前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[onInterceptTouchEven...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Superset
...数据的更新和可用性与事件发生的时间之间的关系。高实时性意味着数据能够及时反映最新的状态或变化,这对于需要快速响应的业务环境尤其重要。 SQL查询优化策略 , 是指一系列技术和方法,旨在提高SQL查询的执行效率,减少查询时间,优化资源使用。这包括但不限于使用索引、避免全表扫描、优化查询结构、批量处理等策略,以确保数据查询在处理大量数据时保持高效。 缓存优化指南 , 是针对缓存机制的一系列策略和实践,旨在提高数据访问速度和减少延迟。缓存通过存储经常访问的数据副本,使得数据可以在本地快速获取,而不是每次都从原始数据源加载。有效的缓存策略需要考虑缓存的大小、过期策略、数据一致性维护等多方面因素。 自动化脚本构建 , 指的是使用编程语言(如Python、Shell脚本等)编写自动执行任务的脚本。在数据管理和分析场景中,自动化脚本可以用于执行定期的数据验证、数据更新、错误检测和修复等任务,提高工作效率和减少人为错误。 分页查询最佳实践 , 是指在处理大型数据集时,使用分页查询技术的一种优化策略。分页查询允许系统一次只加载一部分数据,从而减少内存使用和加载时间,提高查询性能。这种策略在数据量大、需要频繁查询的场景下特别有用。 云计算和边缘计算技术 , 云计算指的是通过互联网提供可扩展的计算资源和服务,用户无需直接管理硬件基础设施。边缘计算则是在数据产生源附近处理数据,减少数据传输延迟,提高响应速度和效率。两者都对实时数据分析和处理有重要作用,能够帮助企业更快速、更有效地利用数据。 智能化水平 , 指的是通过自动化、机器学习、人工智能等技术提高系统或过程的自主性和效率的能力。在数据管理和分析领域,智能化水平的提升可以帮助企业自动化重复性工作、预测趋势、优化决策,从而提高整体运营效率和竞争力。
2024-08-21 16:16:57
110
青春印记
Java
...起来简单吧?但是它的作用可不小哦!现在我们可以用它来生成一系列素数了。 --- 三、拆分数字 递归的力量 接下来,我们的目标是找到所有可能的组合方式,让这些素数组合起来等于给定的目标数字。这里我们可以用递归来解决这个问题。递归的核心思想就是把大问题分解成小问题,然后逐步解决。 假设我们要把数字10拆成素数的和,我们可以从最小的素数2开始尝试,看看能不能凑出来。如果不行,就换下一个素数继续尝试。这样一步步往下走,直到找到所有可能的组合。 下面是一段Java代码示例: java import java.util.ArrayList; public class PrimeSum { public static void main(String[] args) { int target = 10; ArrayList primes = new ArrayList<>(); for (int i = 2; i <= target; i++) { if (isPrime(i)) { primes.add(i); } } findPrimeSums(target, primes, new ArrayList<>()); } public static boolean isPrime(int num) { if (num <= 1) return false; for (int i = 2; i i <= num; i++) { if (num % i == 0) { return false; } } return true; } public static void findPrimeSums(int remaining, ArrayList primes, ArrayList currentCombination) { if (remaining == 0) { System.out.println(currentCombination); return; } for (Integer prime : primes) { if (prime > remaining) break; currentCombination.add(prime); findPrimeSums(remaining - prime, primes, currentCombination); currentCombination.remove(currentCombination.size() - 1); } } } 这段代码里,findPrimeSums方法就是一个递归函数。这玩意儿呢,要收三个东西当输入:一个是剩下的数字,一个是所有的素数小弟们列好队等着用,还有一个是咱们现在正在拼凑的那个组合。当剩余数字为0时,我们就找到了一组有效的组合。 --- 四、结果展示 数字的无限可能性 运行上面的代码后,你会看到类似如下的输出: [2, 2, 2, 2, 2] [2, 2, 2, 3, 1] [2, 2, 3, 3] [2, 3, 5] [3, 7] 哇哦!原来10可以有这么多不同的拆分方式呢!每一组都是由素数组成的,并且它们的和正好等于10。 在这个过程中,我一直在想,为什么会有这么多种可能性呢?是不是因为素数本身就具有某种特殊的规律?还是说这只是数学世界中的一种巧合? 不管怎样,我觉得这种探索的过程真的很迷人。每一次运行程序,都像是在打开一个新的宝藏箱,里面装满了未知的答案。 --- 五、总结与展望 好了朋友们,今天的旅程到这里就要结束了。我们不仅学会了如何用Java找到素数,还掌握了如何用递归的方法拆分数字。虽然过程有点复杂,但每一步都很值得回味。 未来,如果你对这个问题感兴趣,不妨尝试优化代码,或者挑战更大的数字。也许你会发现更多有趣的规律呢! 最后,希望大家都能喜欢编程带来的乐趣。记住,学习编程就像学习一门新的语言,多实践、多思考,总有一天你会说得非常流利!再见啦,下次见!
