前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[连接池实现 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Datax
... 如何在Datax中实现数据自动更新功能? 引言 DataX,阿里开源的一款高性能、稳定可靠的数据同步工具,以其强大的异构数据源之间高效稳定的数据迁移能力,被广泛应用于大数据领域。这篇内容,咱们要接地气地聊聊怎么巧妙灵活运用DataX这把利器,来一键实现数据自动更新的魔法,让咱们的数据搬运工作变得更智能、更自动化,轻松省力。 1. DataX的基本原理与配置 首先,理解DataX的工作原理至关重要。DataX通过定义job.json配置文件,详细描述了数据源、目标源以及数据迁移的规则。每次当你运行DataX命令的时候,它就像个聪明的小家伙,会主动去翻开配置文件瞧一瞧,然后根据里边的“秘籍”来进行数据同步这个大工程。 例如,以下是一个简单的DataX同步MySQL到HDFS的job.json配置示例: json { "job": { "content": [ { "reader": { "name": "mysqlreader", "parameter": { "username": "root", "password": "your_password", "connection": [ { "jdbcUrl": ["jdbc:mysql://localhost:3306/test?useSSL=false"], "table": ["table_name"] } ] } }, "writer": { "name": "hdfswriter", "parameter": { "path": "/user/hive/warehouse/table_name", "defaultFS": "hdfs://localhost:9000", "fileType": "text", "fieldDelimiter": "\t" } } } ], "setting": { "speed": { "channel": "5" } } } } 这段代码告诉DataX从MySQL的test数据库中读取table_name表的数据,并将其写入HDFS的指定路径。 2. 数据自动更新功能的实现策略 那么,如何实现数据自动更新呢?这就需要借助定时任务调度工具(如Linux的cron job、Windows的任务计划程序或者更高级的调度系统如Airflow等)。 2.1 定义定期运行的DataX任务 假设我们希望每天凌晨1点整自动同步一次数据,可以设置一个cron job如下: bash 0 1 /usr/local/datax/bin/datax.py /path/to/your/job.json 上述命令将在每天的凌晨1点执行DataX同步任务,使用的是预先配置好的job.json文件。 2.2 增量同步而非全量同步 为了实现真正的数据自动更新,而不是每次全量复制,DataX提供了增量同步的方式。比如对于MySQL,可以通过binlog或timestamp等方式获取自上次同步后新增或修改的数据。 这里以timestamp为例,可以在reader部分添加where条件筛选出自特定时间点之后更改的数据: json "reader": { ... "parameter": { ... "querySql": [ "SELECT FROM table_name WHERE update_time > 'yyyy-MM-dd HH:mm:ss'" ] } } 每次执行前,你需要更新这个update_time条件为上一次同步完成的时间戳。 2.3 持续优化和监控 实现数据自动更新后,别忘了持续优化和监控DataX任务的执行情况,确保数据准确无误且及时同步。你完全可以瞅瞅DataX的运行日志,就像看故事书一样,能从中掌握任务执行的进度情况。或者,更酷的做法是,你可以设定一个警报系统,这样一来,一旦任务不幸“翻车”,它就会立马给你发消息提醒,让你能够第一时间发现问题并采取应对措施。 结语 综上所述,通过结合DataX的数据同步能力和外部定时任务调度工具,我们可以轻松实现数据的自动更新功能。在实际操作中,针对具体配置、数据增量同步的策略还有后期维护优化这些环节,咱们都需要根据业务的实际需求和数据的独特性,灵活机动地进行微调优化。就像是烹饪一道大餐,火候、配料乃至装盘方式,都要依据食材特性和口味需求来灵活掌握,才能确保最终的效果最佳!这不仅提升了工作效率,也为业务决策提供了实时、准确的数据支持。每一次成功实现数据同步的背后,都藏着我们技术人员对数据价值那份了如指掌的深刻理解和勇往直前的积极探索精神。就像是他们精心雕琢的一样,把每一个数据点都视若珍宝,不断挖掘其隐藏的宝藏,让数据真正跳动起来,服务于我们的工作与生活。
2023-05-21 18:47:56
482
青山绿水
ClickHouse
...述各项内存配置参数,实现最优的资源利用率。 5. 思考与总结 调整ClickHouse集群的内存使用并非一蹴而就的事情,需要结合具体的业务场景、数据规模以及硬件资源等因素综合考虑。在实际操作中,我们得瞪大眼睛去观察、开动脑筋去思考、动手去做实验,不断捣鼓和微调那些内存相关的配置参数。目标就是要让内存物尽其用,嗖嗖地提高查询速度,同时也要稳稳当当地保证系统的整体稳定性,两手抓,两手都要硬。同时呢,给内存设定个合理的限额,就像是给它装上了一道安全阀,既能防止那些突如其来的内存爆满状况,还能让咱的ClickHouse集群变得更为结实耐用、易于管理。这样一来,它就能更好地担当起数据分析的大任,更加给力地为我们服务啦!
