前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Netty高性能网络编程]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
ReactJS
...老旧浏览器的情况下,性能开销可能成为不可忽视的问题。对此,React核心团队回应称,未来版本将引入更多优化策略,如智能缓存机制和渐进式加载选项,以平衡功能性和性能需求。 总的来说,Suspense作为React的一项革命性创新,正在逐步改变前端开发的方式。无论是大型企业的生产实践,还是学术界的理论探讨,都显示出这一技术的巨大前景。但对于开发者而言,如何在实际项目中扬长避短,仍然是一个值得深思的话题。
2025-04-12 16:09:18
86
蝶舞花间
Gradle
...发工具,最近因为其在性能优化上的突破而受到广泛关注。谷歌在2023年推出了Flutter 3.10版本,该版本不仅修复了一些已知问题,还显著提升了热重载的速度和稳定性,这对于开发者来说无疑是个好消息。 与此同时,苹果公司也在持续推进SwiftUI的发展。作为苹果自家的跨平台UI框架,SwiftUI凭借其简洁的语法和强大的生态系统,在iOS和macOS平台上表现出色。特别是在苹果推出Vision Pro头显设备后,SwiftUI被赋予了更多的可能性,因为它能够轻松适配各种屏幕尺寸和分辨率,为开发者提供了更加灵活的设计空间。 除了技术层面的进步,政策环境的变化也为跨平台开发带来了新的机遇和挑战。例如,欧盟最近通过的一项法案要求所有智能手机和平板电脑必须支持USB-C接口,这一规定促使各大厂商加速推进设备间的互联互通。对于跨平台开发者而言,这意味着他们需要考虑如何让应用程序在不同硬件环境下都能顺畅运行,从而满足用户的多样化需求。 此外,人工智能技术的崛起也为跨平台开发注入了新动力。借助AI辅助设计工具,开发者可以更高效地创建界面原型,并利用机器学习算法优化用户体验。例如,Adobe推出的Sensei AI技术已经广泛应用于Photoshop、Illustrator等软件中,帮助用户快速完成复杂的编辑任务。未来,随着AI技术的不断进步,跨平台开发或许将迎来全新的变革时代。 总之,无论是技术革新还是政策推动,都表明跨平台开发正处于快速发展阶段。作为开发者,紧跟行业趋势、持续学习新技术将是应对未来挑战的关键所在。
2025-04-15 16:14:29
35
青山绿水_
SeaTunnel
...服务器指标、应用程序性能指标等。Prometheus 可以抓取目标系统中暴露的指标数据,并提供强大的查询语言 PromQL 用于数据分析和可视化。在本文中,Prometheus 作为 SeaTunnel 的监控插件,用于实时监控数据传输任务的状态,确保数据传输过程中的可靠性。 Grafana , Grafana 是一个开源的度量分析和可视化套件,常与 Prometheus 结合使用以提供丰富的图表展示功能。它允许用户创建美观且交互式的仪表板,用于监控系统健康状况、性能指标以及其他关键业务数据。Grafana 支持多种数据源,包括 Prometheus,这使得它成为一个强大的数据可视化工具。在本文中,Grafana 被用来展示 SeaTunnel 任务的状态变化趋势和历史数据,帮助用户更好地理解数据传输情况并进行优化。
2024-12-11 16:12:53
117
月影清风
RocketMQ
...,包括服务器、存储、网络、应用和服务等,通过网络连接到远程数据中心进行集中管理和分配。在现代技术趋势中,云计算提供了一种灵活、高效、低成本的解决方案,支持企业快速部署应用和服务,同时能够根据需求动态扩展资源。这种模式特别适合微服务架构,因为它允许各个服务独立运行,同时共享基础设施资源,提高了系统的弹性、可靠性和资源利用率。 名词 , 微服务架构。 解释 , 微服务架构是一种将大型应用程序拆分为多个独立、可独立部署的小型服务的方法。每个服务负责处理特定的业务功能,通过轻量级通信机制(如APIs)进行交互。在云计算的支持下,微服务架构使得应用程序能够更易于管理、测试、部署和扩展。它有助于实现高度的解耦和模块化,使得团队能够并行开发和维护不同的服务,从而加速创新过程,同时提高了系统的可靠性和灵活性。 名词 , 大数据处理。 解释 , 大数据处理是指收集、存储、分析和可视化大规模数据集的过程。在现代技术趋势中,随着数据量的急剧增长,企业需要借助大数据处理技术来挖掘数据中的价值,支持决策制定、市场洞察和个性化服务。大数据处理通常涉及分布式计算框架(如Apache Hadoop和Apache Spark),这些框架能够处理PB级别的数据,支持实时数据分析和机器学习模型训练。在消息队列的支持下,大数据处理流程可以实现数据的实时传输和处理,提高数据处理的效率和响应速度。
2024-10-02 15:46:59
573
蝶舞花间
Saiku
...,除了关注工具本身的性能优化外,更应该重视系统恢复计划的制定和完善,以应对潜在的风险。通过不断学习和实践,我们可以更好地保护自己的数据资产,确保业务持续稳定运行。
2024-11-18 15:31:47
36
寂静森林
转载文章
...即可。 如果你有任何编程方面的问题,可以加我微信交流 2501902696(备注编程) by:年糕妈妈qcl 转载于:https://juejin.im/post/5ca30ad1e51d4514c01634f1 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34150503/article/details/91475198。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-29 13:55:00
322
转载
转载文章
...扎实,更要具备良好的编程习惯和解决实际问题的能力。有专家建议,教育机构应加强与企业的对接,引导学生积极参与实习项目,提前了解并适应企业的工作环境及工程化需求。 近期,教育部联合相关部门发布的《关于深化产教融合的若干意见》强调,要推动高校与企业深度合作,构建以产业和技术发展需求为导向的人才培养体系。这意味着,未来的校园招聘活动将更加注重对学生专业技能与岗位需求匹配度的考察,而不仅仅局限于传统的学历背景和研究成果。 总结而言,校园招聘不仅是企业和学生双向选择的过程,更是检验教育成果、对接市场需求的重要环节。通过不断优化招聘流程、提升人才评价标准,并加强校企之间的深度融合,我们才能更好地促进人才与市场的精准对接,实现高质量就业的目标。