2025-03-17 15:54:40
61
林中小径
Kafka
...多金融机构首选的消息传递平台。最近,一家国际知名银行宣布将其核心交易系统迁移到基于Kafka构建的流处理平台上,以实现更高的系统可用性和更低的延迟,这标志着Kafka在金融领域的应用又迈上了新台阶。 此外,Kafka在物联网(IoT)领域的应用也日益广泛。随着5G网络的普及,物联网设备产生的数据量呈指数级增长。如何高效地收集、存储和处理这些海量数据成为了一个亟待解决的问题。Kafka以其卓越的吞吐能力和灵活的数据复制策略,成功应对了这一挑战。最近的一项研究显示,通过采用Kafka,某大型物联网解决方案提供商不仅大幅降低了数据处理延迟,还提高了系统的整体稳定性,为企业带来了显著的经济效益。 与此同时,学术界也在持续关注Kafka技术的发展。最新一期的《计算机通信》杂志发表了一篇关于Kafka数据复制策略优化的研究论文,提出了一种基于机器学习的智能调度算法,旨在进一步提升Kafka集群的性能和可靠性。该算法通过对历史数据的学习,能够预测未来数据流量的变化趋势,并据此动态调整各副本间的同步频率,从而在保证数据一致性的同时,最大限度地减少资源消耗。这一研究成果为Kafka的未来发展提供了新的思路和方向。 综上所述,无论是金融行业还是物联网领域,Kafka凭借其独特的技术和不断优化的性能,正逐渐成为各行业数据处理的首选平台。未来,随着更多创新技术的应用,Kafka有望在更多场景下发挥更大的作用。
2024-10-19 16:26:57
56
诗和远方
转载文章
...ven X :所关心事件 Y :条件(观察到的,已发生的事件),conditional 条件概率的计算 仍然从样本空间(sample space)的角度出发。此时我们需要定义新的样本空间(给定条件之下的样本空间)。所以,所谓条件(conditional),本质是对样本空间的进一步收缩,或者叫求其子空间。 比如一个人答题,有A,B,C,D 四个选项,在答题者对题目一无所知的情况下,他答对的概率自然就是 14 ,而是如果具备一定的知识,排除了 A,C 两个错误选项,此时他答对的概率简单计算就增加到了 12 。 本质是样本空间从S={A,B,C,D} ,变为了S′={B,D} 。 新样本空间下P(A|排除A/C)=0,P(C|排除A/C)=0 ,归纳出来,也即某实验结果(outcome,oi )与某条件Y 不相交,则: P(oi|Y)=0 最后我们得到条件概率的计算公式: P(oi|Y)=P(oi)P(o1)+P(o2)+⋯+P(on)=P(oi)P(Y)Y={o1,o2,…,on} 考虑某事件X={o1,o2,q1,q2} ,已知条件Y={o1,o2,o3} 发生了,则: P(X|Y)=P(o1|Y)+P(o2|Y)+0+0=P(o1)P(Y)+P(o2)P(Y)=P(X∩Y)P(Y) 条件概率与贝叶斯公式 条件概率: P(X|Y)=P(X∩Y)P(Y) 贝叶斯公式: P(X|Y)=P(X)P(Y|X)P(Y) 其实是可从条件概率推导贝叶斯公式的: P(A|B)=P(B|A)=P(A|B)P(B)===P(B|A)=P(A∩B)P(B)P(A∩B)P(A)P(A∩B)P(B)P(B)P(A∩B)P(A)P(B|A)P(A|B)P(B)P(A) 证明:P(B,p|D)=P(B|p,D)P(p|D) P(B,p|D)====P(B,p,D)P(D)P(B|p,D)P(p,D)P(D)P(B|p,D)P(p,D)P(D)P(B|p,D)P(p|D) References [1] 概率质量函数 本篇文章为转载内容。原文链接:https://blog.csdn.net/lanchunhui/article/details/49799405。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-02-26 12:45:04
517
转载
转载文章
...钮绑定click点击事件,绑定函数2.在函数中,进行表单校验(非空校验、 合法性校验等)3.如果校验通过,则手动提交表单表单对象.submit();二、使用提交按钮type="submit"1.给按钮绑定click点击事件,绑定函数2.函数需要有返回值,返回true或false (如果return false, 则表单不会提交:如果return true,则提交表单)onclick="return 函数名()"3.在函数中,进行表单校验(非空校验、 合法性校验等)4.如果校验通过,返回true;如果校验不通过,则返回false, 则表单不会提交:如果return true,则提交表单)三、使用提交按钮type="submit"1.给表单form元素绑定submit提交事件,绑定函数2.函数需要有返回值,返回true或false (如果return false, 则表单不会提交;如果return trueonsubmit="return函数名()" 3.在函数中,进行表单校验(非空校验、 合法性校验等)4.