前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[动态网页数据爬取技术 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...线程同步的最新进展和技术趋势。例如,随着异步编程模型在高性能计算、游戏开发以及分布式系统中的广泛应用,新的同步原语和框架不断涌现。 近日,微软在.NET 5.0中引入了一种名为“async streams”的异步编程增强功能,使得开发者能更容易地处理并发数据流,并确保线程安全。同时,为了解决复杂的并发问题,如死锁和竞态条件,Google研发出了一种名为"Swiss Table"的数据结构,它在内部使用了高效的无锁算法,大大提升了多线程环境下的性能表现。 此外,Linux内核社区也在持续优化pthread库以适应更广泛的多线程应用场景。例如,对futexes(快速用户空间互斥体)进行改进,通过减少系统调用次数来提高同步效率;以及对pthread_cond_t条件变量的增强,使其支持超时唤醒等高级特性。 深入到理论层面,计算机科学家们正积极探索新型的线程同步模型,比如基于CSP(Communicating Sequential Processes)理论的Go语言所采用的goroutine和channel机制,其简洁的设计理念与高效执行策略为解决多线程同步问题提供了新思路。 综上所述,在线程同步领域,无论是最新的技术发展还是深入的理论研究,都在为我们提供更强大且易用的工具,帮助开发者应对日益复杂的并发场景挑战,实现更加稳定、高效的应用程序。
2023-10-03 17:34:08
138
转载
SpringBoot
...SQL日志监控以分析数据库查询效率,或者整合AOP(面向切面编程)技术实现更为灵活的事务管理及缓存策略。 同时,结合Spring Boot 2.x的新特性,如反应式编程模型WebFlux,拦截器的设计与实现方式也将有所变化。在响应式场景下,开发者需要关注Reactive HandlerInterceptor接口,以便在异步非阻塞环境下高效地执行预处理和后处理逻辑。 综上所述,拦截器作为Spring生态乃至众多现代Java Web框架中的核心组件之一,其设计与应用值得广大开发者持续关注和深入研究。不断跟进最新的技术和实践案例,将有助于我们更好地运用拦截器解决实际业务问题,提升系统整体质量和稳定性。
2023-02-28 11:49:38
153
星河万里-t
Nacos
...用程序的状态。这对于动态环境下的应用非常有用: java configService.addListener("spring.profiles.active", new Listener() { @Override public void receiveConfigInfo(String configInfo) { System.out.println("Config changed to: " + configInfo); } @Override public void onException(Exception e) { System.err.println("Error while listening to config change."); } }); 二、Python SDK 灵活的配置管理 对于 Python 开发者,Nacos 提供了专门的 Python SDK,使得配置管理变得轻松且直观。通过这个 SDK,你可以方便地在 Python 应用中集成 Nacos 的服务发现和配置管理功能。 安装与使用 可以通过 pip 来安装 Nacos Python SDK: bash pip install nacos-sdk-python 然后,你可以使用如下代码片段来获取配置: python from nacos import Client, ConfigType, NacosClient client = NacosClient(['127.0.0.1:8848'], username='nacos', password='nacos') config = client.get_config("spring.profiles.active", "default", 3000) print(config.content) 总结 Nacos 通过提供丰富的客户端 SDK,为开发者提供了灵活且高效的方式来集成其服务管理功能。无论是 Java 开发者还是 Python 开发者,都可以根据自己的需求选择合适的 SDK 来简化开发流程,提高生产力。从简单的配置获取到复杂的服务发现,Nacos SDK 都能提供全面的支持。嘿!读完这篇文章后,是不是觉得Nacos这个家伙挺有意思的?是不是已经迫不及待想要深入了解它,看看它在你的项目里能干出啥大事情了?别急,跟着我的步伐,咱们一起深入探索Nacos的奥秘,让它在你的项目中大放异彩吧!