2023-03-18 23:06:38
492
夜色朦胧
转载文章
...力,只能通过多进程去实现,而无法通过多线程实现。 提示:由于HappyPack 对file-loader、url-loader 支持的不友好,所以不建议对该loader使用。 安装 HappyPack npm i -D happypack 运行机制 HappyPack_Workflow.png 使用 HappyPack 修改你的webpack.config.js 文件 const HappyPack = require('happypack');const os = require('os');const happyThreadPool = HappyPack.ThreadPool({ size: os.cpus().length });module.exports = {module: {rules: [{test: /\.js$/,//把对.js 的文件处理交给id为happyBabel 的HappyPack 的实例执行loader: 'happypack/loader?id=happyBabel',//排除node_modules 目录下的文件exclude: /node_modules/},]},plugins: [new HappyPack({//用id来标识 happypack处理那里类文件id: 'happyBabel',//如何处理 用法和loader 的配置一样loaders: [{loader: 'babel-loader?cacheDirectory=true',}],//共享进程池threadPool: happyThreadPool,//允许 HappyPack 输出日志verbose: true,})]} 在 Loader 配置中,所有文件的处理都交给了 happypack/loader 去处理,使用紧跟其后的 querystring ?id=babel 去告诉 happypack/loader 去选择哪个 HappyPack 实例去处理文件。 在 Plugin 配置中,新增了两个 HappyPack 实例分别用于告诉 happypack/loader 去如何处理 .js 和 .css 文件。选项中的 id 属性的值和上面 querystring 中的 ?id=babel 相对应,选项中的 loaders 属性和 Loader 配置中一样。 HappyPack 参数 id: String 用唯一的标识符 id 来代表当前的 HappyPack 是用来处理一类特定的文件. loaders: Array 用法和 webpack Loader 配置中一样. threads: Number 代表开启几个子进程去处理这一类型的文件,默认是3个,类型必须是整数。 verbose: Boolean 是否允许 HappyPack 输出日志,默认是 true。 threadPool: HappyThreadPool 代表共享进程池,即多个 HappyPack 实例都使用同一个共享进程池中的子进程去处理任务,以防止资源占用过多。 verboseWhenProfiling: Boolean 开启webpack --profile ,仍然希望HappyPack产生输出。 debug: Boolean 启用debug 用于故障排查。默认 false。 https://www.jianshu.com/p/b9bf995f3712 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42265852/article/details/96104507。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-07 15:02:47
951
转载
转载文章
...ygo具体游戏逻辑的实现,先尝试先自己简化一下实现一些东西,首先要弄清楚如何动态的传递一些参数(这对后面写逻辑至关重要):例如说,我得到了卡牌的code,那么我该怎么映射成对应的贴图信息?如果创建一个特定的Actor蓝图,那么我又该怎么去动态的表示这个蓝图的信息呢?这就是接下来将要进行的内容探索。 关于这个问题的具体描述应该是如何动态的加载资源(分为Object资源和Class资源) 可以看一下这一些大佬的归纳:UE4静态/动态加载资源方式 - 知乎 (zhihu.com) [UE4]C++实现动态加载的问题:LoadClass()和LoadObject() 及 静态加载问题:ConstructorHelpers::FClassFinder()和FObjectFinder() - Bill Yuan - 博客园 (cnblogs.com) 简而言之,资源按照一定的规律和卡片的id进行关联,然后在代码中通过LoadObject()传入资源的路径来完成动态的加载。 卡片衍生出来的蓝图通过LoadClass(). 因此之前的修改1、动态加载材质信息,路径Path是字符串,可以很方便的变更,同样的蓝图类以一定的规则组织之后也可以通过路径来很方便的设置 接下来要考虑的内容是事件的传递、类间的消息传递,以及技能逻辑的运用 在做接下来的功能设计的时候,需要去了解游戏王卡牌游戏这个游戏的相关逻辑,关于卡片逻辑编写可以看B站这位大佬的视频游戏王Lua脚本编写教程·改二_哔哩哔哩_bilibili 关于技能的发动: 1、GAS中取对象的技能设计,使用targetData Actor来表征选选择对象的信息。 另一种实现方式是设定一个定时器,当技能开始的时候⏲,如果超时没有获取到对象,那么就当作对局失败或者技能发动失败处理。我偏向于后者的实现。 2、关于效果的类型,我们可以看到ygopro和DL的分类大体相似,如果用GAS设计技能的话也可以从简单的技能类型设计起来 3、卡片的表示 沿用ygopro的卡片类型的定义,在游戏中用Pawn做为基类。初始化的时候传入基本的信息,一开始将cards.db读入内存,用map存储,后续信息的查找都查询该map 效果卡片,仍然可以用lua实现逻辑,具体的后续再看看怎么实现比较合适。 4、设计简单的演示方案,仍然是从最简单的初代规则和初代卡牌考虑 a:summon a monster 利用动态资源加载的方式,先完成了一个简单的召唤逻辑。 先实现最基本的功能。后面再考虑详细的state信息 接下来实现三种基本的技能方式,然后看看技能资源该如何组织比较好 b:进行攻击 c:装备卡发动 d:生命值回复效果 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_33232568/article/details/117932910。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-07 13:59:47
