前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Lombok注解处理器配置]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Kotlin
...l安全性的支持,这在处理可能返回null的函数时尤为重要。哎呀,咱们在那个safeDivide函数里头啊,咱不搞那些硬核的错误处理,直接用返回null的方式,优雅地解决了分母为零的问题。这样一来,程序就不会突然蹦出个啥运行时错误,搞得人心惶惶的。这样子一来,咱们的代码不仅健健康康的,还能让人心情舒畅,多好啊!这样的设计大大提升了代码的安全性和健壮性。 4. 功能性编程与面向对象编程的结合 示例代码: kotlin fun calculateSum(numbers: List): Int { return numbers.fold(0) { acc, num -> acc + num } } fun main() { println(calculateSum(listOf(1, 2, 3, 4))) // 10 } Kotlin允许你轻松地将功能性编程与传统的面向对象编程结合起来。想象一下,fold函数就像是一个超级聪明的厨师,它能将一堆食材(也就是列表中的元素)巧妙地混合在一起,做出一道美味的大餐(即列表的总和)。这种方式既简单又充满创意,就像是一场烹饪表演,让人看得津津有味。这不仅提高了代码的可读性,还使得功能组合变得更加灵活和强大。 5. Kotlin与生态系统融合 Kotlin不仅自身强大,而且与Java虚拟机(JVM)兼容,这意味着它能无缝集成到现有的Java项目中。此外,Kotlin还能直接编译为JavaScript,使得跨平台开发变得简单。这事儿对那些手握现代Kotlin大棒,却又不打算彻底扔掉旧武器的程序员们来说,简直就是个天大的利好!他们既能享受到新工具带来的便利,又能稳稳守住自己的老阵地,这不是两全其美嘛! 结语 通过上述例子,我们可以看到Kotlin是如何在代码的简洁性、安全性以及与现有技术生态系统的融合上提供了一种更加高效、可靠和愉悦的编程体验。从“Expected';butfound''的挣扎中解脱出来,Kotlin让我们专注于创造,而不是被繁琐的细节所困扰。哎呀,你猜怎么着?Kotlin 这个编程小能手,在 Android 开发圈可是越来越火了,还慢慢往外扩散,走进了更多程序员的日常工作中。这货简直就是个万能钥匙,不仅能帮咱们打造超赞的手机应用,还能在其他领域大展身手,简直就是编程界的超级英雄嘛!用 Kotlin 编写的代码,不仅质量高,还能让工作变得更高效,开发者们可喜欢它了!
2024-07-25 00:16:35
266
风轻云淡
转载文章
...文就是在做类神经网络处理文字辨识,以你的例子而言,旋转随意角度对辨识来说并不会有太大影响,只要抓字的重心,360度旋转抓取特微值,还是可以辨识的出来。 通常文字辨识的有一个重要的动作,就是要把个别文字分割,你只要把文字弄的难分割就有不错的安全性。 --------------------------------------------------- 代码比较粗糙,而且比较菜,其中遇到一个问题,未对 Graphics 填充底色,那么文字的 ClearType 效果没有了,文字毛边比较明显,不知道为什么,谁能告诉竹子? 代码相对粗糙,没有考虑更多的情况,在测试过程中,以20px 字体呈现,效果感觉还不错,只是 ClearType 效果没有了。 帖几张看看 ------------ ------------ ------------ ------------ 有一些随机的不好,象下面这张 相关链接: 查看 V1.0 .NET 2.0 代码如下: using System; using System.Drawing; using System.Web; namespace Oran.Image { /// <summary> /// 旋转的可视验证码图象 /// </summary> public class RotatedVlidationCode { public enum RandomStringMode { /// <summary> /// 小写字母 /// </summary> LowerLetter, /// <summary> /// 大写字母 /// </summary> UpperLetter, /// <summary> /// 混合大小写字母 /// </summary> Letter, /// <summary> /// 数字 /// </summary> Digital, /// <summary> /// 混合数字与大小字母 /// </summary> Mix } public static string GenerateRandomString(int length, RandomStringMode mode) { string rndStr = string.Empty; if (length == 0) return rndStr; //以数组方式候选字符,可以更方便的剔除不要的字符,如数字 0 与字母 o char[] digitals = new char[10] { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9' }; char[] lowerLetters = new char[26] { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z' }; char[] upperLetters = new char[26] { 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' }; char[] letters = new char[52]{ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' }; char[] mix = new char[62]{ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' }; int[] range = new int[2] { 0, 0 }; Random random = new Random(); switch (mode) { case RandomStringMode.Digital: for (int i = 0; i < length; ++i) rndStr += digitals[random.Next(0, digitals.Length)]; break; case RandomStringMode.LowerLetter: for (int i = 0; i < length; ++i) rndStr += lowerLetters[random.Next(0, lowerLetters.Length)]; break; case RandomStringMode.UpperLetter: for (int i = 0; i < length; ++i) rndStr += upperLetters[random.Next(0, upperLetters.Length)]; break; case RandomStringMode.Letter: for (int i = 0; i < length; ++i) rndStr += letters[random.Next(0, letters.Length)]; break; default: for (int i = 0; i < length; ++i) rndStr += mix[random.Next(0, mix.Length)]; break; } return rndStr; } /// <summary> /// 显示验证码 /// </summary> /// <param name="seed">随机数辅助种子</param> /// <param name="strLen">验证码字符长度</param> /// <param name="fontSize">字体大小</param> /// <param name="mode">随机字符模式</param> /// <param name="clrFont">字体颜色</param> /// <param name="clrBg">背景颜色</param> public static void ShowValidationCode(ref int seed, int strLen, int fontSize, RandomStringMode mode, Color clrFont, Color clrBg) { int tmpSeed; unchecked { tmpSeed = (int)(seed DateTime.Now.Ticks); ++seed; } Random rnd = new Random(tmpSeed); string text = GenerateRandomString(strLen, mode); int height = fontSize 2; // 因为字体旋转后每个字体所占宽度会所有加大,所以要加一点补偿宽度 int width = fontSize text.Length + fontSize / (text.Length - 2); Bitmap bmp = new Bitmap(width, height); Graphics graphics = Graphics.FromImage(bmp); Font font = new Font("Courier New", fontSize, FontStyle.Bold); Brush brush = new SolidBrush(clrFont); Brush brushBg = new SolidBrush(clrBg); graphics.FillRectangle(brushBg, 0, 0, width, height); Bitmap tmpBmp = new Bitmap(height, height); Graphics tmpGph = null; int degree = 40; Point tmpPoint = new Point(); for (int i = 0; i < text.Length; i++) { tmpBmp = new Bitmap(height, height); tmpGph = Graphics.FromImage(tmpBmp); // tmpGph.TextRenderingHint = System.Drawing.Text.TextRenderingHint.SingleBitPerPixelGridFit; // 不填充底色,文字 ClearType 效果不见了,why?! // tmpGph.FillRectangle(brushBg, 0, 0, tmpBmp.Width, tmpBmp.Height); degree = rnd.Next(20, 51); // [20, 50]随机角度 if (rnd.Next(0, 2) == 0) { tmpPoint.X = 12; // 调整文本坐标以适应旋转后的图象 tmpPoint.Y = -6; } else { degree = ~degree + 1; // 逆时针旋转 tmpPoint.X = -10; tmpPoint.Y = 6; } tmpGph.RotateTransform(degree); tmpGph.DrawString(text[i].ToString(), font, brush, tmpPoint); graphics.DrawImage(tmpBmp, i fontSize, 0); // 拼接图象 } //输出图象 System.IO.MemoryStream memoryStream = new System.IO.MemoryStream(); bmp.Save(memoryStream, System.Drawing.Imaging.ImageFormat.Gif); HttpContext.Current.Response.Cache.SetCacheability(HttpCacheability.NoCache); HttpContext.Current.Response.ClearContent(); HttpContext.Current.Response.ContentType = "image/gif"; HttpContext.Current.Response.BinaryWrite(memoryStream.ToArray()); HttpContext.Current.Response.End(); //释放资源 font.Dispose(); brush.Dispose(); brushBg.Dispose(); tmpGph.Dispose(); tmpBmp.Dispose(); graphics.Dispose(); bmp.Dispose(); memoryStream.Dispose(); } } } 转载于:https://www.cnblogs.com/iRed/archive/2008/06/22/1227687.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30600197/article/details/96672619。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-27 09:38:56
