要求时间越长。 例如 set xxx 666,执行 1000 次,结果都是 xxx=666。 为了解决这个问题,Redis 新增了重写机制,当 AOF 文件的大小超过所设定的阈值时,Redis 就会启动 AOF 文件的内容压缩,只保留可以恢复数据的最小指令集。 可以使用命令 bgrewriteaof 来重写。 AOF 文件重写并不是对原文件进行重新整理,而是直接读取服务器现有的键值对,然后用一条命令去代替之前记录这个键值对的多条命令,生成一个新的文件后去替换原来的 AOF 文件。 重写触发机制 auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb 问题:重写过程中,AOF 文件被更改了怎么办? 另外有两个与 AOF 相关的参数: 6.2.2 AOF 数据恢复 重启 Redis 之后就会进行 AOF 文件的恢复。 6.2.3 AOF 优势与劣势 优点: 1、AOF 持久化的方法提供了多种的同步频率,即使使用默认的同步频率每秒同步一次,Redis 最多也就丢失 1 秒的数据而已。 缺点: 1、对于具有相同数据的的 Redis,AOF 文件通常会比 RDB 文件体积更大(RDB 存的是数据快照)。 2、虽然 AOF 提供了多种同步的频率,默认情况下,每秒同步一次的频率也具有较高的性能。在高并发的情况下,RDB 比 AOF 具好更好的性能保证。 6.3 两种方案比较 那么对于 AOF 和 RDB 两种持久化方式,我们应该如何选择呢? 如果可以忍受一小段时间内数据的丢失,毫无疑问使用 RDB 是最好的,定时生成 RDB 快照(snapshot)非常便于进行数据库备份, 并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度要快。 否则就使用 AOF 重写。但是一般情况下建议不要单独使用某一种持久化机制,而是应该两种一起用,在这种情况下,当 redis 重启的时候会优先载入 AOF 文件来恢复原始的数据,因为在通常情况下 AOF 文件保存的数据集要比 RDB 文件保存的数据集要完整。 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhoutaochun/article/details/120075092。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-18 12:25:04
541
转载
转载文章
...虚引用 虚引用不是给开发人员用的,一般是给写JVM(java虚拟机,没有它java程序运行不了),Netty等技术大牛用的 虚引用,对象当被回收时,会将其放在队列中,此时我们监听到队列中有新值了,就知道有虚引用被回收了 此时我们要做相应的处理,虚引用指向的值,是无法直接get()获取的 虚引用使用场景 一般情况(其它情况暂时没什么用),虚引用指向堆外内存(直接被操作系统管理的内存),JVM无法对其回收 当虚引用对象被回收时,JVM的垃圾回收无法自动回收堆外内存, 但是此时,虚引用对象被回收,会将其放在队列中 操作人员,看到队列中有对象被回收,就进行相应操作,回收堆内存 如何回收堆外内存 C和C++有函数可以用 java现在也提供了Unsafe类可以操作堆外内存,具体请参考上一篇博客,总之,JDK1.8只能通过反射来用,JDK1.9以上可以通过new Unsafe对象来用 Unsafe类的方法有: copyMemory():直接访问内存 allocateMemory():直接分配内存,这就必须手动回收内存了 freeMemory():回收内存 下面是一个虚引用例子,自己看吧,懂得自然懂,现在看不懂的,先收藏或者保存上,以后回来看 / 一个对象是否有虚引用的存在,完全不会对其生存时间构成影响, 也无法通过虚引用来获取一个对象的实例。 为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。 虚引用和弱引用对关联对象的回收都不会产生影响,如果只有虚引用活着弱引用关联着对象, 那么这个对象就会被回收。它们的不同之处在于弱引用的get方法,虚引用的get方法始终返回null, 弱引用可以使用ReferenceQueue,虚引用必须配合ReferenceQueue使用。 jdk中直接内存的回收就用到虚引用,由于jvm自动内存管理的范围是堆内存, 而直接内存是在堆内存之外(其实是内存映射文件,自行去理解虚拟内存空间的相关概念), 所以直接内存的分配和回收都是有Unsafe类去操作,java在申请一块直接内存之后, 会在堆内存分配一个对象保存这个堆外内存的引用, 这个对象被垃圾收集器管理,一旦这个对象被回收, 相应的用户线程会收到通知并对直接内存进行清理工作。 事实上,虚引用有一个很重要的用途就是用来做堆外内存的释放, DirectByteBuffer就是通过虚引用来实现堆外内存的释放的。/import java.lang.ref.PhantomReference;import java.lang.ref.Reference;import java.lang.ref.ReferenceQueue;import java.util.LinkedList;import java.util.List;public class T04_PhantomReference {private static final List<Object> LIST = new LinkedList<>();private static final ReferenceQueue<M> QUEUE = new ReferenceQueue<>();public static void main(String[] args) {PhantomReference<M> phantomReference = new PhantomReference<>(new M(), QUEUE);new Thread(() -> {while (true) {LIST.add(new byte[1024 1024]);try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();Thread.currentThread().interrupt();}System.out.println(phantomReference.get());} }).start();new Thread(() -> {while (true) {Reference<? extends M> poll = QUEUE.poll();if (poll != null) {System.out.println("--- 虚引用对象被jvm回收了 ---- " + poll);} }}).start();try {Thread.sleep(500);} catch (InterruptedException e) {e.printStackTrace();} }} 2、容器 1、发展历史(一定要了解) map容器你需要了解的历史 JDK早期,java提供了Vector和Hashtable两个容器,这两个容器,很多操作都加了锁Synchronized,对于某些不需要用锁的情况下,就显得十分影响性能,所以现在基本没人用这两个容器,但是面试经常问这两个容器里面的数据结构等内容 后来,出现了HashMap,此容器完全不加锁,是用的最多的容器 但是完全不加锁未免不完善,所以java提供了如下方式,将HashMap变为加锁的 //通过Collections.synchronizedMap(HashMap)方法,将其变为加锁Map集合,其中泛型随意,UUID只是举例。static Map<UUID, UUID> m = Collections.synchronizedMap(new HashMap<UUID, UUID>()); 通过阅读源码发现,上面方法将HashMap变为加锁,也是使用Synchronized,只是锁的内容更细,但并不比HashTable效率高多少 所以衍生除了新的容器ConcurrentHashMap ConcurrentHashMap 此容器,插入效率不如上面的,因为它做了各种判断和CAS,但是差距不是特别大 读取效率很高,100个线程同时访问,每个线程读取一百万次实测 Hashtable 39s ,SynchronizedHashMap 38s ,ConcurrentHashMap 1.7s 前两个将近40秒,ConcurrentHashMap只需要不到2s,由此可见此容器读取效率极高 2、为什么推荐使用Queue来做高并发 为什么推荐Queue(队列) Queue接口提供了很多针对多线程非常友好的API(offer ,peek和poll,其中BlockingQueue还添加了put和take可以阻塞),可以说专门为多线程高并发而创造的接口,所以一般我们使用Queue而不用List 以下代码分别使用链表LinkList和ConcurrentQueue,对比一下速度 LinkList用了5s多,ConcurrentQueue几乎瞬间完成 Concurrent接口就是专为多线程设计,多线程设计要多考虑Queue(高并发用)的使用,少使用List / 有N张火车票,每张票都有一个编号 同时有10个窗口对外售票 请写一个模拟程序 分析下面的程序可能会产生哪些问题? 重复销售?超量销售? 使用Vector或者Collections.synchronizedXXX 分析一下,这样能解决问题吗? 