150
转载
转载文章
...nverter等方式实现更为灵活的数据转换逻辑,以满足特定业务需求。 同时,在实际开发过程中,与Jackson类似的其他JSON库如Gson、Fastjson等也持续更新迭代,彼此之间的竞争推动着整个领域技术的发展。例如,近期有评测显示,在特定条件下,Fastjson在处理大数据量时的性能表现已有所提升,而Gson则通过增强对Kotlin语言的支持来吸引更多的开发者。 因此,对于广大Java开发者而言,掌握Jackson不仅限于了解其基本用法,更应关注其在实际项目中的最佳实践、与其他JSON库的对比分析以及如何根据项目特点选择最适合的JSON处理工具,从而提升系统的整体性能和开发效率。
2023-02-20 18:27:10
276
转载
Mongo
...Series集合可以实现即使在海量数据场景下也能保持良好的内存和磁盘空间利用率。 同时,为了帮助用户更好地管理和优化MongoDB集群,MongoDB Atlas作为官方托管服务,提供了一系列自动化工具和最佳实践指南,包括自动分片配置、索引顾问以及实时性能监控等功能,以应对大规模数据处理中的内存管理挑战。 综上所述,MongoDB正在不断优化其内存管理机制,无论是核心数据库引擎的改进,还是云服务提供的便捷工具,都在为用户处理大型数据集合时提供更为稳健和高效的解决方案。因此,在实际应用中,建议密切关注MongoDB最新技术动态与最佳实践,结合自身业务需求灵活调整和优化数据库配置,以确保在大数据环境下获得最优性能表现。
2023-03-15 19:58:03
97
烟雨江南-t
PostgreSQL
...配置RAID阵列可以实现数据冗余和错误校验,例如RAID 1提供镜像备份,RAID 5使用分布式奇偶校验实现容错,从而降低由于单个磁盘故障导致的数据丢失风险,增强数据库系统的稳定性和数据保护能力。 Self-Monitoring, Analysis and Reporting Technology (SMART) , SMART是现代硬盘内置的一种自我监测、分析及报告机制,它可以实时监控硬盘的各项运行参数和健康状况,如读写错误率、通电时间、温度等,并预测可能发生的硬件故障。在排查PostgreSQL File I/O错误的硬件原因时,运维人员可以利用SMART工具进行检测,及时发现并更换可能存在故障的硬盘,防止因硬件问题导致的数据库访问异常。
2023-12-22 15:51:48
233
海阔天空
ZooKeeper
...per,应用程序可以实现数据的一致性存储、选举主节点、监控集群状态变化等功能,从而更好地协调和管理分布式环境中的各种组件。 分布式系统 , 分布式系统是由多台计算机组成的网络,这些计算机通过网络互相通信并协作完成共同的任务。在文章的语境中,ZooKeeper就是用于解决这类系统中的数据一致性、服务发现等问题的关键组件。每台计算机(或称为节点)都有可能独立运行一部分任务,并与其它节点交换信息以保持整体系统的协调一致。 元数据信息 , 元数据是关于数据的数据,它描述了数据的属性、结构、来源、格式、关系以及其他有助于理解、管理和使用原始数据的信息。在ZooKeeper的上下文中,元数据信息包括但不限于服务注册信息、配置参数、分布式锁的状态、集群节点信息等,这些数据对于维持分布式系统正常运行至关重要。 ZooKeeper集群 , ZooKeeper集群是指多个ZooKeeper服务器协同工作,共同提供服务的一个集合。它们之间通过心跳检测、数据复制、选举机制等方式保证高可用性和数据一致性。在集群配置中,每个服务器需要正确设置myid、syncLimit等参数以便与其他服务器进行识别和通信。 日志级别 , 日志级别是软件系统记录日志时采用的重要分类标准,通常包括debug、info、warn、error等不同级别。在ZooKeeper中,用户可以根据实际需求调整日志级别,如设置为INFO级别将只输出关键的运行信息,而DEBUG级别则会提供更多详细调试信息。合理配置日志级别有助于运维人员快速定位和解决问题,同时避免生成过多不必要的日志导致存储资源浪费。
2023-08-10 18:57:38
167
草原牧歌-t
SpringBoot
...力。以下是具体的代码实现: java List brokers = Arrays.asList("broker-a", "broker-b", "broker-c"); Set failedBrokers = new HashSet<>(); public void sendMessage(String topic, String body) { for (int i = 0; i < RETRY_TIMES; i++) { Random random = new Random(); String broker = brokers.get(random.nextInt(brokers.size())); if (!failedBrokers.contains(broker)) { try { producer.send(topic, new MessageQueue(topic, broker, 0), new DefaultMQProducer.SendResultHandler() { @Override public void onSuccess(SendResult sendResult) { System.out.println("Message send success"); } @Override public void onException(Throwable e) { System.out.println("Message send exception: " + e.getMessage()); failedBrokers.add(broker); } }); return; } catch (Exception e) { System.out.println("Message send exception: " + e.getMessage()); failedBrokers.add(broker); } } } System.out.println("Message send fail after retrying"); } 在上述代码中,我们首先定义了一个包含所有Broker地址的列表brokers,然后在每次重试时随机选择一个Broker进行发送。