249
转载
Spark
...不断增加,对于大数据处理的需求也在不断增长。Apache Spark,这可真是个厉害的角色啊!它就是一个超级强大的分布式计算工具,能够轻轻松松地应对海量数据的处理任务,速度快到飞起,绝对是我们处理大数据问题时的得力助手。然而,在处理大量小文件时,Spark的性能可能会受到影响。那么,如何通过一些技巧来优化Spark在读取大量小文件时的性能呢? 二、为什么要关注小文件处理? 在实际应用中,我们往往会遇到大量的小文件。例如,电商网站上的商品详情页、新闻站点的每篇文章等都是小文件。这些小文件要是拿Spark直接处理的话,可能不大给力,性能上可能会有点缩水。 首先,小文件的数量非常多。由于磁盘I/O这小子的局限性,咱们现在只能像小蚂蚁啃骨头那样,每次读取一点点的小文件,意思就是说,想要完成整个大任务,就得来回折腾、反复读取多次才行。这无疑会增加处理的时间和开销。 其次,小文件的大小较小,因此在传输过程中也会消耗更多的网络带宽。这不仅增加了数据传输的时间,还可能会影响到整体的系统性能。 三、优化小文件处理的方法 针对上述问题,我们可以采用以下几种方法来优化Spark在读取大量小文件时的性能。 1. 使用Dataframe API Dataframe API是Spark 2.x版本新增的一个重要特性,它可以让我们更方便地处理结构化数据。相比于RDD,Dataframe API可真是个贴心小能手,它提供的接口不仅瞅着更直观,操作起来更是高效溜溜的。这样一来,咱们就能把那些不必要的中间转换和操作通通“踢飞”,让数据处理变得轻松又愉快!另外,Dataframe API还超级给力地支持一些更高级的操作,比如聚合、分组什么的,这对于处理那些小文件可真是帮了大忙了! 下面是一个简单的例子,展示如何使用Dataframe API来读取小文件: java val df = spark.read.format("csv") .option("header", "true") .option("inferSchema", "true") .load("/path/to/files/") 在这个例子中,我们使用read函数从指定目录下读取CSV文件,并将其转化为DataFrame。然后,我们可以通过各种函数对DataFrame进行操作,如show、filter、groupBy等。 2. 使用Spark SQL Spark SQL是一种高级抽象,用于查询关系表。就像Dataframe API那样,Spark SQL也给我们带来了一种超级实用又高效的处理小文件的方法,一点儿也不复杂,特别接地气儿。Spark SQL还自带了一堆超级实用的内置函数,比如COUNT、SUM、AVG这些小帮手,用它们来处理小文件,那速度可真是嗖嗖的,轻松又高效。 下面是一个简单的例子,展示如何使用Spark SQL来读取小文件: scss val df = spark.sql("SELECT FROM /path/to/files/") 在这个例子中,我们使用sql函数来执行SQL语句,从而从指定目录下读取CSV文件并转化为DataFrame。 3. 使用Partitioner Partitioner是Spark的一种内置机制,用于将数据分割成多个块。当我们处理大量小文件时,可以使用Partitioner来提高处理效率。其实呢,我们可以这样来操作:比如说,按照文件的名字呀,或者文件里边的内容这些规则,把那些小文件分门别类地整理一下。就像是给不同的玩具放在不同的抽屉里一样,每个类别都单独放到一个文件夹里面去存储,这样一来就清清楚楚、井井有条啦!这样一来,每次我们要读取文件的时候,就只需要瞄一眼一个文件夹里的内容,压根不需要把整个目录下的所有文件都翻个底朝天。 下面是一个简单的例子,展示如何使用Partitioner来处理小文件: python val partitioner = new HashPartitioner(5) val rdd = sc.textFile("/path/to/files/") .map(line => (line.split(",").head, line)) .partitionBy(partitioner) val output = rdd.saveAsTextFile("/path/to/output/") 在这个例子中,我们首先使用textFile函数从指定目录下读取文本文件,并将其转化为RDD。接着,我们运用一个叫做map的神奇小工具,就像魔法师挥动魔杖那样,把每一行文本巧妙地一分为二,一部分是文件名,另一部分则是内容。然后,我们采用了一个叫做partitionBy的神奇函数,就像把RDD里的数据放进不同的小篮子里那样,按照文件名给它们分门别类。这样一来,每个“篮子”里都恰好装了5个小文件,整整齐齐,清清楚楚。最后,我们使用saveAsTextFile函数将RDD保存为文本文件。因为我们已经按照文件名把文件分门别类地放进不同的“小桶”里了,所以现在每次找文件读取的时候,就不用像无头苍蝇一样满目录地乱窜,只需要轻轻松松打开一个文件夹,就能找到我们需要的文件啦! 四、结论 通过以上三种方法,我们可以有效地优化Spark在读取大量小文件时的性能。Dataframe API和Spark SQL提供了简单且高效的API,可以快速处理结构化数据。Partitioner这个小家伙,就像个超级有条理的文件整理员,它能够按照特定的规则,麻利地把那些小文件分门别类放好。这样一来,当你需要读取文件的时候,就仿佛拥有了超能力一般,嗖嗖地提升读取速度,让效率飞起来!当然啦,这只是入门级别的小窍门,真正要让方案火力全开,还得瞅准实际情况灵活变通,不断打磨和优化才行。
2023-09-19 23:31:34
45
清风徐来-t
转载文章
...、图论算法、自然语言处理等领域有广泛的应用。阅读相关的学术论文或博客文章,了解递归在现代AI领域的具体实践案例。 总之,理论知识与实践相结合才能更好地理解和运用上述编程技术,时刻关注行业动态和最新研究成果,将有助于提高技术水平和应对不断变化的技术挑战。
2023-05-28 18:35:16
90
转载
Ruby
...能包括用户管理、订单处理、支付系统等。如果所有代码都堆在一个文件里,不仅难以维护,还容易出错。模块化嘛,就好比把一大块蛋糕切成好多小块,每一块都能单独派上用场。这样一来,不仅好收拾、好分配,要是还想加点什么进去,也超级方便! 在Ruby中,模块化是一个核心概念。Ruby提供了Module类来帮助我们实现模块化设计。用模块化的方式来写代码,就像给一堆零件分类整理好一样,不仅能让整个程序看起来条理分明,还方便以后直接拿出来用,省时又省力! 示例代码: ruby module PaymentProcessor def process_payment(amount) puts "Processing payment of ${amount}" end end class Order include PaymentProcessor def initialize(total_amount) @total_amount = total_amount end def checkout process_payment(@total_amount) end end order = Order.new(100) order.checkout 在这个例子中,我们创建了一个名为PaymentProcessor的模块,其中包含一个process_payment方法。然后我们将这个模块包含到Order类中,使得Order类可以调用process_payment方法。这种模块化的设计让我们的代码更加简洁和易于理解。 2. 封装的概念及其在Ruby中的应用 接下来,我们谈谈封装。封装嘛,在面向对象编程里算个挺关键的概念。简单说就是把对象的“私密信息”藏起来,不让外面随便乱动,但可以通过专门设计的一些方法去操作它。就像给你的宝贝东西加了个小锁,别人不能直接打开看或者乱翻,不过你可以用钥匙去管理它。 为什么要进行封装呢?因为封装可以帮助我们保护数据不被外部随意修改,从而减少错误的发生。比如,在我们电商网站上,要是把用户的信用卡信息直接亮出来,那这些重要信息分分钟可能就被拿去乱用啦!通过封装,我们可以确保这些信息只能在安全的环境中被处理。 在Ruby中,我们可以通过定义私有方法和属性来实现封装。让我们来看一个具体的例子。 示例代码: ruby class User attr_reader :name def initialize(name, password) @name = name @password = password end private def password @password end def change_password(new_password) @password = new_password end end user = User.new("Alice", "secret123") puts user.name user.password 这行代码会报错,因为password是私有的 user.change_password("new_secret") 在这个例子中,我们定义了一个User类,其中包含了name和password两个属性。通过attr_reader,我们可以公开访问name属性,但是password属性是私有的,外部无法直接访问。我们需要通过change_password这样的方法来更改密码,这种方式更安全。 3. 模块化设计的实际应用案例 现在,让我们来看看模块化设计在实际项目中的应用。好啦,咱们就拿做个博客系统来说吧!想想看,这个博客要是弄好了,得能让好多人一起用,每个人都能注册账号、登进来写东西。写完的文章呢,其他小伙伴能看到,还能在底下留言评论啥的,就跟咱们平时在社交平台上互动一样热闹!我们可以将这些功能分别放在不同的模块中,以便于管理和维护。 首先,我们可以创建一个Authentication模块来处理用户的登录和登出操作。 示例代码: ruby module Authentication def login(username, password) 登录逻辑 end def logout 登出逻辑 end end class User include Authentication def initialize(username, password) @username = username @password = password end def authenticate(password) password == @password end end user = User.new("admin", "admin123") user.login("admin", "admin123") if user.authenticate("admin123") 在这个例子中,我们将Authentication模块包含到User类中,这样User类就可以使用login和logout方法了。通过这种方式,我们实现了功能的分离,使得代码结构更加清晰。 4. 总结与展望 通过这篇文章,我们探讨了Ruby中的模块化设计与封装的重要性,并通过实际的代码示例展示了如何在项目中应用这些概念。用模块化的方式来写代码,就像搭积木一样,既能让程序变得更靠谱,又能省下很多开发和后期维护的力气,简直是一举两得的好事! 未来,随着软件开发的不断发展,我相信模块化设计和封装的理念将会变得更加重要。嘿,咱们做开发的啊,就得不停地学、不停地练,把这些好习惯给用起来。为啥呢?就为了写出那种既好看又顺手的代码,谁不喜欢看着清爽、跑得飞快的程序呢? 希望这篇文章对你有所帮助!如果你有任何疑问或想法,欢迎随时交流。记住,编程不仅仅是技术的积累,更是一种艺术的创造。让我们一起享受编程的乐趣吧!
