前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Docker镜像层构建与管理]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
PostgreSQL
...、开源的关系型数据库管理系统,在全球范围内广受赞誉。不过呢,就像老话说的,“好马得配好鞍”,哪怕PostgreSQL这匹“骏马”有着超凡的性能和稳如磐石的稳定性,可一旦咱们给它配上不合适的“鞍子”,也就是配置出岔子或者系统闹点儿小情绪,那很可能就拖了它的后腿,影响性能,严重点儿还可能引发各种意想不到的问题。这篇文章咱们要接地气地聊聊,配置出岔子可能会带来的那些糟心影响,并且我还会手把手地带你瞧瞧实例代码,教你如何把配置调校得恰到好处,让这些问题通通远离咱们。 2. 配置失误对性能的影响 2.1 shared_buffers设置不合理 shared_buffers是PostgreSQL用于缓存数据的重要参数,其大小直接影响到数据库的查询性能。要是你把这数值设得过小,就等于是在让磁盘I/O忙个不停,频繁操作起来,就像个永不停歇的陀螺,会拖累整体性能,让系统跑得像只乌龟。反过来,如果你一不留神把数值调得过大,那就像是在内存里开辟了一大片空地却闲置不用,这就白白浪费了宝贵的内存资源,还会把其他系统进程挤得没地方住,人家也会闹情绪的。 postgresql -- 在postgresql.conf中调整shared_buffers值 shared_buffers = 4GB -- 假设服务器有足够内存支持此设置 2.2 work_mem不足 work_mem定义了每个SQL查询可以使用的内存量,对于复杂的排序、哈希操作等至关重要。过低的work_mem设定可能导致大量临时文件生成,进一步降低性能。 postgresql -- 调整work_mem大小 work_mem = 64MB -- 根据实际业务负载进行合理调整 3. 配置失误导致的故障案例 3.1 max_connections设置过高 max_connections参数限制了PostgreSQL同时接受的最大连接数。如果设置得过高,却没考虑服务器的实际承受能力,就像让一个普通人硬扛大铁锤,早晚得累垮。这样一来,系统资源就会被消耗殆尽,好比车票都被抢光了,新的连接请求就无法挤上这趟“网络列车”。最终,整个系统可能就要“罢工”瘫痪啦。 postgresql -- 不合理的高连接数设置示例 max_connections = 500 -- 若服务器硬件条件不足以支撑如此多的并发连接,则可能引发故障 3.2 日志设置不当造成磁盘空间耗尽 log_line_prefix、log_directory等日志相关参数设置不当,可能导致日志文件迅速增长,占用过多磁盘空间,进而引发数据库服务停止。 postgresql -- 错误的日志设置示例 log_line_prefix = '%t [%p]: ' -- 时间戳和进程ID前缀可能会使日志行变得冗长 log_directory = '/var/log/postgresql' -- 如果不加以定期清理,日志文件可能会撑满整个分区 4. 探讨与建议 面对PostgreSQL的系统配置问题,我们需要深入了解每个参数的含义以及它们在不同场景下的最佳实践。优化配置是一个持续的过程,需要结合业务特性和硬件资源来进行细致调优。 - 理解需求:首先,应了解业务特点,包括数据量大小、查询复杂度、并发访问量等因素。 - 监控分析:借助pg_stat_activity、pg_stat_bgwriter等视图监控数据库运行状态,结合如pgBadger、pg_top等工具分析性能瓶颈。 - 逐步调整:每次只更改一个参数,观察并评估效果,切忌盲目跟从网络上的推荐配置。 总结来说,PostgreSQL的强大性能背后,合理的配置是关键。要让咱们的数据库系统跑得溜又稳,像老黄牛一样可靠,给业务发展扎扎实实当好坚强后盾,那就必须把这些参数整得门儿清,调校得恰到好处才行。
2023-12-18 14:08:56
237
林中小径
RabbitMQ
...通过一些基本的策略来管理磁盘空间。 示例1:监控磁盘使用情况 python import psutil def check_disk_usage(): 获取磁盘使用率 disk_usage = psutil.disk_usage('/') if disk_usage.percent > 80: print("警告:磁盘使用率超过80%") else: print(f"当前磁盘使用率为:{disk_usage.percent}%") check_disk_usage() 这段代码可以帮助你监控系统磁盘的使用率,并在达到某个阈值时发出警告。 示例2:调整消息持久化级别 python import pika 连接到RabbitMQ服务器 connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() 创建队列 channel.queue_declare(queue='hello', durable=True) 发送消息 channel.basic_publish(exchange='', routing_key='hello', body='Hello World!', properties=pika.BasicProperties( delivery_mode=2, 消息持久化 )) print(" [x] Sent 'Hello World!'") connection.close() 在这个例子中,我们设置了消息的delivery_mode属性为2,表示该消息是持久化的。这样就能保证消息在服务器重启后还在,不过也得留意它会占用多少硬盘空间。 示例3:清理死信队列 python import pika 连接到RabbitMQ服务器 connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() 清理死信队列 channel.queue_purge(queue='dead_letter_queue') print("Dead letter queue has been purged.") connection.close() 这段代码展示了如何清空死信队列中的消息,释放宝贵的磁盘空间。 5. 结语 让我们一起成为“兔子”的守护者吧! 好了,今天的分享就到这里啦!希望这些信息对你有所帮助。记得,咱们用RabbitMQ的时候,得好好保护自己的“地盘”。别让磁盘空间不够用,把自己给坑了。当然,如果你还有其他方法或者技巧想要分享,欢迎留言讨论!让我们一起努力,成为“兔子”的守护者吧! --- 以上就是今天的全部内容,感谢阅读,希望你能从中获得启发并有所收获。如果你有任何疑问或想了解更多关于RabbitMQ的内容,请随时告诉我!
