前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[删除目标 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...将第一时间进行核实并删除相应内容。 来源:http://blog.csdn.net/songyongfeng/article/details/6932655 既然你看到这篇文章相信你已经了解JSON的好处了,那么废话不多说直接进入主题。 Jackson是java中众多json处理工具的一个,比起常见的Json-lib,Gson要快一些。 Jackson的官网:http://jackson.codehaus.org/ 里面可以下载Jackson的Jar包 注意jackson依赖:Apache的commons-loggin。 下面聊一下Jackson的常见用法================================== Bean----->JSON public static String beanToJson(Object obj) throws IOException { // 这里异常都未进行处理,而且流的关闭也不规范。开发中请勿这样写,如果发生异常流关闭不了 ObjectMapper mapper = CommonUtil.getMapperInstance(false); StringWriter writer = new StringWriter(); JsonGenerator gen = new JsonFactory().createJsonGenerator(writer); mapper.writeValue(gen, obj); gen.close(); String json = writer.toString(); writer.close(); return json; } JSON------>Bean public static Object jsonToBean(String json, Class<?> cls) throws Exception {ObjectMapper mapper = CommonUtil.getMapperInstance(false); Object vo = mapper.readValue(json, cls); return vo; } 好了方法写完了咱们测试一下吧 看看他是否支持复杂类型的转换 public static void main(String[] args) throws Exception {// 准备数据 List<Person> pers = new ArrayList<Person>(); Person p = new Person("张三", 46); pers.add(p); p = new Person("李四", 19); pers.add(p); p = new Person("王二麻子", 23); pers.add(p); TestVo vo = new TestVo("一个容器而已", pers); // 实体转JSON字符串 String json = CommonUtil.beanToJson(vo); System.out.println("Bean>>>Json----" + json); // 字符串转实体 TestVo vo2 = (TestVo)CommonUtil.jsonToBean(json, TestVo.class); System.out.println("Json>>Bean--与开始的对象是否相等:" + vo2.equals(vo)); } 输出结果 Bean>>>Json----{"voName":"一个容器而已","pers":[{"name":"张三","age":46},{"name":"李四","age":19},{"name":"王二麻子","age":23}]} Json>>Bean--与开始的对象是否相等:true 从结果可以看出从咱们转换的方法是对的,本文只是对Jackson的一个最简单的使用介绍。接下来的几篇文章咱们深入研究一下这玩意到底有多强大! 相关类源代码: Person.java public class Person {private String name;private int age;public Person() {}public Person(String name, int age) {super();this.name = name;this.age = age;}public int getAge() {return age;}public void setAge(int age) {this.age = age;}public String getName() {return name;}public void setName(String name) {this.name = name;}@Overridepublic boolean equals(Object obj) {if (this == obj) {return true;}if (obj == null) {return false;}if (getClass() != obj.getClass()) {return false;}Person other = (Person) obj;if (age != other.age) {return false;}if (name == null) {if (other.name != null) {return false;} } else if (!name.equals(other.name)) {return false;}return true;} } TestVo.java public class TestVo { private String voName; private List<Person> pers; public TestVo() { } public TestVo(String voName, List<Person> pers) { super(); this.voName = voName; this.pers = pers; } public String getVoName() { return voName; } public void setVoName(String voName) { this.voName = voName; } public List<Person> getPers() { return pers; } public void setPers(List<Person> pers) { this.pers = pers; } @Override public boolean equals(Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } TestVo other = (TestVo) obj; if (pers == null) { if (other.pers != null) { return false; } } else if (pers.size() != other.pers.size()) { return false; } else { for (int i = 0; i < pers.size(); i++) { if (!pers.get(i).equals(other.pers.get(i))) { return false; } } } if (voName == null) { if (other.voName != null) { return false; } } else if (!voName.equals(other.voName)) { return false; } return true; } } CommonUtil.java public class CommonUtil { private static ObjectMapper mapper; / 一个破ObjectMapper而已,你为什么不直接new 还搞的那么复杂。