如果该Broker在之前已经出现过错误,则将其添加到已失败的Broker集合中。在下一次重试时,我们不再选择这个Broker。 2. 利用RocketMQ提供的重试机制 除了手动设置Broker列表之外,我们还可以利用RocketMQ自带的重试机制来达到相同的效果。简单来说,我们可以搞个“RetryMessageListener”这个小家伙来监听一下,它的任务就是专门盯着RocketMQ发出的消息。一旦消息发送失败,它就负责把这些失败的消息重新拉出来再试一次,确保消息能顺利送达。在用这个监听器的时候,我们就能知道当前的Broker是不是还在重试列表里混呢。如果发现它在的话,那咱们就麻利地把它从列表里揪出来;要是不是,那就继续让它“回炉重造”,执行重试操作呗。以下是具体的代码实现: java public class RetryMessageListener implements MQListenerMessageConsumeOrderlyCallback { private Set retryBrokers = new HashSet<>(); private List brokers = Arrays.asList("broker-a", "broker-b", "broker-c"); @Override public ConsumeConcurrentlyStatus consumeMessage(List msgs, ConsumeConcurrentlyContext context) { for (String broker : brokers) { if (retryBrokers.contains(broker)) { retryBrokers.remove(broker); } } for (String broker : retryBrokers) { try { producer.send(msgs.get(0).getTopic(), new MessageQueue(msgs.get(0).getTopic(), broker, 0),
2023-06-16 23:16:50
40
梦幻星空_t
Material UI
... UI的开发环境,并实现了第一个简单示例。但这只是冰山的一小角,Material UI真正厉害的地方在于它那满满当当、琳琅满目的组件库,让你挑花眼。而且它的高度可定制性也是一大亮点,你可以随心所欲地调整和设计,就像在亲手打造一件独一无二的宝贝。再者,Material UI对Material Design规范的理解和执行那可是相当深入透彻,完全不用担心偏离设计轨道,这才是它真正的硬核实力所在。接下来,你完全可以再接再厉,试试其他的组件宝贝,像是卡片、抽屉还有表格这些家伙,然后把它们和主题、样式等小玩意儿灵活搭配起来,这样就能亲手打造出一个独一无二、个性十足的用户界面啦! 总的来说,Material UI不仅降低了构建高质量UI的成本,也极大地提高了开发效率。相信随着你在实践中不断深入,你将越发体会到Material UI带来的乐趣与便捷。所以,不妨从现在开始,尽情挥洒你的创意,让Material UI帮你构建出令人眼前一亮的Web应用吧!
2023-12-19 10:31:30
243
风轻云淡
Mongo
...技术服务于业务,真正实现数据库性能优化的目标。
2023-01-05 13:16:09
135
百转千回
转载文章
...件,我举一个例子:我实现了两个类:图层类CLayer和符号类CSymbol,它们的大致关系是图层里包含有符号,符号里定义一个相关图层指针,具体请参考如下代码(注:以下代码仅供说明问题,不作为类设计参考,所以不适宜以此讨论类的设计,编译环境为Microsoft Visual C++ 2005,,Windows XP + sp2,以下同): //Layer.h // 图层类 pragma once include "Symbol.h" class CLayer { public: CLayer(void); virtual ~CLayer(void); void CreateNewSymbol(); private: CSymbol m_pSymbol; // 该图层相关的符号指针 }; // Symbol.h // 符号类 pragma once include "Layer.h" class CSymbol { public: CSymbol(void); virtual ~CSymbol(void); public: CLayer m_pRelLayer; // 符号对应的相关图层 }; // TestUnix.cpp : 定义控制台应用程序的入口点。 // include "stdafx.h" include "Layer.h" include "Symbol.h" void main( void ) { CLayer MyLayer; } 现在开始编译,编译出错,现在让我们分析一下编译出错信息(我发现分析编译信息对加深程序的编译过程的理解非常有好处)。 首先我们明确:编译器在编译文件时,遇到#include "x.h"时,就打开x.h文件进行编译,这相当于把x.h文件的内容放在include "x.h"处。 编译信息告诉我们:它是先编译TestUnix.cpp文件的,那么接着它应该编译stdafx.h,接着是Layer.h,如果编译Layer.h,那么会编译Symbol.h,但是编译Symbol.h又应该编译Layer.h啊,这岂不是陷入一个死循环? 呵呵,如果没有预编译指令,是会这样的,实际上在编译Symbol.h,再去编译Layer.h,Layer.h头上的那个pragma once就会告诉编译器:老兄,这个你已经编译过了,就不要再浪费力气编译了!那么编译器得到这个信息就会不再编译Layer.h而转回到编译Symbol.h的余下内容。 当编译到CLayer m_pRelLayer;这一行编译器就会迷惑了:CLayer是什么东西呢?我怎么没见过呢?那么它就得给出一条出错信息,告诉你CLayer没经定义就用了呢? 在TestUnix.cpp中include "Layer.h"这句算是宣告编译结束(呵呵,简单一句弯弯绕绕不断),下面轮到include "Symbol.h",由于预编译指令的阻挡,Symbol.h实际上没有得到编译,接着再去编译TestUnix.cpp的余下内容。 当然上面仅仅是我的一些推论,还没得到完全证实,不过我们可以稍微测试一下,假如在TestUnix.cpp将include "Layer.h"和include "Symbol.h"互换一下位置,那么会不会先提示CSymbol类没有定义呢?