2024-12-04 15:45:21
133
红尘漫步
Gradle
...会发现它不仅仅是一个构建工具,更是一个强大的可扩展平台。在捣鼓Gradle插件开发的时候,咱们免不了会碰到各种预料不到的幺蛾子,这时候就需要我们亲自出手,给这些异常情况定制错误处理方案,这样一来,才能让用户体验更加舒坦、贴心,仿佛是跟老朋友打交道一样。本文将探讨如何在Gradle插件中实现自定义错误处理逻辑,通过实例代码让你“身临其境”地理解和掌握这一技巧。 1. Gradle插件基础理解 首先,让我们回顾一下Gradle插件的基本概念。Gradle插件其实就像是给Gradle这位大厨添加一套新的烹饪秘籍,这些秘籍可以用Groovy或Kotlin这两种语言编写。它们就像魔法一样,能给原本的构建流程增添全新的任务菜单、个性化的调料配置,甚至是前所未有的操作手法,让构建过程变得更加丰富多彩,功能更加强大。在创建自定义插件时,我们通常会继承org.gradle.api.Plugin接口并实现其apply方法。 groovy class CustomPlugin implements Plugin { @Override void apply(Project project) { // 在这里定义你的插件逻辑 } } 2. 自定义错误处理的重要性 在构建过程中,可能会出现各种预期外的情况,比如网络请求失败、资源文件找不到、编译错误等。这些异常情况,如果我们没做妥善处理的话,Gradle这家伙通常会耍小脾气,直接撂挑子不干了,还把一串长长的堆栈跟踪信息给打印出来,这搁谁看了都可能会觉得有点闹心。所以呢,我们得在插件里头自己整一套错误处理机制,就是逮住特定的异常情况,给它掰扯清楚,然后估摸着是不是该继续下一步的操作。 3. 实现自定义错误处理逻辑 下面我们将通过一段示例代码来演示如何在Gradle插件中实现自定义错误处理: groovy class CustomPlugin implements Plugin { @Override void apply(Project project) { // 定义一个自定义任务 project.task('customTask') { doLast { try { // 模拟可能发生异常的操作 def resource = new URL("http://nonexistent-resource.com").openStream() // ...其他操作... } catch (IOException e) { // 自定义错误处理逻辑 println "发生了一个预料之外的问题: ${e.message}" // 可选择记录错误日志、发送通知或者根据条件决定是否继续执行 if (project.hasProperty('continueOnError')) { println "由于设置了'continueOnError'属性,我们将继续执行剩余任务..." } else { throw new GradleException("无法完成任务,因为遇到IO异常", e) } } } } } } 上述代码中,我们在自定义的任务customTask的doLast闭包内尝试执行可能抛出IOException的操作。当捕获到异常时,我们先输出一条易于理解的错误信息,然后检查项目是否有continueOnError属性设置。如果有,就打印一条提示并继续执行;否则,我们会抛出一个GradleException,这会导致构建停止并显示我们提供的错误消息。 4. 进一步探索与思考 尽管上面的示例展示了基本的自定义错误处理逻辑,但在实际场景中,你可能需要处理更复杂的情况,如根据不同类型的异常采取不同的策略,或者在全局范围内定义统一的错误处理器。为了让大家更自由地施展拳脚,Gradle提供了一系列超级实用的API工具箱。比如说,你可以想象一下,在你的整个项目评估完成之后,就像烘焙蛋糕出炉后撒糖霜一样,我们可以利用afterEvaluate这个神奇的生命周期回调函数,给项目挂上一个全局的异常处理器,确保任何小差错都逃不过它的“法眼”。 总的来说,在Gradle插件中定义自定义错误处理逻辑是一项重要的实践,它能帮助我们提升构建过程中的健壮性和用户体验。希望本文举的例子和讨论能实实在在帮到你,让你对这项技术有更接地气的理解和应用。这样一来,任何可能出现的异常情况,咱们都能把它变成一个展示咱优雅应对、积极改进的好机会,让问题不再是问题,而是进步的阶梯。
2023-05-21 19:08:26
427
半夏微凉
Logstash