2025-03-23 16:13:26
36
繁华落尽
转载文章
...最早被提出的,它可以处理离散属性样本的分类,C4.5和CART算法则可以处理更加复杂的分类问题,本文重点介绍ID3算法。 1、决策树基本流程 决策树 (decision tree) 是一类常见的机器学习方法。它是对给定的数据集学到一个模型对新示例进行分类的过程。下图所示为一个流程图的决策树,长方形代表判断模块(decision block),椭圆形代表终止模块(terminating block),表示已经得出结论,可以终止运行。从判断模块引出的左右箭头称作分支(branch),可以达到另一个判断模块或终止模块。 决策过程是基于树结构来进行决策的。如下图,首先检查邮件域名地址,如果地址为myEmployer.com,则将其分类为“无聊时需要阅读的邮件”。否则,则检查邮件内容里是否包含单词“曲棍球”,如果包含则归类为“需要及时处理的朋友邮件”,如果不包含则归类到“无需阅读的垃圾邮件” 流程图形式的决策树 显然,决策过程的最终结论对应了我们所希望的判定结果,例如"需要阅读"或"不需要阅读”。 决策过程中提出的每个判定问题都是对某个属性的"测试",如邮件地址域名为?是否包含“曲棍球”? 每个测试的结果或是导出最终结论,或是导出进一步的判定问题,其考虑范围是在上次决策结果的限定范围之内,例如若邮件地址域名不是myEmployer.com之后再判断是否包含“曲棍球”。 一般的,决策树包含一个根节点、若干个内部节点和若干个叶节点。根节点包含样本全集;叶节点对应于决策结果,例如“无聊时需要阅读的邮件”。其他每个结点则对应于一个属性测试;每个节点包含的样本集合根据属性测试的结果被划分到子结点中。 决策树学习基本算法 显然,决策树的生成是一个递归过程.在决策树基本算法中,有三种情形会导致递归返回: (1)当前结点包含的样本全属于同一类别,无需划分; (2)当前属性集为空,或是所有样本在所有属性上取值相同,无法划分; (3)当前结点包含的样本集合为空,不能划分。 2、划分选择 决策树算法的关键是如何选择最优划分属性。一般而言,随着划分过程不断进行,我们希望决策树的分支结点所包含的样本尽可能属于同一类别,即结点的"纯度" (purity)越来越高。 (1)信息增益 信息熵 "信息熵" (information entropy)是度量样本集合纯度最常用的一种指标,定义为信息的期望。假定当前样本集合 D 中第 k 类样本所占的比例为 ,则 D 的信息熵定义为: H(D)的值越小,则D的纯度越高。信息增益 一般而言,信息增益越大,则意味着使周属性 来进行划分所获得的"纯度提升"越大。因此,我们可用信息增益来进行决策树的划分属性选择,信息增益越大,属性划分越好。 以西瓜书中表 4.1 中的西瓜数据集 2.0 为例,该数据集包含17个训练样例,用以学习一棵能预测设剖开的是不是好瓜的决策树.显然,。 在决策树学习开始时,根结点包含 D 中的所有样例,其中正例占 ,反例占 信息熵计算为: 我们要计算出当前属性集合{色泽,根蒂,敲声,纹理,脐部,触感}中每个属性的信息增益。以属性"色泽"为例,它有 3 个可能的取值: {青绿,乌黑,浅自}。若使用该属性对 D 进行划分,则可得到 3 个子集,分别记为:D1 (色泽=青绿), D2 (色泽2=乌黑), D3 (色泽=浅白)。 子集 D1 包含编号为 {1,4,6,10,13,17} 的 6 个样例,其中正例占 p1=3/6 ,反例占p2=3/6; D2 包含编号为 {2,3,7,8, 9,15} 的 6 个样例,其中正例占 p1=4/6 ,反例占p2=2/6; D3 包含编号为 {5,11,12,14,16} 的 5 个样例,其中正例占 p1=1/5 ,反例占p2=4/5; 根据信息熵公式可以计算出用“色泽”划分之后所获得的3个分支点的信息熵为: 根据信息增益公式计算出属性“色泽”的信息增益为(Ent表示信息熵): 类似的,可以计算出其他属性的信息增益: 显然,属性"纹理"的信息增益最大,于是它被选为划分属性。图 4.3 给出了基于"纹理"对根结点进行划分的结果,各分支结点所包含的样例子集显示在结点中。 然后,决策树学习算法将对每个分支结点做进一步划分。以图 4.3 中第一个分支结点( "纹理=清晰" )为例,该结点包含的样例集合 D 1 中有编号为 {1, 2, 3, 4, 5, 6, 8, 10, 15} 的 9 个样例,可用属性集合为{色泽,根蒂,敲声,脐部 ,触感}。基于 D1计算出各属性的信息增益: "根蒂"、 "脐部"、 "触感" 3 个属性均取得了最大的信息增益,可任选其中之一作为划分属性.类似的,对每个分支结点进行上述操作,最终得到的决策树如圈 4.4 所示。 3、剪枝处理 剪枝 (pruning)是决策树学习算法对付"过拟合"的主要手段。决策树剪枝的基本策略有"预剪枝" (prepruning)和"后剪枝 "(post" pruning) [Quinlan, 1993]。 预剪枝是指在决策树生成过程中,对每个结点在划分前先进行估计,若当前结点的划分不能带来决策树泛化性能提升,则停止划 分并将当前结点标记为叶结点; 后剪枝则是先从训练集生成一棵完整的决策树,然后自底向上地对非叶结点进行考察,若将该结点对应的子树替换为叶结点能带来决策树泛化性能提升,则将该子树替换为叶结点。 往期回顾 ● 带你详细了解机器视觉竞赛—ILSVRC竞赛 ● 到底什么是“机器学习”?机器学习有哪些基本概念?(简单易懂) ● 带你自学Python系列(一):变量和简单数据类型(附思维导图) ● 带你自学Python系列(二):Python列表总结-思维导图 ● 2018年度最强的30个机器学习项目! ● 斯坦福李飞飞高徒Johnson博士论文: 组成式计算机视觉智能(附195页PDF) ● 一文详解计算机视觉的广泛应用:网络压缩、视觉问答、可视化、风格迁移 本篇文章为转载内容。原文链接:https://blog.csdn.net/Sophia_11/article/details/113355312。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-27 21:53:08
284
转载
转载文章
...些附加信息来决定如何处理该Box的内容。FullBox的引入为MP4文件提供了更灵活的扩展性和兼容性。
2024-01-21 17:43:21
437
转载
JSON
...符,那么该如何优雅地处理呢?是不是有点挠头?但别担心,作为一个热爱折腾的程序员,我决定带你一起探索这个问题! --- 二、JSON的基本规则 它不是魔法,但也不是障碍 首先,咱们得知道JSON的基本规则。JSON是一种基于文本的数据格式,主要由键值对组成。每个键必须是字符串,并且键和值之间需要用冒号分隔。至于值嘛,它可以是字符串、数字、布尔值、数组甚至是嵌套的对象。 比如这样: json { "name": "张三", "age": 25, "isStudent": false, "hobbies": ["reading", "coding"] } 看起来很简单吧?但是,当我们尝试存储一些更复杂的文本内容时,事情就没那么简单了。比如你想存一首诗,或者一封邮件,里面可能有好多换行符,那怎么办呢? --- 三、问题来了 换行符的“尴尬”存在 假设你正在写一个应用程序,需要让用户输入一段多行的文字,比如他们的个人简介。哎,你说如果用户输入的内容里带换行符怎么办?难道直接一股脑儿扔进JSON里?但问题来了啊,JSON这小家伙自己也不太争气,它压根儿就不允许字符串里直接留着换行符呢!这可咋整?除非你用某种方式告诉它,“嘿,这可是真的换行哦!” 这就像是你在写信的时候,突然发现信纸不够宽,只能把一句话分成两行写。