实际上是这样的。当然这个也不能完全证实我的推论。 照这样看,两个类的互相包含头文件肯定出错,那么如何解决这种情况呢?一种办法是在A类中包含B类的头文件,在B类中前置盛明A类,不过注意的是B类使用A类变量必须通过指针来进行,具体见拙文:类互相包含的办法。 为何不能前置声明只能通过指针来使用?通过分析这个实际上我们可以得出前置声明和包含头文件的区别。 我们把CLayer类的代码改动一下,再看下面的代码: // 图层类 //Layer.h pragma once //include "Symbol.h" class CSymbol; class CLayer { public: CLayer(void); virtual ~CLayer(void); // void SetSymbol(CSymbol pNewSymbol); void CreateNewSymbol(); private: CSymbol m_pSymbol; // 该图层相关的符号 // CSymbol m_Symbol; }; // Layer.cpp include "StdAfx.h" include "Layer.h" CLayer::CLayer(void) { m_pSymbol = NULL; } CLayer::~CLayer(void) { if(m_pSymbol!=NULL) { delete m_pSymbol; m_pSymbol=NULL; } } void CLayer::CreateNewSymbol() { } 然后编译,出现一个编译警告:>f:\mytest\mytest\src\testunix\layer.cpp(16) : warning C4150: 删除指向不完整“CSymbol”类型的指针;没有调用析构函数 1> f:\mytest\mytest\src\testunix\layer.h(9) : 参见“CSymbol”的声明 看到这个警告,我想你一定悟到了什么。下面我说说我的结论: 类的前置声明和包含头文件的区别在于类的前置声明是告诉编译器有这种类型,但是它没有告诉编译器这种类型的大小、成员函数和数据成员,而包含头文件则是完全告诉了编译器这种类型到底是怎样的(包括大小和成员)。 这下我们也明白了为何前置声明只能使用指针来进行,因为指针大小在编译器是确定的。上面正因为前置声明不能提供析构函数信息,所以编译器提醒我们:“CSymbol”类型的指针是没有调用析构函数。 如何解决这个问题呢? 在Layer.cpp加上include "Symbol.h"就可以消除这个警告。 本篇文章为转载内容。原文链接:https://blog.csdn.net/suxinpingtao51/article/details/37765457。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-02 13:45:40
571
转载
RabbitMQ
...项目设计与运维中,以实现系统的高效、稳定运行。同时,建议开发者结合具体业务场景,进行压力测试和故障模拟演练,以检验解决方案的实际效果。
2023-09-12 19:28:27
169
素颜如水-t
Flink
...的metrics系统实现全方位的任务运行状态监控,并设计了智能预警策略,确保问题能够被及时发现并妥善解决。 综上所述,随着Flink技术栈的不断演进和完善,以及全球范围内的广泛应用与实践经验积累,Flink任务的稳定性与可靠性得到了进一步提升,为实时数据处理领域提供了更加强大且可靠的解决方案。
2023-09-18 16:21:05
414
雪域高原-t
Golang
....WaitGroup实现高效的多进程通信与同步后,我们发现这种并发处理模型在现代分布式系统和云计算环境中具有极高的实用价值。近期,Google Cloud团队在其开源项目中大量运用了Go的并发特性来优化服务性能与稳定性,再次验证了Go语言在处理高并发、网络密集型任务时的优势。 例如,在2022年的一项技术分享中,Google详细介绍了如何借助Go的channel机制设计微服务间的高效通信协议,通过减少不必要的锁竞争和数据复制,显著提升了系统的整体吞吐量。同时,sync.WaitGroup的应用也在大规模并行计算场景下得到体现,如在Kubernetes等容器编排系统中,WaitGroup用于确保所有Pod成功启动或结束任务后再进行下一步操作,从而保障了集群的稳定运行。 此外,学术界对Go的并发模型也有深度研究,《Communicating Sequential Processes》一书中的理论基础为Go的设计提供了灵感,其channel设计理念源自CSP(Communicating Sequential Processes)理论,强调通过通信共享内存而非通过共享内存进行通信,这一原则有效降低了并发编程的复杂度,减少了竞态条件的发生。 因此,无论是在实时应用开发、云原生架构设计还是学术研究领域,深入理解并掌握Go语言的并发特性和同步手段都显得至关重要,它们不仅有助于开发者应对日益复杂的并发挑战,更能在未来软件工程实践中发挥关键作用。
2023-01-15 09:10:13
587
海阔天空-t
Apache Lucene
...或Redis等中间件实现分布式锁服务,可以为大规模部署的Lucene/Elasticsearch集群提供更为稳健的并发控制方案。 此外,对于文档唯一性要求极高的应用场景,如记录日志、订单跟踪等,业界正积极探索区块链技术与全文搜索技术的融合,通过区块链的去中心化和不可篡改特性强化文档标识符的唯一性管理,这为解决DocumentAlreadyExistsException等问题提供了全新的思路和可能的解决方案。 综上所述,随着技术和应用的发展,针对全文检索过程中可能出现的“DocumentAlreadyExistsException”这类问题,我们不仅可以通过深入理解Lucene的内在机制来有效规避,还可以结合最新的研究成果和技术趋势,持续优化我们的系统设计和实现策略,从而提升全文检索服务的稳定性和用户体验。
2023-01-30 18:34:51
459
昨夜星辰昨夜风
Tesseract