接下来的几篇文章我将和你一起研究这个令人蛋疼的问题 @param createNew 是否创建一个新的Mapper @return / public static synchronized ObjectMapper getMapperInstance(boolean createNew) { if (createNew) { return new ObjectMapper(); } else if (mapper == null) { mapper = new ObjectMapper(); } return mapper; } public static String beanToJson(Object obj) throws IOException { // 这里异常都未进行处理,而且流的关闭也不规范。开发中请勿这样写,如果发生异常流关闭不了 ObjectMapper mapper = CommonUtil.getMapperInstance(false); StringWriter writer = new StringWriter(); JsonGenerator gen = new JsonFactory().createJsonGenerator(writer); mapper.writeValue(gen, obj); gen.close(); String json = writer.toString(); writer.close(); return json; } public static Object jsonToBean(String json, Class<?> cls) throws Exception {ObjectMapper mapper = CommonUtil.getMapperInstance(false); Object vo = mapper.readValue(json, cls); return vo; } } 本篇文章为转载内容。原文链接:https://blog.csdn.net/gqltt/article/details/7387011。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-20 18:27:10
276
转载
SpringBoot
...性能指标动态调整发送目标,确保消息高效、均匀地分布到集群中的各个broker上,从而显著提升系统的稳定性和吞吐量。 此外,为了进一步增强消息传输的安全性与可靠性,RocketMQ 5.0还支持跨地域多活部署以及事务消息2.0特性,即使面临数据中心级别的故障切换,也能保证消息不丢失且严格有序地送达消费者,这对于构建高可用、高性能的分布式系统具有重要价值。 同时,随着云原生理念的普及,RocketMQ也积极拥抱Kubernetes等容器编排技术,提供云原生环境下的无缝集成方案,使得开发者能够便捷地在各类云环境或混合云场景下部署和管理RocketMQ集群,有效应对大规模分布式系统中的消息处理挑战。 因此,对于正在使用或计划采用RocketMQ作为消息中间件的开发者来说,持续关注其最新版本的功能演进和技术突破,结合实际业务场景灵活运用,无疑将助力提升整个系统的韧性和效率,实现微服务架构下的最佳实践。
2023-06-16 23:16:50
40
梦幻星空_t
SeaTunnel
...的字段名是不是真的在目标表里“活生生”存在着,不然可就抓瞎啦! 3.3 示例三:JOIN操作符使用不当 sql -- 错误示例 SELECT a., b. FROM table_a a JOIN table_b b ON a.id = b.id; -- 正确示例 SELECT a., b. FROM table_a a JOIN table_b b ON a.id = b.id; 在SeaTunnel的SQL语法中,JOIN操作符后的ON关键字引导的连接条件不能直接跟在JOIN后面,需要换行显示,否则会导致语法错误。 4. 面对SQL查询语法错误的策略与思考 当我们遭遇SQL查询语法错误时,首先不要慌张,要遵循以下步骤: - 检查错误信息:SeaTunnel通常会返回详细的错误信息,包括错误类型和发生错误的具体位置,这是定位问题的关键线索。 - 回归基础:重温SQL基本语法,确保对关键词、操作符的使用符合规范,比如WHERE、JOIN、GROUP BY等。 - 逐步调试:对于复杂的SQL查询,可以尝试将其拆分成多个简单的部分,逐一测试以找出问题所在。 - 利用IDE辅助:许多现代的数据库管理工具或IDE如DBeaver、DataGrip等都具有SQL语法高亮和实时错误检测功能,这对于预防和发现SQL查询语法错误非常有帮助。 - 社区求助:如果问题仍然无法解决,不妨到SeaTunnel的官方文档或者社区论坛寻求帮助,与其他开发者交流分享可能的经验和解决方案。 总结来说,面对SeaTunnel中的SQL查询语法错误,我们需要保持耐心,通过扎实的基础知识、细致的排查和有效的工具支持,结合不断实践和学习的过程,相信每一个挑战都将变成提升技能的一次宝贵机会。说到底,“犯错误”其实就是成功的另一种伪装,它让我们更接地气地摸清了技术的底细,还逼着我们不断进步,朝着更牛掰的开发者迈进。
2023-05-06 13:31:12
145
翡翠梦境
MemCache
...,但因为未被访问而被删除 mc.get('key_0') 在这种情况下,尽管'key_1', 'key_2', 'key_3'是最新设置的,但由于它们没有被及时访问,因此可能会被LRU策略误删 3. LRU失效的思考与对策 面对LRU可能失效的问题,我们需要更灵活地运用MemCache的策略。比如,我们可以根据实际业务的情况,灵活调整缓存策略,就像烹饪时根据口味加调料一样。还可以给缓存数据设置一个合理的“保鲜期”,也就是过期时间(TTL),确保信息新鲜不过期。更进一步,我们可以引入一些有趣的淘汰法则,比如LFU(最近最少使用)算法,简单来说,就是让那些长时间没人搭理的数据,自觉地给常用的数据腾地方。 3.1 调整缓存策略 对于周期性访问的数据,我们可以尝试在每个周期开始时重新加载这部分数据,避免LRU策略将其淘汰。 3.2 设定合理的TTL 给每个缓存项设置合适的过期时间,确保即使在LRU策略失效的情况下,也能通过过期自动清除不再需要的数据。 python 设置键值对时添加过期时间 mc.set('key_0', 'some_value', time=60) 这个键值对将在60秒后过期 3.3 结合LFU或其他算法 部分MemCache的高级版本支持多种淘汰算法,我们可以根据实际情况选择或定制混合策略,以最大程度地优化缓存效果。 4. 结语 MemCache的LRU策略在多数情况下确实表现优异,但在某些特定场景下也难免会有失效的时候。作为开发者,咱们得把这一策略的精髓吃透,然后在实际操作中灵活运用,像炒菜一样根据不同的“食材”和“火候”,随时做出调整优化,真正做到接地气,让策略活起来。只有这样,才能充分发挥MemCache的效能,使其成为提升我们应用性能的利器。如同人生的每一次抉择,技术选型与调优亦需审时度势,智勇兼备,方能游刃有余。
2023-09-04 10:56:10
109
凌波微步
转载文章
...将第一时间进行核实并删除相应内容。 首先我们需要问一个问题是:为什么两个类不能互相包含头文件? 所谓互相包含头文件,我举一个例子:我实现了两个类:图层类CLayer和符号类CSymbol,它们的大致关系是图层里包含有符号,符号里定义一个相关图层指针,具体请参考如下代码(注:以下代码仅供说明问题,不作为类设计参考,所以不适宜以此讨论类的设计,编译环境为Microsoft Visual C++ 2005,,Windows XP + sp2,以下同): //Layer.h // 图层类 pragma once include "Symbol.h" class CLayer { public: CLayer(void); virtual ~CLayer(void); void CreateNewSymbol(); private: CSymbol m_pSymbol; // 该图层相关的符号指针 }; // Symbol.h // 符号类 pragma once include "Layer.h" class CSymbol { public: CSymbol(void); virtual ~CSymbol(void); public: CLayer m_pRelLayer; // 符号对应的相关图层 }; // TestUnix.cpp : 定义控制台应用程序的入口点。 // include "stdafx.h" include "Layer.h" include "Symbol.h" void main( void ) { CLayer MyLayer; } 现在开始编译,编译出错,现在让我们分析一下编译出错信息(我发现分析编译信息对加深程序的编译过程的理解非常有好处)。 