2024-10-04 15:43:16
52
月下独酌
转载文章
...{"des":"阿里技术人对外发布原创技术内容的最大平台;社区覆盖了云计算、大数据、人工智能、IoT、云原生、数据库、微服务、安全、开发与运维9大技术领域。","link1":"https://developer.aliyun.com/group/?spm=a2c6h.12883283.1377930.25.7287201c9RKTCi&groupType=other","link":"https://developer.aliyun.com/","icon":"https://img.alicdn.com/tfs/TB1TlXBEkT2gK0jSZPcXXcKkpXa-200-200.png","btn2":"开发者藏经阁","tip":"打通开发者成长路径,学习中心 。全线阿里云技术大牛公开课,立即查看","btn1":"技术与产品技术圈","link2":"https://developer.aliyun.com/topic/ebook?spm=a2c6h.12883283.1362932.15.7287201c9RKTCi","title":"阿里云开发者社区"}],"search":[{"txt":"学习中心","link":"https://developer.aliyun.com/learning?spm=a2c6h.13788135.1364563.41.299f5f24exe3IS"},{"txt":"技能测试中心 ","link":"https://developer.aliyun.com/exam?spm=a2c6h.13716002.1364563.42.6cac18a3JWCM5U"},{"txt":"开发者云 ","link":"https://developer.aliyun.com/adc/?spm=a2c6h.13716002.1364563.59.6b0818a3DV0vzN"},{"txt":"在线编程 ","link":"https://developer.aliyun.com/coding?spm=5176.13257455.1364563.57.701e7facHvqi5r"},{"txt":"学习中心 ","link":"https://developer.aliyun.com/learning?spm=a2c6h.12883283.1364563.41.5f1f201c5CLDCC"},{"txt":"高校计划 ","link":"https://developer.aliyun.com/adc/college/?spm=a2c6h.13716002.1364563.58.6cac18a3JWCM5U"}],"countinfo":{"search":{"length_pc":0,"length":0},"card":{"length_pc":0,"length":0} }} {"$env":{"JSON":{} },"$page":{"env":"production"},"$context":{"moduleinfo":{"card_count":[{"count_phone":1,"count":1}],"search_count":[{"count_phone":4,"count":4}]},"card":[{"des":"阿里技术人对外发布原创技术内容的最大平台;社区覆盖了云计算、大数据、人工智能、IoT、云原生、数据库、微服务、安全、开发与运维9大技术领域。","link1":"https://developer.aliyun.com/group/?spm=a2c6h.12883283.1377930.25.7287201c9RKTCi&groupType=other","link":"https://developer.aliyun.com/","icon":"https://img.alicdn.com/tfs/TB1TlXBEkT2gK0jSZPcXXcKkpXa-200-200.png","btn2":"开发者藏经阁","tip":"打通开发者成长路径,学习中心 。全线阿里云技术大牛公开课,立即查看","btn1":"技术与产品技术圈","link2":"https://developer.aliyun.com/topic/ebook?spm=a2c6h.12883283.1362932.15.7287201c9RKTCi","title":"阿里云开发者社区"}],"search":[{"txt":"学习中心","link":"https://developer.aliyun.com/learning?spm=a2c6h.13788135.1364563.41.299f5f24exe3IS"},{"txt":"技能测试中心 ","link":"https://developer.aliyun.com/exam?spm=a2c6h.13716002.1364563.42.6cac18a3JWCM5U"},{"txt":"开发者云 ","link":"https://developer.aliyun.com/adc/?spm=a2c6h.13716002.1364563.59.6b0818a3DV0vzN"},{"txt":"在线编程 ","link":"https://developer.aliyun.com/coding?spm=5176.13257455.1364563.57.701e7facHvqi5r"},{"txt":"学习中心 ","link":"https://developer.aliyun.com/learning?spm=a2c6h.12883283.1364563.41.5f1f201c5CLDCC"},{"txt":"高校计划 ","link":"https://developer.aliyun.com/adc/college/?spm=a2c6h.13716002.1364563.58.6cac18a3JWCM5U"}],"countinfo":{"search":{"length_pc":0,"length":0},"card":{"length_pc":0,"length":0} }} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39884323/article/details/110752404。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-31 19:12:04