2024-02-02 13:16:24
524
转载
Kylin
...明星!它凭借着超棒的性能和超灵活的特性,在大数据分析这块地盘上可是独领风骚呢!就像是在数据这片海洋里,Kylin就是那条游得最快、最灵活的大鱼,让人不得不佩服它的实力和魅力!哎呀,你知道的,当Kylin碰上了MySQL这种关系型数据库,俩人之间的联接优化问题可真是个大课题啊!这事儿得好好琢磨琢磨,不然数据跑起来可就慢了不止一点点。你得想想怎么能让它们配合得天衣无缝,让数据查询快如闪电,用户体验棒棒哒!这背后涉及到的技术细节可多了去了,比如索引优化、查询语句的编写技巧,还有就是数据库配置的调整,每一步都得精心设计,才能让整个系统运行得既高效又稳定。所以,这不仅仅是个理论问题,更是一场实战演练,考验的是咱们对数据库知识的掌握和运用能力呢!本文将带你一起揭开这个谜题的面纱,从理论到实践,全方位解析Kylin与MySQL联接优化的关键点。 二、理论基础 理解Kylin与MySQL的联接机制 在深入讨论优化策略之前,我们首先需要理解两者之间的基本联接机制。Kylin是一个基于Hadoop的列式存储OLAP引擎,它通过预先计算并存储聚合数据来加速查询速度。而MySQL作为一个广泛使用的SQL数据库管理系统,提供了丰富的查询语言和存储能力。嘿,兄弟!你听过数据联接这事儿吗?它通常在咱们把数据从一个地方搬进另一个地方或者在查询数据的时候出现。就像拼图一样,对了,就是那种需要精准匹配才能完美组合起来的拼图。用对了联接策略,那操作效率简直能嗖的一下上去,比火箭还快呢!所以啊,小伙伴们,别小瞧了这个小小的联接步骤,它可是咱们大数据处理里的秘密武器! 三、策略一 优化联接条件 实践示例: sql -- 原始查询语句 SELECT FROM kylin_table JOIN mysql_table ON kylin_table.id = mysql_table.id; -- 优化后的查询语句 SELECT FROM kylin_table JOIN mysql_table ON kylin_table.id = mysql_table.id AND kylin_table.date >= '2023-01-01' AND kylin_table.date <= '2023-12-31'; 通过在联接条件中加入过滤条件(如时间范围),可以减少MySQL服务器需要处理的数据量,从而提高联接效率。 四、策略二 利用索引优化 实践示例: 在MySQL表上为联接字段创建索引,可以大大加速查询速度。同时,在Kylin中,确保相关维度的列已经进行了适当的索引,可以进一步提升性能。 sql -- MySQL创建索引 CREATE INDEX idx_kylin_table_id ON kylin_table(id); -- Kylin配置维度索引 id long true 通过这样的配置,不仅MySQL的查询速度得到提升,Kylin的聚合计算也更加高效。 五、策略三 批量导入与增量更新 实践示例: 对于大型数据集,考虑使用批量导入策略,而不是频繁的增量更新。哎呀,你瞧,咱们用批量导入这招,就像是给MySQL服务器做了一次减压操,让它不那么忙碌,喘口气。同时,借助Kylin的离线大法,我们就能让那些实时查询快如闪电,不拖泥带水。这样一来,不管是数据处理还是查询速度,都大大提升了,用户满意度也蹭蹭往上涨呢! bash 批量导入脚本示例 $ hadoop fs -put data.csv /input/ $ bin/hive -e "LOAD DATA INPATH '/input/data.csv' INTO TABLE kylin_table;" 六、策略四 优化联接模式 选择合适的联接模式(如内联接、外联接等)对于性能优化至关重要。哎呀,你得知道,在咱们实际干活的时候,选对了数据联接的方式,就像找到了开锁的金钥匙,能省下不少力气,避免那些没必要的数据大扫荡。比如说,你要是搞个报表啥的,用对了联接方法,数据就乖乖听话,找起来快又准,省得咱们一个个文件翻,一个个字段找,那得多费劲啊!所以,挑对工具,效率就是王道! 实践示例: 假设我们需要查询所有在特定时间段内的订单信息,并且关联了用户的基本信息。这里,我们可以使用内联接: sql SELECT FROM orders o INNER JOIN users u ON o.user_id = u.user_id WHERE o.order_date BETWEEN '2023-01-01' AND '2023-12-31'; 七、总结与展望 通过上述策略的实施,我们能够显著提升Kylin与MySQL联接操作的性能。哎呀,你知道优化数据库操作这事儿,可真是个门道多得很!比如说,调整联接条件啊,用上索引来提速啊,批量导入数据也是一大妙招,还有就是选对联接方式,这些小技巧都能让咱们的操作变得顺畅无比,响应速度嗖嗖的快起来。就像开车走高速,不堵车不绕弯,直奔目的地,那感觉,爽歪歪!哎呀,随着咱手里的数据越来越多,就像超市里的货物堆积如山,技术这玩意儿也跟咱们的手机更新换代一样快。所以啊,要想让咱们的系统运行得又快又好,就得不断调整和改进策略。就像是给汽车定期加油、保养,让它跑得既省油又稳定。这事儿,可得用心琢磨,不能偷懒!未来,随着更多高级特性如分布式计算、机器学习集成等的引入,Kylin与MySQL的联接优化将拥有更广阔的应用空间,助力数据分析迈向更高层次。
2024-09-20 16:04:27
104
百转千回
Apache Atlas
...代码本身的问题,而是网络或者环境配置出了差错。这时候,我们可以尝试手动测试一下Atlas与目标系统的连接情况。例如,对于Kafka Hook,可以用下面的命令检查是否能正常发送消息: bash kafka-console-producer.sh --broker-list localhost:9092 --topic test-topic 如果这条命令执行失败,那就可以确定是网络或者Kafka服务的问题了。 --- 5. 总结与反思 成长中的点滴收获 经过这次折腾,我对Apache Atlas有了更深的理解,同时也意识到,任何技术工具都不是万能的,都需要我们投入足够的时间和精力去学习和实践。 最后想说的是,尽管Hook部署失败的经历让我一度感到挫败,但它也教会了我很多宝贵的经验。比如: - 不要害怕出错,错误往往是进步的起点; - 日志是排查问题的重要工具,要学会善加利用; - 团队合作很重要,遇到难题时不妨寻求同事的帮助。 希望这篇文章对你有所帮助,如果你也有类似的经历或见解,欢迎随时交流讨论!我们一起探索技术的世界,共同进步!