首先我们明确:编译器在编译文件时,遇到#include "x.h"时,就打开x.h文件进行编译,这相当于把x.h文件的内容放在include "x.h"处。 编译信息告诉我们:它是先编译TestUnix.cpp文件的,那么接着它应该编译stdafx.h,接着是Layer.h,如果编译Layer.h,那么会编译Symbol.h,但是编译Symbol.h又应该编译Layer.h啊,这岂不是陷入一个死循环? 呵呵,如果没有预编译指令,是会这样的,实际上在编译Symbol.h,再去编译Layer.h,Layer.h头上的那个pragma once就会告诉编译器:老兄,这个你已经编译过了,就不要再浪费力气编译了!那么编译器得到这个信息就会不再编译Layer.h而转回到编译Symbol.h的余下内容。 当编译到CLayer m_pRelLayer;这一行编译器就会迷惑了:CLayer是什么东西呢?我怎么没见过呢?那么它就得给出一条出错信息,告诉你CLayer没经定义就用了呢? 在TestUnix.cpp中include "Layer.h"这句算是宣告编译结束(呵呵,简单一句弯弯绕绕不断),下面轮到include "Symbol.h",由于预编译指令的阻挡,Symbol.h实际上没有得到编译,接着再去编译TestUnix.cpp的余下内容。 当然上面仅仅是我的一些推论,还没得到完全证实,不过我们可以稍微测试一下,假如在TestUnix.cpp将include "Layer.h"和include "Symbol.h"互换一下位置,那么会不会先提示CSymbol类没有定义呢?实际上是这样的。当然这个也不能完全证实我的推论。 照这样看,两个类的互相包含头文件肯定出错,那么如何解决这种情况呢?一种办法是在A类中包含B类的头文件,在B类中前置盛明A类,不过注意的是B类使用A类变量必须通过指针来进行,具体见拙文:类互相包含的办法。 为何不能前置声明只能通过指针来使用?通过分析这个实际上我们可以得出前置声明和包含头文件的区别。 我们把CLayer类的代码改动一下,再看下面的代码: // 图层类 //Layer.h pragma once //include "Symbol.h" class CSymbol; class CLayer { public: CLayer(void); virtual ~CLayer(void); // void SetSymbol(CSymbol pNewSymbol); void CreateNewSymbol(); private: CSymbol m_pSymbol; // 该图层相关的符号 // CSymbol m_Symbol; }; // Layer.cpp include "StdAfx.h" include "Layer.h" CLayer::CLayer(void) { m_pSymbol = NULL; } CLayer::~CLayer(void) { if(m_pSymbol!=NULL) { delete m_pSymbol; m_pSymbol=NULL; } } void CLayer::CreateNewSymbol() { } 然后编译,出现一个编译警告:>f:\mytest\mytest\src\testunix\layer.cpp(16) : warning C4150: 删除指向不完整“CSymbol”类型的指针;没有调用析构函数 1> f:\mytest\mytest\src\testunix\layer.h(9) : 参见“CSymbol”的声明 看到这个警告,我想你一定悟到了什么。下面我说说我的结论: 类的前置声明和包含头文件的区别在于类的前置声明是告诉编译器有这种类型,但是它没有告诉编译器这种类型的大小、成员函数和数据成员,而包含头文件则是完全告诉了编译器这种类型到底是怎样的(包括大小和成员)。 这下我们也明白了为何前置声明只能使用指针来进行,因为指针大小在编译器是确定的。上面正因为前置声明不能提供析构函数信息,所以编译器提醒我们:“CSymbol”类型的指针是没有调用析构函数。 如何解决这个问题呢? 在Layer.cpp加上include "Symbol.h"就可以消除这个警告。 本篇文章为转载内容。原文链接:https://blog.csdn.net/suxinpingtao51/article/details/37765457。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-02 13:45:40
571
转载
Linux
...助你轻松安装、更新和删除软件。 2.1 APT:Debian系发行版的魔法盒 让我们先来看看APT,它是Debian及其衍生发行版(如Ubuntu)中最常用的软件包管理器。APT(Advanced Package Tool)这家伙厉害的地方就在于它可以自动搞定软件包之间的依赖关系,这样你安装软件时就不用担心各种版本冲突的头疼事儿了。 代码示例: - 安装软件: bash sudo apt install htop - 更新软件包列表: bash sudo apt update - 升级系统上的所有软件包: bash sudo apt upgrade - 删除软件: bash sudo apt remove htop 在实际操作中,我发现每次安装新软件前先运行sudo apt update是一个好习惯,这样可以确保软件包列表是最新的,从而避免安装过程中出现不必要的错误。 2.2 YUM:Red Hat系发行版的魔法盒 如果你正在使用CentOS、Fedora或其他基于RHEL的发行版,那么YUM将会是你的好帮手。虽然现在有了更先进的DNF,但在不少老系统里,你还是会经常看到YUM的身影。DNF的功能更强大,速度更快,但为了保持兼容性,YUM依然被广泛使用。 代码示例: - 安装软件: bash sudo yum install htop - 更新软件包列表: bash sudo yum check-update - 升级系统上的所有软件包: bash sudo yum update - 删除软件: bash sudo yum remove htop 每次执行软件包操作之前,检查更新总是个好主意,这不仅有助于你了解系统上是否有可用的新版本,还能确保你在安装或升级软件时不会遇到意外的版本冲突。 3. 管理软件源 让软件包管理器知道去哪里找 软件源就像是软件包管理器的食谱本,告诉它去哪里寻找需要的软件包。一般来说,大部分Linux系统都会预设一些基础的软件源,但这点常常不够我们折腾的。有时候我们得添加额外的软件库,才能搞到某个特定版本的程序,或者用一些第三方的库来解锁更多软件选项。 代码示例: - 编辑软件源文件: 在Debian/Ubuntu系统中,你可以通过编辑/etc/apt/sources.list文件来添加新的软件源。 bash sudo nano /etc/apt/sources.list 在这个文件中,你会看到类似以下的内容: deb http://archive.ubuntu.com/ubuntu/ focal main restricted 你可以添加一个新的软件源行,比如: deb http://ppa.launchpad.net/webupd8team/java/ubuntu focal main - 添加第三方软件源: 对于一些特定的第三方软件源,我们还可以使用add-apt-repository命令来添加。 bash sudo add-apt-repository ppa:webupd8team/java - 导入GPG密钥: 添加新的软件源后,通常还需要导入相应的GPG密钥以确保软件包的完整性。 bash wget -qO - https://example.com/gpgkey.asc | sudo apt-key add - - 更新软件包列表: 添加新的软件源后,别忘了更新软件包列表。 bash sudo apt update 在管理软件源时,我常常感到一种探索未知的乐趣。每次加个新的软件源,就像打开了一个新窗口,让我看到了更多的可能性,简直就像是发现了一个新世界!当然了,咱们还得小心点儿,确保信息来源靠谱又安全,别给自己找麻烦。 4. 结语 不断学习与成长 在这个充满无限可能的Linux世界里,软件包管理和软件源管理只是冰山一角。随着对Linux的深入了解,你会发现更多有趣且实用的工具和技术。不管是尝试新鲜出炉的Linux发行版,还是深挖某个技术领域,都挺带劲的。我希望这篇文章能像一扇窗户,让你瞥见Linux世界的精彩,点燃你对它的好奇心和热情。继续前行吧,未来还有无数的知识等待着你去发现!