...使用OpenCV库来实现这一效果。 代码示例二:使用OpenCV进行图像锐化 python import cv2 加载图像 image = cv2.imread('path_to_your_image.jpg') 定义核矩阵 kernel = np.array([[0, -1, 0], [-1, 5,-1], [0, -1, 0]]) 应用锐化 sharpened = cv2.filter2D(image, -1, kernel) 显示结果 cv2.imshow('Sharpened Image', sharpened) cv2.waitKey(0) cv2.destroyAllWindows() 这段代码展示了如何使用OpenCV对图像进行锐化处理。通过调整核矩阵,你可以控制锐化的强度。 2. 增强对比度 有时,图像的模糊不仅仅是由于缺乏细节,还可能是因为对比度过低。在这种情况下,增加对比度可以帮助改善识别效果。 代码示例三:使用OpenCV增强对比度 python 调整亮度和对比度 adjusted = cv2.convertScaleAbs(image, alpha=2, beta=30) 显示结果 cv2.imshow('Adjusted Image', adjusted) cv2.waitKey(0) cv2.destroyAllWindows() 这里我们通过convertScaleAbs函数调整了图像的亮度和对比度,使文字更加突出。 第四部分:实战演练 最后,让我们结合以上提到的技术,看看如何实际操作。假设我们有一张模糊的图像,我们希望从中提取出关键信息。 完整示例代码 python import cv2 import numpy as np import pytesseract 加载图像 image = cv2.imread('path_to_your_image.jpg') 锐化图像 kernel = np.array([[0, -1, 0], [-1, 5,-1], [0, -1, 0]]) sharpened = cv2.filter2D(image, -1, kernel) 增强对比度 adjusted = cv2.convertScaleAbs(sharpened, alpha=2, beta=30) 转换为灰度图 gray = cv2.cvtColor(adjusted, cv2.COLOR_BGR2GRAY) 使用Tesseract进行文本识别 text = pytesseract.image_to_string(gray, lang='chi_sim') 如果是中文,则指定语言为'chi_sim' print(text) 这段代码首先对图像进行了锐化和对比度增强,然后转换为灰度图,最后才交给Tesseract进行识别。这样可以大大提高识别的成功率。 --- 好了,这就是今天的所有内容了。希望这篇分享对你有所帮助,尤其是在处理模糊图像时。嘿,别忘了,科技这东西总是日新月异的,遇到难题别急着放弃,多探索探索,说不定会有意想不到的收获呢!如果你有任何问题或者想分享你的经验,欢迎随时交流!
2024-10-23 15:44:16
138
草原牧歌
Impala
...1. 数据导入 无缝连接HDFS与外部数据源 Impala的强大之处在于其能够直接与Hadoop分布式文件系统(HDFS)交互,同时也支持从其他数据源如CSV、Parquet、ORC等进行数据导入。以下是使用Impala导入CSV文件的一个示例: sql -- 假设我们有一个名为mydata.csv的文件在HDFS上 CREATE TABLE my_table ( id INT, name STRING, value FLOAT ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE; -- 使用Impala导入CSV数据 LOAD DATA INPATH '/user/hadoop/mydata.csv' INTO TABLE my_table; 这个命令会创建一个新表,并从指定路径读取CSV数据,将其结构映射到表的定义上。 三、 2. 数据导出 灵活格式与定制输出Impala提供了多种方式来导出查询结果,包括CSV、JSON、AVRO等常见格式。例如,下面的代码展示了如何导出查询结果到CSV文件: sql -- 查询结果导出到CSV SELECT FROM my_table INTO OUTFILE '/tmp/output.csv' LINES TERMINATED BY '\n'; 这个命令将当前查询的所有结果写入到本地文件/tmp/output.csv,每一行数据以换行符分隔。 四、 3. 性能优化 数据压缩与分区为了提高数据导入和导出的效率,Impala支持压缩数据和使用分区。比如,我们可以使用ADD FILEFORMAT和ADD PARTITION来优化存储: sql -- 创建一个压缩的Parquet表 CREATE EXTERNAL TABLE compressed_table ( ... ) PARTITIONED BY (date DATE, region STRING) STORED AS PARQUET COMPRESSION 'SNAPPY'; -- 分区数据导入 LOAD DATA INPATH '/user/hadoop/mydata.parquet' INTO TABLE compressed_table PARTITION (date='2022-01-01', region='US'); 这样,Impala在读取和写入时会利用压缩减少I/O开销,同时通过分区可以按需处理特定部分的数据,提升性能。 五、4. 结合Power Pivot Excel中的数据魔法 对于需要将Impala数据快速引入Excel的场景,Power Pivot是一个便捷的选择。首先,确保你有Impala的连接权限,然后在Excel中使用Power Query(原名Microsoft Query)来连接: 1. 新建Power Query工作表 -> 获取数据 -> 选择“From Other Sources” -> “From Impala” 2. 输入Impala服务器地址、数据库和查询,点击“Connect” 这将允许用户在Excel中直接操作Impala数据,进行数据分析和可视化,而无需将数据下载到本地。 六、结论 总的来说,Impala以其高效的性能和易于使用的接口,使得数据的导入和导出变得轻而易举。数据分析师啊,他们就像是烹饪大厨,把数据这个大锅铲得溜溜转。他们巧妙地运用那些像配方一样的数据存储格式和分区技巧,把这些数字玩得服服帖帖。然后,他们就能一心一意去挖掘那些能让人眼前一亮的业务秘密,而不是整天跟Excel这种工具磨磨唧唧的搞技术活儿。你知道吗,不同的工具就像超能力一样,各有各的绝活儿。要想工作起来得心应手,关键就在于你得清楚它们的个性,然后灵活地用起来,就像打游戏一样,选对技能才能大杀四方,提高效率!