在现代大数据和日志管理领域,多行日志合并的需求日益凸显。随着微服务架构的广泛应用以及各种复杂应用产生的丰富日志类型,如何有效处理这类日志以提升日志分析平台(如ELK栈)的性能与准确性,已成为众多IT运维人员关注的重点。 最近,Elastic公司持续优化其Logstash工具集,不仅强化了multiline codec的功能,还引入了更多高级配置选项以支持更广泛、更复杂的日志格式。例如,在新版本中,用户可以设置基于事件时间戳或特定关键字的合并策略,并实现对不同来源日志的差异化处理。 与此同时,开源社区也在积极探索创新解决方案,比如通过Grok模式匹配和自定义插件等手段,进一步增强对多行日志解析的灵活性。此外,一些云原生的日志管理系统也开始集成类似功能,利用容器和Kubernetes环境中的元数据信息,智能判断并合并跨行日志。 实践中,对于那些涉及敏感信息或者需要深度挖掘业务逻辑的日志内容,精细化的多行合并策略更是必不可少。通过对日志结构进行深入理解并合理运用正则表达式,不仅可以确保数据分析结果的准确性和完整性,更能助力企业实现高效运维、故障排查及安全审计。 因此,理解和掌握在Logstash或其他日志处理工具中处理多行日志合并的方法,对于提升整个IT基础设施的数据洞察力具有重要的现实意义。在这个快速迭代的数字化时代,紧跟技术发展趋势,不断更新和完善日志管理实践,无疑将为企业带来更为显著的技术竞争优势。
2023-08-19 08:55:43
250
春暖花开
ActiveMQ
...is支持更高效的内存管理和持久化策略,用户可以根据实际场景进行深度定制以达到最优延迟效果。同时,也有开发团队分享了他们如何通过调整ActiveMQ内部参数,结合消费者并行处理机制,有效提升了系统整体的消息处理速度。 此外,对于特定业务场景下的延迟优化案例分析同样值得关注。例如,在金融交易、物联网(IoT)设备数据同步等领域,有专家详细解读了如何借助ActiveMQ实现低延迟、高可靠的消息传输,并对比了不同消息队列产品在类似场景下的表现,这些深入解读有助于开发者更好地应对实际问题,将理论知识转化为实实在在的性能提升。 综上所述,无论是从技术演进的宏观视角,还是具体到ActiveMQ产品的微观调优,我们都有充足的理由相信,通过紧跟技术潮流与实践经验,可以持续改善ActiveMQ在P2P模式下的消息传递延迟问题,从而满足现代分布式系统对高性能、低延迟的需求。
2023-11-19 09:23:19
435
追梦人
.net
...,C开发者能够轻松构建高度可扩展的云原生应用。 而Visual Basic虽然在某些高级特性和性能上略逊于C,但在教育领域和快速原型设计中仍然保持着独特的地位。许多初学者和小型企业用户依然倾向于选择Visual Basic进行桌面应用开发,因其学习曲线平缓且可视化设计工具成熟。 综上所述,无论您是选择C深入企业级开发,还是利用Visual Basic快速实现桌面解决方案,都需要紧跟技术潮流,关注官方发布的最新动态和技术文档,以便充分利用两种语言的优势,应对瞬息万变的技术挑战。
2023-07-31 15:48:21
569
幽谷听泉-t
Redis
...为高并发场景下的数据管理带来了新的解决方案。然而,随着技术的演进和业务需求的变化,如何进一步优化分布式环境中的数据库性能仍然是业界关注的焦点。 近期(时效性),在数据库领域出现了许多与Redis设计理念相呼应的实践案例和技术趋势。例如,NewSQL数据库如Google Spanner、阿里云OceanBase等,它们在保证强一致性的同时,通过改进的并发控制算法和全局时钟等技术手段,实现了在大规模分布式系统中高效处理事务的能力。 同时,对于Redis自身的发展动态,Redis 6.0版本引入了多线程IO处理功能,这在保持Redis核心逻辑单线程的前提下,提升了网络IO密集型任务的处理能力,有效缓解了潜在的性能瓶颈问题。这一改变无疑是对Redis原有设计理念的一次重要补充和完善,使得Redis在保持其独特事务处理方式的同时,也能更好地适应更复杂的应用场景和更高的性能要求。 此外,针对Redis在事务隔离级别上的特点,开发者在实际应用中应结合具体业务场景进行权衡,比如采用适当的分片策略或结合其他外部服务(如消息队列)来实现更强的事务隔离性和系统的扩展性。总之,深入理解和灵活运用包括Redis在内的各类数据库事务处理机制,将有助于我们在设计和优化现代高性能系统时,取得更好的效果和更高的效率。
2023-09-24 23:23:00
330
夜色朦胧_
转载文章
...再次提醒开发者和系统管理员,在开发过程中必须谨慎处理文件包含操作,确保禁用不必要的远程文件包含功能,并对用户提交的数据进行严格的过滤和验证。 此外,PHP官方社区也发布了一系列安全更新,以修复已知的文件包含漏洞和其他安全问题。建议所有使用PHP的网站和应用尽快升级至最新稳定版,同时遵循最佳安全实践,如避免直接在include或require语句中使用不受信任的变量指定文件路径。 深入解读方面,著名安全专家在其博客上分析了PHP文件包含漏洞的历史演变与防范策略,强调了防御此类攻击的关键在于实施严格的输入验证、最小权限原则以及合理的错误处理机制。他引用了多个历史案例,展示了攻击者如何通过精心构造的URL绕过安全防护,实现远程代码执行。 综上所述,对于PHP文件包含漏洞这一安全隐患,无论是及时关注最新的安全动态,还是深入学习和理解其原理及防范措施,都是当前广大开发者和网络安全从业者需要持续关注和努力的方向。
2024-01-06 09:10:40
344
转载
SpringBoot