而你的朋友收到信后,还得脑补那些断开的部分重新组合起来。所以,我们得想个办法让JSON能够正确地解析这些换行符。 --- 四、解决方案 转义字符登场! 幸运的是,JSON提供了一种非常聪明的方式来解决这个问题——转义字符。具体来说,如果你想在JSON字符串中表示换行符,可以使用\n来代替。这里的\n是一个特殊的符号,代表一个换行操作。 举个例子: json { "poem": "静夜思\n床前明月光,\n疑是地上霜。\n举头望明月,\n低头思故乡。" } 在这个例子中,我们用\n来表示每一句诗之间的换行。当你把这个JSON解析出来时,程序会自动把这些\n替换成实际的换行符,于是输出的结果就会变成: 静夜思 床前明月光, 疑是地上霜。 举头望明月, 低头思故乡。 是不是很神奇?不过,这里有一个小技巧需要注意:如果你想要表示真正的反斜杠(\),那么你需要用双反斜杠(\\)来表示。因为单个反斜杠在JSON中会被认为是一个转义符。 --- 五、更复杂的情况 多段落文本 当然,现实中的情况往往比一首诗复杂得多。比如说,你得把一封邮件的内容存下来,而这封邮件的正文往往是由好几段话组成的,有长有短,啥样的都有。哎呀,光靠换行符 \n 可不一定行啊,毕竟你还得让每段之间留点空白,不然读起来就像一锅粥,分不清哪是哪呀! 在这种情况下,你可以继续使用\n,同时注意合理安排段落结构。例如: json { "email": "亲爱的李四:\n\n很高兴收到您的来信。以下是我的回复:\n\n第一段内容...\n第二段内容..." } 在这里,\n\n表示两个连续的换行符,从而形成了一段空行。用这种方法,就能把文章分得清清楚楚的,读起来也顺溜多了! --- 六、代码实践 从理论到实战 说了这么多理论,让我们动手试试看吧!下面是一些简单的代码示例,展示如何在JavaScript中生成和解析带有换行符的JSON数据。 示例1:生成JSON字符串 javascript const data = { poem: "静夜思\n床前明月光,\n疑是地上霜。\n举头望明月,\n低头思故乡。", email: "亲爱的李四:\n\n很高兴收到您的来信。以下是我的回复:\n\n第一段内容...\n第二段内容..." }; // 将对象转换为JSON字符串 const jsonString = JSON.stringify(data); console.log(jsonString); 运行这段代码后,你会看到类似这样的输出: json {"poem":"静夜思\\n床前明月光,\\n疑是地上霜。\\n举头望明月,\\n低头思故乡。","email":"亲爱的李四:\\n\\n很高兴收到您的来信。以下是我的回复:\\n\\n第一段内容...\\n第二段内容..."} 可以看到,在生成的JSON字符串中,所有的\n都被转义成了\\n。 示例2:解析JSON字符串 javascript const jsonString = '{"poem":"静夜思\\n床前明月光,\\n疑是地上霜。\\n举头望明月,\\n低头思故乡。","email":"亲爱的李四:\\n\\n很高兴收到您的来信。以下是我的回复:\\n\\n第一段内容...\\n第二段内容..."}'; // 将JSON字符串解析回对象 const parsedData = JSON.parse(jsonString); console.log(parsedData.poem); console.log(parsedData.email); 运行这段代码后,你会看到如下输出: 静夜思 床前明月光, 疑是地上霜。 举头望明月, 低头思故乡。 亲爱的李四: 很高兴收到您的来信。以下是我的回复: 第一段内容... 第二段内容... 瞧!我们的换行符终于生效啦! --- 七、总结与反思 好了,今天的分享就到这里啦!通过这篇文章,我们不仅了解了如何在JSON中处理多次换行的内容,还学习了一些实用的小技巧。虽然JSON看似简单,但它背后隐藏着很多有趣的细节。希望这些知识能帮助你在未来的编程旅程中更加游刃有余。 最后,我想说的是,编程不仅仅是冷冰冰的技术活儿,它也是一种艺术形式。每一次解决问题的过程,都充满了挑战和乐趣。所以,不管遇到什么困难,都别轻易放弃,试着去思考、去尝试,说不定下一个突破就在前方等着你呢! 祝大家 coding愉快! 😊
2025-04-02 15:38:06
52
时光倒流_
转载文章
...数据结构,用于表示和处理多元线性方程组、向量空间中的线性变换以及机器学习中的数据集(如特征向量)。在机器学习中,输入数据通常被组织成矩阵形式,以便进行计算和模型训练。 线性代数分解 , 在本文上下文中,线性代数分解指的是将一个矩阵分解为多个简单矩阵的乘积,这些分解有助于理解和解决复杂的线性问题。例如,LU分解、QR分解、奇异值分解(SVD)和特征值分解等都是常用的矩阵分解方法,在机器学习算法中扮演着重要角色,如PCA降维、低秩近似、推荐系统构建等场景。 Numpy , Numpy(Numerical Python)是一个开源的Python库,专为数值计算而设计,提供了强大的多维数组对象(类似于矩阵)和各种高级数学函数库。对于机器学习从业者来说,Numpy是实现高效数组操作、执行线性代数运算的核心工具之一,与Scipy、Pandas等库共同构成了Python科学计算的基础生态环境。 Scipy , Scipy(Scientific Python)是一个基于Python的开源科学计算库,包含了许多用于数值计算、优化、插值、积分、统计、信号处理等领域的子模块。在本文中提及的Scipy线性代数部分,它提供了一系列高效的线性代数算法实现,可以作为Numpy的补充,帮助机器学习从业者更好地处理大规模线性代数问题。
2023-11-14 09:21:43
326
转载
转载文章
...ecutor来并发处理多个关键词的下拉词数据获取任务,每个关键词的请求作为一个独立的任务提交给线程池,线程池中的空闲线程会自动执行这些任务,从而提高了数据采集效率。 抓包操作 , 在网络编程与数据分析领域中,抓包操作指的是利用网络封包分析软件(如Wireshark、Fiddler等,或浏览器开发者工具)捕获、记录网络传输过程中经过计算机网络接口的所有数据包的过程。在本文的具体情境下,作者通过浏览器开发者工具进行抓包操作,找到了包含百度下拉词数据的HTTP请求,进一步分析了该请求的相关参数和返回结果,以实现自动化数据采集的目标。
2023-06-21 12:59:26
490
转载
Spark
...fka的结合使用,在处理实时数据流时肯定会觉得轻松很多,简直像开了外挂一样! 1.1 为什么选择Spark与Kafka? 想象一下,你正在处理海量的数据流,而且这些数据是不断更新的,怎么办?这时候,Spark与Kafka的组合就派上用场了。Spark这家伙处理海量数据那是真快,而Kafka就像是个传送带,能把这些数据飞快地倒腾来倒腾去。两者结合,简直是天作之合! 1.2 本文结构 接下来,我会从基础概念讲起,然后一步步带你了解如何将Spark与Kafka集成起来。最后,我们还会一起动手实践几个具体的例子。别担心,我不会只是给你一堆枯燥的文字,而是会尽量用口语化的方式讲解,并穿插一些我个人的理解和思考过程。让我们开始吧! 2. 基础概念 2.1 Spark简介 Spark,全名Apache Spark,是一款开源的大数据处理框架。它的亮点在于能飞快地处理数据,还能在内存里直接运算,让处理大数据变得超级顺畅,简直爽翻天!Spark提供了多种API,包括Java、Scala、Python等,非常灵活易用。 2.2 Kafka简介 Kafka,全名Apache Kafka,是一个分布式的消息系统,主要用来处理实时数据流。这个东西特别能扛,能存好多数据,还不容易丢,用来搭建实时的数据流和应用再合适不过了。 