就算操作A和B都是同步的,但A和B组成的复合操作也未必是同步的,仍然需要自己进行同步 就像这个程序,判断size和进行remove必须是一整个的原子操作 @author 马士兵/import java.util.LinkedList;import java.util.List;import java.util.concurrent.TimeUnit;public class TicketSeller3 {static List<String> tickets = new LinkedList<>();static {for(int i=0; i<1000; i++) tickets.add("票 编号:" + i);}public static void main(String[] args) {for(int i=0; i<10; i++) {new Thread(()->{while(true) {synchronized(tickets) {if(tickets.size() <= 0) break;try {TimeUnit.MILLISECONDS.sleep(10);} catch (InterruptedException e) {e.printStackTrace();}System.out.println("销售了--" + tickets.remove(0));} }}).start();} }} 队列 import java.util.Queue;import java.util.concurrent.ConcurrentLinkedQueue;public class TicketSeller4 {static Queue<String> tickets = new ConcurrentLinkedQueue<>();static {for(int i=0; i<1000; i++) tickets.add("票 编号:" + i);}public static void main(String[] args) {for(int i=0; i<10; i++) {new Thread(()->{while(true) {String s = tickets.poll();if(s == null) break;else System.out.println("销售了--" + s);} }).start();} }} 3、多线程常用容器 1、ConcurrentHashMap(无序)和ConcurrentSkipListMap(有序,链表,使用跳表数据结构,让查询更快) 跳表:http://blog.csdn.net/sunxianghuang/article/details/52221913 import java.util.;import java.util.concurrent.ConcurrentHashMap;import java.util.concurrent.ConcurrentSkipListMap;import java.util.concurrent.CountDownLatch;public class T01_ConcurrentMap {public static void main(String[] args) {Map<String, String> map = new ConcurrentHashMap<>();//Map<String, String> map = new ConcurrentSkipListMap<>(); //高并发并且排序//Map<String, String> map = new Hashtable<>();//Map<String, String> map = new HashMap<>(); //Collections.synchronizedXXX//TreeMapRandom r = new Random();Thread[] ths = new Thread[100];CountDownLatch latch = new CountDownLatch(ths.length);long start = System.currentTimeMillis();for(int i=0; i<ths.length; i++) {ths[i] = new Thread(()->{for(int j=0; j<10000; j++) map.put("a" + r.nextInt(100000), "a" + r.nextInt(100000));latch.countDown();});}Arrays.asList(ths).forEach(t->t.start());try {latch.await();} catch (InterruptedException e) {e.printStackTrace();}long end = System.currentTimeMillis();System.out.println(end - start);System.out.println(map.size());} } 2、CopyOnWriteList(写时复制)和CopyOnWriteSet 适用于,高并发是,读的多,写的少的情况 当我们写的时候,将容器复制,让写线程去复制的线程写(写的时候加锁) 而读线程依旧去读旧的(读的时候不加锁) 当写完,将对象指向复制后的已经写完的容器,原来容器销毁 大大提高读的效率 / 写时复制容器 copy on write 多线程环境下,写时效率低,读时效率高 适合写少读多的环境 @author 马士兵/import java.util.ArrayList;import java.util.Arrays;import java.util.List;import java.util.Random;import java.util.Vector;import java.util.concurrent.CopyOnWriteArrayList;public class T02_CopyOnWriteList {public static void main(String[] args) {List<String> lists = //new ArrayList<>(); //这个会出并发问题!//new Vector();new CopyOnWriteArrayList<>();Random r = new Random();Thread[] ths = new Thread[100];for(int i=0; i<ths.length; i++) {Runnable task = new Runnable() {@Overridepublic void run() {for(int i=0; i<1000; i++) lists.add("a" + r.nextInt(10000));} };ths[i] = new Thread(task);}runAndComputeTime(ths);System.out.println(lists.size());}static void runAndComputeTime(Thread[] ths) {long s1 = System.currentTimeMillis();Arrays.asList(ths).forEach(t->t.start());Arrays.asList(ths).forEach(t->{try {t.join();} catch (InterruptedException e) {e.printStackTrace();} });long s2 = System.currentTimeMillis();System.out.println(s2 - s1);} } 3、synchronizedList和ConcurrentLinkedQueue package com.mashibing.juc.c_025;import java.util.ArrayList;import java.util.Collections;import java.util.List;import java.util.Queue;import java.util.concurrent.ConcurrentLinkedQueue;public class T04_ConcurrentQueue {public static void main(String[] args) {List<String> strsList = new ArrayList<>();List<String> strsSync = Collections.synchronizedList(strsList);//加锁ListQueue<String> strs = new ConcurrentLinkedQueue<>();//Concurrent链表队列,就是读快for(int i=0; i<10; i++) {strs.offer("a" + i); //add添加,但是不同点是,此方法会返回一个布尔值}System.out.println(strs);System.out.println(strs.size());System.out.println(strs.poll());//取出,取完后将元素去除System.out.println(strs.size());System.out.println(strs.peek());//取出,但是不会将元素从队列删除System.out.println(strs.size());//双端队列Deque} } 4、LinkedBlockingQueue 链表阻塞队列(无界链表,可以一直装东西,直到内存满(其实,也不是无限,其长度Integer.MaxValue就是上限,毕竟最大就这么大)) 主要体现在put和take方法,put添加的时候,如果队列满了,就阻塞当前线程,直到队列有空位,继续插入。