...ngBoot已经成为构建高效、简洁应用程序的事实标准。JUnit,这可是Java世界里无人不知、无人不晓的最火爆的单元测试工具,它跟SpringBoot之间那叫一个亲密无间、浑然一体。这俩搭档起来,简直就是我们开发过程中的超级守护神和贴心小助手,让我们干活儿既放心又有速度。本文将通过丰富的代码示例,带你一起探索如何在SpringBoot项目中充分利用JUnit进行单元测试。 1. 引言 首先,让我们理解一下为何单元测试如此重要。在我们实际搞开发的时候,单元测试就相当于程序员的好哥们儿“安全网”。每当咱们对代码动手脚时,它能及时帮咱确认之前的那些功能是不是还在正常运转,这样一来啊,就能有效避免老功能突然撂挑子的情况,大大提升咱们软件的品质和稳定性。结合SpringBoot与JUnit,我们可以在模拟环境中对服务层、数据访问层等组件进行独立且精准的测试。 2. SpringBoot项目中的JUnit配置 在SpringBoot项目中使用JUnit非常简单,只需要在pom.xml文件中添加相应的依赖即可: xml org.springframework.boot spring-boot-starter-test test 这段配置引入了Spring Boot Test Starter,其中包括了JUnit以及Mockito等一系列测试相关的库。 3. 编写SpringBoot应用的单元测试 假设我们有一个简单的SpringBoot服务类UserService,下面是如何为其编写单元测试的实例: java import org.junit.jupiter.api.Test; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.test.context.SpringBootTest; @SpringBootTest public class UserServiceTest { @Autowired private UserService userService; // 我们要测试的服务类 @Test public void testGetUserById() { // 假设我们有一个获取用户信息的方法 User user = userService.getUserById(1); // 断言结果符合预期 assertNotNull(user); assertEquals("预期的用户名", user.getUsername()); } // 更多测试方法... } 在这个例子中,@SpringBootTest注解使得Spring Boot应用上下文被加载,从而我们可以注入需要测试的服务对象。@Test注解则标记了这是一个单元测试方法。 4. 使用MockMvc进行Web接口测试 当我们要测试Controller层的时候,可以借助SpringBootTest提供的MockMvc工具进行模拟请求测试: java import org.junit.jupiter.api.Test; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.test.autoconfigure.web.servlet.AutoConfigureMockMvc; import org.springframework.boot.test.context.SpringBootTest; import org.springframework.test.web.servlet.MockMvc; import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get; import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.status; @SpringBootTest @AutoConfigureMockMvc public class UserControllerTest { @Autowired private MockMvc mockMvc; @Test public void testGetUser() throws Exception { mockMvc.perform(get("/users/1")) .andExpect(status().isOk()); // 可以进一步解析响应内容并进行断言 } } 在这段代码中,@AutoConfigureMockMvc注解会自动配置一个MockMvc对象,我们可以用它来模拟HTTP请求,并检查返回的状态码或响应体。 5. 结语 通过以上示例,我们可以看到SpringBoot与JUnit的集成使单元测试变得更加直观和便捷。这东西可不简单,它不仅能帮我们把每一行代码都捯饬得准确无误,更是在持续集成和持续部署(CI/CD)这一套流程里,扮演着不可或缺的关键角色。所以,亲,听我说,把单元测试搂得紧紧的,特别是在像SpringBoot这样新潮的开发框架下,绝对是每个程序员提升代码质量和效率的必修课。没有它,你就像是在编程大道上少了一双好跑鞋,知道不?在实际动手操作中不断摸索和探究,你会发现单元测试就像一颗隐藏的宝石,充满了让人着迷的魅力。而且,你会更深刻地感受到,它在提升开发过程中的快乐指数、让你编程生活更加美滋滋这方面,可是起着大作用呢!
