前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[自定义Docker镜像构建流程]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...件开发商的合作,共同构建更加完善的生态系统,确保各类硬件设备与管理系统间的无缝对接,从而降低因兼容性问题引发的故障率,提高运维效率。 总之,在瞬息万变的科技领域,无论是老牌厂商如Dell还是新兴力量,都需紧跟时代步伐,充分考虑用户实际需求,持续优化软硬件兼容性和散热性能,以为用户提供更为优质、稳定的使用体验。而作为用户,则可通过关注行业动态,学习借鉴类似文章中的实践经验,以应对可能出现的各种硬件问题。
2023-02-24 14:29:07
172
转载
转载文章
...e Shell)协议构建,通过加密数据流以及认证信息来保护数据的完整性、机密性和真实性,防止数据在传输过程中被窃取或篡改,从而为用户提供更高级别的安全保障。 SSH2 , SSH2是Secure Shell协议的第二版,它是一个专为远程登录会话和其他网络服务提供安全性的应用层协议。SSH2允许用户通过加密的通道进行命令执行、文件传输以及其他多种网络服务操作,确保即使在不安全的网络环境中,敏感信息也能得到保护。在本文中,JSch库就是用来实现Java环境下与SSH2服务器进行交互的一个工具包。 JSch (Java Secure Channel) , JSch是一个纯Java编写的开源库,专门用来实现SSH2协议的各种功能,包括建立加密的网络连接、执行远程命令、端口转发、X11转发以及安全文件传输等。在文中提到的SFTPUtils类就使用了JSch来创建一个安全的SFTP连接,并提供了如上传文件、下载文件等一系列操作方法。开发者可以通过集成JSch到其Java应用程序中,方便快捷地实现在Java平台上与支持SSH2协议的服务器进行安全通信的功能。
2023-04-04 09:43:38
71
转载
Kylin
...原生数据库是指设计和构建用于云环境的数据库系统,它们充分利用了云平台的弹性、自动化和分布式特性。这类数据库系统通常支持自动扩展、故障恢复和资源优化,能够高效处理大规模数据,同时降低运维成本。 名词 , Kubernetes。 解释 , Kubernetes是一种开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。在本文语境中,Kubernetes被用来为数据仓库和数据库提供灵活的部署环境,实现水平扩展、自动故障恢复和资源调度优化,以增强Kylin与MySQL联接的性能。 名词 , 实时数据处理。 解释 , 实时数据处理涉及对数据流进行即时分析和处理,以获取实时洞察。在云原生时代,引入实时数据处理技术,如Apache Flink或Kafka,可以实现实时数据接入和处理,与Kylin和MySQL的联接优化结合,使得企业能够更快地做出基于最新数据的决策,提高业务响应速度和决策质量。
2024-09-20 16:04:27
104
百转千回
转载文章
...模型。 基于以上技术构建了就业、交通、疫情、春运等一系列场景模型,并开发了响应决策平台,实现了对我国人口就业、流动及疫情影响的全域实时监测。 2)全国长时序人口流动预测技术 即人口流动的大尺度OD预测技术,研发了人口跨区域流动OD预测模型,解决了信令大数据在量化模拟大尺度人口流动中的技术难题,形成了对全国人口流动在日、周、月不同时间段和社区、乡镇、县市不同地理尺度进行预测的先进技术,实现了2020年新冠疫情后全国返城返岗和2021年全国春节期间人口流动的高精度预测。 3)实时人口监测 实时人口监测是通过对用户手机信令进行实时处理、计算和分析,得出指定区域的实时人口数量、特征和迁徙情况。包括区域人口密度、人口数量、人口结构、人口来源、人口画像、人口迁徙、职住分析、人口预测等信息。 4)超强数据处理及AI能力 引入Bitmap大数据处理算法及Pilosa数据库集群,采用实时流式计算,集成Kafka、redis、RabbitMQ等分布式大数据处理组件,搭建自有信令大数据处理平台,使用百亿计算go-kite架构,实现毫秒级响应,实时批量处理数据达500000条 /秒,每天可处理1000亿条数据。集成AI分析能力(A/B轨),有效避免了运营商数据采集及传输过程中的时延及中断情况,大幅提高数据结果的实时性。 已获专利情况: 专利名称 专利号 出行统计方法、装置、计算机设备和可读存储介质 ZL 2020 1 0908424.3 信令数据匹配方法、装置及电子设备 ZL 2019 1 1298869.8 轨道交通用户识别方法和装置 ZL 2019 1 0755903.3 公共聚集事件识别方法、装置、计算机设备及存储介质 ZL 2020 1 1191917.6 广域高铁基站识别方法、装置、服务器及存储介质 ZL 2020 1 1325543.2 相关荣誉: 2021地理信息科技进步奖一等奖、中国测绘学会科技进步奖特等奖、2021数博会领先科技成果奖、兼容系统创新应用大赛大数据专项赛优秀奖。 开发团队 ·带队负责人:陶周天 公司CTO,北京大学理学学士。长期任职于微软等世界500强企业,曾任上市公司优炫软件VP,具备丰富的IT架构、数据安全、数据分析建模、机器学习、项目管理经验。牵头组织突破多个技术难题(人地匹配、人车匹配、室内基站优化、行为集成AI等),研发一系列技术专利。 ·团队其他重要成员:刘祖军 高级算法工程师,美国爱荷华大学计算机科学本硕,曾任职于美国俄亥俄州立大学研究院。 ·隶属机构:智慧足迹 智慧足迹数据科技有限公司是中国联通控股,京东科技参股的专业大数据及智能科技公司。公司依托中国联通卓越的数据资源和5G能力,京东科技强大的人工智能、物联网等技术和“产业X科技”能力,聚焦“人口+”大数据,连接人-物-企,成为全域数据智能科技领先服务商。 公司以P·A·Dt为核心能力,面向数字政府、智慧城市、企业数字化转型广大市场主体,专注经济治理、社会治理和企业数字化服务,构建“人口+”七大多源数据主题库,提供“人口+” 就业、经济、消费、民生、城市、企业等大数据产品平台,服务支撑国家治理现代化和国家战略,推动经济社会发展。 目前,公司已服务国家二十多个部委及众多省市政府、300+城市规划、知名企业和高校等智库、国有及股份制银行等数百家头部客户,已建成全球最强大的手机信令处理平台,是中国就业、城规、统计等领域大数据领先服务商。 相关评价 新一代SSNG多源大数据处理平台,提升了手机信令数据在空间数据计算的精度,信令处理结果对室内场景更具敏锐性,在区域范围的职住人群空间分布更加接近实际情况。 ——某央企大数据部技术负责人 新一代SSNG多源大数据处理平台,可处理实时及历史信令数据,应对不同客户应用场景。并且根据长时间序列历史数据实现人口预测,为提高数据精度可对接室内基站数据,从而提供更加准确的人员定位。 ——某企业政府事业部总监 提示:了解更多相关内容,点击文末左下角“阅读原文”链接可直达该机构官网。 《2021企业数智化转型升级服务全景图/产业图谱1.0版》 《2021中国数据智能产业图谱3.0升级版》 《2021中国企业数智化转型升级发展研究报告》 《2021中国数据智能产业发展研究报告》 ❷ 创新服务企业榜 ❸ 创新服务产品榜 ❸ 最具投资价值榜 ❺ 创新技术突破榜 ☆条漫:《看过大佬们发的朋友圈之后,我相信:明天会更好!》 联系数据猿 北京区负责人:Summer 电话:18500447861(微信) 邮箱:summer@datayuan.cn 全国区负责人:Yaphet 电话:18600591561(微信) 邮箱:yaphet@datayuan.cn 本篇文章为转载内容。原文链接:https://blog.csdn.net/YMPzUELX3AIAp7Q/article/details/122314407。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-01 09:57:01
343
转载
Apache Solr
... 引言 在构建高性能、可扩展的搜索解决方案时,Apache Solr是一个不可或缺的工具。哎呀,你知道的,当我们的生意越做越大,手里的数据越来越多的时候,以前那个单打独斗的小集群可能就撑不住了。就像一个人跑步,跑得再快也总有极限;但要是换成一队人,分工合作,那可就不一样了。这时候,分布式Solr集群就成了我们的最佳选择。想象一下,就像足球场上的球员,各司其职,传球配合,效率不是一般地高嘛!这样,我们就能够更好地应对大数据时代的挑战了。然而,分布式系统并非无懈可击,它同样面临着各种故障,包括网络延迟、节点宕机、数据一致性等问题。本文旨在探讨如何有效处理Apache Solr的分布式故障,确保搜索服务的稳定性和高效性。 第一部分:理解分布式Solr的架构与挑战 在开始讨论故障处理之前,我们先简要了解一下分布式Solr的基本架构。一个典型的分布式Solr集群由多个Solr服务器组成,这些服务器通过ZooKeeper等协调服务进行通信和状态管理。哎呀,你知道的,这种设计就像是给Solr实例装上了扩音器,这样我们就能在需要的时候,把声音(也就是数据处理能力)调大了。这样做的好处呢,就是能应对海量的数据和人们越来越快的查询需求,就像饭馆里客人多了,厨师们就分工合作,一起炒菜,效率翻倍嘛!这样一来,咱们就能保证不管多少人来点菜,都能快速上桌,服务不打折! 挑战: - 网络延迟:在分布式环境中,网络延迟可能导致响应时间变长。 - 节点故障:任何节点的宕机会影响集群的整体性能。 - 数据一致性:保持集群内数据的一致性是分布式系统的一大挑战。 - 故障恢复:快速而有效地恢复故障节点是维持系统稳定的关键。 第二部分:故障检测与响应 1. 监控与警报系统 在分布式Solr集群中,监控是关键。哎呀,用Prometheus或者Grafana这些小玩意儿啊,简直太方便了!