take方法取的时候,如果没有值,就阻塞,等有值了,立马去取 import java.util.Random;import java.util.concurrent.BlockingQueue;import java.util.concurrent.LinkedBlockingQueue;import java.util.concurrent.TimeUnit;public class T05_LinkedBlockingQueue {static BlockingQueue<String> strs = new LinkedBlockingQueue<>();static Random r = new Random();public static void main(String[] args) {new Thread(() -> {for (int i = 0; i < 100; i++) {try {strs.put("a" + i); //如果满了,当前线程就会等待(实现阻塞),等多会有空位,将值插入TimeUnit.MILLISECONDS.sleep(r.nextInt(1000));} catch (InterruptedException e) {e.printStackTrace();} }}, "p1").start();for (int i = 0; i < 5; i++) {new Thread(() -> {for (;;) {try {System.out.println(Thread.currentThread().getName() + " take -" + strs.take()); //取内容,如果空了,当前线程就会等待(实现阻塞)} catch (InterruptedException e) {e.printStackTrace();} }}, "c" + i).start();} }} 5、ArrayBlockingQueue 有界阻塞队列(因为Array需要指定长度) import java.util.Random;import java.util.concurrent.ArrayBlockingQueue;import java.util.concurrent.BlockingQueue;import java.util.concurrent.TimeUnit;public class T06_ArrayBlockingQueue {static BlockingQueue<String> strs = new ArrayBlockingQueue<>(10);static Random r = new Random();public static void main(String[] args) throws InterruptedException {for (int i = 0; i < 10; i++) {strs.put("a" + i);}//strs.put("aaa"); //满了就会等待,程序阻塞//strs.add("aaa");//strs.offer("aaa");strs.offer("aaa", 1, TimeUnit.SECONDS);System.out.println(strs);} } 6、特殊的阻塞队列1:DelayQueue 延时队列(按时间进行调度,就是隔多长时间运行,谁隔的少,谁先) 以下例子中,我们添加线程到队列顺序为t12345,正常情况下,会按照顺序运行,但是这里有了延时时间,也就是时间越短,越先执行 步骤很简单,拿到延时队列 指定构造方法 继承 implements Delayed 重写 compareTo和getDelay import java.util.Calendar;import java.util.Random;import java.util.concurrent.BlockingQueue;import java.util.concurrent.DelayQueue;import java.util.concurrent.Delayed;import java.util.concurrent.TimeUnit;public class T07_DelayQueue {static BlockingQueue<MyTask> tasks = new DelayQueue<>();static Random r = new Random();static class MyTask implements Delayed {String name;long runningTime;MyTask(String name, long rt) {this.name = name;this.runningTime = rt;}@Overridepublic int compareTo(Delayed o) {if(this.getDelay(TimeUnit.MILLISECONDS) < o.getDelay(TimeUnit.MILLISECONDS))return -1;else if(this.getDelay(TimeUnit.MILLISECONDS) > o.getDelay(TimeUnit.MILLISECONDS)) return 1;else return 0;}@Overridepublic long getDelay(TimeUnit unit) {return unit.convert(runningTime - System.currentTimeMillis(), TimeUnit.MILLISECONDS);}@Overridepublic String toString() {return name + " " + runningTime;} }public static void main(String[] args) throws InterruptedException {long now = System.currentTimeMillis();MyTask t1 = new MyTask("t1", now + 1000);MyTask t2 = new MyTask("t2", now + 2000);MyTask t3 = new MyTask("t3", now + 1500);MyTask t4 = new MyTask("t4", now + 2500);MyTask t5 = new MyTask("t5", now + 500);tasks.put(t1);tasks.put(t2);tasks.put(t3);tasks.put(t4);tasks.put(t5);System.out.println(tasks);for(int i=0; i<5; i++) {System.out.println(tasks.take());//获取的是toString方法返回值} }} 7、特殊的阻塞队列2:PriorityQueque 优先队列(二叉树算法,就是排序) import java.util.PriorityQueue;public class T07_01_PriorityQueque {public static void main(String[] args) {PriorityQueue<String> q = new PriorityQueue<>();q.add("c");q.add("e");q.add("a");q.add("d");q.add("z");for (int i = 0; i < 5; i++) {System.out.println(q.poll());} }} 8、特殊的阻塞队列3:SynchronusQueue 同步队列(线程池用处非常大) 此队列容量为0,当插入元素时,必须同时有个线程往外取 就是说,当你往这个队列里面插入一个元素,它就拿着这个元素站着(阻塞),直到有个取元素的线程来,它就把元素交给它 就是用来同步数据的,也就是线程间交互数据用的一个特殊队列 package com.mashibing.juc.c_025;import java.util.concurrent.BlockingQueue;import java.util.concurrent.SynchronousQueue;public class T08_SynchronusQueue { //容量为0public static void main(String[] args) throws InterruptedException {BlockingQueue<String> strs = new SynchronousQueue<>();new Thread(()->{//这个线程就是消费者,来取值try {System.out.println(strs.take());//和同步队列要值} catch (InterruptedException e) {e.printStackTrace();} }).start();strs.put("aaa"); //阻塞等待消费者消费,就拿着aaa站着,等线程来取//strs.put("bbb");//strs.add("aaa");System.out.println(strs.size());} } 9、特殊的阻塞队列4:TransferQueue 传递队列 此队列加入了一个方法transfer()用来向队列添加元素 但是和put()方法不同的是,put添加完元素就走了 而这个方法,添加完自己就阻塞了,直到有人将这个元素取走,它才继续工作(省去我们手动阻塞) import java.util.concurrent.LinkedTransferQueue;public class T09_TransferQueue {public static void main(String[] args) throws InterruptedException {LinkedTransferQueue<String> strs = new LinkedTransferQueue<>();new Thread(() -> {try {System.out.println(strs.take());} catch (InterruptedException e) {e.printStackTrace();} }).start();strs.transfer("aaa");//放东西到队列,同时阻塞等待消费者线程,取走元素//strs.put("aaa");//如果用put就和普通队列一样,放完东西就走了/new Thread(() -> {try {System.out.println(strs.take());} catch (InterruptedException e) {e.printStackTrace();} }).start();/} } 3、线程池 线程池 由于单独创建线程,十分影响效率,而且无法对线程集中管理,一旦疏落,可能线程无限执行,浪费资源 线程池就是一个存储线程的游泳池,而每个线程就是池子里面的赛道 池子里的线程不执行任何任务,只是提供一个资源 而谁提交了任务,比如我想来游泳,那么池子就给你一个赛道,让你游泳 比如它想练憋气,那么给它一个赛道练憋气 当他们用完,走了,那么后面其它人再过来继续用 这就是线程池,始终只有这几个线程,不做实现,而是借用这几个线程的用户,自己掌控用这些线程资源做什么(提交任务给线程,线程空闲就帮他们完成任务) 线程池的两种类型(两类,不是两个) ThreadPoolExecutor(简称TPE) ForkJoinPool(分解汇总任务(将任务细化,最后汇总结果),少量线程执行多个任务(子任务,TPE做不到先执行子任务),CPU密集型) Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 1、常用类 Executor ExecutorService 扩展了execute方法,具有一个返回值 规定了异步执行机制,提供了一些执行器方法,比如shutdown()关闭等 但是它不知道执行器中的线程何时执行完 Callable 对Runnable进行了扩展,实现Callable的调用,可以有返回值,表示线程的状态 但是无法返回线程执行结果 Future 获得未来线程执行结果 由此,我们可以得知线程池基本的一个使用步骤 其中service.submit():为异步提交,也就是说,主线程该干嘛干嘛,我是异步执行的,和同步不一样(当前线程执行完,主线程才能继续执行,叫同步) futuer.get():获取结果集结果,此时因为异步,主线程执行到这里,结果集可能还没封装好,所以此时如果没有值,就阻塞,直到结果集出来 public static void main(String[] args) throws ExecutionException, InterruptedException {Callable<String> c = new Callable() {@Overridepublic String call() throws Exception {return "Hello Callable";} };ExecutorService service = Executors.newCachedThreadPool();Future<String> future = service.submit(c); //异步System.out.println(future.get());//阻塞service.shutdown();} 2、FutureTask 可充当任务的结果集 上面我们介绍Future是用来得到任务的执行结果的 而FutureTask,可以当做一个任务用,并且返回任务的结果,也就是可以跑线程,然后还可以得到线程结果 public static void main(String[] args) throws InterruptedException, ExecutionException {FutureTask<Integer> task = new FutureTask<>(()->{TimeUnit.MILLISECONDS.sleep(500);return 1000;}); //new Callable () { Integer call();}new Thread(task).start();System.out.println(task.get()); //阻塞} 3、CompletableFuture 非常灵活的任务结果集 一个非常灵活的结果集 他可以将很多执行不同任务的线程的结果进行汇总 比如一个网站,它可以启动多个线程去各大电商网站,比如淘宝,京东,收集某些或某一个商品的价格 最后,将获取的数据进行整合封装 最终,客户就可以通过此网站,获取某类商品在各网站的价格信息 / 假设你能够提供一个服务 这个服务查询各大电商网站同一类产品的价格并汇总展示 @author 马士兵 http://mashibing.com/import java.io.IOException;import java.util.Random;import java.util.concurrent.CompletableFuture;import java.util.concurrent.ExecutionException;import java.util.concurrent.TimeUnit;public class T06_01_CompletableFuture {public static void main(String[] args) throws ExecutionException, InterruptedException {long start, end;/start = System.currentTimeMillis();priceOfTM();priceOfTB();priceOfJD();end = System.currentTimeMillis();System.out.println("use serial method call! " + (end - start));/start = System.currentTimeMillis();CompletableFuture<Double> futureTM = CompletableFuture.supplyAsync(()->priceOfTM());CompletableFuture<Double> futureTB = CompletableFuture.supplyAsync(()->priceOfTB());CompletableFuture<Double> futureJD = CompletableFuture.supplyAsync(()->priceOfJD());CompletableFuture.allOf(futureTM, futureTB, futureJD).join();//当所有结果集都获取到,才汇总阻塞CompletableFuture.supplyAsync(()->priceOfTM()).thenApply(String::valueOf).thenApply(str-> "price " + str).thenAccept(System.out::println);end = System.currentTimeMillis();System.out.println("use completable future! " + (end - start));try {System.in.read();} catch (IOException e) {e.printStackTrace();} }private static double priceOfTM() {delay();return 1.00;}private static double priceOfTB() {delay();return 2.00;}private static double priceOfJD() {delay();return 3.00;}/private static double priceOfAmazon() {delay();throw new RuntimeException("product not exist!");}/private static void delay() {int time = new Random().nextInt(500);try {TimeUnit.MILLISECONDS.sleep(time);} catch (InterruptedException e) {e.printStackTrace();}System.out.printf("After %s sleep!\n", time);} } 4、TPE型线程池1:ThreadPoolExecutor 原理及其参数 线程池由两个集合组成,一个集合存储线程,一个集合存储任务 存储线程:可以规定大小,最多可以有多少个,以及指定核心线程数量(不会被回收) 任务队列:存储任务 细节:初始线程池没有线程,当有一个任务来,线程池起一个线程,又有一个任务来,再起一个线程,直到达到核心线程数量 核心线程数量达到时,新来的任务将存储到任务队列中等待核心线程处理完成,直到任务队列也满了 当任务队列满了,此时再次启动一个线程(非核心线程,一旦空闲,达到指定时间将会消失),直到达到线程最大数量 当线程容器和任务容器都满了,又来了线程,将会执行拒绝策略 上面的细节涉及的所有步骤内容,均由创建线程池的参数执行 下面是ThreadPoolExecutor构造方法参数的源码注释 / 用给定的初始值,创建一个新的线程池 @param corePoolSize 核心线程数量 @param maximumPoolSize 最大线程数量 @param keepAliveTime 当线程数大于核心线程数量时,空闲的线程可生存的时间 @param unit 时间单位 @param workQueue 任务队列,只能包含由execute提交的Runnable任务 @param threadFactory 工厂,用于创建线程给线程池调度的工厂,可以自定义 @param handler 拒绝策略(可以自定义,JDK默认提供4种),当线程边界和队列容量已经满了,新来线程被阻塞时使用的处理程序/public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) JDK提供的4种拒绝策略,不常用,一般都是自己定义拒绝策略 Abort:抛异常 Discard:扔掉,不抛异常 DiscardOldest:扔掉排队时间最久的(将队列中排队时间最久的扔掉,然后让新来的进来) CallerRuns:调用者处理任务(谁通过execute方法提交任务,谁处理) ThreadPoolExecutor继承关系 