2.3 Spark与Kafka集成的优势 - 实时处理:Spark可以实时处理Kafka中的数据。 - 灵活性:Spark支持多种编程语言,Kafka则提供丰富的API接口,两者结合让开发更加灵活。 - 高吞吐量:Spark的并行处理能力和Kafka的高吞吐量相结合,能够高效处理大规模数据流。 3. 实战准备 在开始之前,你需要先准备好环境。确保你的机器上已经安装了Java、Scala以及Spark。说到Kafka,你可以直接下载安装包,或者用Docker容器搞一个本地环境,超级方便!我推荐你用Docker,因为它真的超简单方便,还能随手搞出好几个实例来测试,特别实用。 bash 安装Docker sudo apt-get update sudo apt-get install docker.io 拉取Kafka镜像 docker pull wurstmeister/kafka 启动Kafka容器 docker run -d --name kafka -p 9092:9092 -e KAFKA_ADVERTISED_HOST_NAME=localhost wurstmeister/kafka 4. 集成实战 4.1 创建Kafka主题 首先,我们需要创建一个Kafka主题,以便后续的数据流能够被正确地发送和接收。 bash 进入容器 docker exec -it kafka /bin/bash 创建主题 kafka-topics.sh --create --topic test-topic --bootstrap-server localhost:9092 --replication-factor 1 --partitions 1 4.2 发送数据到Kafka 接下来,我们可以编写一个简单的脚本来向Kafka的主题中发送一些数据。这里我们使用Python的kafka-python库来实现。 python from kafka import KafkaProducer producer = KafkaProducer(bootstrap_servers='localhost:9092') for _ in range(10): message = "Hello, Kafka!".encode('utf-8') producer.send('test-topic', value=message) print("Message sent:", message.decode('utf-8')) producer.flush() producer.close() 4.3 使用Spark读取Kafka数据 现在,我们来编写一个Spark程序,用于读取刚才发送到Kafka中的数据。这里我们使用Spark的Structured Streaming API。 scala import org.apache.spark.sql.SparkSession val spark = SparkSession.builder.appName("SparkKafkaIntegration").getOrCreate() val df = spark.readStream .format("kafka") .option("kafka.bootstrap.servers", "localhost:9092") .option("subscribe", "test-topic") .load() val query = df.selectExpr("CAST(value AS STRING)") .writeStream .outputMode("append") .format("console") .start() query.awaitTermination() 这段代码会启动一个Spark应用程序,从Kafka的主题中读取数据,并将其打印到控制台。 4.4 实时处理 接下来,我们可以在Spark中对数据进行实时处理。例如,我们可以统计每秒钟接收到的消息数量。 scala import org.apache.spark.sql.functions._ val countDF = df.selectExpr("CAST(value AS STRING)") .withWatermark("timestamp", "1 minute") .groupBy( window($"timestamp", "1 minute"), $"value" ).count() val query = countDF.writeStream .outputMode("complete") .format("console") .start() query.awaitTermination() 这段代码会在每分钟的时间窗口内统计消息的数量,并将其输出到控制台。 5. 总结与反思 通过这次实战,我们成功地将Spark与Kafka进行了集成,并实现了数据的实时处理。虽然过程中遇到了一些挑战,但最终还是顺利完成了任务。这个经历让我明白,书本上的知识和实际动手做真是两码事。不一次次去试,根本没法真正搞懂怎么用这门技术。希望这次分享对你有所帮助,也期待你在实践中也能有所收获! 如果你有任何问题或想法,欢迎随时交流讨论。
2025-03-08 16:21:01
76
笑傲江湖
Apache Solr
...汁机,让食材(数据)处理得又快又好。这样一来,你的索引构建工作不仅高效,还能像欢快的小鸟一样轻松自在地翱翔在数据世界里。同时,通过合理的查询优化策略,如利用缓存、预加载、分片查询等技术,可以进一步提高查询性能。 在实际应用中,倒排索引不仅用于全文搜索,还可以应用于诸如推荐系统、语义理解等领域。例如,在一个电商网站中,倒排索引可以帮助用户快速找到相关的产品,或者根据用户的搜索历史和浏览行为提供个性化推荐。 4. 结语 倒排索引是 Solr 的核心组件,它不仅极大地提高了搜索性能,也为构建复杂的信息检索系统提供了强大的基础。哎呀,兄弟!咱们得给倒排索引这玩意儿好好整一整,让它变得更聪明,搜索起来也更快更高效!这样咱就能找到用户想要的内容,就像魔法一样,瞬间搞定!这不就是咱们追求的智能全文搜索嘛!希望本文能帮助你深入了解 Solr 的倒排索引机制,并激发你在实际项目中的创新应用。让我们一起探索更多可能,构建更加出色的信息检索系统吧!
2024-07-25 16:05:59
425
秋水共长天一色
Golang
...口定义。 3. 错误处理与日志记录 在调用可能引发“未实现”错误的代码块前,添加适当的错误检查和日志记录。这不仅有助于调试,也能在问题发生时为用户提供有意义的反馈。 4. 模块化与解耦 通过将功能拆分为独立的模块或服务,可以降低不同部分之间的依赖关系,从而更容易地处理“未实现”的情况。当某个模块的实现发生变化时,其他模块受到的影响也会减少。 5. 持续集成与自动化测试 通过自动化测试,可以在早期阶段捕获“未实现”的错误,确保代码的稳定性和一致性。同时,持续集成流程可以帮助团队及时发现并修复这类问题。 结语 面对“未实现”的挑战,重要的是保持灵活性和前瞻性。哎呀,搞定这个问题得靠点心思呢!首先,你得搞清楚问题的根本原因,这就像解谜一样,得一步步来。然后,安排功能实现的顺序就挺像编排一场精彩的节目,得有头有尾,不能乱套。最后,别忘了设置有效的错误处理策略,就像是给你的项目上了一份保险,万一出啥状况也能从容应对。这样一来,整个过程就能流畅多了,避免了很多不必要的麻烦。在不断学习和实践中,开发者能够更好地适应变化,提升软件质量和用户体验。嘿,听好了!每次碰到那些没搞定的事情,那可是个大好机会,能让你学东西,还能把事情做得更好呢!就像是在玩游戏,遇到难关了,你就得想办法突破,对吧?这不就是升级打怪嘛!所以,别灰心,每一步小小的失败都是通往更牛逼、更灵活的软件系统的必经之路!