257
转载
RabbitMQ
...后,我们发现消息队列技术在现代分布式系统中的重要性日益凸显。近期,随着微服务架构和云原生技术的发展,Kafka、RocketMQ等其他主流消息队列也在高并发场景下展现出了各自的特性与优势。 例如,Apache Kafka以其高吞吐量、低延迟以及出色的数据持久化能力,在大数据处理和流式计算领域获得了广泛应用。在《Apache Kafka实战:高并发场景下的消息处理与性能优化》一文中,作者详细剖析了如何利用Kafka的分区机制实现高效的并发处理,并对比了其与RabbitMQ在消息确认、事务处理等方面的异同。 同时,阿里巴巴开源的消息中间件RocketMQ也值得关注。它特别适用于大规模、高并发的互联网应用场景,提供了丰富的事务消息、定时/延时消息等功能。在一篇名为《RocketMQ在高并发环境下的关键技术解析》的文章中,通过实际案例解析了RocketMQ如何确保消息的顺序性和事务一致性,这对于理解不同消息队列产品在应对并发挑战时的设计思路具有很高的参考价值。 此外,对于消息队列的未来发展趋势,实时分析、智能调度及边缘计算等领域为消息传递提出了新的要求。诸如Pulsar等新一代消息队列产品正逐步融入AI驱动的智能运维体系,以适应更加复杂的业务场景需求。因此,关注并研究这些前沿技术和最佳实践,将有助于我们在构建高效、可靠且可扩展的分布式系统时做出更明智的选择。
2024-03-03 10:52:21
91
醉卧沙场-t
SeaTunnel
...Kafka实现高效的数据摄入和输出后,我们进一步探索实时数据处理领域的发展趋势和最新实践。近日,随着大数据和流计算技术的快速发展,Kafka 2.8版本已发布,带来了更为强大的性能优化、安全性改进以及对Kubernetes等云原生环境更深度的支持,使得在大规模实时数据处理场景下的应用更加游刃有余。 同时,SeaTunnel(Waterdrop)社区也持续保持着活跃的更新迭代,其0.4.0版本着重提升了数据集成任务的稳定性和执行效率,并新增了一系列适用于时下热门应用场景的插件,如支持更多云存储服务的源与目标对接,以及针对机器学习和AI领域的模型输入输出适配器等。 此外,在实际业务中,许多企业开始采用以SeaTunnel和Kafka为核心的实时数据处理架构,成功案例包括某大型电商平台利用两者结合进行实时用户行为分析,以及某金融公司构建低延迟风控系统等。这些实例印证了借助开源工具提升实时数据处理能力的可行性与优越性。 综上所述,深入研究并跟进SeaTunnel与Kafka的技术演进及其在各行业中的实践应用,对于大数据从业者来说,不仅有助于掌握实时数据处理的最佳实践,更能为应对未来不断变化的数据挑战做好充分准备。而随着云原生、边缘计算等新技术浪潮的到来,我们期待看到SeaTunnel与Kafka在更大范围内的创新融合,持续推动实时数据处理技术的边界拓展与深化应用。
2023-07-13 13:57:20
167
星河万里
Hadoop
...步关注到近年来随着大数据技术的飞速发展,Hadoop生态系统也正经历着深刻的变革。Apache Hadoop 2.0及后续版本引入了YARN(Yet Another Resource Negotiator)资源管理系统,取代了原有的JobTracker功能,使得集群资源管理和任务调度相分离,从而极大地提高了系统的扩展性和效率。 具体来说,YARN将JobTracker拆分为ResourceManager和ApplicationMaster两个组件。ResourceManager全局管理集群的所有资源,而每个应用程序则有一个专属的ApplicationMaster,负责向ResourceManager申请资源并跟踪其应用的任务状态。这样的设计显著降低了单点故障风险,并提升了任务执行的灵活性与可靠性。 此外,考虑到网络环境对分布式计算系统的重要性,最新的网络技术如RDMA(Remote Direct Memory Access)也被尝试应用于Hadoop以优化节点间通信性能,降低延迟,提高数据传输效率。同时,硬件层面的创新,如采用更稳定的SSD存储设备、增加内存容量以及提升CPU处理能力,也在不断助力Hadoop集群的整体性能提升。 综上所述,在解决类似JobTracker与TaskTracker通信问题的过程中,不仅需要从软件配置、硬件维护等传统角度出发,更要紧随技术发展趋势,关注新架构、新技术的应用,以便更好地应对大规模分布式计算环境中可能出现的各种挑战。
2023-07-16 19:40:02
501
春暖花开-t
RabbitMQ
...的普及,确保跨服务间数据传输的一致性和可靠性变得更为关键。例如,在金融交易、物联网(IoT)设备数据同步、实时数据分析等场景下,事务性消息传递能有效避免数据丢失或不一致的情况。 实际上,RabbitMQ团队在不断优化其事务处理能力,以适应更复杂的业务需求。在最近发布的RabbitMQ 3.9版本中,对事务性能进行了显著提升,并且增强了与AMQP协议的兼容性,使得开发者在实现事务的同时,还能享受到更高的吞吐量和更低的延迟。 此外,结合其他新兴技术如Kafka、Pulsar等消息队列系统的对比分析,我们可以看到尽管各有优势,但RabbitMQ凭借其灵活的消息确认机制和强大的事务支持,在许多要求高可靠性的应用场景中仍占据一席之地。因此,对于正在使用或者考虑采用RabbitMQ构建系统的企业而言,深入研究并合理运用事务性消息发送功能,无疑是提升系统稳定性和健壮性的重要手段。同时,也应关注相关社区和技术发展趋势,以便更好地应对未来可能出现的新挑战和机遇。
2023-02-21 09:23:08
100
青春印记-t
RabbitMQ