继承关系:ThreadPoolExecutor->AbstractExectorService类->ExectorService接口->Exector接口 Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 看看下面创建线程池,哪里用到了它 使用实例 import java.io.IOException;import java.util.concurrent.;public class T05_00_HelloThreadPool {static class Task implements Runnable {private int i;public Task(int i) {this.i = i;}@Overridepublic void run() {System.out.println(Thread.currentThread().getName() + " Task " + i);try {System.in.read();} catch (IOException e) {e.printStackTrace();} }@Overridepublic String toString() {return "Task{" +"i=" + i +'}';} }public static void main(String[] args) {ThreadPoolExecutor tpe = new ThreadPoolExecutor(2, 4,60, TimeUnit.SECONDS,new ArrayBlockingQueue<Runnable>(4),Executors.defaultThreadFactory(),new ThreadPoolExecutor.CallerRunsPolicy());//创建线程池,核心2个,最大4个,空闲线程存活时间60s,任务队列容量4,使用默认线程工程,创建线程。拒绝策略是JDK提供的for (int i = 0; i < 8; i++) {tpe.execute(new Task(i));//供提交8次任务}System.out.println(tpe.getQueue());//查看任务队列tpe.execute(new Task(100));//提交新的任务System.out.println(tpe.getQueue());tpe.shutdown();//关闭线程池} } 5、TPE型线程池2:SingleThreadPool 单例线程池(只有一个线程) 为什么有单例线程池 有任务队列,有线程池管理机制 Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 看看下面哪里用到了它 /创建单例线程池,扔5个任务进去,查看输出结果,看看有几个线程执行任务/import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class T07_SingleThreadPool {public static void main(String[] args) {ExecutorService service = Executors.newSingleThreadExecutor();for(int i=0; i<5; i++) {final int j = i;service.execute(()->{System.out.println(j + " " + Thread.currentThread().getName());});} }} 6、TPE型线程池3:CachedPool 缓存,存储线程池 此线程池没有核心线程,来一个任务启动一个线程(最多Integer.MaxValue,不会放在任务队列,因为任务队列容量为0),每个线程空闲后,只能活60s 实例 import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class T07_SingleThreadPool {public static void main(String[] args) {ExecutorService service = Executors.newSingleThreadExecutor();//通过Executors获取池子for(int i=0; i<5; i++) {final int j = i;service.execute(()->{//提交任务System.out.println(j + " " + Thread.currentThread().getName());});}service.shutdown();} } 7、TPE型线程池4:FixedThreadPool 固定线程池 此线次池,用于创建一个固定线程数量的线程池,不会回收 实例 import java.util.ArrayList;import java.util.List;import java.util.concurrent.Callable;import java.util.concurrent.ExecutionException;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.Future;public class T09_FixedThreadPool {public static void main(String[] args) throws InterruptedException, ExecutionException {//并发执行long start = System.currentTimeMillis();getPrime(1, 200000); long end = System.currentTimeMillis();System.out.println(end - start);//输出并发执行耗费时间final int cpuCoreNum = 4;//并行执行ExecutorService service = Executors.newFixedThreadPool(cpuCoreNum);MyTask t1 = new MyTask(1, 80000); //1-5 5-10 10-15 15-20MyTask t2 = new MyTask(80001, 130000);MyTask t3 = new MyTask(130001, 170000);MyTask t4 = new MyTask(170001, 200000);Future<List<Integer>> f1 = service.submit(t1);Future<List<Integer>> f2 = service.submit(t2);Future<List<Integer>> f3 = service.submit(t3);Future<List<Integer>> f4 = service.submit(t4);start = System.currentTimeMillis();f1.get();f2.get();f3.get();f4.get();end = System.currentTimeMillis();System.out.println(end - start);//输出并行耗费时间}static class MyTask implements Callable<List<Integer>> {int startPos, endPos;MyTask(int s, int e) {this.startPos = s;this.endPos = e;}@Overridepublic List<Integer> call() throws Exception {List<Integer> r = getPrime(startPos, endPos);return r;} }static boolean isPrime(int num) {for(int i=2; i<=num/2; i++) {if(num % i == 0) return false;}return true;}static List<Integer> getPrime(int start, int end) {List<Integer> results = new ArrayList<>();for(int i=start; i<=end; i++) {if(isPrime(i)) results.add(i);}return results;} } 8、TPE型线程池5:ScheduledPool 预定,延时线程池 根据延时时间(隔多长时间后运行),排序,哪个线程先执行,用户只需要指定核心线程数量 此线程池返回的池对象,和提交任务方法都不一样,比较涉及到时间 import java.util.Random;import java.util.concurrent.Executors;import java.util.concurrent.ScheduledExecutorService;import java.util.concurrent.TimeUnit;public class T10_ScheduledPool {public static void main(String[] args) {ScheduledExecutorService service = Executors.newScheduledThreadPool(4);service.scheduleAtFixedRate(()->{//提交延时任务try {TimeUnit.MILLISECONDS.sleep(new Random().nextInt(1000));} catch (InterruptedException e) {e.printStackTrace();}System.out.println(Thread.currentThread().getName());}, 0, 