你只需要轻轻一点,就能看到咱们的Solr集群在忙啥,比如CPU是不是快扛不住了,内存是不是快要溢出来了,或者是那些宝贝索引大小咋样了。这不就跟咱家里的监控摄像头似的,随时盯着家里的动静,心里有数多了!哎呀,你得留个心眼儿啊!要是发现啥不对劲儿,比如电脑的处理器忙个不停,或者是某个索引变得特别大,那可得赶紧动手,别拖着!得立马给咱的监控系统发个信号,让它提醒咱们,好让我们能快刀斩乱麻,把问题解决掉。这样子,咱们的系统才能健健康康地跑,不出幺蛾子。 代码示例: python from prometheus_client import CollectorRegistry, Gauge, push_to_gateway registry = CollectorRegistry() gauge = Gauge('solr_cpu_usage', 'CPU usage in percent', registry=registry) gauge.set(75) push_to_gateway('localhost:9091', job='solr_monitoring', registry=registry) 这段代码展示了如何使用Prometheus将Solr CPU使用率数据推送到监控系统。 2. 故障检测与隔离 利用ZooKeeper等协调服务,可以实现节点的健康检查和自动故障检测。一旦检测到节点不可用,可以自动隔离该节点,避免其影响整个集群的性能。 第三部分:数据恢复与重建 1. 快照与恢复 在Solr中,定期创建快照是防止数据丢失的有效手段。一旦发生故障,可以从最近的快照中恢复数据。哎呀,你知道的,这个方法可是大大提高了数据恢复的速度!而且呢,它还能帮咱们守住数据,防止那些无法挽回的损失。简直就像是给咱的数据上了双保险,既快又稳,用起来超安心的! 代码示例: bash curl -X PUT 'http://localhost:8983/solr/core1/_admin/persistent?action=CREATE&name=snapshot&value=20230701' 这里通过CURL命令创建了一个快照。 2. 数据重建 在故障节点恢复后,需要重建其索引数据。Solr提供了/admin/cores?action=REBUILD接口来帮助完成这一任务。 第四部分:性能优化与容错策略 1. 负载均衡 通过合理分配索引和查询负载,可以提高系统的整体性能。使用Solr的路由策略,如query.routing,可以动态地将请求分发到不同的节点。 代码示例: xml : AND json round-robin 2. 失败重试与超时设置 在处理分布式事务时,合理的失败重试策略和超时设置至关重要。这有助于系统在面对网络延迟或短暂的节点故障时保持稳定。 结语 处理Apache Solr的分布式故障需要综合考虑监控、警报、故障检测与隔离、数据恢复与重建、性能优化以及容错策略等多个方面。哎呀,小伙伴们!要是我们按照这些招数来操作,就能让Solr集群变得超级棒,既稳定又高效,保证咱们的搜索服务能一直在线,质量杠杠的,让你用起来爽歪歪!这招真的挺实用的,值得试试看!嘿,兄弟!听好了,预防胜于治疗这句老话,在分布式系统的管理上同样适用。咱们得时刻睁大眼睛,盯着系统的一举一动,就像看护自家宝贝一样。定期给它做做小保养,检查检查,确保一切正常运转。这样,咱们就能避免大问题找上门来,让系统稳定运行,不给任何故障有机可乘的机会。
2024-08-08 16:20:18
137
风中飘零
Dubbo
...框架的合作模式,试图构建更为灵活且智能的服务管理体系。可以预见的是,Dubbo将在更广泛的业务场景下发挥重要作用,为企业数字化转型注入新的活力。与此同时,我们也期待Dubbo社区能够继续倾听用户需求,不断完善产品功能,共同推动开源生态的发展壮大。
2025-03-20 16:29:46
64
雪落无痕
JSON
MySQL
...件中的一个参数,用于定义单个MySQL实例可打开的最大文件描述符数量,文章中将其从默认值调整为65535以解决文件描述符不足的问题,是优化数据库性能的关键配置项。
2025-04-17 16:17:44
109
山涧溪流_
转载文章
...Codes)是一组预定义的数值,代表了键盘上的每一个键。在编程环境中,特别是Python使用win32api模块进行键盘和鼠标操作模拟时,VK_CODE是一个字典结构,将字符或特殊键与对应的虚拟键码关联起来。例如,在文中提到的VK_CODE A 等于0x41,表示字母\ A\ 在系统内部被识别为0x41这个特定数值,程序通过调用keybd_event函数并传入对应虚拟键码来模拟按下或释放该键。 win32api模块 , win32api是Python的一个库,提供了对Windows API(应用程序接口)的访问功能。它允许Python程序员以编程方式执行许多Windows操作系统的底层任务,如模拟用户输入、控制窗口、处理文件和目录等。在本文中,作者利用win32api模块中的mouse_event和keybd_event函数实现了对鼠标点击、移动以及键盘按键的模拟操作,这对于自动化测试、脚本编写以及需要自动交互的应用场景尤为实用。 用户界面自动化(UI Automation) , 用户界面自动化是一种软件测试方法和技术,旨在通过编写脚本或程序代替人工操作,实现对应用程序用户界面的各种元素(如按钮、文本框、菜单等)进行自动化的点击、输入、验证等交互行为。在本文中,作者通过Python win32api模块模拟键盘和鼠标事件,从而实现在Windows环境下对用户界面的自动化控制,这是用户界面自动化的一种具体实践形式,常用于提高测试效率、减少重复工作并确保软件功能稳定可靠。
2023-06-07 19:00:58
54
转载
转载文章
...以在主机上使用。通过构建Host Accessor可以将数据同步回主机,除此之外还可以通过销毁缓冲区将数据同步回主机。 buf是存储数据的缓冲区。 host_accessor b(buf,read_only); 除此之外还可以将buf设置为局部变量,当系统超出buf生存期,buf被销毁,数据也将转移到主机中。 矢量相加源代码 根据上面的知识,这里展示了利用DPC++实现矢量相加的代码。 //第一行在jupyter中指明了该cpp文件的保存位置%%writefile lab/vector_add.cppinclude <CL/sycl.hpp>using namespace sycl;int main() {const int N = 256;// 初始化两个队列并打印std::vector<int> vector1(N, 10);std::cout<<"\nInput Vector1: "; for (int i = 0; i < N; i++) std::cout << vector1[i] << " ";std::vector<int> vector2(N, 20);std::cout<<"\nInput Vector2: "; for (int i = 0; i < N; i++) std::cout << vector2[i] << " ";// 创建缓存区buffer vector1_buffer(vector1);buffer vector2_buffer(vector2);// 提交矢量相加任务queue q;q.submit([&](handler &h) {// 为缓存区创建访问器accessor vector1_accessor (vector1_buffer,h);accessor vector2_accessor (vector2_buffer,h);h.parallel_for(range<1>(N), [=](id<1> index) {vector1_accessor[index] += vector2_accessor[index];});});// 创建主机访问器将设备中数据拷贝到主机当中host_accessor h_a(vector1_buffer,read_only);std::cout<<"\nOutput Values: ";for (int i = 0; i < N; i++) std::cout<< vector1[i] << " ";std::cout<<"\n";return 0;} 运行结果 统一共享内存 (Unified Shared Memory USM) 统一共享内存是一种基于指针的方法,是将CPU内存和GPU内存进行统一的虚拟化方法,对于C++来说,指针操作内存是很常规的方式,USM也可以最大限度的减少C++移植到DPC++的代价。 下图显示了非USM(左)和USM(右)的程序员开发视角。 类型 函数调用 说明 在主机上可访问 在设备上可访问 设备 malloc_device 在设备上分配(显式) 否 是 主机 malloc_host 在主机上分配(隐式) 是 是 共享 malloc_shared 分配可以在主机和设备之间迁移(隐式) 是 是 USM语法 初始化: int data = malloc_shared<int>(N, q); int data = static_cast<int >(malloc_shared(N sizeof(int), q)); 释放 free(data,q); 使用共享内存之后,程序将自动在主机和运算设备之间隐式移动数据。 数据依赖 使用USM时,要注意数据之间的依赖关系以及事件之间的依赖关系,如果两个线程同时修改同一个内存区,将产生不可预测的结果。 我们可以使用不同的选项管理数据依赖关系: 内核任务中的 wait() 使用 depends_on 方法 使用 in_queue 队列属性 wait() q.submit([&](handler &h) {h.