2024-04-02 10:35:23
417
百转千回
转载文章
...持 detours 实现劫持 步骤: 1. 安装Detours 2. 编译Detours工程 3. 把静态库和头文件引入工程 4. 函数指针与函数的定义 5.拦截 劫持QQ 实现劫持system函数。 1. 设置项目生成dll 2. 源文件(注意:需要保存为.c文件,或者加上extern C,因为detours是使用C语言实现的,表示代码使用C的规则进行编译) 3. 生成"劫持1.dll"文件 4. 把dll注入到QQ.exe 5. 拦截QQ执行system函数 参考 劫持 劫持的原理就是把目标函数的指针的指向修改为自定义函数的地址。 函数是放在内存中的代码区,所以劫持与代码区密切相关。 实现劫持需要使用detours。 detours detours是微软亚洲研究院出口的信息安全产品,主要用于劫持。这个工具使用C语言实现,所以是跨平台的。 detours根据函数指针改变函数的行为,可以拦截任何函数,即使操作系统函数。 detours下载地址: 下载地址1: http://research.microsoft.com/en-us/downloads/d36340fb-4d3c-4ddd-bf5b-1db25d03713d/default.aspx 下载地址2: http://pan.baidu.com/s/1eQEijtS 实现劫持 开发环境说明:win7、vs2012 步骤: 1. 安装Detours 2. 编译Detours工程 在安装目录C:\Program Files\Microsoft Research\Detours Express 3.0\src目录下的是工程的源文件。 (1) 打开VS2012命令行工具,进入src目录。 (2) 使用nmake(linux下是make)命令编译生成静态库。 (3) 在lib.x86目录下的.lib文件是win32平台下的静态库文件 (4) 在include目录下的是Detours工程的头文件 3. 把静态库和头文件引入工程 // 引入detours头文件include "detours.h"// 引入detours.lib静态库pragma comment(lib,"detours.lib") 4. 函数指针与函数的定义 (1) 定义一个函数指针指向目标函数,这里目标函数是system 例如: detour在realse模式生效(因为VS在Debug模式下已经把程序中的函数劫持了) static int ( oldsystem)(const char _Command) = system;//定义一个函数指针指向目标函数 (2) 定义与目标函数原型相同的函数替代目标函数 例如: //3.定义新的函数替代目标函数,需要与目标函数的原型相同int newsystem(const char _Command){int result = MessageBoxA(0,"是否允许该程序调用system命令","提示",1);//printf("result = %d", result);if (result == 1){oldsystem(_Command); //调用旧的函数}else{MessageBoxA(0,"终止调用system命令","提示",0);}return 0;} 5.拦截 //开始拦截void Hook(){DetourRestoreAfterWith();//恢复原来状态(重置)DetourTransactionBegin();//拦截开始DetourUpdateThread(GetCurrentThread());//刷新当前线程(刷新生效)//这里可以连续多次调用DetourAttach,表明HOOK多个函数DetourAttach((void )&oldsystem, newsystem);//实现函数拦截DetourTransactionCommit();//拦截生效} //取消拦截void UnHook(){DetourTransactionBegin();//拦截开始DetourUpdateThread(GetCurrentThread());//刷新当前线程//这里可以连续多次调用DetourDetach,表明撤销多个函数HOOKDetourDetach((void )&oldsystem, newsystem); //撤销拦截函数DetourTransactionCommit();//拦截生效} 劫持QQ 实现劫持system函数。 1. 设置项目生成dll 2. 源文件(注意:需要保存为.c文件,或者加上extern C,因为detours是使用C语言实现的,表示代码使用C的规则进行编译) include include include // 引入detours头文件include "detours.h"//1.引入detours.lib静态库pragma comment(lib,"detours.lib")//2.定义函数指针static int ( oldsystem)(const char _Command) = system;//定义一个函数指针指向目标函数//3.定义新的函数替代目标函数,需要与目标函数的原型相同int newsystem(const char _Command){char cmd[100] = {0};int result = 0;sprintf_s(cmd,100, "是否允许该程序执行%s指令", _Command);result = MessageBoxA(0,cmd,"提示",1);//printf("result = %d", result);if (result == 1) // 允许调用{oldsystem(_Command); //调用旧的函数}else{// 不允许调用}return 0;}// 4.拦截//开始拦截_declspec(dllexport) void Hook() // _declspec(dllexport)表示外部可调用,需要加上该关键字其它进程才能成功调用该函数{DetourRestoreAfterWith();//恢复原来状态(重置)DetourTransactionBegin();//拦截开始DetourUpdateThread(GetCurrentThread());//刷新当前线程(刷新生效)//这里可以连续多次调用DetourAttach,表明HOOK多个函数DetourAttach((void )&oldsystem, newsystem);//实现函数拦截DetourTransactionCommit();//拦截生效}//取消拦截_declspec(dllexport) void UnHook(){DetourTransactionBegin();//拦截开始DetourUpdateThread(GetCurrentThread());//刷新当前线程//这里可以连续多次调用DetourDetach,表明撤销多个函数HOOKDetourDetach((void )&oldsystem, newsystem); //撤销拦截函数DetourTransactionCommit();//拦截生效}// 劫持别人的程序:通过DLL注入,并调用Hook函数实现劫持。