...景中,随着云计算、大数据及容器化技术的发展,RabbitMQ的部署环境日益复杂,对监控的需求也更加精细化。 近期,开源社区推出了一系列针对RabbitMQ的现代化监控工具和解决方案,例如Prometheus与Grafana集成,不仅可以实现对内存占用、磁盘空间、网络连接数和队列数量等基本指标的可视化监控,还支持更深度定制化的告警策略制定,以及通过追踪历史数据进行性能趋势预测。 另外,鉴于云原生架构下的微服务安全问题频发,企业在使用RabbitMQ时,除了关注其运行状态外,还需要强化对其访问权限、消息加密传输等方面的监控与管理。Erlang OTP(RabbitMQ基于此构建)社区已发布关于提升AMQP协议安全性的重要更新,企业应密切关注并及时应用这些安全补丁,以防止潜在的数据泄露风险。 同时,各大云服务商如AWS、Azure等也为托管版RabbitMQ提供了更为完善的监控与日志服务,用户可以借助这些服务快速定位问题,提高运维效率,并确保系统的高可用性与安全性。 总之,在面对大规模、高并发的业务场景时,全面且精细地监控RabbitMQ是保障业务连续性的基石,结合最新的技术和最佳实践,持续优化和完善监控策略,才能使我们的分布式系统在瞬息万变的技术环境中稳健运行。
2023-03-01 15:48:46
446
人生如戏-t
转载文章
... 其实她也是往这里写数据,android的java层就不关心她了。好了,然后可以在android启动后设置一个闹钟来测试下了,发现可以,至此android的vibrator移植成功。 突然发现了,其实以前觉得很难得东西,很不好理解的东西,在过一段时间后再回过头去看的时候才会恍然大悟。学习是个漫长的过程,是一个知识慢慢积累的过程,一口气是吃不成胖子的。 本篇文章为转载内容。原文链接:https://blog.csdn.net/eastmoon502136/article/details/7909688。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-17 14:30:45
82
转载
Tornado
...,WebSocket技术因其双向通信、实时更新等特性而广受欢迎。Tornado作为一个高性能Python网络库,提供了强大的WebSocket支持。不过在实际操作里头,咱们可不能只盯着如何搭建和保持WebSocket连接这事儿,更得好好琢磨一下怎么妥善应对接二连三出现的、难以避免的连接关闭问题。本文将深入探讨Tornado中如何优雅地处理WebSocket的连接关闭事件。 1. WebSocket连接关闭的基本理解 首先,我们需要明确一点:WebSocket连接可能由于多种原因被关闭,如客户端主动断开、服务器端主动断开、网络问题导致的意外断开等。对于这些状况,作为开发者我们呢,就得在WebSocket这个协议的层面上竖起耳朵监听着,一旦有啥动静,就立马给出相应的反馈和处理。 2. Tornado中的WebSocket实现 在Tornado中,WebSocket通过tornado.websocket.WebSocketHandler类来处理。当一个WebSocket连接建立时,Tornado会自动调用open()方法;同样地,当连接关闭时,Tornado则会触发on_close()方法。 python import tornado.websocket class MyWebSocketHandler(tornado.websocket.WebSocketHandler): def open(self): print("WebSocket connection opened!") def on_message(self, message): 处理接收到的消息... pass def on_close(self): print("WebSocket connection closed.") 在这里,我们可以执行一些清理操作或者记录日志 3. 处理WebSocket连接关闭事件 3.1 on_close()方法的应用 on_close()方法会在WebSocket连接关闭时被调用,传入的参数为空。在使用这个方法的时候,我们完全可以做那些必不可少的扫尾工作,比如说,可以释放掉占用的资源啦,更新一下用户的状态信息啊,甚至发送个离线通知啥的,这些操作通通都可以搞定。 python class MyWebSocketHandler(tornado.websocket.WebSocketHandler): ...其他代码... def on_close(self): print(f"WebSocket connection from {self.request.remote_ip} has been closed.") self.application.clients.remove(self) 假设我们在全局保存了所有活动连接 这里还可以发送一条消息到其他在线用户,告知他们某个用户已离线 3.2 获取关闭原因与码 Tornado还允许我们获取连接关闭的原因及其对应的关闭码。WebSocket呢,它专门设定了一个标准关闭码的系列,如果碰到非标准的那种关闭情况,咱们就可以自己定义个码来表示。就像是给每种“再见”的方式编了个号码,如果遇到特殊的告别方式,咱也能临时造个新号码来用,是不是挺灵活哒?在on_close()方法中,可以访问self.close_code和self.close_reason属性来获取这些信息。 python class MyWebSocketHandler(tornado.websocket.WebSocketHandler): ...其他代码... def on_close(self): close_code = self.close_code close_reason = self.close_reason print(f"WebSocket connection closed with code {close_code} and reason: {close_reason}") 根据不同的关闭原因或码,执行特定的逻辑处理 4. 探讨性话术及思考过程 处理WebSocket连接关闭事件时,我们需要像对待生活中的告别一样,既要有礼貌地“告别”(清理资源),也要了解“为何告别”(关闭原因)。这样,我们才能在下次“相遇”时提供更好的服务。比方说,假如我们发现一大波用户突然间因为网络问题集体掉线了,那很可能意味着我们的服务器网络配置有待改进和优化;而如果用户是主动切断连接的,那咱就得琢磨琢磨是不是得提升一下用户体验,尽可能减少那些不必要的断开情况。 总结来说,利用Tornado提供的WebSocket接口,我们能轻松捕获连接关闭事件,并据此执行相应的处理逻辑。这就像是那个超级给力的服务员小哥,总是在客人满意离开后,立马手脚麻利地收拾桌面,一眨眼功夫就让桌面焕然一新,随时迎接下一位客人的大驾光临。同时,他还超级细心地关注着每一位顾客为啥要离开,这样就能持续优化服务体验,确保每个来这儿的人都能像在自己家里那样感到温馨舒适,宾至如归。