2025-04-03 16:11:35
60
醉卧沙场
转载文章
...、基站数据,匹配地铁网络、高铁网络,通过机器学习算法,判定用户出行时使用的出行方式。 基于SSNG多源数据处理平台,可实现的技术突破包括: 1)全国长时序人口流动监测技术 针对运营商信令数据以及spark分布式计算平台的特点,独创了处理运营商信令数据的双层计算框架,填补了分布式机器学习方法处理运营商信令数据的空白,实现了大规模高效治理运营商大数据的愿景;研发了人口流动与现代大数据技术相结合的宏观监测仿真模型。 基于以上技术构建了就业、交通、疫情、春运等一系列场景模型,并开发了响应决策平台,实现了对我国人口就业、流动及疫情影响的全域实时监测。 2)全国长时序人口流动预测技术 即人口流动的大尺度OD预测技术,研发了人口跨区域流动OD预测模型,解决了信令大数据在量化模拟大尺度人口流动中的技术难题,形成了对全国人口流动在日、周、月不同时间段和社区、乡镇、县市不同地理尺度进行预测的先进技术,实现了2020年新冠疫情后全国返城返岗和2021年全国春节期间人口流动的高精度预测。 3)实时人口监测 实时人口监测是通过对用户手机信令进行实时处理、计算和分析,得出指定区域的实时人口数量、特征和迁徙情况。包括区域人口密度、人口数量、人口结构、人口来源、人口画像、人口迁徙、职住分析、人口预测等信息。 4)超强数据处理及AI能力 引入Bitmap大数据处理算法及Pilosa数据库集群,采用实时流式计算,集成Kafka、redis、RabbitMQ等分布式大数据处理组件,搭建自有信令大数据处理平台,使用百亿计算go-kite架构,实现毫秒级响应,实时批量处理数据达500000条 /秒,每天可处理1000亿条数据。集成AI分析能力(A/B轨),有效避免了运营商数据采集及传输过程中的时延及中断情况,大幅提高数据结果的实时性。 已获专利情况: 专利名称 专利号 出行统计方法、装置、计算机设备和可读存储介质 ZL 2020 1 0908424.3 信令数据匹配方法、装置及电子设备 ZL 2019 1 1298869.8 轨道交通用户识别方法和装置 ZL 2019 1 0755903.3 公共聚集事件识别方法、装置、计算机设备及存储介质 ZL 2020 1 1191917.6 广域高铁基站识别方法、装置、服务器及存储介质 ZL 2020 1 1325543.2 相关荣誉: 2021地理信息科技进步奖一等奖、中国测绘学会科技进步奖特等奖、2021数博会领先科技成果奖、兼容系统创新应用大赛大数据专项赛优秀奖。 开发团队 ·带队负责人:陶周天 公司CTO,北京大学理学学士。长期任职于微软等世界500强企业,曾任上市公司优炫软件VP,具备丰富的IT架构、数据安全、数据分析建模、机器学习、项目管理经验。牵头组织突破多个技术难题(人地匹配、人车匹配、室内基站优化、行为集成AI等),研发一系列技术专利。 ·团队其他重要成员:刘祖军 高级算法工程师,美国爱荷华大学计算机科学本硕,曾任职于美国俄亥俄州立大学研究院。 ·隶属机构:智慧足迹 智慧足迹数据科技有限公司是中国联通控股,京东科技参股的专业大数据及智能科技公司。公司依托中国联通卓越的数据资源和5G能力,京东科技强大的人工智能、物联网等技术和“产业X科技”能力,聚焦“人口+”大数据,连接人-物-企,成为全域数据智能科技领先服务商。 公司以P·A·Dt为核心能力,面向数字政府、智慧城市、企业数字化转型广大市场主体,专注经济治理、社会治理和企业数字化服务,构建“人口+”七大多源数据主题库,提供“人口+” 就业、经济、消费、民生、城市、企业等大数据产品平台,服务支撑国家治理现代化和国家战略,推动经济社会发展。 目前,公司已服务国家二十多个部委及众多省市政府、300+城市规划、知名企业和高校等智库、国有及股份制银行等数百家头部客户,已建成全球最强大的手机信令处理平台,是中国就业、城规、统计等领域大数据领先服务商。 相关评价 新一代SSNG多源大数据处理平台,提升了手机信令数据在空间数据计算的精度,信令处理结果对室内场景更具敏锐性,在区域范围的职住人群空间分布更加接近实际情况。 ——某央企大数据部技术负责人 新一代SSNG多源大数据处理平台,可处理实时及历史信令数据,应对不同客户应用场景。并且根据长时间序列历史数据实现人口预测,为提高数据精度可对接室内基站数据,从而提供更加准确的人员定位。 ——某企业政府事业部总监 提示:了解更多相关内容,点击文末左下角“阅读原文”链接可直达该机构官网。 《2021企业数智化转型升级服务全景图/产业图谱1.0版》 《2021中国数据智能产业图谱3.0升级版》 《2021中国企业数智化转型升级发展研究报告》 《2021中国数据智能产业发展研究报告》 ❷ 创新服务企业榜 ❸ 创新服务产品榜 ❸ 最具投资价值榜 ❺ 创新技术突破榜 ☆条漫:《看过大佬们发的朋友圈之后,我相信:明天会更好!》 联系数据猿 北京区负责人:Summer 电话:18500447861(微信) 邮箱:summer@datayuan.cn 全国区负责人:Yaphet 电话:18600591561(微信) 邮箱:yaphet@datayuan.cn 本篇文章为转载内容。原文链接:https://blog.csdn.net/YMPzUELX3AIAp7Q/article/details/122314407。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-01 09:57:01
343
转载
Kotlin