如果校验通过,返回true;如果校验不通过,则返回false <!--使用普逍按钮 type= "button"--><form id= 'myform' name= "myform" action="http://www.baidu.com" method="get" >姓名: <input name= "uname" id="uname"/> <span id = "msg" style="font-s1ze: 12px; color: red;"></span><br /><button type="button" onclick="submitForm1()">提交</button></form><!--使用提交按钮 type= "submit"--><form id= 'myform2' name= "myform2" action="http://www.baidu.com" method="get" >姓名: <input name= "uname2" id="uname2"/> <span id = "msg2" style="font-s1ze: 12px; color: red;"></span><br /><button type="submit" onclick="return submitForm2()">提交</button></form><!--使用提交按钮 type= "submit"--><form id= 'myform3' name= "myform3" action="http://www.baidu.com" method="get" onsubmit="return submitForm3()">姓名: <input name= "uname3" id="uname3"/> <span id = "msg3" style="font-s1ze: 12px; color: red;"></span><br /><button type="submit">提交</button></form><script type="text/javascript">// 表单校验// 提交表单function submitForm1() {//得到文本框的值var uname = document.getElementById("uname").value;//判断是否为空if (isEmpty(uname)) { //为空//设置提示信息(设置span元素的值)document.getElementById("msg").innerHTML="性名不能为空!" ;//阻止表单提交return;}//手动提交表单document.getElementById("myform").submit(); }function submitForm2() {//得到文本框的值var uname2 = document.getElementById("uname2").value;//判断是否为空if (isEmpty(uname2)) { //为空//设置提示信息(设置span元素的值)document.getElementById("msg2").innerHTML="性名不能为空!" ;//阻止表单提交return false;}return true;}function submitForm3() {//得到文本框的值var uname3 = document.getElementById("uname3").value;//判断是否为空if (isEmpty(uname3)) { //为空//设置提示信息(设置span元素的值)document.getElementById("msg3").innerHTML="性名不能为空!" ;//阻止表单提交return false;}return true;}/ 判断字符串是否为空如果为空,返回true如果非空,返回falsetrim() :字符串方法, 去除字符串前后空格@param {Object} str/function isEmpty(str) {//判断是否为空if (str == null || str.trim() == "") {return true;}return false;}</script> 运行效果截图: 四、原生Ajax实现流程 <!-- Ajax 异步无刷新技术原生Ajax的实现流程1.得到XMLHttpRequest对象var xhr = new XMLHttpRequest();2.打开请求xhr.open(method, uri, async) ;method:请求方式,通常是GEI|POSTurl:请求地址async:是否异步。如果是true表示异步,false表示同步3.发送请求xhr.send(params);params:请求时需要传递的参数如果是GET请求,设置nu11。 (GET请求的参数设置在url后面)如果是POST请求,无参数设置为null,有参数则设置参数4.