2023-05-15 16:23:22
111
青山绿水
转载文章
...是一种轻量级的虚拟化技术,它将应用程序及其依赖环境打包成一个可移植、隔离的单元,使得应用在不同基础设施之间迁移时能够保持一致的行为和运行状态。在文中,用户通过网易蜂巢平台创建并管理容器,实现服务部署与运维。 SSH密钥 , SSH(Secure Shell)密钥是一对非对称加密密钥,包括公钥和私钥。在容器管理场景中,SSH密钥用于安全登录容器,避免使用传统密码方式登录可能带来的安全隐患。用户在创建容器时可以选择注入已有的SSH公钥或创建新的密钥对,容器创建成功后只能通过对应的私钥进行SSH登录操作。 性能监控 , 性能监控是系统管理和运维的重要手段,在本文中指的是对容器各项资源使用情况的实时监控,包括CPU利用率、内存利用率、磁盘空间利用率以及磁盘读写次数等关键指标。通过对这些数据的收集与分析,用户可以了解容器运行状况,及时发现潜在问题并进行优化调整,确保服务稳定性和资源高效利用。 自定义镜像 , 自定义镜像是指基于基础镜像进一步配置、安装软件和服务后保存的全新镜像。在网易蜂巢平台上,用户可以在容器详情页面将当前容器的状态保存为一个新的镜像,这样后续可以直接基于这个自定义镜像快速生成具有相同配置和环境的新容器,简化了重复配置的过程,并有利于实现标准化和版本控制。
2023-01-24 23:58:16
218
转载
转载文章
...ist 类是一个可以动态修改的数组,与普通数组的区别就是它是没有固定大小的限制,我们可以添加或删除元素。 2. ArrayList 继承了 AbstractList ,并实现了 List 接口。 3. ArrayList 类位于 java.util 包中,使用前需要引入它,语法格式如下: import java.util.ArrayList; // 引入 ArrayList 类ArrayList<E> objectName =new ArrayList<>(); // 初始化 4. ArrayList 是一个数组队列,提供了相关的添加、删除、修改等功能。 5. ArrayList 中的元素实际上是对象,在以上实例中,数组列表元素都是字符串 String 类型。 如果我们要存储其他类型,而 <E> 只能为引用数据类型,这时我们就需要使用到基本类型的包装类。 基本类型对应的包装类表如下: 基本类型 引用类型 boolean Boolean byte Byte short Short int Integer long Long float Float double Double char Character 访问 ArrayList 中的元素可以使用 get() 方法: public static void main(String[] args) {ArrayList<String> sites = new ArrayList<String>();sites.add("weipinhui");sites.add("pinduoduo");sites.add("Taobao");sites.add("jingdong");System.out.println(sites);} 注意:数组的索引值从 0 开始。 ArrayList 类提供了很多有用的方法,添加元素到 ArrayList 可以使用 add() 方法 public static void main(String[] args) {ArrayList<String> sites = new ArrayList<String>();sites.add("weipinhui");sites.add("pinduoduo");sites.add("Taobao");sites.add("jingdong");sites.set(2, "Weixin"); // 第一个参数为索引位置,第二个为要修改的值System.out.println(sites);} 如果要修改 ArrayList 中的元素可以使用 set() 方法: public static void main(String[] args) {ArrayList<String> sites = new ArrayList<String>();sites.add("weipinhui");sites.add("pinduoduo");sites.add("Taobao");sites.add("jingdong");sites.set(2, "Weixin"); // 第一个参数为索引位置,第二个为要修改的值System.out.println(sites);} 如果要删除 ArrayList 中的元素可以使用 remove() 方法: public static void main(String[] args) {ArrayList<String> sites = new ArrayList<String>();sites.add("weipinhui");sites.add("pinduoduo");sites.add("Taobao");sites.add("jingdong");sites.remove(3); // 删除第四个元素System.out.println(sites);} 如果要计算 ArrayList 中的元素数量可以使用 size() 方法: public static void main(String[] args) {ArrayList<String> sites = new ArrayList<String>();sites.add("weipinhui");sites.add("pinduoduo");sites.add("Taobao");sites.add("jingdong");System.out.println(sites.size());} 使用Scanner、Random、ArrayList完成一个不重复的点名程序: public static void