...次突如其来的挑战 在编程的世界里,Kotlin以其简洁明了的语法、强大的类型安全机制以及对Java语言的兼容性,赢得了无数开发者的心。哎呀,兄弟,你这语言用得确实牛批,但就像开车一样,再溜的车也难免会碰上坑坑洼洼。在这堆问题里头,有一种特别让人头疼的家伙,叫 IllegalArgumentException。这家伙就像是突然冒出来的路障,让你措手不及,一不小心就踩中了,结果就是程序卡壳,半天解不开。这不就是我们在编程路上的“小麻烦”嘛!今天,我们就来一起探索一下这个“非法参数异常”背后的故事。 第一章:何为 IllegalArgumentException 在Kotlin中,当我们尝试调用一个方法时,如果传入的参数不符合该方法的要求或者类型不匹配,就会抛出 IllegalArgumentException。这事儿就像你去参加一个超级认真的补习班,老师布置了一道题目让你做,结果你交上去的答案全错了,那肯定得被老师好好点名批评一番了。 第二章:深入剖析 IllegalArgumentException 假设我们有一个简单的函数 calculateAge,它接受一个人的出生年份作为参数,并计算出当前年龄: kotlin fun calculateAge(birthYear: Int): Int { val currentYear = 2023 return currentYear - birthYear } 如果我们不小心传入了一个非整数类型的参数,比如一个字符串,Kotlin会立即察觉到这一点,并优雅地抛出 IllegalArgumentException: kotlin fun test() { val age = calculateAge("2000") println("Your age is $age.") } // 运行结果:编译错误,因为calculateAge接受的是Int类型参数,而"2000"是String类型。 第三章:如何避免 IllegalArgumentException 避免 IllegalArgumentException 的关键在于确保所有传入函数的参数都符合预期的类型和格式。我们可以利用Kotlin的静态类型系统来帮助我们进行这一工作: - 类型检查:确保所有输入的参数都是正确的类型。例如,可以使用 assert 函数在运行时验证类型: kotlin fun safeCalculateAge(birthYear: Any): Int { assert(birthYear is Int) { "Expected an Integer for birthYear" } val currentYear = 2023 return currentYear - birthYear.toInt() } // 使用示例: val age = safeCalculateAge(2000) println("Your age is $age.") - 函数参数验证:在定义函数时就加入类型检查逻辑: kotlin fun calculateAgeWithValidation(birthYear: Int): Int { if (birthYear < 0 || birthYear > 2023) { throw IllegalArgumentException("Birth year must be within the range of 0 to 2023.") } val currentYear = 2023 return currentYear - birthYear } 第四章:实战演练:创建一个更复杂的示例 假设我们要构建一个简单的日历应用,其中包含一个用于计算天数的函数。为了增加复杂性,我们添加了对月份和年份的验证: kotlin data class Date(val day: Int, val month: Int, val year: Int) fun calculateDaysSinceBirthday(dateOfBirth: Date): Int { val currentYear = Calendar.getInstance().get(Calendar.YEAR) val currentMonth = Calendar.getInstance().get(Calendar.MONTH) + 1 // 注意月份是从0开始的 val currentDay = Calendar.getInstance().get(Calendar.DAY_OF_MONTH) val birthday = dateOfBirth.day to dateOfBirth.month to dateOfBirth.year val birthDate = Date(birthday) val daysSinceBirthday = (currentYear - birthDate.year) 365 + (currentMonth - birthDate.month) 30 + (currentDay - birthDate.day) return daysSinceBirthday } fun main() { val birthDate = Date(day = 1, month = 1, year = 2000) val days = calculateDaysSinceBirthday(birthDate) println("Days since your birthday: $days") } 在上面的代码中,我们通过 Calendar 类获取当前日期,并与生日日期进行比较,计算出天数差值。嘿,兄弟!咱们就拿一年有365天,一个月有30天来打个比方,这可是咱们简化了一下,方便大家理解。实际上啊,生活里头可没这么简单,得分清闰年和普通年是怎么回事,这样日子才过得有模有样呢! 结语:面对挑战,拥抱学习 每一次遇到 IllegalArgumentException 都是一次学习的机会。它们提醒我们,即使在看似完美的代码中,也可能隐藏着一些小错误。通过仔细检查和验证我们的参数,我们可以编写出更加健壮、可维护的代码。哎呀,你瞧这Kotlin,它可真是个能手呢!它那一大堆好用的工具和特性,就像是魔法一样,帮我们解决了好多麻烦事儿。比如说,静态类型这一招,就像是一道坚固的防线,能提前发现那些可能出错的地方。还有函数注解,就像是给代码贴上了标签,让我们一眼就能看出这是干啥的。而模式匹配嘛,简直就是解谜神器,轻轻松松就能解开那些复杂的逻辑难题。这些玩意儿合在一起,就形成了一个强大的武器库,帮我们防患于未然,解决问题更是不在话下。你说是不是,这Kotlin,简直就是程序员的好伙伴!让我们带着好奇心和探索精神,继续在编程的海洋中航行吧! --- 在这篇文章中,我们不仅探讨了 IllegalArgumentException 的由来和解决方法,还通过一系列的代码示例展示了如何在实践中应用这些知识。嘿,兄弟!读完这篇文章后,希望你对Kotlin里的异常处理方式有了一番全新的领悟。别担心,这不像是AI在跟你说话,就像跟老朋友聊天一样轻松。你得尝试将这些小技巧应用到你的实际项目中,让代码不仅好看,而且超级稳定,就像是给你的程序穿上了一件坚固的盔甲。这样,无论遇到什么问题,它都能稳如泰山。所以,拿起你的键盘,动手实践吧!记住,编程是一场持续的学习之旅,每一次遇到困难都是成长的机会。加油!