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });}).wait(); // <--- wait() will make sure that task is complete before continuingq.submit([&](handler &h) {h.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });}); depends_on auto e = q.submit([&](handler &h) { // <--- e is event for kernel taskh.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });});q.submit([&](handler &h) {h.depends_on(e); // <--- waits until event e is completeh.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });}); in_order queue property queue q(property_list{property::queue::in_order()}); // <--- this will make sure all the task with q are executed sequentially 练习1:事件依赖 以下代码使用 USM,并有三个提交到设备的内核。每个内核修改相同的数据阵列。三个队列之间没有数据依赖关系 为每个队列提交添加 wait() 在第二个和第三个内核任务中实施 depends_on() 方法 使用 in_order 队列属性,而非常规队列: queue q{property::queue::in_order()}; %%writefile lab/usm_data.cppinclude <CL/sycl.hpp>using namespace sycl;static const int N = 256;int main() {queue q{property::queue::in_order()};//用队列限制执行顺序std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";int data = static_cast<int >(malloc_shared(N sizeof(int), q));for (int i = 0; i < N; i++) data[i] = 10;q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 5; });q.wait();//wait阻塞进程for (int i = 0; i < N; i++) std::cout << data[i] << " ";std::cout << "\n";free(data, q);return 0;} 执行结果 练习2:事件依赖 以下代码使用 USM,并有三个提交到设备的内核。前两个内核修改了两个不同的内存对象,第三个内核对前两个内核具有依赖性。三个队列之间没有数据依赖关系 %%writefile lab/usm_data2.cppinclude <CL/sycl.hpp>using namespace sycl;static const int N = 1024;int main() {queue q;std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";//设备选择int data1 = malloc_shared<int>(N, q);int data2 = malloc_shared<int>(N, q);for (int i = 0; i < N; i++) {data1[i] = 10;data2[i] = 10;}auto e1 = q.parallel_for(range<1>(N), [=](id<1> i) { data1[i] += 2; });auto e2 = q.parallel_for(range<1>(N), [=](id<1> i) { data2[i] += 3; });//e1,e2指向两个事件内核q.parallel_for(range<1>(N),{e1,e2}, [=](id<1> i) { data1[i] += data2[i]; }).wait();//depend on e1,e2for (int i = 0; i < N; i++) std::cout << data1[i] << " ";std::cout << "\n";free(data1, q);free(data2, q);return 0;} 运行结果 UMS实验 在主机中初始化两个vector,初始数据为25和49,在设备中初始化两个vector,将主机中的数据拷贝到设备当中,在设备当中并行计算原始数据的根号值,然后将data1_device和data2_device的数值相加,最后将数据拷贝回主机当中,检验最后相加的和是否是12,程序结束前将内存释放。 %%writefile lab/usm_lab.cppinclude <CL/sycl.hpp>include <cmath>using namespace sycl;static const int N = 1024;int main() {queue q;std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";//intialize 2 arrays on hostint data1 = static_cast<int >(malloc(N sizeof(int)));int data2 = static_cast<int >(malloc(N sizeof(int)));for (int i = 0; i < N; i++) {data1[i] = 25;data2[i] = 49;}// STEP 1 : Create USM device allocation for data1 and data2int data1_device = static_cast<int >(malloc_device(N sizeof(int),q));int data2_device = static_cast<int >(malloc_device(N sizeof(int),q));// STEP 2 : Copy data1 and data2 to USM device allocationq.memcpy(data1_device, data1, sizeof(int) N).wait();q.memcpy(data2_device, data2, sizeof(int) N).wait();// STEP 3 : Write kernel code to update data1 on device with sqrt of valueauto e1 = q.parallel_for(range<1>(N), [=](id<1> i) { data1_device[i] = std::sqrt(25); });auto e2 = q.parallel_for(range<1>(N), [=](id<1> i) { data2_device[i] = std::sqrt(49); });// STEP 5 : Write kernel code to add data2 on device to data1q.parallel_for(range<1>(N),{e1,e2}, [=](id<1> i) { data1_device[i] += data2_device[i]; }).wait();// STEP 6 : Copy data1 on device to hostq.memcpy(data1, data1_device, sizeof(int) N).wait();q.memcpy(data2, data2_device, sizeof(int) N).wait();// verify resultsint fail = 0;for (int i = 0; i < N; i++) if(data1[i] != 12) {fail = 1; break;}if(fail == 1) std::cout << " FAIL"; else std::cout << " PASS";std::cout << "\n";// STEP 7 : Free USM device allocationsfree(data1_device, q);free(data1);free(data2_device, q);free(data2);// STEP 8 : Add event based kernel dependency for the Steps 2 - 6return 0;} 运行结果 本篇文章为转载内容。原文链接:https://blog.csdn.net/MCKZX/article/details/127630566。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-22 10:28:50
321
转载
Apache Solr