// 劫持系统:通过DLL注入系统程序(如winlogon.exe)实现劫持系统函数。_declspec(dllexport) void main(){Hook(); // 拦截system("tasklist"); //弹出提示框UnHook(); // 解除拦截system("ipconfig"); //成功执行system("pause"); // 成功执行} 3. 生成"劫持1.dll"文件 4. 把dll注入到QQ.exe DLL注入工具下载: https://coding.net/u/linchaolong/p/DllInjector/git/raw/master/Xenos.exe (1) 打开dll注入工具,点击add,选择"劫持1.dll" (2) 在Process中选择QQ.exe,点击Inject进行注入。 (3) 点击菜单栏Tools,选择Eject modules显示当前QQ.exe进程中加载的所有模块,如果有"劫持1.dll"表示注入成功。 5. 拦截QQ执行system函数 (1) 点击Advanced,在Init routine中填写动态库(dll)中的函数的名称,如Hook,然后点击Inject进行调用。此时,我们已经把system函数劫持了。 (2) 点击Advanced,在Init routine中填写main,执行动态库中的main函数。 此时,弹出一个对话框,问是否允许执行tasklist指令,表示成功把system函数拦截下来了。 参考 DLL注入工具源码地址: https://coding.net/u/linchaolong/p/DllInjector/git 说明: 该工具来自以下两个项目 Xenos: https://github.com/DarthTon/Xenos.git Blackbone: https://github.com/DarthTon/Blackbone 本篇文章为转载内容。原文链接:https://mohen.blog.csdn.net/article/details/123495342。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-23 19:22:06
353
转载
SeaTunnel
...SeaTunnel中实现数据备份与恢复功能? SeaTunnel(原名Waterdrop)是一款开源、易用且高效的大数据集成工具,它支持从各种数据源抽取数据并进行实时或批处理,同时具备丰富的转换和加载能力。在这篇文章里,咱们就手拉手一起深入探究一下,如何像平常给手机照片做备份防止丢失那样,灵活运用SeaTunnel这个小工具来搞定数据备份与恢复的大问题吧! 1. SeaTunnel基础理解 首先,我们需要对SeaTunnel的核心概念有所了解。在SeaTunnel的世界里,一切操作围绕着“source”(数据源)、“transform”(数据转换)和“sink”(数据目的地)这三个核心模块展开。想象一下,数据如同水流,从源头流出,经过一系列的过滤和转化,最终流向目标水库。 yaml SeaTunnel配置示例 mode: batch 数据源配置 source: type: mysql jdbcUrl: "jdbc:mysql://localhost:3306/test" username: root password: password table: my_table 数据转换(这里暂时为空,但实际可以用于清洗、去重等操作) transforms: 数据目的地(备份到另一个MySQL数据库或HDFS等存储系统) sink: type: mysql jdbcUrl: "jdbc:mysql://backup-server:3306/backup_test" username: backup_root password: backup_password table: backup_my_table 2. 数据备份功能实现 对于数据备份,我们可以将SeaTunnel配置为从生产环境的数据源读取数据,并将其写入到备份存储系统。例如,从MySQL数据库中抽取数据,并存入到另一台MySQL服务器或者HDFS、S3等大数据存储服务: yaml 备份数据到另一台MySQL服务器 sink: type: mysql ... 或者备份数据到HDFS sink: type: hdfs path: /backup/data/ file_type: text 在此过程中,你可以根据业务需求设置定期备份任务,确保数据的实时性和一致性。 3. 数据恢复功能实现 当需要进行数据恢复时,SeaTunnel同样可以扮演关键角色。通过修改配置文件,将备份数据源替换为目标系统的数据源,并重新执行任务,即可完成数据的迁移和恢复。 yaml 恢复数据到原始MySQL数据库 source: type: mysql 这里的配置应指向备份数据所在的MySQL服务器及表信息 sink: type: mysql 这里的配置应指向要恢复数据的目标MySQL服务器及表信息 4. 实践中的思考与探讨 在实际使用SeaTunnel进行数据备份和恢复的过程中,我们可能会遇到一些挑战,如数据量大导致备份时间过长、网络状况影响传输效率等问题。这就需要我们根据实际情况,像变戏法一样灵活调整我们的备份策略。比如说,我们可以试试增量备份这个小妙招,只备份新增或改动的部分,就像给文件更新打个小补丁;或者采用压缩传输的方式,把数据“挤一挤”,让它们更快更高效地在网路上跑起来,这样就能让整个流程更加顺滑、更接地气儿啦。 此外,为了保证数据的一致性,在执行备份或恢复任务时,还需要考虑事务隔离、并发控制等因素,以避免因并发操作引发的数据不一致问题。在SeaTunnel这个工具里头,我们能够借助它那牛哄哄的插件系统和超赞的扩展性能,随心所欲地打造出完全符合自家业务需求的数据备份与恢复方案,就像是量体裁衣一样贴合。 总之,借助SeaTunnel,我们能够轻松实现大规模数据的备份与恢复,保障业务连续性和数据安全性。在实际操作中不断尝试、改进,我坚信你一定能亲手解锁更多SeaTunnel的隐藏实力,让这个工具变成企业数据安全的强大守护神,稳稳地护航你的数据安全。
2023-04-08 13:11:14
115
雪落无痕
Oracle
Greenplum
...是在大数据环境下如何实现高效且安全的数据类型转换方面,相关论文和研究报告为Greenplum用户提供了理论指导和最佳实践参考,助力企业在保持数据一致性的同时,有效应对日益复杂多变的业务需求。 总之,无论是技术发展前沿还是行业应用实例,都为我们理解和实施Greenplum中的数据类型和精度调整提供了丰富的视角和有力的支持。与时俱进地关注这些延伸内容,将有助于我们在实践中更为科学合理地进行数据结构优化,最大化发挥Greenplum数据库的潜力。
2024-02-18 11:35:29
397
彩虹之上
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
history | grep keyword
- 搜索命令历史中的特定关键词。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"