2024-07-26 15:58:24
421
素颜如水
转载文章
...k”等,点选出现在“配置无线网络”下方的这个品牌名字,弹出新的窗口,在“要访问的网络”下方选择“所有可用的”,然后点选“网络适配器”,在“我的网卡连线到”项目中选择“默认Internet设置”,在“点击适配器以修改设置”下方,点选“AUSU 802.11b+g Wireless Card”,弹出新窗口,点选“使用服务器分配的IP地址”(也可以选择“使用特定的IP地址”,那么就可以省略以下步骤),并在“IP地址”栏填入公司或者单位分配给的IP,如“192.168.50.122”,在“子网掩码”填入公司的子网掩码,在 “网关”中填入公司的网关;完成这些后,点选“名称服务器”,在新窗口的“DNS”和“备用DNS”中填入公司的“DNS”,然后一路“OK”,完成网卡设定。完成以上两个设定后建议重启机器,然后就可以用WIFI上网、上QQ和MSN了。 三、GPRS设置方法 1、在“开始”—“设置”—“连接”中点选“连接”,然后选择 “高级”,在 “选择自动使用的网络”下方点“选取网络”,然后看到两个下拉空格,第二个是“在程序自动连接到专用网络时,使用:”即上面提到的“单位设定”。 2、点选“新建”,在弹出窗口里有“请为这些设置输入名称”,在下方空格处编辑“中国移动”(最好设置为这个名称),然后点选该页面下方的“调制解调器”,点选“新建”,在弹出的新页面中有“请为连接输入名称”,请填写“中国移动彩信”,在“选择调制解调器”的下拉菜单中选择“蜂窝电话线路(GPRS)” 3、然后点“下一步”,在新弹出的窗口中的“存取点名称”下放填写“cmwap”(这里一定不能填写cmnet,否则就是采用cmnet接入网络,你将面对0.03元/K的收费以及月末数百元的cmnet网络费用了) 4、继续点选“下一步”,新窗口出现“使用者名称”、“密码”、“域”,这些都不要填写,直接点选“高级”,在进阶的tcp/ip窗口中点选“使用服务器分配的IP地址”,其他不要选择 5、点选下方“服务器”,进入“高级”的“服务器”窗口,点选“使用服务器分配的地址”,然后点选“ok”退出到第4步的页面即“中国移动彩信”的设定页面,点选“完成”。这时机器会退到第1步的最终界面即“中国移动”设定页面 6、在这个页面下放,点选“代理服务器设置”,钩选“此网络连接到Internet”,然后再钩选“此网络使用代理服务器连接到Internet”,并在下方的“代理服务器”内填入“10.0.0.172” 7、接着点选该页面的“高级”,“点击代理服务器类型更改其设置”中点“HTTP”在弹出窗口中的“服务器”下填入“10.0.0.172”,端口“80”(该步骤也可以留空不填,如果不填写的话,GPRS就不能通过WAP代理上WWW网站,本人选择填写,这样在没有WIFI热点的情况下,机子也可以通过WAP代理上WWW的网站,当然选择填写的话会出现打开IE自动连接GPRS而不是连接WIFI的情况,不过可以在连接一开始时点选弹出小窗口中的“取消”来取消GPRS的连接,从而达到用WIFI连接互联网的效果) 8、点选“ok”后返回到前一个页面,点选“WAP”,在在弹出窗口中的“服务器”下填入“10.0.0.172”,端口“9201”,同样的方法,设定“安全WAP”服务器为“10.0.0.172”,端口填“9203”,设定“Socks”服务器为“10.0.0.172”,端口“1080” 9、点选“ok”返回到第6步的最终界面,再点选“ok”退出到第2步的初始页面即“网路管理”页面,再连续点选“ok”,完成设置 四、彩信设置方法 1、“开始”—“信息”—“MMS” 2、在“MMS”页面中,点选“菜单”,上弹菜单选择“MMS设定” 3、在“选择并打开一个情景式以查看更多选项”的下方点选“新建” 4、在新窗口中的“情景式名称”右边填入“中国移动彩信”,在“彩信服务器”右边填入 http://mmsc.monternet.com”,在“数据连接”右边选择“中国移动”,在“网关”右边选择“WAP1.0 网关”,在“IP地址”右边填入“10.0.0.172”,在“端口”右边填入“9201”,最后选择完成。 转载于:https://www.cnblogs.com/hzleihuan/archive/2007/12/14/994344.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30468137/article/details/98040981。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-23 17:26:09
84
转载
转载文章
...,并能基于此进行数据处理、接口设计与服务器端逻辑实现,从而完成一个完整的Web应用从客户端到服务端的整体构建。 混合应用开发技术 , 混合应用开发技术是一种融合了Web技术和原生应用开发的技术方案,允许开发者使用Web开发语言(如HTML5、CSS3和JavaScript)编写代码,然后将这些代码封装在原生应用容器中,使其具有接近原生应用的功能和性能表现,同时还能利用Web开发的跨平台优势。例如,微信小程序、Electron技术就是混合应用开发的具体实现方式,它们能让开发者构建的应用同时在不同平台(如Android、iOS、桌面操作系统等)上运行。 大前端架构 , 大前端架构是一种涵盖多种设备、多个平台,涉及前后端一体化、移动端与PC端融合的软件架构设计理念。在该架构下,前端工程师不仅要关注传统的网页应用开发,还需要掌握多端兼容、性能优化、模块化、组件化等方面的知识,并结合微前端、Serverless、PWA等前沿技术来设计和实施复杂、高效、可扩展的前端系统解决方案。
2023-03-07 21:33:13
269
转载
Go Gin
...口。这种方式特别适合处理权限控制问题,避免了重复编写相同逻辑的麻烦。 --- 5. 总结 拥抱清晰的代码 兄弟们,路由分组真的是一项非常实用的技术。它不仅能让我们的代码更加整洁,还能大大提升开发效率。试想一下,如果你接手一个没有任何分组的项目,面对成千上万行杂乱无章的代码,你会不会崩溃? 所以啊,从今天开始,不管你的项目多大,都要养成使用 Group 的好习惯。不管你是弄个小玩意儿,还是搞那种复杂得让人头大的微服务架构,只要分组分得好,就能省不少劲儿,效率蹭蹭往上涨!记住,代码不仅仅是给机器看的,更是给人看的。清晰的代码,就是对同行最大的尊重! 最后,希望这篇文章能帮到你们。如果你们还有什么疑问或者更好的实践方法,欢迎留言交流哦!一起进步,一起成长!
2025-04-10 16:19:55
42
青春印记
转载文章
...:每次改动nginx配置文件,都需要进入容器内部,十分麻烦: 要是可以在容器外部提供一个映射路径,达到在容器修改文件名,容器内部就可以自动修改?-v 数据卷技术! 二、部署tomcat docker run 可以不用pull,能自动下载 ctrl+c退出 docker pull tomcat:9.0 启动运行,应该加上版本号: docker run -d -p 3355:8080 --name tomcat01 tomcat:9.0 进入容器 docker exec -it tomcat01 /bin/bash ● 部署tomcat,发现问题: 1、linux命令少了 2、没有webapps 这是阿里云镜像的原因:默认使用最小镜像,所有不必要的都剔除了,保证最小可运行环境 可以通过拷贝的方式,解决没有webapps的问题: 在浏览器中输入:http://服务器ip地址:3355/ 进行访问 ● 思考问题:我们以后部署项目,如果每次都要进入容器很麻烦? 要是可以在容器外部提供一个映射路径,webapps,我们在外部放置项目,容器内部就可以自动修改?-v 数据卷技术! 三、部署es+kibana ● Elasticsearch 的问题: es 暴露的端口很多 es 十分耗内存 es 的数据一般需要放置到安全目录!挂载 1、问题1:es 十分耗内存 下载启动运行elastissearch 之后,Linux系统就变得特别卡 # 启动了 linux就卡住了docker stats# 查看 cpu的状态 #es 是十分耗内存的,1.xG# 1核2G(学生机)! # 查看 docker stats 2、问题2:es 需要暴露的端口很多 -p (下载)启动 elasticsearch$ docker run -d --name elasticsearch01 -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" elasticsearch:7.6.2 查看内存占用情况docker stats 先感觉stop一下docker stop ba18713ca536 3、es 十分耗内存的解决:增加内存的限制,修改配置文件 -e 环境配置修改 通过 -e 限制内存docker run -d --name elasticsearch02 -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" -e ES_JAVA_OPTS="-Xms64m -Xmx512m" elasticsearch:7.6.2 [root@iZwz9535z41cmgcpkm7i81Z /] curl localhost:9200/{"name" : "14329968b00f","cluster_name" : "docker-cluster","cluster_uuid" : "0iDu-G_KTo-4X8KORDj1XQ","version" : {"number" : "7.6.2","build_flavor" : "default","build_type" : "docker","build_hash" : "ef48eb35cf30adf4db14086e8aabd07ef6fb113f","build_date" : "2020-03-26T06:34:37.794943Z","build_snapshot" : false,"lucene_version" : "8.4.0","minimum_wire_compatibility_version" : "6.8.0","minimum_index_compatibility_version" : "6.0.0-beta1"},"tagline" : "You Know, for Search"} 4、思考:用kibana连接elasticsearch? 思考(kibana连接elasticsearch)网络如何连接过去 ☺ 参考来源: 狂神的B站视频《【狂神说Java】Docker最新超详细版教程通俗易懂》 https://www.bilibili.com/video/BV1og4y1q7M4 如果本文对你有帮助的话记得给一乐点个赞哦,感谢! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45630258/article/details/124785912。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-12 10:54:44
65
转载
Beego