接收响应xhr.status响应状态(200=响应成功, 404=资源末找到,500=服务器异常)xhr.responseText 得到响应结果 --> <script type="text/javascript">// 同步请求function text01() {// 1.得到XMLHttpRequest对象var xhr = new XMLHttpRequest();// 2.打开请求xhr.open("get", "js/date.json", false);// 3.发送请求xhr.send(null);// 4.判断响应状态if (xhr.status == 200) {console.log("响应成功");} else {console.log("状态码:" + xhr.status + ",原因:" + xhr.responseText)}console.log("同步请求...");}text01();// 异步请求function text02() {// 1.得到XMLHttpRequest对象var xhr = new XMLHttpRequest();// 2.打开请求xhr.open("get", "js/date.json", true);// 3.发送请求xhr.send(null);// 由于是异步请求,所以需要知道后台已经将请求处理完毕,才能获取响应结果// 遇过监听readyState的变化来得知后面的处理状态 4=完全处理xhr.onreadystatechange = function(){if(xhr.readyState == 4){// 4.判断响应状态if (xhr.status == 200) {// 得到响应结果 console.log(xhr.responseText);} else {console.log("状态码:" + xhr.status + ",原因:" + xhr.responseText)} }}console.log("异步请求...");}text02();</script> 运行效果截图: 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_61507413/article/details/122895643。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-22 17:32:41
521
转载
Material UI
...到 Props 传递出问题,那简直能让人抓狂到想砸键盘!你懂我的意思吧?就像是在迷宫里找出口,明明知道方向,却总是在转弯处卡住,就是找不到那条直通目的地的路。这就是 Props 错误带给我们的小麻烦,但别担心,多练练,多看看教程,慢慢就都能搞定了!嘿,小伙伴们!今天咱们得好好聊一聊这个话题了,不是走个过场,而是要深入挖掘,彻底理解。而且呢,为了让大家能更好地get到点子,我们还准备了几个实例案例,就像是生活中的小故事一样,让你在轻松愉快中掌握关键点。所以,准备好小本本和小脑袋瓜,咱们一起探索吧! 问题描述:Props传播错误的源头 在Material UI中,Props的传播通常遵循其组件树结构进行。哎呀,有时候编程的时候,开发者可能会碰到一个挺头疼的问题。就是明明自己在父组件里传了个参数过去,结果到子组件那,参数怎么就不按自己的预期来显示或者用上了呢?这事儿可真让人抓狂!就像是你精心准备的礼物,结果到了朋友手里,他们却不知道怎么打开,或者完全没发现一样。得好好检查一下,看看是哪儿出了差错,是不是哪里代码没写对,或者是逻辑有点小bug,得把这些问题一个个揪出来解决才行。这通常涉及到了几个关键因素: - 默认值冲突:当组件的默认属性与传入的Props发生冲突时,可能导致某些属性未被应用。 - 属性覆盖:在嵌套组件中,如果直接覆盖了父组件的属性,可能会影响到Props的传播。 - React生命周期方法:在某些生命周期方法内处理Props,可能会影响其后续传播。 实例一:默认值冲突导致的传播问题 假设我们有一个Button组件,它有一个默认的color属性为primary: jsx import React from 'react'; import Button from '@material-ui/core/Button'; const MyComponent = () => { return ( Secondary Button ); }; export default MyComponent; 如果我们在渲染MyComponent时,直接传入了一个color属性,那么这个属性将覆盖掉Button组件的默认color属性: jsx 此时,按钮将显示为默认的primary颜色,而不是预期的secondary颜色。这是因为Props的覆盖关系导致了默认值的丢失。 解决方案:避免覆盖默认值 要解决这个问题,确保传入的Props不会覆盖组件的默认属性。可以采用以下策略: - 使用对象解构:在函数组件中,通过对象解构来明确指定需要覆盖的属性,其他默认属性保持不变。 