2025-02-16 15:37:41
49
春暖花开
Flink
...它顺利过关,圆满达成目标。例如,我们可以使用ExecutionConfig.setRetryStrategy()方法设置重试策略。如果设置的重试次数超过指定值,则放弃尝试。 2.3 使用 checkpoint机制 checkpoint是Flink提供的一种机制,用于定期保存任务的状态。当你重启任务时,可以像游戏存档那样,从上次顺利完成的地方接着来,这样一来,就不容易丢失重要的数据啦。例如,我们可以使用ExecutionConfig.enableCheckpointing()方法启用checkpoint机制,并设置checkpoint间隔时间为一段时间。这样,Flink就像个贴心的小秘书,每隔一会儿就会自动保存一下任务的进度,确保在关键时刻能够迅速恢复状态,一切照常进行。 2.4 监控与报警 最后,我们还需要设置有效的监控与报警机制,及时发现并处理故障。比如,我们能够用像Prometheus这样的神器,实时盯着Flink集群的动静,一旦发现有啥不对劲的地方,立马就给相关小伙伴发警报,确保问题及时得到处理。 3. 示例代码 下面我们将通过一个简单的Flink任务示例,演示如何使用上述方法提高任务的可靠性。 java // 创建一个新的ExecutionConfig对象,并设置重试策略 ExecutionConfig executionConfig = new ExecutionConfig(); executionConfig.setRetryStrategy(new DefaultRetryStrategy(1, 0)); // 创建一个新的JobGraph对象,并添加新的ParallelSourceFunction实例 JobGraph jobGraph = new JobGraph("MyJob"); jobGraph.setExecutionConfig(executionConfig); SourceFunction sourceFunction = new SourceFunction() { @Override public void run(SourceContext ctx) throws Exception { // 模拟生产数据 for (int i = 0; i < 10; i++) { Thread.sleep(1000); ctx.collect(String.valueOf(i)); } } @Override public void cancel() {} }; DataStream inputStream = env.addSource(sourceFunction); // 对数据进行处理,并打印结果 DataStream outputStream = inputStream.map(new MapFunction() { @Override public Integer map(String value) throws Exception { return Integer.parseInt(value); } }); outputStream.print(); // 提交JobGraph到Flink集群 env.execute(jobGraph); 在上述代码中,我们首先创建了一个新的ExecutionConfig对象,并设置了重试策略为最多重试一次,且不等待前一次重试的结果。然后,我们动手捣鼓出了一个崭新的“JobGraph”小玩意儿,并且把它绑定到了我们刚新鲜出炉的“ExecutionConfig”配置上。接下来,我们添加了一个新的ParallelSourceFunction实例,模拟生产数据。然后,我们对数据进行了处理,并打印了结果。最后,我们提交了整个JobGraph到Flink集群。 通过上述代码,我们可以看到,我们不仅启用了Flink的重试机制,还设置了 checkpoint机制,从而提高了我们的任务的可靠性。另外,我们还能随心所欲地增加更多的监控和警报系统,就像是给系统的平稳运行请了个24小时贴身保镖,随时保驾护航。
2023-09-18 16:21:05
414
雪域高原-t
SeaTunnel
... 2.3 数据写入目标系统 处理后的数据可以被发送到任意目标系统,比如另一个Kafka主题或HDFS: yaml sink: type: kafka09 bootstrapServers: "localhost:9092" topic: "output-topic" 或者 yaml sink: type: hdfs path: "hdfs://namenode:8020/output/path" 3. 实现 ExactlyOnce 语义 ExactlyOnce 语义是指在分布式系统中,每条消息只被精确地处理一次,即使在故障恢复后也是如此。在SeaTunnel这个工具里头,我们能够实现这个目标,靠的是把Flink或者其他那些支持“ExactlyOnce”这种严谨语义的计算引擎,与具有事务处理功能的数据源和目标巧妙地搭配起来。就像是玩拼图一样,把这些组件严丝合缝地对接起来,确保数据的精准无误传输。 例如,在与Apache Flink整合时,SeaTunnel可以利用Flink的Checkpoint机制来保证状态一致性及ExactlyOnce语义。同时,SeaTunnel还有个很厉害的功能,就是针对那些支持事务处理的数据源,比如更新到Kafka 0.11及以上版本的,还有目标端如Kafka、能进行事务写入的HDFS,它都能联手计算引擎,确保从头到尾,数据“零丢失零重复”的精准传输,真正做到端到端的ExactlyOnce保证。就像一个超级快递员,确保你的每一份重要数据都能安全无误地送达目的地。 在配置中,开启Flink Checkpoint功能,确保在处理过程中遇到故障时可以从检查点恢复并继续处理,避免数据丢失或重复: yaml engine: type: flink checkpoint: interval: 60s mode: exactly_once 总结来说,借助SeaTunnel灵活强大的流式数据处理能力,结合支持ExactlyOnce语义的计算引擎和其他组件,我们完全可以在实际业务场景中实现高可靠、无重复的数据处理流程。在这一路的“探险”中,我们可不只是见识到了SeaTunnel那实实在在的实用性以及它强大的威力,更是亲身感受到了它给开发者们带来的那种省心省力、安心靠谱的舒爽体验。而随着技术和需求的不断演进,SeaTunnel也将在未来持续优化和完善,为广大用户提供更优质的服务。
2023-05-22 10:28:27
114
夜色朦胧
Apache Lucene
...,负责创建、更新以及删除索引中的文档。它提供了诸如addDocument()和updateDocument()等方法,以实现对索引内容的操作。当使用addDocument()方法试图插入一个已经存在的文档时,就会引发DocumentAlreadyExistsException异常。 NoDuplicatesMergePolicy , 这是Lucene中的一种合并策略实现,确保在索引过程中不会产生重复的文档。设置IndexWriterConfig.setMergePolicy(NoDuplicatesMergePolicy.INSTANCE)后,系统会在索引建立阶段自动阻止包含相同document id的新文档被写入,从而避免因并发写入导致的数据不一致问题。 乐观锁 , 在分布式系统或并发编程中,乐观锁是一种假设数据在大部分时间内不会发生冲突的锁机制。在处理高并发环境下的索引更新时,Elasticsearch 7.15版本引入了改进的乐观并发控制机制,允许用户在更新文档时指定一个预期版本号,只有当实际版本与预期版本匹配时,更新才会成功执行,否则将拒绝更新并返回错误信息,有效防止因并发写入造成的冲突。
2023-01-30 18:34:51
459
昨夜星辰昨夜风
c#