2024-09-18 16:04:27
112
追梦人
MySQL
...一起针对数据库系统的网络攻击事件,多家企业的敏感数据遭到泄露,其中不乏一些未妥善配置权限的MySQL实例。这起事件再次提醒我们,权限管理不仅是理论上的重要环节,更是企业在数字化转型过程中的核心安全支柱。尽管MySQL本身提供了强大的权限控制系统,但许多企业在实际部署中往往忽略了权限配置的细节,甚至存在默认账户长期开放、权限过度授予等问题,这些问题在此次攻击中被放大,造成了不可估量的损失。 例如,某知名电商公司在此次事件中被曝出其内部多个数据库的权限设置过于宽松,导致攻击者能够轻松获取管理员权限并窃取大量客户信息。事后调查显示,该公司的数据库运维团队在日常管理中并未严格执行定期审查权限的流程,加之缺乏有效的监控机制,使得潜在风险未能及时暴露。此外,部分企业的开发人员在测试环境中遗留了一些具有高权限的账户,而这些账户在生产环境中未被妥善清理,最终成为攻击者的突破口。 针对此类问题,行业专家建议,企业应建立完善的权限管理体系,不仅要在技术层面实施最小权限原则,还应在制度上明确权限审批和审计流程。同时,定期开展数据库安全评估,利用自动化工具扫描潜在漏洞,确保所有账户和权限的设置符合最佳实践。此外,随着云计算和微服务架构的普及,跨环境的权限协同管理也变得尤为重要,企业需加强对云平台和第三方服务提供商的安全审查,避免因外部依赖引发的风险。 值得注意的是,此次事件并非孤立案例。近年来,数据库权限相关的安全问题频发,暴露出传统安全管理方式的不足。在此背景下,开源社区和技术厂商也在积极推出新的解决方案,比如通过AI驱动的智能权限分析工具,帮助企业实时检测异常行为并预警潜在威胁。这些技术手段的应用,将极大提升数据库安全防护能力,为企业构建更加坚固的数字防线提供支持。
2025-03-18 16:17:13
50
半夏微凉
Kibana
..., 指一种低成本、低性能的存储方式,主要用于存放不再经常访问但仍然需要保留的数据。在文章中,冷存储被用来归档超过一定期限的数据,以减少主存储的压力。例如,超过三个月的订单日志数据可以被移动到冷存储中,从而降低存储成本并提高主存储的使用效率。
2025-04-30 16:26:33
16
风轻云淡
转载文章
...随着技术的发展和硬件性能的提升,即使是“轻量级”操作系统也需与时俱进,以满足用户对功能丰富、界面美观以及高效稳定的需求。从LXDE到LXQt的转变,不仅体现了开源社区对于技术趋势的敏锐把握,还展示了开发团队积极应对挑战、持续优化用户体验的决心。 近期,Lubuntu 20.04在实际应用中收获了大量正面反馈,许多用户赞赏其在保持系统资源占用较低的同时,提供了更为现代且完善的桌面体验。值得注意的是,LXQt环境在跨平台兼容性和第三方软件支持方面的表现同样出色,吸引了更多开发者为其贡献代码,进一步丰富和完善生态系统。 此外,Lubuntu 20.04弃用Ubiquity转而采用Calamares安装程序,此举在简化安装流程、提高安装效率上成效显著,为其他Linux发行版提供了新的实践参考。同时,Lubuntu不再主要针对老旧硬件进行优化,而是力求在新旧设备间找到平衡点,这也预示着未来Linux发行版将更加注重普适性与灵活性。 综上所述,Lubuntu 20.04 LTS版本的发布不仅是一个技术层面的迭代更新,更是一次关于如何在保持传统优势基础上适应新时代需求的战略调整。随着后续版本的不断改进和完善,Lubuntu将在轻量级Linux发行版领域继续保持竞争力,并有望吸引更广泛的用户群体。 而对于想要深入了解LXQt桌面环境及其背后技术原理的读者,可以关注相关开源社区的最新动态,如Qt项目官方博客、KDE社区论坛等,这些渠道会定期发布关于LXQt的新特性和开发进展的文章和技术文档。同时,也可查阅专业媒体或技术博主对Lubuntu 20.04及LXQt的深度评测和使用心得,从而全方位地了解这一变革所带来的影响和价值。
2023-05-17 18:52:15
318
转载
转载文章
...键盘上的每一个键。在编程环境中,特别是Python使用win32api模块进行键盘和鼠标操作模拟时,VK_CODE是一个字典结构,将字符或特殊键与对应的虚拟键码关联起来。例如,在文中提到的VK_CODE A 等于0x41,表示字母\ A\ 在系统内部被识别为0x41这个特定数值,程序通过调用keybd_event函数并传入对应虚拟键码来模拟按下或释放该键。 win32api模块 , win32api是Python的一个库,提供了对Windows API(应用程序接口)的访问功能。它允许Python程序员以编程方式执行许多Windows操作系统的底层任务,如模拟用户输入、控制窗口、处理文件和目录等。在本文中,作者利用win32api模块中的mouse_event和keybd_event函数实现了对鼠标点击、移动以及键盘按键的模拟操作,这对于自动化测试、脚本编写以及需要自动交互的应用场景尤为实用。 用户界面自动化(UI Automation) , 用户界面自动化是一种软件测试方法和技术,旨在通过编写脚本或程序代替人工操作,实现对应用程序用户界面的各种元素(如按钮、文本框、菜单等)进行自动化的点击、输入、验证等交互行为。在本文中,作者通过Python win32api模块模拟键盘和鼠标事件,从而实现在Windows环境下对用户界面的自动化控制,这是用户界面自动化的一种具体实践形式,常用于提高测试效率、减少重复工作并确保软件功能稳定可靠。
2023-06-07 19:00:58
54
转载
转载文章
...构造非回文字符串这一编程问题后,我们可以进一步了解字符串处理与算法优化的最新研究进展。近日,《自然》杂志子刊《自然-通讯》发表了一篇关于“在线字符串编辑与动态回文判定”的研究报告。研究者提出了一种新颖的在线算法,能够在字符串实时更新过程中高效地判断其是否为回文,并能快速找到使字符串变为非回文所需的最少编辑操作。这一成果不仅对于文本处理、数据压缩等领域具有重要价值,也对解决类似的编程挑战提供了新的思路。 此外,在ACM国际大学生程序设计竞赛(ACM-ICPC)和谷歌代码 Jam 等全球顶级编程赛事中,频繁出现与回文串相关的题目,参赛者需灵活运用算法知识来解决实际问题。比如,有题目要求选手在最短时间内编写程序,找出将一个字符串转换为非回文串的最小操作次数,这与我们讨论的文章主题不谋而合,展现了理论与实践相结合的重要性。 同时,回文串在密码学、遗传学以及文学创作等多个领域均有应用。例如,在DNA序列分析中,回文结构往往关联着基因调控的重要区域;在密码学中,特定类型的回文串可用于构建加密算法的关键部分。深入理解并熟练掌握回文串的相关性质及处理方法,无疑有助于我们在这些领域取得更多的技术突破。 总之,从基础的编程题出发,我们可以洞察到字符串处理与算法优化在前沿科研和实际应用中的深远影响。通过持续关注和学习此类问题的最新研究成果与应用案例,我们能够不断提升自身的算法设计和问题解决能力。