序言: 在构建大型互联网应用时,我们常常会遇到依赖外部服务的情况,例如使用第三方API、调用其他微服务或者从远程数据库获取数据。Apache Solr,这个家伙简直就是搜索界的超级英雄!它在处理各种信息查找任务时,那叫一个稳如泰山,快如闪电,简直是让人心头一暖。你想象一下,在海量数据中快速找到你需要的信息,那种感觉就像在迷宫中找到了出口,又或者是在茫茫人海中找到了失散多年的好友。这就是Apache Solr的魅力所在,它的性能和稳定性,就像是你的私人保镖,无论你面对多复杂的搜索挑战,都能给你最坚实的后盾。哎呀,你猜怎么着?要是咱们的网络慢了、断了或者提供的服务不给力了,那可就糟糕了。这种时候,咱们的Solr系统啊,可能就会变得特别吃力,运行起来就不那么顺畅了。就像是咱们在做一件大事儿,结果突然停电了,那事儿肯定就办不成啦!所以啊,保持网络稳定和外部服务正常运行,对咱们的Solr来说,真的超级重要!嘿,兄弟!你听说了吗?这篇文章可不是普通的报告,它可是要深入地挖一挖这个问题的根源,然后给你支点招儿,让你在面对网络连接的烦恼时,Solr这个大神级别的搜索神器,能发挥出它的最佳状态!想象一下,当你在茫茫信息海洋中寻找那根救命稻草时,Solr就像你的私人导航,带你直达目的地。但是,有时候,这艘船可能会遭遇颠簸的海浪——网络连接问题。别担心,这篇文章就是你的救生圈和指南针,告诉你如何调整Solr的设置,让它在波涛汹涌的网络环境中依然航行自如。所以,准备好,让我们一起探索如何优化Solr在网络挑战中的表现吧! 一、理解问题根源 在讨论解决方案之前,首先需要理解外部服务依赖导致的问题。哎呀,你知道不?咱们用的那个Solr啊,它查询东西的速度啊,有时候得看外部服务的脸色。如果外部服务反应慢或者干脆不给力,那Solr就得跟着慢慢腾腾,甚至有时候都查不到结果,让人急得像热锅上的蚂蚁。这可真是个头疼的问题呢!这不仅影响了用户体验,也可能导致Solr服务本身的负载增加,进一步加剧问题。 二、案例分析 使用Solr查询外部数据源 为了更好地理解这个问题,我们可以创建一个简单的案例。想象一下,我们有个叫Solr的小工具,专门负责在我们家里的文件堆里找东西。但是,它不是个孤军奋战的英雄,还需要借助外面的朋友——那个外部API,来给我们多提供一些额外的线索和细节,就像侦探在破案时需要咨询专家一样。这样,当我们用Solr搜索的时候,就能得到更丰富、更准确的结果了。我们使用Python和requests库来模拟这个过程: python import requests from solr import SolrClient solr_url = "http://localhost:8983/solr/core1" solr_client = SolrClient(solr_url) def search(query): results = solr_client.search(query) for result in results: 外部API请求 external_data = fetch_external_metadata(result['id']) result['additional_info'] = external_data return results def fetch_external_metadata(doc_id): url = f"https://example.com/api/{doc_id}" response = requests.get(url) if response.status_code == 200: return response.json() else: return None 在这个例子中,fetch_external_metadata函数尝试从外部API获取元数据,如果请求失败或API不可用,那么该结果将被标记为未获取到数据。当外部服务出现延迟或中断时,这将直接影响到Solr的查询效率。 三、优化策略 1. 缓存策略 为了避免频繁请求外部服务,可以引入缓存机制。对于频繁访问且数据变化不大的元数据,可以在本地缓存一段时间。当外部服务不可用时,可以回退使用缓存数据,直到服务恢复。 python class ExternalMetadataCache: def __init__(self, ttl=600): self.cache = {} self.ttl = ttl def get(self, doc_id): if doc_id not in self.cache or (self.cache[doc_id]['timestamp'] + self.ttl) < time.time(): self.cache[doc_id] = {'data': fetch_external_metadata(doc_id), 'timestamp': time.time()} return self.cache[doc_id]['data'] metadata_cache = ExternalMetadataCache() def fetch_external_metadata_safe(doc_id): return metadata_cache.get(doc_id) 2. 重试机制 在请求外部服务时添加重试逻辑,当第一次请求失败后,可以设置一定的时间间隔后再次尝试,直到成功或达到最大重试次数。 python def fetch_external_metadata_retriable(doc_id, max_retries=3, retry_delay=5): for i in range(max_retries): try: return fetch_external_metadata(doc_id) except Exception as e: print(f"Attempt {i+1} failed with error: {e}. Retrying in {retry_delay} seconds...") time.sleep(retry_delay) raise Exception("Max retries reached.") 四、结论与展望 通过上述策略,我们可以在一定程度上减轻外部服务依赖对Solr性能的影响。然而,重要的是要持续监控系统的运行状况,并根据实际情况调整优化措施。嘿,你听说了吗?科技这玩意儿啊,那可是越来越牛了!你看,现在就有人在琢磨怎么对付那些让人上瘾的东西。将来啊,说不定能搞出个既高效又结实的办法,帮咱们摆脱这个烦恼。想想都挺激动的,对吧?哎呀,兄弟!构建一个稳定又跑得快的搜索系统,那可得好好琢磨琢磨外部服务这事儿。你知道的,这些服务就像是你家里的电器,得选对了,用好了,整个家才能舒舒服服的。所以啊,咱们得先搞清楚这些服务都是干啥的,它们之间怎么配合,还有万一出了点小状况,咱们能不能快速应对。这样,咱们的搜索系统才能稳如泰山,嗖嗖地飞快,用户一搜就满意,那才叫真本事呢! --- 请注意,以上代码示例是基于Python和相关库编写的,实际应用时需要根据具体环境和技术栈进行相应的调整。
2024-09-21 16:30:17
39
风轻云淡
转载文章
...定类型的回文串可用于构建加密算法的关键部分。深入理解并熟练掌握回文串的相关性质及处理方法,无疑有助于我们在这些领域取得更多的技术突破。 总之,从基础的编程题出发,我们可以洞察到字符串处理与算法优化在前沿科研和实际应用中的深远影响。通过持续关注和学习此类问题的最新研究成果与应用案例,我们能够不断提升自身的算法设计和问题解决能力。
2023-10-05 13:54:12
228
转载
转载文章
...)声明用到的头文件和定义控制器连接句柄。 至此项目新建完成,可进行MFC项目开发。 2.查看PC函数手册,熟悉相关函数接口 (1)PC函数手册也在光盘资料里面,具体路径如下:“光盘资料\8.PC函数\函数库2.1\ZMotion函数库编程手册 V2.1.pdf” (2)链接控制器,获取链接句柄。 ZAux_OpenEth()接口说明: (3)振镜运动接口。 为振镜运动单独封装了一个运动接口,使用movescanabs指令进行运动,采用FORCE_SPEED参数设置运动过程中的速度,运动过程中基本不存在加减速过程,支持us级别的时间控制。 3. MFC开发控制器双振镜运动例程 (1)例程界面如下。 (2) 链接按钮的事件处理函数中调用链接控制器的接口函数ZAux_OpenEth(),与控制器进行链接,链接成功后启动定时器1监控控制器状态。 //网口链接控制器void CSingle_move_Dlg::OnOpen(){char buffer[256]; int32 iresult;//如果已经链接,则先断开链接if(NULL != g_handle){ZAux_Close(g_handle);g_handle = NULL;}//从IP下拉框中选择获取IP地址GetDlgItemText(IDC_IPLIST,buffer,255);buffer[255] = '\0';//开始链接控制器iresult = ZAux_OpenEth(buffer, &g_handle);if(ERR_SUCCESS != iresult){g_handle = NULL;MessageBox(_T("链接失败"));SetWindowText("未链接");return;}//链接成功开启定时器1SetWindowText("已链接");SetTimer( 1, 100, NULL ); } (3)通过定时器监控控制器状态 。 