...达到非法获取、修改或删除数据库信息的目的。在本文中,作者通过实例说明了如何通过使用参数化SQL有效防止SQL注入问题。 连接池 , 连接池是一种数据库资源管理机制,它预先创建并维护一定数量的数据库连接对象,并在应用程序需要时从池中取出连接进行数据库操作,操作完成后将连接归还至池中供后续复用,而非每次请求都新建和关闭连接。在文章中提到的SqlHelper类设计中,正确管理和关闭数据库连接是解决数据库连接池资源耗尽问题的关键,确保连接在使用完毕后能及时释放回池中,以便其他请求继续使用。
2023-08-29 23:20:47
509
月影清风_
MyBatis
...操作,如查询、更新、删除和插入等。在本文语境中,MyBatis即是一个Java平台上的持久层框架,通过映射SQL语句到Java对象,使开发者能够更加便捷高效地操作数据库。 动态SQL , 动态SQL是MyBatis框架中的一个核心特性,允许在运行时根据条件动态生成SQL语句。在XML映射文件中,MyBatis提供了<if>, <choose>, <when>, <otherwise>, <where>, <set>等一系列标签来拼接可变部分的SQL语句。这意味着,基于业务需求和传入参数的不同,MyBatis可以灵活构建并执行不同的SQL查询或更新命令。 单元测试 , 在软件开发过程中,单元测试是一种验证代码最小可测试单元(如函数、方法)是否按预期工作的过程。在本文背景下,推荐使用单元测试对MyBatis中编写的SQL语句进行验证,确保其正确性和有效性。通过编写模拟数据输入、调用待测SQL方法、断言结果是否符合预期等步骤,开发者可以在项目早期阶段发现问题,降低因SQL编写错误导致的数据完整性受损或应用性能下降的风险。
2024-02-04 11:31:26
53
岁月如歌
Linux
...权限。 案例二:无法删除或移动文件 类似地,当你试图删除或移动某个文件时,也可能因为权限不足而失败。 bash rm /path/to/protectedfile mv /path/to/oldfile /path/to/newlocation 如果出现“Operation not permitted”之类的提示,同样是在告诉你,你的用户账号对于该文件的操作权限不够。 3. 解析及解决策略 3.1 查看并理解权限 面对权限错误,首要任务是查看文件或目录的实际权限: bash ls -l /path/to/file_or_directory 然后根据权限信息判断为何无法进行相应操作。 3.2 更改文件权限 对于上述案例一,你可以通过chmod命令更改文件权限,赋予当前用户必要的写权限: bash sudo chmod u+w /etc/someconfig.conf 这里我们使用了sud0以超级用户身份运行命令,这是因为通常系统配置文件由root用户拥有,普通用户需要提升权限才能修改。 3.3 改变文件所有者或所在组 有时,我们可能需要将文件的所有权转移到另一个用户或组,以便于操作。这时可以使用chown或chgrp命令: bash sudo chown yourusername:yourgroup /path/to/file 或者仅更改组: bash sudo chgrp yourgroup /path/to/file 3.4 使用SUID、SGID和粘滞位 在某些高级场景下,还可以利用SUID、SGID和粘滞位等特殊权限来实现更灵活的权限控制,但这是进阶主题,此处不再赘述。 4. 思考与讨论 在实际工作中,理解并正确处理Linux文件权限至关重要。它关乎着系统的稳定性和安全性,也关系到我们的工作效率。每次看到电脑屏幕上跳出个“Permission denied”的小提示,就相当于生活给咱扔来一个探索Linux权限世界的彩蛋。只要我们肯一步步地追根溯源,把问题给捯饬清楚,那就能更上一层楼地领悟Linux的独门绝技。这样一来,在实际操作中咱们就能玩转Linux,轻松得就像切豆腐一样。 记住,虽然权限设置看似复杂,但它背后的设计理念是为了保护数据安全和系统稳定性,因此我们在调整权限时应谨慎行事,尽量遵循最小权限原则。在这个过程中,我们可不能光有解决问题的能耐,更重要的是,得对系统怀有一份尊重和理解的心,就像敬畏大自然一样去对待它。毕竟,在Linux世界里,一切皆文件,一切皆权限。
2023-12-15 22:38:41
110
百转千回
转载文章
...将第一时间进行核实并删除相应内容。 python curl.py !/usr/bin/python -- coding: utf-8 -- import httplib 连接服务器 conn=httplib.HTTPConnection('www.dnspod.cn') 发送HTTP请求 conn.request('GET','url') 得到结果 result=conn.getresponse() 获取HTTP请求结果值。200为成功 resultresultStatus=result.status print resultStatus 获取请求的页面内容 content=result.read() 关闭连接 conn.close() 如果要模拟客户端进行请求,可以发送HTTP请求头 headers={"Content-Type":"text/html;charset=gb2312"} conn.requeset('POST','url',headersheaders=headers) 带参数传送 params=urllib.urlencode({'key':'value'}); conn.request('POST','url',body=params) 还有一个 模拟 浏览器的方式~ !/usr/bin/python -- coding: utf-8 -- import httplib conn = httplib.HTTPConnection('www.hao123.com') conn.request('GET', '/', headers = { "User-Agent" : "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN; rv:1.9.1) Gecko/20090624 Firefox/3.5", "Accept" : "/", "Accept-Encoding" : "gzip,deflate", }) res = conn.getresponse() print conn.getresponse().status print res.status print res.msg print res.read() conn.close() 下面是 并发的测试~ 类似 ab 和 webbench~~~~ -- coding: utf8 -- import threading, time, httplib HOST = "www.baidu.com"; 主机地址 例如192.168.1.101 PORT = 80 端口 URI = "/?123" 相对地址,加参数防止缓存,否则可能会返回304 TOTAL = 0 总数 SUCC = 0 响应成功数 FAIL = 0 响应失败数 EXCEPT = 0 响应异常数 MAXTIME=0 最大响应时间 MINTIME=100 最小响应时间,初始值为100秒 GT3=0 统计3秒内响应的 LT3=0 统计大于3秒响应的 创建一个 threading.Thread 的派生类 class RequestThread(threading.Thread): 构造函数 def __init__(self, thread_name): threading.Thread.