jsx const MyComponent = ({ color }) => { return ( Custom Color Button ); }; 实例二:属性覆盖与正确传播 现在,我们定义一个包含color属性的MyComponent函数组件,并尝试通过传入不同的参数来观察Props的正确传播: jsx const MyComponent = ({ color }) => { return ( {color} Button ); }; 在这里,我们可以清晰地看到,无论传入secondary还是primary作为color值,按钮都正确地显示了所选颜色,因为我们在MyComponent中明确地控制了color属性的值,从而避免了默认值的覆盖问题。 总结与建议 在使用Material UI时,确保对Props的管理足够细致是关键。为了避免那些让人头疼的默认值冲突,咱们得好好规划一下控件属性怎么传递。就像是给家里的水管线路做个清晰的指引图,确保每一滴水都流向该去的地方,而不是乱窜。这样一来,咱就能大大降低出错的概率,让程序运行得更顺畅,用户体验也更好。哎呀,用React的时候啊,记得好好管理Props这玩意儿!别让它乱跑,要不然后面可就一团糟了。每次组件活蹦乱跳的生命周期里,都得仔细盯着Props,确保它们乖乖听话,既不逃也不躲,一直稳稳当当地在你掌控之中。这样,你的代码才不会像无头苍蝇一样乱撞,保持清爽整洁,运行起来也顺畅多了! 结语:从困惑到掌握 面对Props传播的问题,通过实践和理解背后的工作原理,我们能够逐步克服挑战,提升在Material UI项目中的开发效率和质量。记住,每一次调试和解决问题的过程都是学习和成长的机会。在未来的开发旅程中,相信你会更加熟练地驾驭Material UI,创造出更多令人惊艳的应用。
2024-09-28 15:51:28
101
岁月静好
ActiveMQ
...系统中实现高效的消息传递和处理。在文章中,ActiveMQ被提及作为多语言环境下的消息中间件,能够支持多种编程语言的集成,提供可靠、高性能的消息传递服务。 微服务架构 , 是一种软件架构风格,强调将大型应用分解为一组小的、独立可部署的服务,每个服务专注于完成一项特定的业务功能。在文章中,提到ActiveMQ在微服务架构中的角色,表明其在构建和管理复杂、分布式系统时的重要作用,尤其是在多语言环境下,能够促进不同服务间的高效通信。
2024-10-09 16:20:47
65
素颜如水
ZooKeeper
...保证等方面发挥着关键作用。其实,ZooKeeper的成功绝不是天上掉馅饼的事儿,它的设计理念里头藏着不少既巧妙又接地气的“小秘密”,正是这些实实在在的原则,像支柱一样撑起了一个无比强大的分布式协作系统。接下来,我们将深入剖析ZooKeeper的设计原则,并结合实际代码示例进行解读。 二、ZooKeeper 设计原则概览 1. 顺序一致性 (Linearizability) - 理解:ZooKeeper保证所有的更新操作遵循严格的顺序性,即看起来就像在单个进程上执行一样,这对于分布式环境下的事务处理至关重要。这意味着无论网络延迟如何变化,客户端收到的数据总是按照创建或者更新的顺序排列。 - 代码示例: java // 创建节点 Stat createdStat = zk.create("/my/znode", "initial data".getBytes(), Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT); // 更新节点 byte[] updatedData = "updated content".getBytes(); zk.setData("/my/znode", updatedData, -1); - 思考:如果两个客户端同时尝试创建同一个路径的节点,ZooKeeper会确保先创建的请求成功返回,后续的请求则等待并获得正确的顺序响应。 2. 最终一致性 (Eventual Consistency) - 理解:虽然ZooKeeper提供强一致性,但在高可用场景下,为了容忍临时网络分区和部分节点故障,它采用了一种最终一致性模型。客户端不会傻傻地卡在等待一个还没完成的更新上,而是能够继续干自己的活儿。等到网络恢复了,或者那个闹别扭的节点修好了,ZooKeeper这个小管家就会出马,保证所有客户端都能看到一模一样的最终结果,没得商量! - 代码示例: 当一个客户端尝试更新一个已有的zNode,ZooKeeper会为此次更新生成一个事务zxid(Transaction ID)。即使中途网络突然抽风一下断开了,别担心,一旦网络重新连上,客户端就会收到一条带着新zxid的更新消息,这就表示这个事务已经妥妥地完成提交啦! java try { zk.exists("/my/znode", false); // check if zNode exists zk.setData("/my/znode", updatedData, -1); // update data with new transaction id } catch ( KeeperException.NoNodeException e) { System.out.println("ZNode doesn't exist yet"); } 3. 