void CSingle_move_Dlg::OnTimer(UINT_PTR nIDEvent) {// TODO: Add your message handler code here and/or call defaultif(NULL == g_handle){MessageBox(_T("链接断开"));return ;}if(1 == nIDEvent){CString string;float position = 0;ZAux_Direct_GetDpos( g_handle,m_nAxis,&position); //获取当前轴位置string.Format("振镜X1轴位置:%.2f", position );GetDlgItem( IDC_CURPOS )->SetWindowText( string );float NowSp = 0;ZAux_Direct_GetVpSpeed( g_handle,m_nAxis,&NowSp); //获取当前轴速度string.Format("振镜X1轴速度:%.2f", NowSp );GetDlgItem( IDC_CURSPEED)->SetWindowText( string );ZAux_Direct_GetDpos(g_handle, m_nAxis+1, &position); //获取当前轴位置string.Format("振镜Y1轴位置:%.2f", position);GetDlgItem(IDC_CURPOS2)->SetWindowText(string);ZAux_Direct_GetVpSpeed(g_handle, m_nAxis+1, &NowSp); //获取当前轴速度string.Format("振镜Y1轴速度:%.2f", NowSp);GetDlgItem(IDC_CURSPEED2)->SetWindowText(string);ZAux_Direct_GetDpos(g_handle, m_nAxis + 2, &position); //获取当前轴位置string.Format("振镜X2轴位置:%.2f", position);GetDlgItem(IDC_CURPOS3)->SetWindowText(string);NowSp = 0;ZAux_Direct_GetVpSpeed(g_handle, m_nAxis + 2, &NowSp); //获取当前轴速度string.Format("振镜X2轴速度:%.2f", NowSp);GetDlgItem(IDC_CURSPEED3)->SetWindowText(string);ZAux_Direct_GetDpos(g_handle, m_nAxis + 3, &position); //获取当前轴位置string.Format("振镜Y2轴位置:%.2f", position);GetDlgItem(IDC_CURPOS4)->SetWindowText(string);ZAux_Direct_GetVpSpeed(g_handle, m_nAxis + 3, &NowSp); //获取当前轴速度string.Format("振镜Y2轴速度:%.2f", NowSp);GetDlgItem(IDC_CURSPEED4)->SetWindowText(string);int status = 0; ZAux_Direct_GetIfIdle(g_handle, m_nAxis,&status); //判断当前轴状态if (status == -1){GetDlgItem( IDC_CURSTATE )->SetWindowText( "当前状态:停 止" );}else{GetDlgItem( IDC_CURSTATE )->SetWindowText( "当前状态:运动中" );} }CDialog::OnTimer(nIDEvent);} (4)通过启动按钮的事件处理函数获取编辑框的移动轨迹,并设置振镜轴参数操作振镜轴运动。 void CSingle_move_Dlg::OnStart() //启动运动{if(NULL == g_handle){MessageBox(_T("链接断开状态"));return ;}UpdateData(true);//刷新参数int status = 0; ZAux_Direct_GetIfIdle(g_handle, m_nAxis,&status); //判断当前轴状态 if (status == 0) //已经在运动中{ return;} //设定轴类型 1-脉冲轴类型 for (int i = 4; i < 8; i++){ZAux_Direct_SetAtype(g_handle, i, m_Atype);ZAux_Direct_SetMerge(g_handle,i,1);//设置脉冲当量ZAux_Direct_SetUnits(g_handle, i, m_units);//设定速度,加减速ZAux_Direct_SetLspeed(g_handle, i, m_lspeed);ZAux_Direct_SetSpeed(g_handle, i, m_speed);ZAux_Direct_SetForceSpeed(g_handle, i, m_speed);ZAux_Direct_SetAccel(g_handle, i, m_acc);ZAux_Direct_SetDecel(g_handle, i, m_dec);//设定S曲线时间 设置为0表示梯形加减速 ZAux_Direct_SetSramp(g_handle, i, m_sramp);}//使用MOVESCANABS运动int axislist[2] = { 4,5 };float dposlist[2] = { 0,0 };ZAux_MoveScanAbs(2, axislist, dposlist);CString str;GetDlgItem(IDC_EDIT_POSX1)->GetWindowText(str);float dbx = atof(str);GetDlgItem(IDC_EDIT_POSY1)->GetWindowText(str);float dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX2)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY2)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX3)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY3)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX4)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY4)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);//第二个振镜运动//使用MOVESCANABS运动axislist[0] = 6;axislist[1] = 7;dposlist[0] = 0;dposlist[1] = 0;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX5)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY5)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX6)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY6)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX7)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY7)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX8)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY8)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);UpdateData(false); } (5) 通过断开按钮的事件处理函数来断开与控制卡的连接。 void CSingle_move_Dlg::OnClose() //断开链接{// TODO: Add your control notification handler code hereif(NULL != g_handle){KillTimer(1); //关定时器KillTimer(2);ZAux_Close(g_handle);g_handle = NULL;SetWindowText("未链接");} } (6)通过坐标清零按钮的事件处理函数移动振镜轴回零到中心零点位置,不直接使用dpos=0,修改振镜轴坐标。 void CSingle_move_Dlg::OnZero() //清零坐标{if(NULL == g_handle){MessageBox(_T("链接断开状态"));return ;}// TODO: Add your control notification handler code hereint axislist[2] = { 4,5 };float dposlist[2] = { 0 };ZAux_Direct_MoveAbs(g_handle,2,axislist,dposlist); //设置运动回零点} 三调试与监控 编译运行例程,同时通过ZDevelop软件连接控制器对控制器状态进行监控 。 ZDevelop软件连接控制器监控控制器的状态,查看振镜轴对应参数,并可搭配示波器检测双振镜轨迹。 设置振镜轴运动,首先需要将轴类型配置成21振镜轴类型,并对应配置振镜轴的速度加减速等参数才可操作振镜进行运动。 通过ZDevelop软件的示波器监控双振镜运动运行轨迹。 视频演示。 开放式激光振镜+运动控制器(六)-双振镜运动 本次,正运动技术开放式激光振镜+运动控制器(六):双振镜运动,就分享到这里。 更多精彩内容请关注“正运动小助手”公众号,需要相关开发环境与例程代码,请咨询正运动技术销售工程师:400-089-8936。 本文由正运动技术原创,欢迎大家转载,共同学习,一起提高中国智能制造水平。文章版权归正运动技术所有,如有转载请注明文章来源。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_57350300/article/details/123402200。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-04 17:33:09