main(String[] args) {//可以使用Arrays的asList实现序列化一个集合List<String> list= Arrays.asList("叶枫","饶政","郭汶广","王志刚","时力强","柴浩阳","王宁","雷坤恒","贠耀强","齐东豪","袁文涛","孙啸聪","李文彬","孙赛欧","曾毅","付临","王文龙","朱海尧","史艳红","赵冉冉","詹梦","苏真娇","张涛","王浩","刘发光","王愉茜","牛怡衡","臧照生","梁晓声","孔顺达","田野","宫帅龙","高亭","张卓","陈盼盼","杨延欣","李蒙惠","瞿新成","王婧源","刘建豪","彭习峰","胡凯","张武超","李炳杰","刘传","焦泽国");//把list作为参数重新构建一个新的ArrayList集合ArrayList<String> names=new ArrayList<>(list);//使用Scanner、Random、ArrayList完成一个不重复的点名程序Random random=new Random();Scanner scanner=new Scanner(System.in);while(true){//如果集合中没有元素了别结束循环if(names.size()==0){System.out.println("已完成所有学生抽查,抽查结束请重新开始");break;}System.out.println("确认点名请输入吧Y/y");String input=scanner.next();if(input.equals("Y")||input.equals("y")){//随机一个集合下标int index=random.nextInt(names.size());System.out.println(""+names.get(index));//该学生已经被抽到,把他从集合中移除names.remove(index);}else{System.out.println("本次抽查结束");break;} }} 本篇文章为转载内容。原文链接:https://blog.csdn.net/gccv_/article/details/128037485。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-02-19 12:24:39
584
转载
NodeJS
...资源。它不仅用于存储数据,还用于临时保存正在运行的指令。在玩Node.js的时候,因为它那个独特的事件驱动、非阻塞I/O的设计模式,对内存的精打细算和优化简直太关键了,好比咱们过日子得会省着花钱一样。 三、Node.js中的内存泄漏 1. 示例代码 javascript function createTimer() { setInterval(function () { console.log('This is timer'); }, 1000); } createTimer(); 上述代码会持续创建一个新的定时器,并在每秒打印一次消息。虽然这个函数表面上看没啥毛病,但实际上每执行一次,它都会悄咪咪地生成一个新的定时器小家伙。这些小家伙们就像赖在内存里的钉子户,垃圾回收机制也拿它们没辙,这样一来,就造成了内存泄漏的问题。 2. 解决方案 对于这个问题,我们需要确保定时器只被创建一次,并且在不再需要时清除。例如: javascript var intervalId = null; function createTimer() { if (!intervalId) { intervalId = setInterval(function () { console.log('This is timer'); }, 1000); } } createTimer(); // 在不需要时清除定时器 function stopTimer() { clearInterval(intervalId); intervalId = null; } 四、内存泄露的原因 内存泄漏的根本原因在于JavaScript的垃圾回收机制并不完美。JavaScript这门语言呢,它有个特点,就是“单线程”,这就意味着同一时间只能做一件事情。所以嘞,对于那些变量们,它们都得在各自的地盘,也就是“作用域”里待着,如果不乖乖待在自己的作用域内,咱们就甭想找到它们,也就没法用上啦。这就意味着,假如一个变量没人再用了,就像个被丢弃在角落的旧玩具一样,垃圾回收机制这个勤劳的小清洁工会过来把它收拾掉,给内存空间腾地儿。不过呢,这可不总是板上钉钉的事儿,特别是在处理那种耗时贼长的任务,或者遇到“你中有我、我中有你”的循环引用情况时。 五、如何避免内存泄漏 1. 避免全局变量 全局变量始终处于活动状态,可能会导致内存泄漏。如果必须使用全局变量,应该尽可能地减少它们的数量。 2. 使用let和const代替var let和const可以让我们更好地控制变量的作用域,从而减少不必要的内存占用。 3. 清除不再使用的定时器 如前面的例子所示,我们应该在不再需要定时器时清除它们。 六、结论 Node.js是一个强大的工具,但就像其他技术一样,它也有其局限性和挑战。理解并掌握Node.js的内存管理问题是提高应用程序性能的关键。通过不断学习和亲身实践,我们完全有能力搞定这些问题,进而打造出更为稳如磐石、性能更上一层楼的Node.js应用。
2023-12-25 21:40:06
76
星河万里-t
转载文章
...,将特定字母序列用于数据存储和加密,极大地提高了信息密度和安全性。 这种新颖的编码技术挑战了传统的二进制体系,尝试用多字母或符号构成的序列来表示数值,类似于文中Jam数字的概念,但其应用场景更加广泛且深入。例如,在量子计算研究中,科学家们正在开发新的量子比特编码方案,利用多种量子态组合以实现更高效的量子信息处理和传输。 此外,结合实际生活场景,也有教育工作者提出类似Jam数字的创新教学法,通过改变计数符号激发学生对数学的兴趣,引导他们理解不同文化背景下的计数系统,如罗马数字、玛雅数字等,从而培养跨学科思维和全球视野。 总之,Jam数字所代表的创新计数理念,不仅启发我们在学术和技术层面探索新型编码逻辑,也让我们反思现有教育模式,鼓励更多的创新实践与跨界融合,为未来的科技发展和人才培养提供新的思路。
2024-02-12 12:42:53
563
转载
SpringCloud