__init__(self) self.test_count = 0 线程运行的入口函数 def run(self): self.test_performace() def test_performace(self): global TOTAL global SUCC global FAIL global EXCEPT global GT3 global LT3 try: st = time.time() conn = httplib.HTTPConnection(HOST, PORT, False) conn.request('GET', URI) res = conn.getresponse() print 'version:', res.version print 'reason:', res.reason print 'status:', res.status print 'msg:', res.msg print 'headers:', res.getheaders() start_time if res.status == 200: TOTAL+=1 SUCC+=1 else: TOTAL+=1 FAIL+=1 timetime_span = time.time()-st print '%s:%f\n'%(self.name,time_span) self.maxtime(time_span) self.mintime(time_span) if time_span>3: GT3+=1 else: LT3+=1 except Exception,e: print e TOTAL+=1 EXCEPT+=1 conn.close() def maxtime(self,ts): global MAXTIME print ts if ts>MAXTIME: MAXTIME=ts def mintime(self,ts): global MINTIME if ts<MINTIME: MINTIME=ts main 代码开始 print '===========task start===========' 开始的时间 start_time = time.time() 并发的线程数 thread_count = 300 i = 0 while i <= thread_count: t = RequestThread("thread" + str(i)) t.start() i += 1 t=0 并发数所有都完成或大于50秒就结束 while TOTAL<thread_count|t>50: print "total:%d,succ:%d,fail:%d,except:%d\n"%(TOTAL,SUCC,FAIL,EXCEPT) print HOST,URI t+=1 time.sleep(1) print '===========task end===========' print "total:%d,succ:%d,fail:%d,except:%d"%(TOTAL,SUCC,FAIL,EXCEPT) print 'response maxtime:',MAXTIME print 'response mintime',MINTIME print 'great than 3 seconds:%d,percent:%0.2f'%(GT3,float(GT3)/TOTAL) print 'less than 3 seconds:%d,percent:%0.2f'%(LT3,float(LT3)/TOTAL) 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_33835103/article/details/85213806。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-19 20:57:06
75
转载
ClickHouse
...复操作之前,得先瞧瞧目标集群是不是空空如也,或者你是否能接受数据被覆盖这个可能的结果。 2. 使用Replication(复制)机制 2.1 配置Replicated表 ClickHouse支持ZooKeeper或Raft协议实现的多副本复制功能。例如,创建一个分布式且具有复制特性的表: sql CREATE TABLE replicated_table ( ... ) ENGINE = ReplicatedMergeTree('/clickhouse/tables/{database}/{table}', 'replica1') PARTITION BY ... ORDER BY ... 这里,/clickhouse/tables/{database}/{table}是一个 ZooKeeper 路径,用于协调多个副本之间的数据同步;'replica1'则是当前副本标识符。 2.2 数据自动同步与容灾 一旦某台服务器上的数据出现异常,其他拥有相同Replicated表的服务器仍保留完整的数据。当有新的服务器小弟加入集群大家庭,或者主节点大哥不幸挂掉的时候,Replication机制这个超级替补队员就会立马出动,自动把数据同步得妥妥的,确保所有数据都能保持一致性、完整性,一个字都不会少。 3. 数据一致性检查与修复 3.1 使用checksum函数 ClickHouse提供checksum函数来计算表数据的校验和,可用于验证数据是否完整: sql SELECT checksum() FROM table_name; 定期执行此操作并记录结果,以便在后续时间点对比校验和的变化,从而发现可能的数据丢失问题。 3.2 表维护及修复 若发现数据不一致,可以尝试使用OPTIMIZE TABLE命令进行表维护和修复: sql OPTIMIZE TABLE table_name FINAL; 该命令会重新整理表数据,并尝试修复任何可能存在的数据损坏问题。 4. 实践思考与探讨 尽管我们可以通过上述方法来减少和应对ClickHouse中的数据丢失风险,但防患于未然总是最优策略。在搭建和运用ClickHouse系统的时候,千万记得要考虑让它“坚如磐石”,也就是要设计出高可用性方案。比如说,我们可以采用多副本这种方式,就像备份多个小帮手一样,让数据安全无忧;再者,跨地域冗余存储也是一招妙计,想象一下,即使地球另一边的机房挂了,这边的数据也能照常运作,这样就大大提升了系统的稳健性和可靠性啦!同时,建立一个完善、接地气的数据监控系统,能够灵敏捕捉并及时解决那些可能冒头的小问题,这绝对是一个无比关键的步骤。 总结起来,面对ClickHouse数据丢失问题,我们需采取主动防御和被动恢复相结合的方式,既要做好日常的数据备份和Replication配置,也要学会在问题发生后如何快速有效地恢复数据,同时结合数据一致性检查以及表维护等手段,全面提升数据的安全性和稳定性。在实践中不断优化和完善,才能真正发挥出ClickHouse在海量数据分析领域的强大威力。
2023-01-20 13:30:03
445
月影清风
转载文章
...将第一时间进行核实并删除相应内容。 数据库三大范式 无规矩不成方圆, Java有很多的规范,设计模式有7大原则,数据库同样也有它的规范,按照规范来设计维护数据库是程序员必备的素质, 目前关系数据库有六种范式:第一范式(1NF)、第二范式(2NF)、第三范式(3NF)、巴斯-科德范式(BCNF)、第四范式(4NF)和 第五范式(5NF,又称“完美范式")。 这篇文章只介绍三大范式,三大范式是设计数据库表结构的规则约束,但是在实际中允许局部变通。比如为了快速查询到关联数据可能会允许冗余字段的存在。 前置知识: 1.部分函数依赖: 设X,Y是关系R的两个属性集合,存在X→Y,若X’是X的真子集,存在X’→Y,则称Y部分函数依赖于X。 例如:通过AB能得出C,通过A也能得出C,通过B也能得出C,那么说C部分依赖于AB。 2.完全函数依赖 设X,Y是关系R的两个属性集合,X’是X的真子集,存在X→Y,但对每一个X’都有X’!→Y,则称Y完全函数依赖于X。 例如:通过AB能得出C,但是AB单独得不出C,那么说C完全依赖于AB. 3.传递函数依赖 设X,Y,Z是关系R中互不相同的属性集合,存在X→Y(Y !→X),Y→Z,则称Z传递函数依赖于X。 例如:通过A得到B,通过B得到C,但是C得不到B,B得不到A,那么成C传递依赖于A 第一范式:数据库表中的每一列都不可以再拆分,也就是原子性 例如: 这张表中 “部门岗位“ ”应该拆分成两个字段:==》 “部门名称”、“岗位”。 这样才能专门针对“部门名称”或“岗位”进行查询。 第二范式:在满足第一范式基础上(原子性),要求 非主键 都和 主键 完整相关, 而不能是依赖于主键的一部分 (主要针对联合主键而言)| 消除非主键对主键的部分依赖 例如下表: 使用“订单编号”和“产品编号”作为联合主键。