338
转载
转载文章
... 松果出行主要业务是构建国内县域城市交通出行网络,目前主要是共享电单车和共享新能源汽车服务。目前业务已经覆盖全国21个省,5000个县。 福利待遇属于行业中等,五险一金、年终奖等,没有补充医疗保险。 招聘岗位很多,以JAVA为主,各种级别都有。也有物联网、传感器硬件相关的岗位。 小桔科技 目前研发团队主要做推荐、搜索系统,注册地在大连。 福利待遇行业中等,五险一金、年终奖,没有补充医疗保险。 招聘岗位包括JAVA、PHP、搜索算法、前端、数仓等。 理想汽车 智能电动车品牌,这两年在行业内名气比较大。 福利待遇行业中等偏上,六险一金、交通补贴等。 招聘岗位很多,以JAVA为主,各种级别都有。另外也招聘PaaS平台研发、搜索、车载语音、大数据等。 参加过理想汽车面试的同学反馈面试体验不太好,面试官没有耐心,给大家一个参考。 狮桥 智慧物流+普惠金融融资租赁业务。 福利待遇中等偏下,五险一金、年终奖,没有补充医疗保险。 招聘岗位主要是JAVA开发。 领创集团 海外金融业务,主要做印度市场。 福利待遇中等偏下,六险一金,年终奖,工作节奏慢。 招聘岗位主要是JAVA,招聘岗位主要是java。 面试过的同学反馈体验比较好,面试官比较nice,有手写代码环节。 总结 今天主要推荐了望京的16家值得加入的互联网公司,事实上,望京区域的互联网公司和其他科技公司至少有几百家,由于个人精力有限,主要梳理了业界比较知名和自己熟悉的公司。相信还有好多非常不错的公司值得加入,欢迎大家跟我交流讨论。 欢迎关注个人公众号,一起学习进步 本篇文章为转载内容。原文链接:https://blog.csdn.net/zjj2006/article/details/121412370。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-11 22:59:19
529
转载
转载文章
...定的标准接口规范,它定义了一组用于进程间通信和同步的函数和协议。在文中,MPI被用作在两台机器上运行并行程序的关键技术手段,通过mpirun命令调用MPI接口函数,使得分布在不同计算机上的多个进程能够高效协同工作。 mpirun命令 , mpirun是MPICH或其它MPI实现提供的一个实用程序,用于启动并管理基于MPI的应用程序。在文章所述场景中,mpirun命令用于指定运行MPI程序时参与计算的进程数量(np参数)、运行主机列表(-hosts参数)以及执行的可执行文件路径等信息,从而协调多台计算机上的MPI进程执行分布式计算任务。 防火墙设置 , 防火墙是一种网络安全性设施,用于控制进出特定网络的数据包,确保仅允许合法、安全的网络流量通过。在文中,由于防火墙对计算机之间的通信进行了限制,导致MPI进程间的连接失败,需要调整或临时关闭防火墙规则以便于MPI程序能够在多台计算机间正常通信和执行并行计算任务。 共享目录 , 共享目录是指在网络环境中的一个或多个用户可以访问的同一文件系统位置,通常通过网络文件系统(NFS)或其他共享协议实现。在本篇文章中,为了确保MPI并行程序在多台机器间正确运行,需要将包含可执行文件和其他必要资源的目录设置为共享,确保所有参与计算的节点都能够访问到这些资源。
2023-04-09 11:52:38
113
转载
Nacos
... , 一种将应用程序构建为一组小型独立部署单元的软件架构风格。每个微服务专注于完成某一项特定的功能,并通过轻量级通信机制与其他服务进行交互。相比于传统的单体架构,微服务架构具有更高的灵活性、可扩展性和容错能力。在本文中,作者正在开发一个基于微服务架构的应用程序,并利用Nacos作为配置中心来管理各个微服务的配置信息。由于微服务之间的依赖关系复杂,确保配置的一致性和可用性对于整个系统的稳定运行至关重要。
2025-04-06 15:56:57
67
清风徐来
转载文章
...s是类还是接口、是否定义为public、是否定义为abstract类型、类是否被声明为final等。 访问标志表 标志位一共有16个,但是并不是所有的都用到,上表只列举了其中8个,没有使用的标志位统统置为0,access_flags只有2个字节表示,但是有这么多标志位怎么计算而来的呢?它是由标志位为true的标志位值取或运算而来,比如这里我演示的class文件是一个类并且是public的,所以对应的ACC_PUBLIC和ACC_SIPER标志应该置为true,其余标志不满足则为false,那么access_flags的计算过程就是:Ox0001 | Ox0020 = Ox0021 篇幅原因,未完待续...... 参考文献:《深入理解Java虚拟机》 END 本篇文章为转载内容。原文链接:https://javar.blog.csdn.net/article/details/97532925。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-09 17:46:36
645
转载
转载文章
...时,实现多态就免不了定义虚函数,那么用shared_ptr时也不例外,不过有一处是可以省下的,就是析构函数我们不需要定义为虚函数了,如下面代码所示: class A {public:~A() {cout << "dealloc A" << endl;} };class B : public A {public:~B() {cout << "dealloc B" << endl;} };int main(int argc, const char argv[]) {A a = new B();delete a; //只打印dealloc Ashared_ptr<A>spa = make_shared<B>(); //析构spa是会先打印dealloc B,再打印dealloc Areturn 0;} 循环引用,笔者最先接触引用计数的语言就是Objective-C,而OC中最常出现的内存问题就是循环引用,如下面代码所示,A中引用B,B中引用A,spa和spb的强引用计数永远大于等于1,所以直到程序退出前都不会被退出,这种情况有时候在正常的业务逻辑中是不可避免的,而解决循环引用的方法最有效就是改用weak_ptr,具体可见下一章。 class A {public:shared_ptr<B> b;};class B {public:shared_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb;spb->a = spa;return 0;} //main函数退出后,spa和spb强引用计数依然为1,无法释放 刚柔并济:weak_ptr 正如上一章提到,使用shared_ptr过程中有可能会出现循环引用,关键原因是使用shared_ptr引用一个指针时会导致强引用计数+1,从此该指针的生命周期就会取决于该shared_ptr的生命周期,然而,有些情况我们一个类A里面只是想引用一下另外一个类B的对象,类B对象的创建不在类A,因此类A也无需管理类B对象的释放,这个时候weak_ptr就应运而生了,使用shared_ptr赋值给一个weak_ptr不会增加强引用计数(strong_count),取而代之的是增加一个弱引用计数(weak_count),而弱引用计数不会影响到指针的生命周期,这就解开了循环引用,上一章最后的代码使用weak_ptr可改造为如下代码。 class A {public:shared_ptr<B> b;};class B {public:weak_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb; //spb强引用计数为2,弱引用计数为1spb->a = spa; //spa强引用计数为1,弱引用计数为2return 0;} //main函数退出后,spa先释放,spb再释放,循环解开了使用weak_ptr也有需要注意的点,因为既然weak_ptr不负责裸指针的生命周期,那么weak_ptr也无法直接操作裸指针,我们需要先转化为shared_ptr,这就和OC的Strong-Weak Dance有点像了,具体操作如下:shared_ptr<int> spa = make_shared<int>(10);weak_ptr<int> spb = spa; //weak_ptr无法直接使用裸指针创建if (!spb.expired()) { //weak_ptr最好判断是否过期,使用expired或use_count方法,前者更快spb.lock() += 10; //调用weak_ptr转化为shared_ptr后再操作裸指针}cout << spa << endl; //20 智能指针原理 看到这里,智能指针的用法基本介绍完了,后面笔者来粗浅地分析一下为什么智能指针可以有效帮我们管理裸指针的生命周期。 使用栈对象管理堆对象 在C++中,内存会分为三部分,堆、栈和静态存储区,静态存储区会存放全局变量和静态变量,在程序加载时就初始化,而堆是由程序员自行分配,自行释放的,例如我们使用裸指针分配的内存;而最后栈是系统帮我们分配的,所以也会帮我们自动回收。因此,智能指针就是利用这一性质,通过一个栈上的对象(shared_ptr或unique_ptr)来管理一个堆上的对象(裸指针),在shared_ptr或unique_ptr的析构函数中判断当前裸指针的引用计数情况来决定是否释放裸指针。 shared_ptr引用计数的原理 一开始笔者以为引用计数是放在shared_ptr这个模板类中,但是细想了一下,如果这样将shared_ptr赋值给另一个shared_ptr时,是怎么做到两个shared_ptr的引用计数同时加1呢,让等号两边的shared_ptr中的引用计数同时加1?