...示由于服务器当前无法处理请求,请求被暂时拒绝。这可能是由于服务器过载、正在进行维护或者资源不足等原因导致的。 二、Beego框架简介 Beego是一个基于Golang的轻量级Web框架,旨在简化Web应用的开发流程。其简洁的API和强大的功能使其成为快速构建Web应用的理想选择。在处理服务不可用错误时,Beego提供了丰富的工具和机制来帮助开发者进行诊断和修复。 三、识别与诊断服务不可用 在Beego应用中,识别服务不可用错误通常通过HTTP响应的状态码来进行。当应用返回503状态码时,说明服务当前无法处理请求。哎呀,兄弟!想要更清晰地找出问题所在,咱们得好好利用Beego自带的日志系统啊。它能帮咱们记录下一大堆有用的信息,比如啥时候出的错、用户是咋操作的、到底哪一步出了问题。有了这些详细资料,咱们在后面分析问题、找解决方案的时候就方便多了,不是吗? 示例代码: go // 在启动Beego应用时设置日志级别和格式 log.SetLevel(log.DEBUG) log.SetOutput(os.Stdout) func main() { // 初始化并启动Beego应用 app := new(beego.AppConfig) app.Run(":8080") } 在上述代码中,通过log.SetLevel(log.DEBUG)设置日志级别为DEBUG,确保在发生错误时能够获取到足够的信息进行诊断。 四、处理服务不可用错误 当检测到服务不可用错误时,Beego允许开发者通过自定义中间件来响应这些异常情况。通过创建一个中间件函数,可以优雅地处理503错误,并向用户呈现友好的提示信息,例如重试机制、缓存策略或简单的等待页面。 示例代码: go // 定义一个中间件函数处理503错误 func errorMiddleware(c beego.Context) { if c.Ctx.Input.StatusCode() == 503 { c.Data["Status"] = "503 Service Unavailable" c.Data["Message"] = "Sorry, our service is currently unavailable. Please try again later." c.ServeContent("error.html", http.StatusOK) } else { c.Next() } } // 注册中间件 func init() { beego.GlobalControllerInterceptors = append(beego.GlobalControllerInterceptors, new(errorMiddleware)) } 这段代码展示了如何在Beego应用中注册一个全局中间件,用于捕获并处理503状态码。哎呀,你遇到服务挂了的情况了吧?别急,这个中间件挺贴心的,它会给你弹出个温馨的小提示,告诉你:“嘿,稍等一下,我们正忙着处理一些事情呢。”然后,它还会给你展示一个等待页面,上面可能有好看的动画或者有趣的图片,让你在等待的时候也不觉得无聊。这样,你就不会因为服务暂时不可用了而感到烦躁了,体验感大大提升! 五、优化与预防服务不可用 预防服务不可用的关键在于资源管理、负载均衡以及监控系统的建立。Beego虽然本身不直接涉及这些问题,但可以通过集成第三方库或服务来实现。 - 资源管理:合理分配和监控CPU、内存、磁盘空间等资源,避免过度消耗导致服务不可用。 - 负载均衡:利用Nginx、HAProxy等工具对流量进行分发,减轻单点压力。 - 监控系统:使用Prometheus、Grafana等工具实时监控应用性能和资源使用情况,及时发现潜在问题。 六、结论 服务不可用是Web应用中不可避免的一部分,但通过使用Beego框架的特性,结合适当的策略和实践,可以有效地识别、诊断和解决这类问题。嘿,兄弟!想做个靠谱的Web应用吗?那可得注意了,你得时刻盯着点,别让你的应用出岔子。得给资源好好规划规划,别让服务器喘不过气来。还有,万一哪天程序出错了,你得有个应对的机制,别让小问题搞大了。这三样,监控、资源管理和错误处理,可是你稳定可靠的三大法宝!别忘了它们,你的应用才能健健康康地跑起来!
2024-10-10 16:02:03
102
月影清风
转载文章
... 以上是完成的两点和处理失败的两点,做出来是个半成品,win32gui这方面的知识对我来说有点难,在python中安装的pywin32自带了一个API,里面的描述方法很简单,不够详细,很多看不太懂,以后还需要再花时间慢慢研究 -------------------------------------------------------------------------------------------- 问题1的解决方法: 修改成指定路径 win_1 = win32gui.FindWindowEx(hwnd, None,"WorkerW",None) win_2 = win32gui.FindWindowEx(win_1, None,"ReBarWindow32",None) win_3 = win32gui.FindWindowEx(win_2, None,"Address Band Root",None) win_4 = win32gui.FindWindowEx(win_3, None,"msctls_progress32",None) left, top, right, bottom = win32gui.GetWindowRect(win_4) win32api.SetCursorPos([left,top]) win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP | win32con.MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0) 将路径复制到剪切板 win32clipboard.OpenClipboard() win32clipboard.EmptyClipboard() win32clipboard.SetClipboardText(filePath) win32clipboard.CloseClipboard() 按下ctrl+v win32api.keybd_event(0x11, 0, 0, 0) win32api.keybd_event(0x56, 0, 0, 0) win32api.keybd_event(0x56, 0, win32con.KEYEVENTF_KEYUP, 0) win32api.keybd_event(0x11, 0, win32con.KEYEVENTF_KEYUP, 0) 按回车进入该路径 win32api.keybd_event(0x0D,0,0,0) 问题2取消按钮点击的问题已经解决: 点击取消按钮,用鼠标点击点击取消按钮,上面使用键盘按键不行,原因不明 hwnd_cancel = win32gui.FindWindowEx(hwnd,hwnd_save,"Button",None) left, top, right, bottom = win32gui.GetWindowRect(hwnd_cancel)该方法接收值必须为4个 win32api.SetCursorPos([left+35,top+13]) win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP | win32con.MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0) win32gui.GetWindowRect方法描述:Returns the rectangle for a window in screen coordinates。应该返回该句柄控件的四个顶点坐标吧 win32api.SetCursorPos方法描述:The SetCursorPos function moves the cursor to the specified screen coordinates.将光标移动到指定的屏幕坐标。 ----------------------------------------------------------------------------------------------- 查找另存为弹出框下的所有子句柄: hwndChildList = [] win32gui.EnumChildWindows(hwnd, lambda hwnd1, param: param.append(hwnd1), hwndChildList) for a in hwndChildList: print win32gui.GetParent(a) print win32gui.GetClassName(a) print win32gui.GetWindowText(a).decode('gbk').encode('utf-8') print "-----hwnd_save------",a 另外,经同事推荐ViewWizard工具比spy++更轻便快捷,查看父句柄也比之更方便 按键控制查询:http://www.mamicode.com/info-detail-1319197.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39814378/article/details/110329291。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-17 22:46:11
253
转载
SpringBoot
...Druid集成的基本配置 首先,让我们回顾一下如何在Spring Boot项目中集成Druid。这是一个非常基础的操作,但也是解决问题的第一步。 3.1 添加依赖 在pom.xml文件中添加Druid的相关依赖: xml com.alibaba druid-spring-boot-starter 1.2.8 3.2 配置数据源 接着,在application.yml文件中配置Druid的数据源信息: yaml spring: datasource: type: com.alibaba.druid.pool.DruidDataSource driver-class-name: oracle.jdbc.driver.OracleDriver url: jdbc:oracle:thin:@localhost:1521:orcl username: your_username password: your_password druid: initial-size: 5 max-active: 20 min-idle: 5 max-wait: 60000 time-between-eviction-runs-millis: 60000 min-evictable-idle-time-millis: 300000 validation-query: SELECT 1 FROM DUAL test-while-idle: true test-on-borrow: false test-on-return: false 这段配置看似简单,但实际上每一项参数都需要仔细斟酌。比如说啊,“max-wait”这个参数呢,就是说咱们能等连接连上的最长时间,单位是毫秒,相当于给它设了个“最长等待时间”;然后还有个“validation-query”,这个名字听起来就挺专业的,它的作用就是检查连接是不是还正常好用;最后那个“test-while-idle”,它就像是个“巡逻兵”,负责判断要不要在连接空闲的时候去检测一下这条连接还能不能用。 --- 4. 查询超时问题的初步排查 当我第一次遇到查询超时问题时,我的第一反应是:是不是Oracle那边的SQL语句太慢了?于是,我开始检查SQL语句的性能。 4.1 检查SQL语句 我用PL/SQL Developer连接到Oracle数据库,运行了一下报错的SQL语句。结果显示,这条SQL语句确实需要花费较长时间才能完成。但问题是,为什么Spring Boot会直接抛出超时异常呢? 这时,我才意识到,可能是Druid的数据源配置有问题。于是我翻阅了Druid的官方文档,发现了一个关键点:Druid默认的查询超时时间为10秒。 4.2 修改Druid的查询超时时间 为了延长查询超时时间,我在application.yml中加入了以下配置: yaml spring: datasource: druid: query-timeout: 30000 这里的query-timeout参数就是用来设置查询超时时间的,单位是毫秒。经过这次调整后,我发现查询超时的问题暂时得到了缓解。 --- 5. 进一步优化 结合Oracle的设置 虽然Druid的配置解决了部分问题,但我仍然觉得不够完美。于是,我又转向了Oracle数据库本身的设置。 5.1 设置Oracle的查询超时 在Oracle中,可以通过设置statement_timeout参数来控制查询超时时间。这个参数可以在会话级别或全局级别进行设置。 例如,在Spring Boot项目中,我们可以通过JDBC连接字符串传递这个参数: yaml spring: datasource: url: jdbc:oracle:thin:@localhost:1521:orcl?oracle.net.CONNECT_TIMEOUT=30000&oracle.jdbc.ReadTimeout=30000 这里的CONNECT_TIMEOUT和ReadTimeout分别表示连接超时时间和读取超时时间。通过这种方式,我们可以进一步提高系统的容错能力。 --- 6. 我的感悟与总结 经过这次折腾,我对Spring Boot与Druid的集成有了更深的理解。说实话,好多技术难题没那么玄乎,就是看着吓人而已。只要你肯静下心来琢磨琢磨,肯定能想出个辙来! 在这里,我也想给新手朋友们一些建议: 1. 多看官方文档 无论是Spring Boot还是Druid,它们的官方文档都非常详细,很多时候答案就在那里。 2. 学会调试 遇到问题时,不要急于求解,先用调试工具一步步分析问题所在。 3. 保持耐心 技术问题往往需要反复尝试,不要轻易放弃。 最后,我想说的是,编程之路充满了挑战,但也正因为如此才显得有趣。希望大家都能在这个过程中找到属于自己的乐趣! --- 好了,这篇文章就到这里啦!如果你也有类似的经历或想法,欢迎在评论区跟我交流哦!