...个线程上下文中流转的数据状态(如SecurityContext)。这就像是我们把活儿交给了一个刚来的新手,他确实能给干完,但却对之前老工人做到哪一步啦,现场是个啥状况完全摸不着头脑。 4. 解决方案 为了解决这个问题,我们需要将原始请求线程中的SecurityContext传递给Hystrix线程。一种可行的方法是通过实现HystrixCommand的run方法,并在其中手动设置SecurityContext: java public class AuthAwareHystrixCommand extends HystrixCommand { private final AuthServiceClient authServiceClient; public AuthAwareHystrixCommand(AuthServiceClient authServiceClient) { super(HystrixCommandGroupKey.Factory.asKey("AuthService")); this.authServiceClient = authServiceClient; } @Override protected User run() throws Exception { // 将主线程的SecurityContext传递过来 SecurityContext originalContext = SecurityContextHolder.getContext(); try { // 设置当前线程的SecurityContext SecurityContextHolder.setContext(originalContext); return authServiceClient.getAuthenticatedUser(); } finally { // 还原SecurityContext SecurityContextHolder.clearContext(); } } } 当然,上述解决方案需要针对每个FeignClient调用进行改造,略显繁琐。所以呢,更酷炫的做法就是用Spring Cloud Sleuth提供的TraceCallable和TraceRunnable这两个小神器。它们可聪明了,早早就帮咱们把线程之间传递上下文这档子事考虑得妥妥的。你只需要轻松配置一下,就一切搞定了! 5. 结论与探讨 面对SpringCloud中Feign拦截器因Hystrix线程隔离导致的SecurityContext获取问题,我们可以通过手工传递SecurityContext,或者借助成熟的工具如Spring Cloud Sleuth来巧妙解决。在实际操作中,咱们得时刻瞪大眼睛瞅瞅那些框架特性背后的门道,摸透它们的设计原理是咋回事,明白这些原理能带来哪些甜头,又可能藏着哪些坑。然后,咱就得像个武林高手那样,灵活运用各种技术手段,随时应对可能出现的各种挑战,甭管它多棘手,都能见招拆招。这种思考过程、理解过程以及不断探索实践的过程,正是开发者成长道路上不可或缺的部分。
2023-07-29 10:04:53
114
晚秋落叶_
NodeJS
...才能真正把这种牛逼的技术玩得溜起来。
2023-09-24 21:31:46
110
柳暗花明又一村-t
Shell
...了一些新的设计理念和技术实践。例如,在最新的Linux 5.13版本中,引入了更加精细的错误传播机制,使得系统调用层次的错误能更准确地反映到用户空间的程序中,这对于Shell脚本编写者来说是一个重要更新,可以据此设计出更为高效、可靠的错误处理逻辑。 同时,云计算巨头如AWS也在其官方博客上分享了一篇关于如何在大规模自动化运维场景中运用Shell脚本进行错误预防和恢复的文章,其中详细介绍了结合云服务特性以及工具如CloudWatch Events和Lambda函数来实现对Shell脚本运行状态的实时监控和智能纠错策略。 另外,开源社区围绕Shell脚本错误处理也涌现了不少新项目,如ShellCheck——一个静态分析工具,可以帮助开发者检测Shell脚本中的常见错误和潜在问题,提升脚本质量;还有Bash Strict Mode(set -euo pipefail)的应用推广,这是一种严格的Shell执行模式,强制要求脚本作者显式处理所有可能的失败点,从而大大增强了脚本的健壮性。 总的来说,随着技术的发展和实践经验的积累,Shell脚本错误处理已不再局限于基础的退出状态检查,而是逐渐演变为一种涉及操作系统内核、云原生架构及现代开发实践的综合考量。持续关注这些领域的最新动态,将有助于我们编写出适应复杂环境变化、具备高度稳定性和自愈能力的Shell脚本。
2024-03-02 10:38:18
84
半夏微凉
Struts2
近期,随着互联网技术的发展和企业数字化转型的加速,异常处理和国际化支持在软件开发中的重要性日益凸显。例如,最近阿里巴巴集团在发布的《2023年阿里巴巴技术趋势报告》中提到,异常处理和国际化支持已成为现代软件架构中的关键组成部分。报告指出,为了提升用户体验和系统的稳定性,企业在设计和开发阶段必须充分考虑异常处理机制,并确保应用能够在不同国家和地区顺畅运行。 此外,今年年初,欧盟发布了新的《数字服务法案》(Digital Services Act, DSA),该法案旨在规范在线平台的行为,提高数字服务的安全性和透明度。DSA要求企业必须具备强大的异常处理能力,以便在遭遇技术故障或安全漏洞时能够迅速响应和修复,从而保护用户的数据安全和隐私。这一法规的出台,无疑对全球范围内的科技公司提出了更高的要求,促使它们在软件开发过程中更加重视异常处理和国际化支持。 另一方面,国内也有不少企业在这一领域取得了显著进展。例如,腾讯公司近期发布了一款名为“天穹”的异常监控系统,该系统能够实时监测应用程序的运行状态,及时发现并处理异常情况,大大提升了系统的稳定性和可靠性。与此同时,华为公司在其最新发布的鸿蒙操作系统中,也加强了对多语言环境的支持,确保应用能够在不同语言环境下正常运行,为用户提供更好的体验。 这些案例表明,无论是国际法规的要求,还是企业自身发展的需要,异常处理和国际化支持已经成为现代软件开发不可或缺的一部分。开发者们应不断学习最新的技术和理念,以适应快速变化的技术环境。
2025-01-24 16:12:41
125
海阔天空
ZooKeeper