不对,如果还有第二个shared_ptr再赋值给第三个shared_ptr那怎么办呢?或许通过下面的类图便清楚个中奥秘。 [ boost中shared_ptr与weak_ptr类图 ] 我们重点关注shared_ptr<T>的类图,它就是我们可以直接操作的类,这里面包含裸指针T,还有一个shared_count的对象,而shared_count对象还不是最终的引用计数,它只是包含了一个指向sp_counted_base的指针,这应该就是真正存放引用计数的地方,包括强应用计数和弱引用计数,而且shared_count中包含的是sp_counted_base的指针,不是对象,这也就意味着假如shared_ptr<T> a = b,那么a和b底层pi_指针指向的是同一个sp_counted_base对象,这就很容易做到多个shared_ptr的引用计数永远保持一致了。 多线程安全 本章所说的线程安全有两种情况: 多个线程操作多个不同的shared_ptr对象 C++11中声明了shared_ptr的计数操作具有原子性,不管是赋值导致计数增加还是释放导致计数减少,都是原子性的,这个可以参考sp_counted_base的源码,因此,基于这个特性,假如有多个shared_ptr共同管理一个裸指针,那么多个线程分别通过不同的shared_ptr进行操作是线程安全的。 多个线程操作同一个shared_ptr对象 同样的道理,既然C++11只负责sp_counted_base的原子性,那么shared_ptr本身就没有保证线程安全了,加入两个线程同时访问同一个shared_ptr对象,一个进行释放(reset),另一个读取裸指针的值,那么最后的结果就不确定了,很有可能发生野指针访问crash。 作者:腾讯技术工程 https://mp.weixin.qq.com/s?__biz=MjM5ODYwMjI2MA==&mid=2649743462&idx=1&sn=c9d94ddc25449c6a0052dc48392a33c2&utm_source=tuicool&utm_medium=referralmp.weixin.qq.com 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_31467557/article/details/113049179。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-24 18:25:46
141
转载
转载文章
...、继承和多态等机制来构建软件系统的编程范式。在文中,作者提到面向对象的程序设计语言正是基于选择合适数据结构这一核心思想而发展起来的,体现了数据结构对于系统构造的重要影响。 哈希表(Hash Table) , 哈希表是一种特殊的数据结构,它使用哈希函数将输入(通常是字符串或其他类型的数据)转化为数组的索引,以此实现数据的快速存取。在本文中,哈希表作为考研复习阶段需要掌握的一种重要数据结构被提及,它是通过计算哈希码解决键值对高效查找问题的关键技术,在Java等编程语言中广泛应用,如JDK中的HashMap类就是一种哈希表的实现。 图(Graph) , 图是一种非线性的数据结构,由顶点(或称为节点)和边组成,用于表示对象之间的关系。在文章里,作者提到了在学习数据结构的过程中会遇到更复杂的概念,如图数据结构,它可以用来模拟实际生活中的许多复杂关系,如社交网络、交通路线等,并且涉及诸如最短路径算法等相关算法的学习与应用。 深度优先遍历(DFS, Depth-First Search) , 深度优先遍历是一种在图论和树形结构中常用的搜索算法策略。在执行过程中,该算法首先访问一个顶点,然后尽可能深地探索其邻接顶点,直到到达无法继续深入的顶点(即叶子节点或已访问过的节点),之后回溯至前一个顶点并尝试探索其他未访问的邻接顶点。在文中,深度优先遍历被列为了学习数据结构时需要掌握的基本算法之一,适用于多种与树和图相关的数据结构处理场景。
2023-09-12 23:35:52
134
转载
ElasticSearch
...rk配置项正是用来定义这些阈值的,默认值分别为85%、90%和95%。合理设置这些参数能够有效预防磁盘空间耗尽引发的NodeNotActiveException,从而保障集群的稳定运行。
2025-03-14 15:40:13
64
林中小径
转载文章
...述,整理一下具体采集流程: 获取vid = 0Q8mMY0xXDL749Ad (就是链接中的参数); 通过 https://vmobile.douyu.com/video/getInfo?vid=0Q8mMY0xXDL749Ad 获取 playlist.m3u8 文件地址; 解析 playlist.m3u8 文件提取所有 .ts文件; 下载所有 .ts 文件; 合并 .ts 成视频文件输出; Python实现 不要开启线程池,因为会有一些问题 app.py config 中可以配置 import requestsimport reimport jsonimport timeimport pymongoimport psutilfrom hashlib import md5from moviepy.editor import from multiprocessing import Pool基本配置config = {'UID':'gKpdxKRWXwaW',用户ID'CID':104,栏目ID'TYPE':1, 1=>按用户id采集列表,2=>按栏目ID采集列表'TIME_START':1,起始时间'TIME_ENT':500,结束时间'PAGE_START':1,起始页'PAGE_END':10,结束页'TIME_GE':0,每个下载间隔时间'POOL':False,是否开启线程池'CHECKID':True, True 过滤已经下载过的视频 False 不过滤'FILE_PATH':'F:/ceshi/',下载目录,【会自动创建文件夹】'TS_PATH':'F:/ceshi/download/',缓存文件目录,【会自动创建文件夹】'DB_URL':'localhost',数据库地址'DB_NAME':'douyu',数据库名称''DB_TABLE':'douyu'数据库表}MongoDB初始化client = pymongo.MongoClient(config['DB_URL'])mango_db = client[config['DB_NAME']]MongoDB存储def save_to_mango(result):if mango_db[config['DB_TABLE']].insert_one({'vid':result}):print('成功存储到MangoDB')return Truereturn FalseMongoDB验证重复def check_to_mongo(vid):count = mango_db[config['DB_TABLE']].find({'vid':vid}).count()if count==0:return Falsereturn True删除文件def del_file(page):if os.path.exists(page): 删除文件,可使用以下两种方法。os.remove(page) os.unlink(my_file)else:print('no such file:%s' % page)循环列表删除文件def loop_del_file(arr):for item in arr:del_file(item)请求器def get_content_requests(url):headers = {}headers['user-agent']='Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.131 Safari/537.36'headers['cookie'] = 'dy_did=07f83a57d1d2e22942e0883200001501; acf_did=07f83a57d1d2e22942e0883200001501; Hm_lvt_e99aee90ec1b2106afe7ec3b199020a7=1556514266,1557050422,1557208315; acf_auth=; acf_auth_wl=; acf_uid=; acf_nickname=; acf_username=; acf_own_room=; acf_groupid=; acf_notification=; acf_phonestatus=; _dys_lastPageCode=page_video,page_video; Hm_lpvt_e99aee90ec1b2106afe7ec3b199020a7=1557209469; _dys_refer_action_code=click_author_video_cate2'try:req_content = requests.get(url,headers = headers)if req_content.status_code == 200:return req_contentprint('请求失败:',url)return Noneexcept:print('请求失败:', url)return None把时间换算成秒def str_to_int(time):try:time_array = time.split(':')time_int = (int(time_array[0])60)+int(time_array[1])return time_intexcept:print('~~~~~计算视频时间失败~~~~~')return None提取需要采集的数据def get_list(html,type = 1):data = []try:list_json = json.loads(str(html))for om in list_json['data']['list']:gtime = str_to_int(om['video_str_duration'])if gtime > config['TIME_START'] and gtime < config['TIME_ENT']:if type == 2:data.append({'title': om['title'], 'vid': om['url'].split('show/')[1]})else:data.append({'title': om['title'], 'vid': om['hash_id']})return dataexcept:print('~~~~~数据提取失败~~~~~')return None解析playlist.m3u8def get_ts_list(m3u8):data = []try:html_m3u8_json = json.loads(m3u8)m3u8_text = get_content_requests(html_m3u8_json['data']['video_url'])m3u8_vurl =html_m3u8_json['data']['video_url'].split('playlist.m3u8?')