2025-04-21 15:34:10
39
冬日暖阳_
转载文章
...,并执行SQL语句、处理结果集等数据库操作。在自学编程的过程中,学习JDBC是为了理解如何使用Java代码实现对数据库的基本增删改查功能,它是后续学习更高级ORM框架如Mybatis的基础。 Spring框架 , Spring是一个开源的企业级Java应用程序框架,它以其轻量级、非侵入式和基于依赖注入的设计原则而广受欢迎。Spring框架提供了众多模块,包括Spring Core(核心容器)、Spring MVC(模型-视图-控制器模式实现,用于WEB开发)、Spring JDBC(对JDBC进行了封装,简化了数据库操作)等。在文章中提到的SpringMVC是Spring框架的重要组成部分,它有助于开发者构建高性能、松耦合的Web应用程序,通过整合SpringMVC与其他组件如Spring和Mybatis,可以构建出功能完善的管理系统。
2023-07-02 23:59:06
60
转载
ReactJS
...得久了,那你一定懂,处理数据获取这事简直让人抓狂,分分钟想砸手机有木有!以前啊,我们要想搞定异步数据加载,那可真是费劲了,得靠一堆复杂的东西,什么状态管理啦,回调地狱啦,弄不好就把自己绕晕了。但自从Suspense登场后,这一切都变得简单多了! Suspense本质上是一个API,它允许我们在组件中声明性地等待某些资源加载完成,比如数据、图片或者其他模块。这样搞啊,我们就只用操心正事儿了,那些乱七八糟的加载状态啥的,就不用再费劲去琢磨啦! 让我举个例子吧:想象一下你正在做一个电商网站,用户点击某个商品时需要从服务器拉取详细信息。之前的做法大概是这样:用 useState 和 useEffect 来发请求拿数据,然后在页面上先显示个“加载中”,要是出了问题就换成“加载失败”。简单说就是一边等数据,一边给用户一个状态提示呗。但有了Suspense之后,你可以直接告诉React:“嘿,等我这个数据加载完再渲染这部分内容。”听起来是不是很爽? 那么问题来了,具体怎么用呢?别急,咱们慢慢来探索! --- 2. 基本概念与工作原理 首先,我们需要明确一点:Suspense并不是万能药,它主要用来解决“懒加载”和“数据获取”的场景。简单来说,这个主意就是用一个“边框小部件”把那些可能会拖时间的操作围起来,顺便提前说好,要是这些操作没搞定,就给用户展示点啥,免得他们干等着抓狂。 什么是边界组件? 边界组件就是那种负责“守门”的家伙,它会拦截你的组件树中的异步操作。嘿,你听说过没?只要某个小部件发现它得等着数据过来,它就马上开启“备胎模式”,啥叫备胎模式呢?就是先用个临时的东西占着位置,一直撑到后台的活干完,正式的内容才会上场。简单说吧,就是等数据的时候,先给你看个“过渡版”的,不让你干等着发呆! 听起来有点抽象?没关系,咱们看代码! jsx import React, { Suspense } from 'react'; function App() { return ( 我的电商网站 {/ 这里就是我们的边界组件 /} 加载中... }> ); } export default App; 在这个例子中,标签包裹住了组件。想象一下,当想要展示商品信息的时候,它可不是那种直接蹦出来的急性子。首先,它会先客气地说一句“加载中...”给大家打个招呼,然后静静地等后台把数据准备好。一旦数据到位了,它才开始认真地把商品的详细信息乖乖地显示出来。有点像服务员上菜前先说一声“稍等”,然后再端上热腾腾的大餐! --- 3. 实现数据获取 从零开始构建一个简单的例子 接下来,我们动手实践一下,看看如何结合Suspense实现数据获取。假设我们要做一个博客应用,每篇文章都需要从后端获取标题和正文内容。 第一步:创建数据源 为了模拟真实环境,我们可以用fetch API来模拟后端服务: javascript // mockApi.js export const fetchPost = async (postId) => { const response = await fetch(https://jsonplaceholder.typicode.com/posts/${postId}); return response.json(); }; 这里我们用了一个公共的JSONPlaceholder API来获取假数据。当然,在生产环境中你应该替换为自己的API地址。 第二步:定义数据加载逻辑 现在我们需要让React知道如何加载这个数据。我们可以创建一个专门用于数据加载的组件,比如叫PostLoader: jsx // PostLoader.js import React, { useState, useEffect } from 'react'; const PostLoader = ({ postId }) => { const [post, setPost] = useState(null); const [error, setError] = useState(null); useEffect(() => { let isMounted = true; fetchPost(postId) .then((data) => { if (isMounted) { setPost(data); } }) .catch((err) => { if (isMounted) { setError(err); } }); return () => { isMounted = false; }; }, [postId]); if (error) { throw new Error('Failed to load post'); } return post; }; export default PostLoader; 这段代码的核心在于throw new Error这一行。当我们遇到错误时,不是简单地返回错误提示,而是直接抛出异常。这是为了让Suspense能够捕获到它并执行后备渲染。 第三步:整合Suspense 最后一步就是将所有东西组合起来,让Suspense接管整个流程: jsx // App.js import React, { Suspense } from 'react'; import PostLoader from './PostLoader'; const PostDetails = ({ postId }) => { const post = ; return ( {post.title} {post.body} ); }; const App = () => { return ( 欢迎来到我的博客 正在加载文章... }> ); }; export default App; 在这个例子中,会确保如果未能及时加载数据,它会显示“正在加载文章...”。 --- 4. 高级玩法 动态导入与代码分割 除了数据获取之外,Suspense还可以帮助我们实现代码分割。这就相当于你把那些不怎么常用的功能模块“藏”起来,等需要用到的时候再慢慢加载,这样主页面就能跑得飞快啦! 例如,如果你想按需加载某个功能模块,可以这样做: javascript // LazyComponent.js const LazyComponent = React.lazy(() => import('./LazyModule')); function App() { return ( 主页面 加载中... }> ); } 在这里,React.lazy配合Suspense实现了动态导入。当用户访问包含的部分时,React会自动加载对应的模块文件。 --- 5. 总结与反思 好了,到这里我们已经掌握了如何使用Suspense进行数据获取的基本方法。虽然它看起来很简单,但实际上背后涉及了很多复杂的机制。比如,它是如何知道哪些组件需要等待的?又是如何优雅地处理错误的? 我个人觉得,Suspense最大的优点就在于它让开发者摆脱了手动状态管理的束缚,让我们可以更专注于用户体验本身。不过呢,这里还是得提防点小问题,比如说可能会让程序跑得没那么顺畅,还有就是对那些老项目的支持可能没那么友好。 总之,Suspense是一个非常强大的工具,但它并不适合所有场景。作为开发者,我们需要根据实际情况权衡利弊,合理选择是否采用它。 好了,今天的分享就到这里啦!如果你有任何疑问或者想法,欢迎随时留言交流哦~ 😊
2025-04-12 16:09:18
86
蝶舞花间
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
set -o vi 或 set -o emacs
- 更改bash shell的命令行编辑模式为vi或emacs风格。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"