可观察性 (Observability) - 理解:ZooKeeper设计的核心在于使客户端能够感知服务器状态的变化,它通过Watcher监听机制让客户端在节点发生创建、删除、数据变更等事件后得到通知,从而保持客户端与ZooKeeper集群的同步。 - 代码示例: java // 注册一个节点变更的监听器 Watcher watcher = new Watcher() { @Override public void process(WatchedEvent event) { switch (event.getType()) { case NodeDeleted: System.out.println("ZNode deleted: " + event.getPath()); break; case NodeCreated: System.out.println("New ZNode created: " + event.getPath()); break; // ... other cases for updated or child events } }; }; zk.getData("/my/znode", false, watcher); 三、ZooKeeper设计原则的实际应用与影响 综上所述,顺序一致性提供了数据操作的可靠性,最终一致性则兼顾了系统的容错性和可扩展性,而可观测性则是ZooKeeper支持分布式协调的关键特征。这三大原则,不仅在很大程度上决定了ZooKeeper自身的行为习惯和整体架构,还实实在在地重塑了我们开发分布式应用的方式。比如说,在搭建分布式锁、配置中心或者进行分布式服务注册与发现这些常见应用场景时,开发者能够直接借用ZooKeeper提供的API和设计思路,轻而易举地打造出高效又稳定的解决方案,就像是在玩乐高积木一样,把不同的模块拼接起来,构建出强大的系统。 结论 随着云计算时代的到来,大规模分布式系统对于一致性和可靠性的需求愈发凸显,ZooKeeper正是在这个背景下诞生并不断演进的一颗璀璨明星。真正摸透并灵活运用ZooKeeper的设计精髓,那咱们就仿佛掌握了在分布式世界里驰骋的秘诀,能够随心所欲地打造出既稳如磐石又性能超群的分布式应用。
2024-02-15 10:59:33
31
人生如戏-t
转载文章
...复等多个领域发挥更大作用。而持续跟进最新的研究成果和技术动态,将有助于我们更好地掌握这一前沿技术,推动其实现更广泛的实际应用价值。
2023-06-13 14:44:26
128
转载
RabbitMQ
...我们在不同的地方之间传递信息,而且还是在不打扰我们的情况下悄悄进行的那种。不仅如此,它们还能把大家手头的任务平均分配给每个人,就像是食堂里的阿姨,总能把饭分得均匀,让大家都能吃饱。还有,它们还能把重要的信息记录下来,就像我们小时候写日记一样,重要的事情不会忘记。所以,有了它们,我们的工作和生活就变得更加高效和有序了!哎呀,你知道那款叫RabbitMQ的消息中间件吗?这家伙在咱们开发者圈里可火得不得了,简直就是个消息传递的神器!为啥呢?因为它不仅成熟稳定,功能还贼强大,各种特性多到数不清,简直就是咱们搞技术的小伙伴们的最爱!用它来处理消息,那叫一个顺畅,效率杠杠的,怪不得这么多人对它情有独钟呢!本文旨在深入探讨如何在RabbitMQ中实现消息的重新入队机制,这是一个关键的功能,对于处理异常场景、优化系统性能至关重要。 第一部分:理解消息重新入队的基本概念 消息重新入队,简单来说,就是当消费者无法处理消息或者消息处理失败时,RabbitMQ自动将消息重新放入队列的过程。哎呀,这个机制就像是系统的超级救生员,专门负责不让任何消息失踪,还有一套超级厉害的技能,能在系统出状况的时候及时出手,让它重新变得稳稳当当的。就像你出门忘了带钥匙,但有备用钥匙在手,就能轻松解决问题一样,这个机制就是系统的那个备用钥匙,关键时刻能救大急! 第二部分:消息重新入队的关键因素 - 消息持久化:消息是否持久化决定了消息在RabbitMQ服务器重启后是否能继续存在。启用持久化(basic.publish()方法中的mandatory参数设置为true)是实现消息重新入队的基础。 - 确认机制:通过配置confirm.select,可以确保消息被正确地投递到队列中。这有助于检测消息投递失败的情况,从而触发重新入队流程。 - 死信交换:当消息经过一系列处理后仍不符合接收条件时,可能会被转移到死信队列中。合理配置死信策略,可以避免死信积累,确保消息正常流转。 第三部分:实现消息重新入队的步骤 步骤一:配置持久化 在RabbitMQ中,确保消息持久化是实现重新入队的第一步。