[0]if m3u8_text:get_text = re.findall(',\n(.?).ts(.?)\n',m3u8_text.text,re.S)for item in get_text:data.append(m3u8_vurl+item[0]+'.ts'+item[1])return datareturn Noneexcept:print('~~~~~解析playlist.m3u8失败~~~~~')return None 杀死moviepy产生的特定进程def killProcess(): 处理python程序在运行中出现的异常和错误try: pids方法查看系统全部进程pids = psutil.pids()for pid in pids: Process方法查看单个进程p = psutil.Process(pid) print('pid-%s,pname-%s' % (pid, p.name())) 进程名if p.name() == 'ffmpeg-win64-v4.1.exe': 关闭任务 /f是强制执行,/im对应程序名cmd = 'taskkill /f /im ffmpeg-win64-v4.1.exe 2>nul 1>null' python调用Shell脚本执行cmd命令os.system(cmd)except:pass下载.ts文件def download_ts(m3u8_list,name):try:if not os.path.exists(config['FILE_PATH']):os.makedirs(config['FILE_PATH'])if not os.path.exists(config['TS_PATH']):os.makedirs(config['TS_PATH'])if os.path.exists(config['FILE_PATH']+name+'.mp4'):name = name+'_'+str(int(time.time()))print('开始下载:',name)L = []R = []for p in m3u8_list:ts_find = get_content_requests(p)file_ts = '{0}{1}.ts'.format(config['TS_PATH'],md5(ts_find.content).hexdigest())with open(file_ts,'wb') as f:f.write(ts_find.content)R.append(file_ts)hebing = VideoFileClip(file_ts)L.append(hebing)killProcess()print('下载完成:',file_ts)mp4file = '{0}{1}.mp4'.format(config['FILE_PATH'],name)final_clip = concatenate_videoclips(L)final_clip.to_videofile(mp4file, fps=24, remove_temp=True)killProcess()loop_del_file(R)print('\n下载完成:',name)print('')return Trueexcept:print('~~~~~合成.ts文件失败~~~~~')return None下载视频列表def list_get_kong(list_json):for item in list_json:y = Trueif config['CHECKID']:if check_to_mongo(item['vid']):print('~~~~~检测到重复项~~~~~')y = Falseif y:get_show_html = get_content_requests('https://vmobile.douyu.com/video/getInfo?vid=' + item['vid'])if get_show_html:m3u8_list = get_ts_list(get_show_html.text)if m3u8_list:download = download_ts(m3u8_list, item['title'])if download: save_to_mango(item['vid'])time.sleep(config['TIME_GE'])控制器def main(page):if config['TYPE']==1:print('~~~~~按用户ID采集~~~~~')listurl = 'https://v.douyu.com/video/author/getAuthorVideoListByNew?up_id={0}&cate2_id=0&limit=30&page={1}'.format(config['UID'],page)get_list_html = get_content_requests(listurl)if get_list_html:list_json = get_list(get_list_html.text,1)if list_json:list_get_kong(list_json)else:print('~~~~~按列表ID采集~~~~~')listurl = 'https://v.douyu.com/video/video/listData?page={1}&cate2Id={0}&action=new'.format(config['CID'],page)get_list_html = get_content_requests(listurl)if get_list_html:list_json = get_list(get_list_html.text,2)if list_json:list_get_kong(list_json)初始化if __name__=='__main__':if config['POOL']:groups = [x for x in range(config['PAGE_START'],config['PAGE_END']+1)]pool = Pool()pool.map(main, groups)else:for item in range(config['PAGE_START'],config['PAGE_END']+1):main(item)print('~~~~~已经完成【所有操作】~~~~~') 总结:众所周知,BiliBili是一个学习的网站! 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_35875470/article/details/89857445。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-18 11:34:00
119
转载
转载文章
...的消除类游戏静态画面构建与动态效果实现之后,我们可进一步探讨当前HTML5游戏开发领域的最新技术和趋势。随着Web技术的快速发展,Canvas和WebGL等现代API使得网页游戏的性能表现与视觉体验得到显著提升。 近期,Mozilla Hacks发布了一篇题为《利用WebAssembly和WebGPU打造高性能网页游戏》的文章,详细介绍了如何借助WebAssembly将C++等编译成可在浏览器中高效运行的代码,从而大幅提升游戏性能。同时,WebGPU作为下一代浏览器图形接口,为开发者提供了低级别的硬件访问权限,可以创建更复杂的3D图形和实时渲染效果,对于消除类游戏这类对响应速度有较高要求的游戏来说具有重大意义。 此外,游戏设计中的AI算法也是值得关注的方向。例如,运用深度学习和强化学习技术优化消除类游戏的智能提示系统,能有效提高玩家体验并延长游戏生命周期。一篇发表在“自然”杂志子刊上的论文就研究了AI在连连看等消除类游戏中的应用,展示了通过机器学习预测最佳消除路径的可能性。 总的来说,在继续深入实践HTML、CSS、JavaScript基础开发的同时,紧跟Web技术前沿进展,结合先进的编程语言、图形处理技术和AI算法,将有助于开发者打造出更为丰富、流畅且富有挑战性的消除类游戏产品,不断满足日益增长的用户体验需求。
2023-06-08 15:26:34
516
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
uniq file.txt
- 删除连续的重复行,需配合sort使用效果更佳。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"