500, TimeUnit.MILLISECONDS);//指定延时时间和单位,第一个任务延时0毫秒,之后的任务,延时500毫秒} } 9、手写拒绝策略小例子 import java.util.concurrent.;public class T14_MyRejectedHandler {public static void main(String[] args) {ExecutorService service = new ThreadPoolExecutor(4, 4,0, TimeUnit.SECONDS, new ArrayBlockingQueue<>(6),Executors.defaultThreadFactory(),new MyHandler());//将手写拒绝策略传入}static class MyHandler implements RejectedExecutionHandler {//1、继承RejectedExecutionHandler@Overridepublic void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {//2、重写方法//log("r rejected")//伪代码,表示通过log4j.log()报一下日志,拒绝的时间,线程名//save r kafka mysql redis//可以尝试保存队列//try 3 times //可以尝试几次,比如3次,重新去抢队列,3次还不行就丢弃if(executor.getQueue().size() < 10000) {//尝试条件,如果size>10000了,就执行拒绝策略//try put again();//如果小于10000,尝试将其放到队列中} }} } 10、ForkJoinPool线程池1:ForkJoinPool 前面我们讲过线程分为两大类,TPE和FJP ForkJoinPool(分解汇总任务(将任务细化,最后汇总结果),少量线程执行多个任务(子任务,TPE做不到先执行子任务),CPU密集型) 适合将大任务切分成多个小任务运行 两个方法,fork():分子任务,将子任务分配到线程池中 join():当前任务的计算结果,如果有子任务,等子任务结果返回后再汇总 下面实例实现,一百万个随机数求和,由两种方法实现,一种ForkJoinPool分任务并行,一种使用单线程做 import java.io.IOException;import java.util.Arrays;import java.util.Random;import java.util.concurrent.ForkJoinPool;import java.util.concurrent.RecursiveAction;import java.util.concurrent.RecursiveTask;public class T12_ForkJoinPool {//1000000个随机数求和static int[] nums = new int[1000000];//一堆数static final int MAX_NUM = 50000;//分任务时,每个任务的操作量不能多于50000个,否则就继续细分static Random r = new Random();//使用随机数将数组初始化static {for(int i=0; i<nums.length; i++) {nums[i] = r.nextInt(100);}System.out.println("---" + Arrays.stream(nums).sum()); //stream api 单线程就这么做,一个一个加}//分任务,需要继承,可以继承RecursiveAction(不需要返回值,一般用在不需要返回值的场景)或//RecursiveTask(需要返回值,我们用这个,因为我们需要最后获取求和结果)两个更好实现的类,//他俩继承与ForkJoinTaskstatic class AddTaskRet extends RecursiveTask<Long> {private static final long serialVersionUID = 1L;int start, end;AddTaskRet(int s, int e) {start = s;end = e;}@Overrideprotected Long compute() {if(end-start <= MAX_NUM) {//如果任务操作数小于规定的最大操作数,就进行运算,long sum = 0L;for(int i=start; i<end; i++) sum += nums[i];return sum;//返回结果} //如果分配的操作数大于规定,就继续细分(简单的重中点分,两半)int middle = start + (end-start)/2;//获取中间值AddTaskRet subTask1 = new AddTaskRet(start, middle);//传入起始值和中间值,表示一个子任务AddTaskRet subTask2 = new AddTaskRet(middle, end);//中间值和结尾值,表示一个子任务subTask1.fork();//分任务subTask2.fork();//分任务return subTask1.join() + subTask2.join();//最后返回结果汇总} }public static void main(String[] args) throws IOException {/ForkJoinPool fjp = new ForkJoinPool();AddTask task = new AddTask(0, nums.length);fjp.execute(task);/ForkJoinPool fjp = new ForkJoinPool();//创建线程池AddTaskRet task = new AddTaskRet(0, nums.length);//创建任务fjp.execute(task);//传入任务long result = task.join();//返回汇总结果System.out.println(result);//System.in.read();} } 11、ForkJoinPool线程池2:WorkStealingPool 任务偷取线程池 原来的线程池,都是有一个任务队列,而这个不同,它给每个线程都分配了一个任务队列 当某一个线程的任务队列没有任务,并且自己空闲,它就去其它线程的任务队列中偷任务,所以叫任务偷取线程池 细节:当线程自己从自己的任务队列拿任务时,不需要加锁,但是偷任务时,因为有两个线程,可能发生同步问题,需要加锁 此线程继承FJP 实例 import java.io.IOException;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.TimeUnit;public class T11_WorkStealingPool {public static void main(String[] args) throws IOException {ExecutorService service = Executors.newWorkStealingPool();System.out.println(Runtime.getRuntime().availableProcessors());service.execute(new R(1000));service.execute(new R(2000));service.execute(new R(2000));service.execute(new R(2000)); //daemonservice.execute(new R(2000));//由于产生的是精灵线程(守护线程、后台线程),主线程不阻塞的话,看不到输出System.in.read(); }static class R implements Runnable {int time;R(int t) {this.time = t;}@Overridepublic void run() {try {TimeUnit.MILLISECONDS.sleep(time);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(time + " " + Thread.currentThread().getName());} }} 12、流式API:ParallelStreamAPI 不懂的请参考:https://blog.csdn.net/grd_java/article/details/110265219 实例 import java.util.ArrayList;import java.util.List;import java.util.Random;public class T13_ParallelStreamAPI {public static void main(String[] args) {List<Integer> nums = new ArrayList<>();Random r = new Random();for(int i=0; i<10000; i++) nums.add(1000000 + r.nextInt(1000000));//System.out.println(nums);long start = System.currentTimeMillis();nums.forEach(v->isPrime(v));long end = System.currentTimeMillis();System.out.println(end - start);//使用parallel stream apistart = System.currentTimeMillis();nums.parallelStream().forEach(T13_ParallelStreamAPI::isPrime);//并行流,将任务切分成子任务执行end = System.currentTimeMillis();System.out.println(end - start);}static boolean isPrime(int num) {for(int i=2; i<=num/2; i++) {if(num % i == 0) return false;}return true;} } 13、总结 总结 Callable相当于一Runnable但是它有返回值 Future:存储执行完产生的结果 FutureTask 相当于Future+Runnable,既可以执行任务,又能获取任务执行的Future结果 CompletableFuture 可以多任务异步,并对多任务控制,整合任务结果,细化完美,比如可以一个任务完成就可以整合结果,也可以所有任务完成才整合结果 4、ThreadPoolExecutor源码解析 依然只讲重点,实际还需要大家按照上篇博客中看源码的方式来看 1、常用变量的解释 // 1. ctl,可以看做一个int类型的数字,高3位表示线程池状态,低29位表示worker数量private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));// 2. COUNT_BITS,Integer.SIZE为32,所以COUNT_BITS为29private static final int COUNT_BITS = Integer.SIZE - 3;// 3. CAPACITY,线程池允许的最大线程数。1左移29位,然后减1,即为 2^29 - 1private static final int CAPACITY = (1 << COUNT_BITS) - 1;// runState is stored in the high-order bits// 4. 线程池有5种状态,按大小排序如下:RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATEDprivate static final int RUNNING = -1 << COUNT_BITS;private static final int SHUTDOWN = 0 << COUNT_BITS;private static final int STOP = 1 << COUNT_BITS;private static final int TIDYING = 2 << COUNT_BITS;private static final int TERMINATED = 3 << COUNT_BITS;// Packing and unpacking ctl// 5. runStateOf(),获取线程池状态,通过按位与操作,低29位将全部变成0private static int runStateOf(int c) { return c & ~CAPACITY; }// 6. workerCountOf(),获取线程池worker数量,通过按位与操作,高3位将全部变成0private static int workerCountOf(int c) { return c & CAPACITY; }// 7. ctlOf(),根据线程池状态和线程池worker数量,生成ctl值private static int ctlOf(int rs, int wc) { return rs | wc; }/ Bit field accessors that don't require unpacking ctl. These depend on the bit layout and on workerCount being never negative./// 8. runStateLessThan(),线程池状态小于xxprivate static boolean runStateLessThan(int c, int s) {return c < s;}// 9. runStateAtLeast(),线程池状态大于等于xxprivate static boolean runStateAtLeast(int c, int s) {return c >= s;} 2、构造方法 public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) {// 基本类型参数校验if (corePoolSize < 0 ||maximumPoolSize <= 0 ||maximumPoolSize < corePoolSize ||keepAliveTime < 0)throw new IllegalArgumentException();// 空指针校验if (workQueue == null || threadFactory == null || handler == null)throw new NullPointerException();this.corePoolSize = corePoolSize;this.maximumPoolSize = maximumPoolSize;this.workQueue = workQueue;// 根据传入参数unit和keepAliveTime,将存活时间转换为纳秒存到变量keepAliveTime 中this.keepAliveTime = unit.toNanos(keepAliveTime);this.threadFactory = threadFactory;this.handler = handler;} 3、提交执行task的过程 public void execute(Runnable command) {if (command == null)throw new NullPointerException();/ Proceed in 3 steps: 1. If fewer than corePoolSize threads are running, try to start a new thread with the given command as its first task. The call to addWorker atomically checks runState and workerCount, and so prevents false alarms that would add threads when it shouldn't, by returning false. 2. If a task can be successfully queued, then we still need to double-check whether we should have added a thread (because existing ones died since last checking) or that the pool shut down since entry into this method. So we recheck state and if necessary roll back the enqueuing if stopped, or start a new thread if there are none. 3. If we cannot queue task, then we try to add a new thread. If it fails, we know we are shut down or saturated and so reject the task./int c = ctl.get();// worker数量比核心线程数小,直接创建worker执行任务if (workerCountOf(c) < corePoolSize) {if (addWorker(command, true))return;c = ctl.get();}// worker数量超过核心线程数,任务直接进入队列if (isRunning(c) && workQueue.offer(command)) {int recheck = ctl.get();// 线程池状态不是RUNNING状态,说明执行过shutdown命令,需要对新加入的任务执行reject()操作。// 这儿为什么需要recheck,是因为任务入队列前后,线程池的状态可能会发生变化。if (! isRunning(recheck) && remove(command))reject(command);// 这儿为什么需要判断0值,主要是在线程池构造方法中,核心线程数允许为0else if (workerCountOf(recheck) == 0)addWorker(null, false);}// 如果线程池不是运行状态,或者任务进入队列失败,则尝试创建worker执行任务。// 这儿有3点需要注意:// 1. 线程池不是运行状态时,addWorker内部会判断线程池状态// 2. addWorker第2个参数表示是否创建核心线程// 3. addWorker返回false,则说明任务执行失败,需要执行reject操作else if (!addWorker(command, false))reject(command);} 4、addworker源码解析 private boolean addWorker(Runnable firstTask, boolean core) {retry:// 外层自旋for (;;) {int c = ctl.get();int rs = runStateOf(c);// 这个条件写得比较难懂,我对其进行了调整,和下面的条件等价// (rs > SHUTDOWN) || // (rs == SHUTDOWN && firstTask != null) || // (rs == SHUTDOWN && workQueue.isEmpty())// 1. 