2023-11-11 08:06:51
78
冬日暖阳
SeaTunnel
...一种全方位的数据质量管理习惯,就像是守护数据的超级侦探一样,摸透各种工具的脾性,这样一来,无论在数据集成过程中遇到啥妖魔鬼怪般的挑战,咱们都能游刃有余地应对啦! 以上内容仅为一个基础示例,实际上,SeaTunnel能够帮助我们解决更复杂的问题,让Druid数据摄入变得更为顺畅。只有当我们把这些技术彻底搞懂、玩得溜溜的,才能真正像驾驭大河般掌控大数据的洪流,从那些海量数据里淘出藏着的巨大宝藏。
2023-10-11 22:12:51
338
翡翠梦境
Impala
...表可以帮助我们更好地管理和优化大型数据集。把数据按时间戳之类的东西分个区,查询起来会快很多,特别是当你 dealing with 时间序列数据的时候。 示例代码: sql CREATE TABLE sales ( year INT, month INT, day INT, amount DECIMAL(10,2) ) PARTITION BY (year, month); 在这个例子中,我们将 sales 表按年份和月份进行了分区,这样查询某个特定时间段的数据就会变得非常高效。 4.3 使用索引 合理利用索引可以大大提高查询速度。不过,在建索引的时候得好好想想,毕竟索引会吃掉一部分存储空间,而且在往里面添加或修改数据时,还得额外花工夫去维护。 示例代码: sql CREATE INDEX idx_user_email ON users(email); 通过在 email 字段上创建索引,我们可以快速查找特定邮箱的用户记录。 5. 结论 通过本文的学习,我们了解了如何在Impala中选择合适的数据类型以及如何通过这些选择来优化查询性能。希望这些知识能够帮助你在实际工作中做出更好的决策。记住啊,选数据类型和搞性能优化这事儿,就跟学骑自行车一样,得不停地练。别害怕摔跤,每次跌倒都是长经验的好机会!祝你在这个过程中找到乐趣,享受数据带来的无限可能!
2025-01-15 15:57:58
37
夜色朦胧
转载文章
...高亮、Project管理、代码跳转、智能提示、自动完成、单元测试、版本控制等操作。 Python常用工具: 1、Python Tutor Python Tutor 是由 Philip Guo 开发的一个免费教育工具,可帮助学生攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。通过这个工具,教师或学生可以直接在 Web 浏览器中编写 Python 代码,并逐步可视化地运行程序。如果你不知道代码在内存中是如何运行的,不妨把它拷贝到Tutor里可视化执行一遍加深理解。 2、IPython IPython 是一个 for Humans 的 Python 交互式 shell,用了它之后你就不想再用自带的 Python shell ,IPython 支持变量自动补全,自动缩进,支持 bash shell 命令,内置了许多实用功能和函数,同时它也是科学计算和交互可视化的最佳平台。 3、Jupyter Notebook Jupyter Notebook 就像一个草稿本,能将文本注释、数学方程、代码和可视化内容全部组合到一个易于共享的文档中,以 Web 页面的方式展示。它是数据分析、机器学习的必备工具。回复 “jupyter” 给你看一个基于 jupyter 写的 Python 教程。 4、Anaconda Python 虽好,可总是会遇到各种包管理和 Python 版本问题,特别是 Windows 平台很多包无法正常安装,为了解决这些问题,Anoconda 出现了,Anoconda 包含了一个包管理工具和一个Python管理环境,同时附带了一大批常用数据科学包,也是数据分析的标配。 5、Skulpt Skulpt 是一个用 Javascript 实现的在线 Python 执行环境,它可以让你轻松在浏览器中运行 Python 代码。使用 skulpt 结合 CodeMirror 编辑器即可实现一个基本的在线Python编辑和运行环境。 