...布式系统在云计算、大数据领域的广泛应用,如何保证数据一致性的问题愈发凸显。尤其在面临网络分区等故障场景时,业界对ZooKeeper的数据一致性和可用性策略展开了更深入的研究与探讨。 2022年,在《分布式计算和存储》期刊上发表的一篇学术论文中,研究者们对ZooKeeper的ZAB协议在网络分区环境下的行为进行了细致分析,并提出了一种优化策略,旨在进一步减少网络分区对服务的影响,同时探索在特定场景下适度放宽强一致性约束以提高系统可用性的可能性。 此外,Apache社区也持续关注并改进ZooKeeper项目以应对实际部署中的挑战。今年早些时候,ZooKeeper 3.8版本发布,其中包含了针对网络分区恢复机制的多项改进,比如优化“Looking”状态下的决策逻辑,以及增强集群间数据同步性能,力求在网络不稳定情况下仍能提供更高水平的服务质量。 与此同时,为了更好地权衡数据一致性与系统可用性,一些新型的分布式协调服务如Paxos、Raft等协议的实现(如Etcd、Consul)也在实践中逐渐崭露头角,为开发者提供了更多选择与借鉴。这些技术的发展与实践,无疑将为构建更为健壮、适应复杂网络环境的分布式系统注入新的活力。
2024-01-05 10:52:11
93
红尘漫步
Go Iris
...务”等,这些内容紧贴技术前沿,帮助开发者快速掌握Iris的各项高级功能,并能灵活应用于真实项目中。 综上所述,从理论研究到实战操作,再到社区资源的丰富性,Go Iris为开发者提供了全方位的支持。在熟练掌握安装技巧之后,继续关注行业动态和深入学习框架内部原理,无疑将助力你在Go Iris的世界里游刃有余,打造出更多高质量的Web应用程序。
2023-07-12 20:34:37
348
山涧溪流
Beego
...比如处理图片啦、清洗数据什么的,这些都是常见的例子。这就需要用到异步任务处理和队列系统。在本文里,咱们将手把手地学习如何在Beego这个框架里玩转异步任务处理,还会把它和队列系统巧妙地“撮合”在一起,让它们俩亲密协作。 二、异步任务处理与队列系统介绍 首先,我们需要了解什么是异步任务处理以及队列系统。异步任务处理是一种在后台执行的任务处理方式,它允许我们在主线程等待任务结果的同时,处理其他的事情,从而提高程序的并发性能。队列系统呢,其实就相当于一个装有待办任务的篮子,它超级实用,能够帮我们把各类任务安排得明明白白,有序又可控地去执行,就像是在指挥交通一样,保证每个任务都能按时按序到达“终点站”。 三、在Beego中实现异步任务处理 在Beego中,我们可以使用goroutine来实现异步任务处理。Goroutine,这可是Go语言里的一个超级灵活的小家伙,你可以把它理解为一个轻量级的线程“小兵”。有了它,我们就能在一个函数调用里边轻松玩转多个任务,让它们并行运行,就像我们同时处理好几件事情一样,既高效又给力。 下面是一个简单的示例: go package main import ( "fmt" "time" ) func main() { for i := 1; i <= 5; i++ { go func(i int) { time.Sleep(time.Second) fmt.Println("Task", i, "completed") }(i) } } 在这个示例中,我们创建了5个goroutine,每个goroutine都会打印出一条消息,然后暂停1秒钟再继续执行下一个任务。 四、将队列系统集成到Beego中 有了goroutine,我们就可以开始考虑如何将队列系统集成进来了。在这里,我们选择RabbitMQ作为我们的队列系统。RabbitMQ,这可是个超级实用的开源消息“快递员”,它能和各种各样的通信协议打成一片,而且这家伙的可靠性贼高,性能也是杠杠的,就像个不知疲倦的消息传输小超人一样。 在Beego中,我们可以使用beego-queue这个库来与RabbitMQ进行交互。首先,我们需要安装这个库: bash go get github.com/jroimartin/beego-queue 然后,我们可以创建一个生产者,用于向队列中添加任务: go package main import ( "github.com/jroimartin/beego-queue" ) func main() { queue := beego.NewQueue(8, "amqp://guest:guest@localhost:5672/") defer queue.Close() for i := 1; i <= 5; i++ { task := fmt.Sprintf("Task %d", i) if err := queue.Put(task); err != nil { panic(err) } } } 在这个示例中,我们创建了一个新的队列,并向其中添加了5个任务。每个任务都是一条字符串。 接下来,我们可以创建一个消费者,用于从队列中获取并处理任务: go package main import ( "github.com/jroimartin/beego-queue" ) func handleTask(task string) { fmt.Println("Received task:", task) } func main() { queue := beego.NewQueue(8, "amqp://guest:guest@localhost:5672/") defer queue.Close() go queue.Consume(handleTask) for i := 1; i <= 5; i++ { task := fmt.Sprintf("Task %d", i) if err := queue.Put(task); err != nil { panic(err) } } } 在这个示例中,我们创建了一个消费者函数handleTask,它会接收到从队列中取出的任务,并打印出来。然后,我们启动了一个goroutine来监听队列的变化,并在队列中有新任务时调用handleTask。 五、结论 通过以上步骤,我们已经在Beego中成功地实现了异步任务处理和队列系统的集成。这不仅可以提高我们的程序性能,还可以使我们的代码更易于维护和扩展。当然啦,这只是处理异步任务的一种入门级做法,实际上,咱们完全可以按照自身需求,解锁更多玩法。比如,我们可以用Channel来搭建一个沟通桥梁,或者尝试不同类型的队列系统,这些都能够让任务处理变得更灵活、更高效。希望这篇文章能对你有所帮助!
2023-04-09 17:38:09
487
昨夜星辰昨夜风-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
unset VAR
- 删除环境变量。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"