此时 “产品价格”、“产品数量” 都和联合主键整体相关,但“订单金额”和“下单时间” 只和联合主键中的“订单编号”相关,和“产品编号”无关。所以只关联了主键中的部分字段,不满足第二范式。 把“订单金额”和“下单时间”移到订单表才 符合第二范式 第三范式: 在第二范式的基础上,非主键列只依赖于主键,不依赖于其他非主键。 就是说表中的非主键字段和主键字段直接相关,不允许间接相关。 例如: 表中的“部门名称”和“员工编号”的关系应该是是 “员工编号”→“部门编号” →“部门名称”, 而这张表中不是直接相关。此时会带来下列问题: 数据冗余:“部门名称”多次重复出现。 插入异常:组建一个新部门时没有员工信息,也就无法单独插入部门 信息。就算强行插入部门信息,员工表中没 有员工信息的记录同样是 非法记录。 删除异常:删除员工信息会连带删除部门信息导致部门信息意外丢失。 更新异常:哪怕只修改一个部门的名称也要更新多条员工记录。 正确的做法应该是:把上表拆分成两张表,以外键形式关联 “部门编号”和“员工编号”是直接相关的。 第二范式的另一种表述方式是:两张表要通过外键关联,不保存冗余字段。例如:不能在“员工表”中存储“部门名称”。 “部门编号”和“员工编号”是直接相关的。 第二范式的另一种表述方式是:两张表要通过外键关联,不保存冗余字段。例如:不能在“员工表”中存储“部门名称”。 学会变通:有时候为了快速查询到关联数据可能会允许冗余字段的存在。例如在员工表中存储部门名称虽然违背第三范式,但是免去了对部门表的关联查询。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45204159/article/details/115282254。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-25 18:48:38
165
转载
MySQL
...,即使创建它的容器被删除或重启,其中的数据也不会丢失。在本文中,当使用Docker部署MySQL时,即使没有明确指定宿主机目录挂载,Docker会自动创建一个数据卷来确保MySQL数据库中的数据持久性。 StatefulSet(有状态集合) , 在Kubernetes编排系统中,StatefulSet是一种工作负载资源对象,专门用于管理有状态的应用程序,如数据库服务。与无状态应用不同,有状态应用需要稳定的网络标识符、持久化的存储和有序的启动/扩展/缩容操作。StatefulSet确保了在集群环境中运行的每个实例都有唯一的持久化存储和稳定的网络标识符,这对于维护像MySQL这样的数据库服务的数据一致性及高可用性至关重要。 GDPR(欧洲通用数据保护条例) , 全称为General Data Protection Regulation,是欧盟制定的一项全面的数据隐私保护法规,旨在加强对个人数据的保护和规范其跨国际边界的流动。在讨论利用Docker部署数据库时,GDPR要求数据处理者采取适当的技术和组织措施,确保个人数据的安全,包括在使用Docker数据卷进行存储时,应结合加密技术、访问控制策略等手段,以满足数据保护和合规性要求。
2023-10-16 18:07:55
127
烟雨江南_
转载文章
...将第一时间进行核实并删除相应内容。 该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 今天只做了一件事情,但解决了很大的问题。相信这也是令很多程序员和数据库管理员头疼的事情。 假设在一MySQL数据表中,自增的字段为id,唯一字段为abc,还有其它字段若干。 自增:AUTO_INCREMENT A、使用insert into插入数据时,若abc的值已存在,因其为唯一键,故不会插入成功。但此时,那个AUTO_INCREMENT已然+1了。 eg : insert into table set abc = '123' B、使用replace插入数据时,若abc的值已存在,则会先删除表中的那条记录,尔后插入新数据。 eg : replace into table set abc = '123' (注:上一行中的into可省略;这只是一种写法。) 这两种方法,效果都不好:A会造成id不连续,B会使得原来abc对应的id值发生改变,而这个id值会和其它表进行关联,这是更不允许的。 那么,有没有解决方案呢? 笨办法当然是有:每次插入前先查询,若表中不存在要插入的abc的值,才插入。 但这样,每次入库之前都会多一个操作,麻烦至极。 向同学请教,说用触发器。可在网上找了半天,总是有问题。可能是语法不对,或者是某些东西有限制。 其实,最终要做的,就是在每次插入数据之后,修正那个AUTO_INCREMENT值。 于是就想到,把这个最实质的SQL语句↓,合并在插入的SQL中。 PS: ALTER TABLE table AUTO_INCREMENT =1 执行之后,不一定再插入的id就是1;而是表中id最大值+1。 这是MySQL中的执行结果。其它数据库不清楚。。。。 到这里,问题就变的异常简单了:在每次插入之后都重置AUTO_INCREMENT的值。 如果插入的自定义函数或类的名称被定义成insert的话,那么就在此基础上扩展一个函数insert_continuous_id好了,其意为:保证自增主键连续的插入。 为什么不直接修改原函数呢? 这是因为,并不是所有的insert都需要修正AUTO_INCREMENT。只有在设置唯一键、且有自增主键时才有可能需要。 虽然重置不会有任何的副作用(经试验,对各种情况都无影响),但没有必要就不要额外增加这一步。 一个优秀的程序员,就是要尽量保证写出的每一个字符都有意义而不多余。 啰啰嗦嗦的说了这么多,其实只有一句话:解决MySQL中自增主键不连续的方法,就是上面PS下的那一行代码。 附: 我写的不成功的触发器的代码。 -- 触发器 CREATE TRIGGER trigger_table after insert ON table FOR EACH ROW ALTER TABLE table AUTO_INCREMENT =1; 大家有想说的,请踊跃发言。期待更好更完美的解决方案。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39554172/article/details/113210084。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-26 08:19:54
93
转载
ZooKeeper
...束,临时节点将被自动删除,因此不允许临时节点有子节点是为了防止因会话终止导致的数据不一致性和清理复杂性问题。 分布式系统 , 分布式系统是由多台计算机通过网络进行通信和协作,共同完成一项任务或提供服务的计算系统。在这样的系统中,各个组成部分可能分布在不同的地理位置,并通过消息传递机制进行交互。本文讨论的场景就是在一个分布式系统中,利用ZooKeeper作为服务协调组件来解决服务注册、发现以及数据一致性等问题。
2023-07-29 12:32:47
66
寂静森林
Hive