以上主要介绍Python Tutor、IPython、Jupyter Notebook、Anaconda、Skulpt常见的五种工具。 Python经验分享 学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助! Python学习路线 这里把Python常用的技术点做了整理,有各个领域的知识点汇总,可以按照上面的知识点找对应的学习资源。 学习软件 Python常用的开发软件,会给大家节省很多时间。 学习视频 编程学习一定要多多看视频,书籍和视频结合起来学习才能事半功倍。 100道练习题 实战案例 光学理论是没用的,学习编程切忌纸上谈兵,一定要动手实操,将自己学到的知识运用到实际当中。 最后祝大家天天进步!! 上面这份完整版的Python全套学习资料已经上传至CSDN官方,朋友如果需要可以直接微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_67991858/article/details/128340577。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-14 09:38:26
44
转载
Superset
...不知、超级博学的图书管理员,而你手里的各种数据库,比如MySQL、PostgreSQL、SQL Server这些家伙,就相当于那一排排满满当当装着书籍的书架。为了让图书管理员能轻松地找到并读懂这些书(其实就是数据啦),我们就得先给哥儿们指明每个书架的具体位置,这就相当于配置好了数据源。现在,就让我们开始动手设置你的第一个“书架”吧! 2. 登录Superset并进入数据源管理界面 启动你的Superset服务,打开浏览器访问Superset的URL。登录后,你会看到主界面,这里我们径直前往“Sources”(或翻译为“数据源”)菜单,点击进入。瞧瞧这个界面,现在展示的是当前咱有的所有数据源列表,不过现在它还空荡荡的呢,因为我们还没把任何新朋友拽进来填充它呀。 3. 创建新数据源 以MySQL为例 3.1 开始创建 点击右上角的“+”按钮,选择“Database”开始创建新的数据源。这时候,Superset会要求填写一系列关于这个数据源的信息。 3.2 填写数据源信息 - Database Name:给你的数据源起个易记的名字,比如“我的MySQL数据库”。 - SqlAlchemy URI:这是连接数据库的关键信息,格式如下: python mysql://username:password@host:port/database 例如: python mysql://myuser:mypassword@localhost:3306/mydatabase 请根据实际情况替换上述示例中的用户名、密码、主机地址、端口号以及数据库名。 - Metadata Database:通常保持默认值即可,除非你在进行特殊配置。 完成上述步骤后,点击"Save"按钮保存配置。 3.3 测试连接 保存后,Superset会尝试用你提供的信息连接到数据库。如果一切顺利,恭喜你!你的“书架”已经被成功地添加到了Superset的“图书馆”中。如果遇到问题,别担心,仔细检查你的连接字符串是否正确无误。 4. 探索与使用新数据源 一旦数据源创建成功,你就可以在Superset中通过SQL Lab查询数据,并基于此创建丰富的仪表板和图表了。这就像是图书管理员已经摸清了你的书架,随时都能从里面抽出你想看的书,就像你家私人图书馆一样,随读者心意查阅。 总结一下,在Superset中创建新的数据源是一项基础但关键的任务。嘿,你知道吗?Superset的界面设计得超直观,配置选项详尽到家,这使得我们能够轻轻松松将各类数据库与它无缝对接。这样一来,管理和展示数据就变得既高效又轻松啦,就像在公园里遛狗一样简单愉快!不论你是初涉数据世界的探索者,还是经验丰富的数据专家,Superset都能帮助你更好地驾驭手中的数据资源。下次当你准备引入一个新的数据库时,不妨试试按照上述步骤,亲自体验一把数据源创建的乐趣吧!