2023-10-05 13:54:12
228
转载
ElasticSearch
...细节。 3.2.1 性能顾虑 上面提到了“表现”,其实性能只是elasticsearch的一个方面,主要你的机器资源足够(机器资源?对,包括你的机器个数,elasticsearch可以非常方便的横向扩展,以及单机的配置,cpu+内存,内存越高越好,elasticsearch比较吃内存!),它一定会给你很好的性能反应。试想,公司里的app打印线上日志的行数其实可比一般业务系统产生的订单数量要大很多很多,elasticsearch都可以常在日志的实时分析,所以如果你要做通用场景,而且机器资源不是问题,这是完全行得通的。 3.2.2 易用性和可玩性 此外,在使用elasticsearch的时候,会有很多的可玩性。这里不引经据典,呈现很多elasticsearch官方文章的列举优秀特性(当然,确实很优秀!)。 这里举几个例子: (1)中文分词:第一章提到的其它引擎几乎很难实现,elasticsearch对分词器的支持是原生的,因为elasticsearch天生就为全文索引而生,elasticsearch的汉语名字就是“弹性搜索”。这家伙可是专门搞搜索的! 有的朋友可能不了解分词器,比如你的一个字段里存储“今天我要吃冰激凌”,在分词器的加持下,es最终会存储为“今天|我|要|吃|冰激凌”,并且使用倒排索引的形式进行存储。当你搜索“冰激凌”的时候,可以很快的反馈回来。 关于elasticsearch的原理,这里不展开说明,分词器和倒排索引是elasticsearch的最基本的概念。如果有不了解的朋友,可以自行百度一下。而且这两个概念,与elasticsearch其实不挂钩,是搜索中的通用概念。 关于倒排索引,其核心表现如下图: 如果你要用mysql、mongo实现中文分词,这......其实挺麻烦的,可能在后面的版本支持中会实现的很好,但在当前的流行版本中,它们对中文分词是不够友好的。 mysql5.7之后支持外挂第三方分词器,支持中文分词。而在数据量较大的情况下,mysql的多机器部署几乎很难实现,elasticsearch可以很容易的水平扩展。 mongo支持西方语言的分词,但不支持中文、日语、汉语等东方语言,你需要在自己的逻辑代码中实现分词器。 ngram分词,你看看效果:依旧是“今天我要吃冰激凌”,ngram二元分词后即将得到结果“今天、天我、我要、要吃、吃冰、冰激、激凌”。这....,那你搜索冰激凌就搜不出来!咋办呢,当然可以使用三元分词。但是更好的解决方案还是中文分词器,但它们原生并不支持的。 (2)自定义排名场景:比如你的搜索“冰激凌”,结果中返回了有10条,这10条应该有你想对它指定的顺序。最简单的就是用默认的得分,但是如果你想人为干预这个得分怎么办? elasticsearch支持function_score功能(可以不用,这个是增强功能),es会在计算最终得分之前回调这个你指定的function_score回调函数,传入原始得分、行的原始数据,你可以在里面做计算,比如查询其它参考表、或查看是否是广告位,以得到新的score返回给用户。 function_scrore的功能不展开描述,是一个在自定义得分场景下十分有用又简单易用的功能!下面是一个使用示例,不仅如此,它是支持自定义函数的,自由度非常高。 (3)文本高亮:你用mysql或mongo也可以实现,比如用户搜索“冰激凌”,你只需要在逻辑代码中对“冰激凌”替换为“<span class='highlight-term'>冰激凌</span>”,然后前端做样式即可。但如果用户搜索了“好吃的冰激凌”咋办呢?还有就是英文大小写的场景,用户搜索"MAIN",那结果及时匹配到了“main”(小写的),这个单词是否应该高亮呢?也许这时候你会用业务代码实现toLowerCase下基于位置下标的匹配。 挺麻烦的吧,elasticsearch,自动可以返回高亮字段!并且可以自由指定高亮的html前后标签。 (4)实在太多了....这家伙天生为索引而生,而且版本还在不断地迭代。不差机器的话,用用吧! 4. 退而求其次 4.1 普通数据库 尽管elasticsearch在搜索场景下,是非常好用的利器!但是它比较消耗机器资源,如果你的数据规模并不大,而且想快速实现功能。你可以使用mysql或mongo来代替,完全没有问题。 技术是为了解决特定业务场景下的问题,结合当前手头的资源,适合自己的才是最好的。也许你搞了一个单机器的elasticsearch,单机器内存只有2G,它的表现并不会比mysql、mongo来的好。 当然,如果你为了使用上边提到的一些优秀的独有的特性,那elasticsearch一定还是最佳选择! 对于mysql(关系型数据库)和mongo(文档数据库)的区别这里不展开描述了,但对于搜索而言,两种都合适。有时候选型也不用很纠结,其实都是差不太多的东西,适合自己的、自己熟悉的、运维起来顺手的,就是最好的。 4.2 普通数据库实现中文分词搜索的原理 尽管mysql在5.7以后支持外挂第三方分词器,mongo在截止目前的版本中也不支持中文分词(你可能会看到一些文章中说可以指定language为chinese,但其实会报错的)。 其实当你选择普通数据库,你就不得不在逻辑代码中自己实现一套索引分词+搜索分词逻辑。 索引分词+搜索分词?为什么分开写,如果你有用过elasticsearch或solr,你会知道,在指定字段的时候,需要指定index分词器和search分词器。 下面以mongo为例做简要说明。 4.2.1 index分词器 意思是当数据“索引”截断如何分词。首先,这里必须要承认,数据之后存储了,才能被查询。在搜索中,这句话可以换成是“数据只有被索引了,才能被搜索”。 这时候请求打过来了,要索引一条数据,其中某字段是“今天我要吃冰激凌”,分词后得到“今天|我|要|吃|冰激凌”,这个就可以入库了。 如果你使用elasticsearch或solr,这个过程是自动的。如果你使用不支持外观分词器的常规数据库,这个过程你就要手动了,并把分词后的结果用空格分开(最好使用空格,因为西方语言的分词规则就是按空格拆分,以及逗号句号),存入数据库的一个待搜索的字段上。 效果如下图: 本站的其它博文中有介绍IKAnalyzer:https://www.52itw.com/java/6268.html 4.2.2 search分词器 当用户的查询请求打过来,用户输入了“好吃的冰激凌”,分词后得到“好吃|冰激凌”(“的”作为停用词stopwords,被自动忽略了,IKAnalyzer可以指定停用词表)。 