... Hive表数据意外删除或覆盖的应对策略及恢复方法 1. 引言 在大数据处理领域,Apache Hive作为一款基于Hadoop的数据仓库工具,以其SQL-like查询能力和大规模数据处理能力深受广大开发者喜爱。然而,在平时我们管理维护的时候,常常会遇到一个让人挠破头皮的头疼问题:就是Hive表里的数据可能突然就被误删或者不小心被覆盖了。这篇文章会手把手地带你钻进这个问题的最深处,咱们通过一些实实在在的代码例子,一起聊聊怎么防止这类问题的发生,再讲讲万一真碰上了,又该采取哪些恢复措施来“救火”。 2. Hive表数据丢失的风险与原因 常见的Hive表数据丢失的情况通常源于误操作,例如错误地执行了DROP TABLE、TRUNCATE TABLE或者INSERT OVERWRITE等命令。这些操作可能在一瞬间让积累已久的数据化为乌有,让人懊悔不已。因此,理解和掌握避免这类风险的方法至关重要。 3. 预防措施 备份与版本控制 示例1: sql -- 创建Hive外部表并指向备份数据目录 CREATE EXTERNAL TABLE backup_table LIKE original_table LOCATION '/path/to/backup/data'; -- 将原始数据定期导出到备份表 INSERT INTO TABLE backup_table SELECT FROM original_table; 通过创建外部表的方式进行定期备份,即使原始数据遭到破坏,也能从备份中快速恢复。此外,要是把版本控制系统(比如Git)运用在DDL脚本的管理上,那就等于给咱们的数据结构和历史变更上了双保险,让它们的安全性妥妥地更上一层楼。 4. 数据恢复策略 示例2: sql -- 如果是由于DROP TABLE导致数据丢失 -- 可以先根据备份重新创建表结构 CREATE TABLE original_table LIKE backup_table; -- 然后从备份表中还原数据 INSERT INTO TABLE original_table SELECT FROM backup_table; 示例3: sql -- 如果是INSERT OVERWRITE导致部分或全部数据被覆盖 -- 则需要根据备份数据,定位到覆盖前的时间点 -- 然后使用相同方式恢复该时间点的数据 INSERT INTO TABLE original_table SELECT FROM backup_table WHERE timestamp_column <= 'overwrite_time'; 5. 深入思考与优化方案 在面对Hive表数据丢失的问题时,我们的首要任务是保证数据安全和业务连续性。除了上述的基础备份恢复措施,还可以考虑更高级的解决方案,比如: - 使用ACID事务特性(Hive 3.x及以上版本支持)来增强数据一致性,防止并发写入造成的数据冲突和覆盖。 - 结合HDFS的快照功能实现增量备份,提高数据恢复效率。 - 对关键操作实施权限管控和审计,减少人为误操作的可能性。 6. 结论 面对Hive表数据意外删除或覆盖的困境,人类的思考过程始终围绕着预防和恢复两大主题。你知道吗,就像给宝贝东西找个安全的保险箱一样,我们通过搭建一套给力的数据备份系统,把规矩立得明明白白的操作流程严格执行起来,再巧用Hive这些高科技工具的独特优势,就能把数据丢失的可能性降到最低,这样一来,甭管遇到啥突发状况,我们都能够淡定应对,稳如泰山啦!记住,数据安全无小事,每一次的操作都值得我们审慎对待。
2023-07-14 11:23:28
787
凌波微步
Logstash
...ogstash输出的目标,用于存储和索引经过处理的日志数据,以便于后续进行高效查询、可视化展示及监控。 Uniform Resource Identifier (URI) , URI是一种字符串型标识符,用于唯一地标识互联网上的资源或服务的位置以及访问方法。在文章的具体应用场景中,URI用于配置Logstash与Elasticsearch集群节点的连接地址,通常包含协议(如http或https)、主机名或IP地址以及端口号,例如http://localhost:9200,确保Logstash能准确无误地向指定的Elasticsearch节点发送数据。 SSL/TLS连接 , SSL(Secure Sockets Layer)和其继任者TLS(Transport Layer Security)是网络通信中广泛采用的安全协议,用于加密在网络上传输的数据,防止信息被窃取或篡改。在本文提到的场景下,启用SSL加密连接意味着Logstash与Elasticsearch之间的数据传输将得到安全保障,避免敏感日志信息在传输过程中遭到泄露。 基本认证 , 基本认证是一种HTTP身份验证机制,要求用户提供用户名和密码进行验证。在Logstash与Elasticsearch集成时,可以在URI中嵌入基本认证信息(如user:password@hostname),以此确保只有经过授权的用户才能访问和写入Elasticsearch集群中的数据。
2024-01-27 11:01:43
303
醉卧沙场
Ruby
...据一致性是至关重要的目标,需要通过锁、事务管理等机制确保每个操作按照预定顺序完成并影响全局状态。 乐观锁 , 一种用于控制并发访问资源的策略,它假定并发冲突的发生概率较低,因此在读取数据时不立即加锁,而是在更新数据时检查该数据自上次读取以来是否已被其他线程修改。如果数据未被更改,则更新成功;否则,通常会抛出异常或回滚事务,要求重新获取最新数据并再次尝试更新操作。在Ruby on Rails的ActiveRecord中,可以利用lock_for_update方法实现乐观锁机制,以确保在高并发场景下的数据一致性。
2023-06-25 17:55:39
51
林中小径-t
Kafka
...能无法成功发送消息到目标Broker,或者消费者可能无法从Broker获取已提交的消息。 - 分区重平衡:若网络问题导致Zookeeper或Kafka Controller与集群其余部分断开,那么分区的领导者选举将会受到影响,进而触发消费者组的重平衡,这可能导致短暂的服务中断。 - 性能下降:频繁的网络重连和重试会消耗额外的资源,降低整个集群的数据处理能力。 3. 代码示例 配置生产者以适应网络不稳定性 在使用Java API创建Kafka生产者时,我们可以针对网络问题进行一些特定配置,比如设置合理的重试策略和消息确认模式: java Properties props = new Properties(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "server1:9092,server2:9092,server3:9092"); props.put(ProducerConfig.RETRIES_CONFIG, "3"); // 设置生产者尝试重新发送消息的最大次数 props.put(ProducerConfig.ACKS_CONFIG, "all"); // 设置所有副本都确认接收到消息后才认为消息发送成功 props.put(ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION, "1"); // 控制单个连接上未完成请求的最大数量,降低网络问题下的数据丢失风险 KafkaProducer producer = new KafkaProducer<>(props); 4. 集群层面的稳定性和容错性设计 - 多副本机制:Kafka利用多副本冗余存储来确保消息的持久化,即使某台Broker宕机或网络隔离,也能从其他副本读取消息。 - ISR集合与Leader选举:Kafka通过ISR(In-Sync Replicas)集合维护活跃且同步的副本子集,当Leader节点因网络问题下线时,Controller会自动从ISR中选举新的Leader,从而保证服务连续性。 - 网络拓扑优化:物理层面优化网络架构,例如采用可靠的网络设备,减少网络跳数,以及设置合理的网络超时和重试策略等。 5. 结论与思考 虽然网络不稳定给Kafka集群带来了一系列挑战,但通过灵活配置、充分利用Kafka内置的容错机制以及底层网络架构的优化,我们完全有能力妥善应对这些挑战。同时呢,对于我们开发者来说,也得时刻瞪大眼睛,保持敏锐的洞察力,摸清并预判可能出现的各种幺蛾子,这样才能在实际操作中,迅速且精准地给出应对措施。其实说白了,Kafka的厉害之处不仅仅是因为它那牛哄哄的性能,更关键的是在面对各种复杂环境时,它能像小强一样坚韧不拔,灵活适应。这正是我们在摸爬滚打、不断探索实践的过程中,持续汲取能量、不断成长进步的动力源泉。
2023-04-26 23:52:20
550
星辰大海
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tar -xvzf archive.tar.gz
- 解压gzip压缩的tar归档包。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"