2023-06-10 10:49:30
76
寂静森林
转载文章
...,就可以自动进行模型构建和优化。 auto-sklearn可以自动选择和配置算法和超参数,从而让用户省去了手动调参的过程。 auto-sklearn还支持并行化处理,可以在多个CPU或GPU上运行,进一步加速模型训练和优化。 优缺点 自动化:auto-sklearn能够自动化地完成机器学习的各个环节,从而让用户省去手动调参和特征工程等繁琐的工作。 灵活性:auto-sklearn提供了多种配置选项,用户可以根据自己的需求进行自定义配置。 性能好:auto-sklearn使用贝叶斯优化技术进行超参数优化,能够在短时间内找到最优的超参数组合,从而得到更好的模型性能。 处理大数据集时较慢:auto-sklearn的处理速度受限于计算资源,处理大数据集时需要较长时间。 可解释性较差:由于auto-sklearn是自动化的,生成的模型可解释性较差。 应用案例 Kaggle竞赛:auto-sklearn在多个Kaggle竞赛中表现出色,包括房价预测、分类、回归等多个任务。 自动化机器学习平台:auto-sklearn可以作为自动化机器学习平台的核心组件,帮助用户快速构建和部署机器学习模型。 数据科学教育:auto-sklearn可以作为教学工具,帮助学生快速入门机器学习,并加深对机器学习原理的理解。 autosklearn/Auto-Sklearn的安装 pip install auto-sklearnpip install -i https://pypi.tuna.tsinghua.edu.cn/simple auto-sklearnconda install -c conda-forge auto-sklearn 系统安装要求¶ auto-sklearn 具有以下系统要求: Linux 操作系统(例如 Ubuntu)(在此处获取 Linux) Python (>=3.7)(在此处获取 Python), C++ 编译器(支持 C++11)(在此处获取 GCC)。 如果您尝试在没有提供 pyrfr 包的 wheel 文件的系统上安装 Auto-sklearn(请参阅此处了解可用的 wheels),您还需要: SWIG(在此处获取 SWIG)。 有关缺少 Microsoft Windows 和 macOS 支持的说明,请查看Windows/macOS 兼容性部分。 注意:auto-sklearn 当前不支持 Windows系统,因为auto-sklearn严重依赖 Python 模块resource。是 Python 的Unix 特定服务resource 的一部分 ,在 Windows 机器上不可用。因此,无法 在 Windows 机器上运行auto-sklearn 。 autosklearn/Auto-Sklearn的使用方法 1、基础案例 import sklearn.datasetsimport autosklearn.classification 加载Titanic数据集X, y = sklearn.datasets.load_breast_cancer(return_X_y=True) 使用Auto-Sklearn训练模型model = autosklearn.classification.AutoSklearnClassifier()model.fit(X, y) 输出模型评估结果print(model.sprint_statistics()) 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_41185868/article/details/83758383。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-13 13:27:17
115
转载
Python
...式,我们可以更方便地管理和操作半球的相关属性和行为。 4. 总结与反思 通过上述三个不同的示例,我们可以看到,即使是同一个问题,也可以用多种方式来解决。从最基本的函数调用,到让用户动起来的交互设计,再到酷炫的面向对象编程,每种方式都有它的独门绝技。这事儿让我明白,在编程这个圈子里,其实没有什么绝对的对错之分,最重要的是得找到最适合自己眼下情况和需要的方法。 同时,这次探索也让我深刻体会到数学与编程之间的紧密联系。很多时候,我们面对的问题不仅仅是技术上的挑战,更是对数学知识的理解和应用。希望能给你带来点灵感,不管是学Python还是别的啥,保持好奇心和爱折腾的精神可太重要了! 好了,这就是今天的内容。如果你有任何想法或疑问,欢迎随时留言讨论。让我们一起继续学习,享受编程带来的乐趣吧! --- 这篇文章旨在通过具体案例展示如何利用Python解决实际问题,同时穿插了一些个人思考和感受,希望能够符合你对于“口语化”、“情感化”的要求。希望对你有所帮助!
2024-11-19 15:38:42
113
凌波微步
转载文章
...件是基于jQuery构建的,意味着开发者需要先引入jQuery核心库,才能正常使用prettyPhoto的功能。 lightbox效果 , lightbox效果是一种常见的网页设计技术,用于图片或多媒体内容的展示方式。当用户点击某个链接或图片时,会在当前页面上层以弹出窗口的形式展示大图或视频等内容,同时背景部分会变暗以突出显示焦点内容,营造沉浸式的浏览体验。prettyPhoto插件即实现了这种轻量级的lightbox效果。 AJAX(Asynchronous JavaScript and XML) , AJAX是一种创建动态网页应用的技术,允许网页在不刷新整个页面的情况下与服务器交换数据并更新部分网页内容。在prettyPhoto插件中,它支持通过AJAX加载内容,这意味着可以实现在同一个lightbox窗口内加载异步获取的数据或页面片段,为用户提供流畅的无刷新页面交互体验。