于是这时候就回去上图的数据库表里面搜索“好吃 冰激凌”(与index分词器结果统一,还是用空格分隔)。 当然,对于mongo而言,你需要事先开启全文索引db.xxx.ensureIndex({content: "text"}),xxx是集合名,content是字段名,text是全文索引的标识。 mongo搜索的时候用这个语法:db.xxx.find( { $text: { $search: "好吃 冰激凌" } },{ score: { $meta: "textScore" } }).sort( { score: { $meta: "textScore" } } ) 4.2.3 索引库和存储库分开 为了减少单表的大小,为了让普通的列表查询、普通筛选可以跑的更快,你可以对原有的数据原封不动的做一张表。 然后对于搜索场景,再单独对需要被搜索的字段单独拎一张表出来! 然后二者之间做增量信号同步或定时差额同步,可能会有延迟,这个就看你能容忍多长时间(悄悄告诉你,elasticsearch也需要指定这个refresh时间,一般是1s到几秒、甚至分钟级。当然,二者的这个时间对饮的底层目的是不一样的)。 这样,搜索的时候先查询搜索库,拿到一个指针id的列表,然后拿到指针id的列表区存储里把数据一次性捞出来。当然,也是支持分页的,你查询搜索库其实也是普通的数据库查询嘛,支持分页参数的。 4.3 存储库和索引库的延伸阅读 很多有名的开源软件也是使用的存储库与索引库分离的技术方案,如apache atlas: apache atlas对于大数据领域的数据资产元数据管理、数据血缘上可谓是专家,也涉及资产搜索的特性,它的实现思路就是:从搜索库中做搜索、拿到key、再去存储库中做查询。 搜索库:上图右下角,可以看到使用的是elasticsearch、solr或lucene,多个选一个 存储库:上图左下角,可以看到使用的是Cassandra、HBase或BerkeleyDB,多个选一个 虽然apache atlas在只有搜索库或只有存储库的时候也可以很好的工作,但只针对于数据量并不大的场景。 搜索库,擅长搜索!存储库,擅长海量存储!搜索库多样化搜索,然后去存储库做点查。 当你的数据达到海量的时候,es+hbase也是一种很好的解决方案,不在这里展开说明了。
2024-01-27 17:49:04
537
admin-tim
转载文章
...lib是Python编程语言中一个强大的数据可视化库,它能够创建各种静态、动态、交互式的图表,包括直方图、散点图、线图、饼图等。在本文中,作者使用matplotlib来绘制展示721法则的饼状图,直观地呈现了实践、交流与反馈、培训与学习之间的比例关系。 Python全套学习资料 , 这里指的是为了帮助初学者或进阶者更好地掌握Python编程技能而提供的系列学习资源集合,包含了视频教程、实战案例、源代码、课件、面试真题以及电子书籍等多种形式的学习材料。这些资料覆盖了Python入门到高阶的各种知识点,并结合实际应用场景,旨在全方位提升学习者的理论知识和实践经验。文章末尾,作者提供了免费领取这些Python全套学习资料的方式,以支持更多人通过实践来提升Python编程能力。
2023-06-04 23:38:21
105
转载
转载文章
...款开源的计算机系统和网络监控工具,它能够实时监控网络服务(如HTTP、SMTP等)、主机资源(CPU负载、磁盘空间等)以及系统日志,并在检测到问题时通过电子邮件、短信或其他方式及时通知管理员。在本文中,Nagios的灵魂与精华在于其详细的配置文件,通过灵活地编辑和组织这些配置文件,用户可以精确定制监控对象、检查频率、报警策略等关键参数,以满足各种IT环境下的监控需求。 CGI配置文件cgi.cfg , CGI(Common Gateway Interface,通用网关接口)配置文件是Nagios中的一个重要组成部分,它包含了对Nagios web界面模块行为的一系列设置。在本文语境下,cgi.cfg文件用于定义和控制web访问端的各种权限、功能及显示选项,例如允许用户在web界面上执行重启Nagios、停止主机/服务检查等操作,或者根据需要创建不同权限级别的用户账号,仅赋予查看部分服务器或服务状态的权限。 主机组定义文件hostgroups.cfg , 在Nagios中,主机组是一个逻辑概念,用来将具有相同特性和管理要求的一组主机归类在一起。主机组定义文件hostgroups.cfg则是用来描述和管理这些主机组的配置文件。在实际应用中,管理员可以通过此文件方便地将多台服务器按业务功能、地理位置或其他标准划分为主机组,便于在Nagios Web界面进行统一管理和查看整个主机组的状态信息,而不是逐个单独关注单个主机的状态。例如,可以创建一个名为“MySQL主机组”的主机组,将所有运行MySQL数据库服务的服务器加入其中,从而实现对一组特定服务器集中监控和报告。
2023-11-16 20:48:42
483
转载
转载文章
...47.9%。 (三)网络依赖增加,自我提升类活动减少 上网已经成为新生代农民工业余时间的主要休闲活动。新生代农民工业余时间的主要活动排在前三位的依次是:上网、休息和朋友聚会,其中上网占60.1%,比上年同期提高4.7个百分点。 自我提升类活动减少。业余时间参加学习培训、读书看报的新生代农民工占比分别为3.8%和7.6%,比上年同期分别下降2.5个和1.3个百分点。 四、“90后”农民工工作和生活特点 (一)“90后”农民工工作特点 1.“90后”农民工从事行业略有不同 “90后”农民工喜好略有不同,就业人数最多的七个行业依次为:制造业,建筑业,居民服务、修理和其他服务业,信息传输、软件和信息技术服务业,住宿和餐饮业,文化和娱乐服务业,批发和零售业。与新生代农民工群体差距最大的两个行业是信息传输、软件和信息技术服务业,批发和零售业,其中,从事信息传输、软件和信息技术服务业的占11.6%,比新生代农民工群体高3.7个百分点;从事批发和零售业的占5.8%,比新生代农民工群体低6.3个百分点。 2.“90后”农民工收入略高 调查样本中,“90后”农民工月均收入6424元,比新生代农民工群体平均水平高210元。其中,月均收入在5000元及以上的占68.4%,比新生代农民工群体高1.9个百分点。 3.自营人员占比较低 由于年纪尚轻,积累不够,“90后”农民工中的96.3%以受雇就业为主,自营就业人员仅占3.7%,低于新生代农民工群体7.9个百分点。 (二)“90后”农民工生活特点 1.消费支出略低,更偏重于衣着及教育文化娱乐方面 “90后”农民工家庭户均生活消费支出42009元,比新生代农民工群体低386元。