线程池状态大于SHUTDOWN时,直接返回false// 2. 线程池状态等于SHUTDOWN,且firstTask不为null,直接返回false// 3. 线程池状态等于SHUTDOWN,且队列为空,直接返回false// Check if queue empty only if necessary.if (rs >= SHUTDOWN &&! (rs == SHUTDOWN &&firstTask == null &&! workQueue.isEmpty()))return false;// 内层自旋for (;;) {int wc = workerCountOf(c);// worker数量超过容量,直接返回falseif (wc >= CAPACITY ||wc >= (core ? corePoolSize : maximumPoolSize))return false;// 使用CAS的方式增加worker数量。// 若增加成功,则直接跳出外层循环进入到第二部分if (compareAndIncrementWorkerCount(c))break retry;c = ctl.get(); // Re-read ctl// 线程池状态发生变化,对外层循环进行自旋if (runStateOf(c) != rs)continue retry;// 其他情况,直接内层循环进行自旋即可// else CAS failed due to workerCount change; retry inner loop} }boolean workerStarted = false;boolean workerAdded = false;Worker w = null;try {w = new Worker(firstTask);final Thread t = w.thread;if (t != null) {final ReentrantLock mainLock = this.mainLock;// worker的添加必须是串行的,因此需要加锁mainLock.lock();try {// Recheck while holding lock.// Back out on ThreadFactory failure or if// shut down before lock acquired.// 这儿需要重新检查线程池状态int rs = runStateOf(ctl.get());if (rs < SHUTDOWN ||(rs == SHUTDOWN && firstTask == null)) {// worker已经调用过了start()方法,则不再创建workerif (t.isAlive()) // precheck that t is startablethrow new IllegalThreadStateException();// worker创建并添加到workers成功workers.add(w);// 更新largestPoolSize变量int s = workers.size();if (s > largestPoolSize)largestPoolSize = s;workerAdded = true;} } finally {mainLock.unlock();}// 启动worker线程if (workerAdded) {t.start();workerStarted = true;} }} finally {// worker线程启动失败,说明线程池状态发生了变化(关闭操作被执行),需要进行shutdown相关操作if (! workerStarted)addWorkerFailed(w);}return workerStarted;} 5、线程池worker任务单元 private final class Workerextends AbstractQueuedSynchronizerimplements Runnable{/ This class will never be serialized, but we provide a serialVersionUID to suppress a javac warning./private static final long serialVersionUID = 6138294804551838833L;/ Thread this worker is running in. Null if factory fails. /final Thread thread;/ Initial task to run. Possibly null. /Runnable firstTask;/ Per-thread task counter /volatile long completedTasks;/ Creates with given first task and thread from ThreadFactory. @param firstTask the first task (null if none)/Worker(Runnable firstTask) {setState(-1); // inhibit interrupts until runWorkerthis.firstTask = firstTask;// 这儿是Worker的关键所在,使用了线程工厂创建了一个线程。传入的参数为当前workerthis.thread = getThreadFactory().newThread(this);}/ Delegates main run loop to outer runWorker /public void run() {runWorker(this);}// 省略代码...} 6、核心线程执行逻辑-runworker final void runWorker(Worker w) {Thread wt = Thread.currentThread();Runnable task = w.firstTask;w.firstTask = null;// 调用unlock()是为了让外部可以中断w.unlock(); // allow interrupts// 这个变量用于判断是否进入过自旋(while循环)boolean completedAbruptly = true;try {// 这儿是自旋// 1. 如果firstTask不为null,则执行firstTask;// 2. 如果firstTask为null,则调用getTask()从队列获取任务。// 3. 阻塞队列的特性就是:当队列为空时,当前线程会被阻塞等待while (task != null || (task = getTask()) != null) {// 这儿对worker进行加锁,是为了达到下面的目的// 1. 降低锁范围,提升性能// 2. 保证每个worker执行的任务是串行的w.lock();// If pool is stopping, ensure thread is interrupted;// if not, ensure thread is not interrupted. This// requires a recheck in second case to deal with// shutdownNow race while clearing interrupt// 如果线程池正在停止,则对当前线程进行中断操作if ((runStateAtLeast(ctl.get(), STOP) ||(Thread.interrupted() &&runStateAtLeast(ctl.get(), STOP))) &&!wt.isInterrupted())wt.interrupt();// 执行任务,且在执行前后通过beforeExecute()和afterExecute()来扩展其功能。// 这两个方法在当前类里面为空实现。try {beforeExecute(wt, task);Throwable thrown = null;try {task.run();} catch (RuntimeException x) {thrown = x; throw x;} catch (Error x) {thrown = x; throw x;} catch (Throwable x) {thrown = x; throw new Error(x);} finally {afterExecute(task, thrown);} } finally {// 帮助gctask = null;// 已完成任务数加一 w.completedTasks++;w.unlock();} }completedAbruptly = false;} finally {// 自旋操作被退出,说明线程池正在结束processWorkerExit(w, completedAbruptly);} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/grd_java/article/details/113116244。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-21 16:19:45
328
转载
转载文章
...深入讨论,这对于指导开发者正确运用cookie和session管理用户状态具有重要意义。 综上所述,无论是从技术层面还是法律伦理角度,处理不信任SSL证书、cookie和session的相关知识都是网络爬虫领域发展的重要组成部分。不断跟进相关政策变化和技术演进,将有助于我们更好地在遵守规则的前提下进行有效的数据采集和分析工作。
2023-03-01 12:40:55
563
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
id -u username
- 获取用户的UID(用户ID)。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"