2024-01-14 22:09:23
280
转载
c++
...模板、类和对象、高效管理内存、优化算法和数据结构、遵循命名规范、编写清晰的注释等。掌握这些技巧有助于提升程序员的工作效率,减少错误,提高代码的质量和可读性。 名词 , 数据类型转换。 解释 , 数据类型转换是在编程中将一个数据类型的数据转换为另一个数据类型的过程。在C++中,这可以通过自动类型转换、强制类型转换(如静态_cast、动态_cast、reinterpret_cast和const_cast)以及模板函数等方式实现。正确使用类型转换对于保证程序的正确性和性能至关重要,同时也要注意类型转换可能带来的安全隐患,如数据丢失或运行时错误。 名词 , 类型安全编程。 解释 , 类型安全编程是一种编程实践,旨在确保程序在运行时不会因类型错误而导致崩溃或产生不可预测的行为。在C++中,通过严格遵守类型规则、合理使用类型转换、避免隐式类型转换可能导致的意外行为,以及利用现代C++特性和工具(如范围基元、期待表达式等)来提高代码的类型安全性,可以有效减少程序中的类型错误,从而提高代码的稳定性和可靠性。
2024-09-14 16:07:23
23
笑傲江湖
Kibana
...业投资于增强数据质量管理能力,以支撑更精确、更具洞察力的数据可视化应用。 因此,在实际工作中,除了深入理解并熟练运用Kibana等工具外,紧跟行业发展趋势,提升数据质量意识,以及适时引入智能化辅助手段,是保障数据可视化准确性的关键所在。
2023-04-16 20:30:19
292
秋水共长天一色-t
Apache Pig
...化环境下的无缝部署与管理。 此外,Apache Beam作为另一个开源数据处理框架,其统一模型能够跨多个执行引擎(包括Apache Flink、Spark以及Google Cloud Dataflow)运行,提供了一种与Pig Latin类似的声明式编程接口,使得开发者在面对多样的执行环境时能够保持代码的一致性与移植性。值得注意的是,Beam也支持将Pig Latin脚本转换为其SDK表示,从而在更广泛的执行环境中利用到Pig的优点。 同时,Apache Hadoop生态系统的持续演进也不容忽视,如Hadoop 3.x版本对YARN资源管理和存储层性能的改进,将进一步优化Pig在大规模集群上的并行处理效率。而诸如Apache Arrow这类内存中列式数据格式的普及,也将提升Pig与其他大数据组件间的数据交换速度,为复杂的数据分析任务带来新的可能。 总之,在当前的大数据时代背景下,Apache Pig的应用不仅限于传统的Hadoop MapReduce环境,它正在与更多新兴技术和平台整合,共同推动大数据并行处理技术的发展与创新。对于相关从业人员而言,紧跟这些趋势和技术进步,无疑能更好地发挥Pig在实际业务场景中的潜力。
2023-02-28 08:00:46
498
晚秋落叶
RabbitMQ
...活搭配起来,这样就能构建出一个超级灵动、随时能扩展的分布式系统,就跟你搭积木一样,想怎么拼就怎么拼,特别给力!当然啦,实际情况是会根据咱们项目的需求和手头现有的技术工具箱灵活调整具体实现方式,不过无论咋整,RabbitMQ都像是个超级靠谱的邮差,让各个服务之间的交流变得贼顺畅。
2024-02-23 11:44:00
93
笑傲江湖-t
MemCache
...实现更为精细化的缓存管理策略。这种智能化的方法有望进一步减少缓存雪崩的可能性,并优化整体系统的性能表现。 综上所述,无论是依托于先进的云服务产品,还是持续跟进前沿科研动态,理解并应对缓存雪崩问题始终是现代分布式系统设计与运维的重要课题。对于开发者而言,不断跟进最新技术进展,结合实际应用场景灵活调整缓存策略,将是提升系统稳定性和用户体验的关键所在。
2023-12-27 23:36:59
89
蝶舞花间
Kubernetes
...体操作取决于你的集群管理方式。例如,在Google Kubernetes Engine (GKE) 中,新创建的节点会自动加入集群。 4. 使用Horizontal Pod Autoscaler (HPA) 除了手动调整,我们还可以利用Kubernetes的自动化工具——Horizontal Pod Autoscaler (HPA),根据实际负载动态调整Pod的数量。例如: bash 创建HPA对象,针对名为my-app的Deployment,目标CPU利用率保持在50% kubectl autoscale deployment my-app --cpu-percent=50 --min=1 --max=10 这段命令会创建一个HPA,它会自动监控"my-app" Deployment的CPU使用情况,当CPU使用率达到50%时,开始增加Pod数量,直到达到最大值10。 结语 处理Kubernetes节点资源不足的问题,需要我们结合监控、分析和调整策略,同时善用Kubernetes提供的各种自动化工具。在整个这个流程里,持续盯着并摸清楚系统的运行状况可是件顶顶重要的事。为啥呢?因为只有真正把系统给琢磨透了,咱们才能做出最精准、最高效的决定,一点儿也不含糊!记住啊,甭管是咱们亲自上手调整还是让系统自动化管理,归根结底,咱们追求的终极目标就是保证服务能稳稳当当、随时待命。咱得瞅准了,既要让集群资源充分满负荷运转起来,又得小心翼翼地躲开资源紧张可能带来的各种风险和麻烦。
2023-07-23 14:47:19
116
雪落无痕
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
sort file.txt
- 对文件内容排序。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"