其中,衣着及其他日常用品和服务、教育文化娱乐支出占总消费支出的比重分别为14.0%和5.9%,分别比新生代农民工群体高1.9个和1.0个百分点;居住和交通通信费支出占总消费支出的比重分别为23.9%和9.2%,分别比新生代农民工群体低1.8个和1.0个百分点。 2.业余生活更注重休息和自我提升 “90后”农民工业余时间的主要活动排在前三位的依旧是上网、休息和朋友聚会,但与整个新生代农民工群体不同的是,“90后”农民工更注重休息和自我提升,其中,业余时间休息的占34.5%,比新生代农民工群体高5.6个百分点;业余时间参加文娱体育活动、学习培训和读书看报的占27.5%,分别比新生代农民工群体、全部外来农民工整体高5.7个和11.8个百分点。 新生代农民工定义:出生于20世纪80年代以后,年龄在16周岁及以上,在异地以非农就业为主的农业户籍人口 推荐阅读: 世界的真实格局分析,地球人类社会底层运行原理 不是你需要中台,而是一名合格的架构师(附各大厂中台建设PPT) 企业IT技术架构规划方案 论数字化转型——转什么,如何转? 华为干部与人才发展手册(附PPT) 企业10大管理流程图,数字化转型从业者必备! 【中台实践】华为大数据中台架构分享.pdf 华为的数字化转型方法论 华为如何实施数字化转型(附PPT) 超详细280页Docker实战文档!开放下载 华为大数据解决方案(PPT) 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45727359/article/details/119745674。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-28 17:16:54
62
转载
Nacos
... 三、深入排查 网络连接与超时设置 接下来,我开始怀疑是不是网络连接出了问题。毕竟Nacos是基于网络通信的,如果网络不通畅,那自然会导致读取失败。 我先检查了Nacos服务端的日志,发现并没有什么异常。再瞧瞧服务端的那个监听端口,嘿,8848端口不仅开着呢,而且服务还稳稳地在跑着,一点问题没有! “难道是客户端的网络问题?”我心中一动,赶紧查看了服务端的防火墙规则,确认没有阻断任何请求。接着我又尝试ping了一下Nacos服务端的IP地址,结果发现网络连通性很好。 “网络应该没问题啊,那会不会是超时时间设置得太短了?”我灵机一动,想到之前在其他项目中遇到过类似的问题,可能是客户端等待响应的时间太短,导致请求超时。 于是我修改了Nacos客户端的配置,增加了超时时间: java Properties properties = new Properties(); properties.put(PropertyKeyConst.SERVER_ADDR, "localhost:8848"); properties.put(PropertyKeyConst.CONNECT_TIMEOUT_MS, "5000"); // 增加到5秒 NacosConfigService configService = NacosFactory.createConfigService(properties); 重新启动服务后,问题依然存在。看来超时时间也不是主要原因。 “真是搞不懂啊,难道是Nacos本身的问题?”我有些泄气,但还是决定继续深挖下去。 --- 四、终极排查 代码逻辑与异常处理 最后,我决定从代码逻辑入手,看看是不是程序内部的某些逻辑出了问题。于是我打开了Nacos客户端的源码,开始逐行分析。 在Nacos客户端的实现中,有一个方法是用来获取配置的: java String content = configService.getConfig(dataId, group, timeoutMs); 我仔细检查了这个方法的调用点,发现它是在服务启动时被调用的。你瞧,服务一启动呢,就会加载一堆东西,像数据库连接池啦,缓存配置啦,各种各样的“装备”都得准备好,这样它才能顺利开工干活呀! “会不会是某个配置项的加载顺序影响了Nacos的读取?”我突然想到这一点。我琢磨着这事儿,干脆把所有的配置加载顺序仔仔细细捋了一遍,就为了确保Nacos的配置能在服务刚启动的时候就给安排上,别拖到后面出了幺蛾子。 同时,我还加强了异常处理逻辑,给Nacos的读取操作加上了try-catch块,以便捕获具体的异常信息: java try { String content = configService.getConfig(dataId, group, timeoutMs); System.out.println("Config loaded successfully: " + content); } catch (NacosException e) { System.err.println("Failed to load config: " + e.getMessage()); } 经过一番调整后,我再次启动服务,终于看到了一条令人振奋的消息:“Config loaded successfully”。 “太好了!”我长舒一口气,“原来问题就出在这里啊。” --- 五、总结与感悟 经过这次折腾,我对Nacos有了更深的理解。Nacos这东西确实挺牛的,是个超棒的配置管理工具,但用着用着你会发现,它也不是完美无缺的,各种小问题啊、坑啊,时不时就冒出来折腾你一下。其实吧,这些问题真不一定是Nacos自己惹的祸,八成是咱们的代码写得有点问题,或者是环境配错了,带偏了Nacos。 “其实啊,调试的过程就像侦探破案一样,需要耐心和细心。我坐在电脑前忍不住感慨:“哎,有时候觉得这问题看起来平平无奇的,可谁知道背后可能藏着啥惊天大秘密呢!”” 总之,这次经历让我明白了一个道理:遇到问题不要慌,要冷静分析,逐步排查。只有这样,才能找到问题的根本原因,解决问题。希望我的经验能对大家有所帮助,如果有类似的问题,不妨按照这个思路试试看!
2025-04-06 15:56:57
67
清风徐来
.net
... 最后,我想说的是,编程不仅仅是解决问题的过程,更是一个不断学习和成长的过程。希望大家能够在实践中找到乐趣,享受每一次成功的喜悦! 好了,今天的分享就到这里啦,如果你有任何疑问或者想法,欢迎随时留言交流哦!😄
2025-05-07 15:53:50
40
夜色朦胧
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
ln -sfn source_file link_name
- 创建指向源文件的软链接(如果存在同名链接,则替换)。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"