通过生产者代码添加持久化标志: python import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='my_queue', durable=True) message = "Hello, RabbitMQ!" channel.basic_publish(exchange='', routing_key='my_queue', body=message, properties=pika.BasicProperties(delivery_mode=2)) 设置消息持久化 connection.close() 步骤二:使用确认机制 通过confirm.select来监听消息确认状态,确保消息成功到达队列: python def on_delivery_confirmation(method_frame): if method_frame.method.delivery_tag in sent_messages: print(f"Message {method_frame.method.delivery_tag} was successfully delivered") else: print("Failed to deliver message") sent_messages = [] connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.confirm_delivery() channel.basic_consume(queue='my_queue', on_message_callback=callback, auto_ack=False) channel.start_consuming() 步骤三:处理异常与重新入队 在消费端,通过捕获异常并重新发送消息到队列来实现重新入队: python import pika def callback(ch, method, properties, body): try: process_message(body) except Exception as e: print(f"Error processing message: {e}") ch.basic_nack(delivery_tag=method.delivery_tag, requeue=True) def process_message(message): 处理逻辑... pass connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='my_queue') channel.basic_qos(prefetch_count=1) channel.basic_consume(queue='my_queue', on_message_callback=callback) channel.start_consuming() 第四部分:实践与优化 在实际应用中,合理设计队列的命名空间、消息TTL、死信策略等,可以显著提升系统的健壮性和性能。此外,监控系统状态、定期清理死信队列也是维护系统健康的重要措施。 结语 消息重新入队是RabbitMQ提供的一种强大功能,它不仅增强了系统的容错能力,还为开发者提供了灵活的错误处理机制。通过上述步骤的学习和实践,相信你已经对如何在RabbitMQ中实现消息重新入队有了更深入的理解。嘿,兄弟!听我一句,你得明白,做事情可不能马虎。每一个小步骤,每一个细节,都像是你在拼图时放的一块小片儿,这块儿放对了,整幅画才好看。所以啊,在你搞设计或者实现方案的时候,千万要细心点儿,谨慎点儿,别急躁,慢慢来,细节决定成败你知道不?这样出来的成果,才能经得起推敲,让人满意!愿你在构建分布式系统时,能够充分利用RabbitMQ的强大功能,打造出更加稳定、高效的应用。
2024-08-01 15:44:54
179
素颜如水
Cassandra
...处理能力,降低了异常事件的发生概率,保障了用户的购物体验和系统的稳定运行。 结论与展望 随着技术的不断演进,分布式数据库系统在应对海量数据处理方面的挑战也将得到更多解决之道。未来,通过结合人工智能、机器学习等先进技术,进一步优化资源分配、预测和预防系统异常,将有望实现更加智能、高效的数据管理和存储。同时,持续的技术创新和社区合作将为分布式数据库系统的发展注入新的活力,推动其在更广泛的领域内发挥重要作用。 总之,“CommitLogTooManySnapshotsInProgressException”问题不仅是Cassandra面临的挑战,也是分布式系统发展过程中共同的课题。通过技术创新、优化实践和社区协作,我们可以期待未来更加高效、可靠的数据管理与存储解决方案的出现。
2024-09-27 16:14:44
124
蝶舞花间
HessianRPC
...受坏人侵扰上能起多大作用,以及它一出手,咱们的安全策略会有多大的变化。是不是感觉更接地气了? 二、HessianRPC的安全考量 在评估HessianRPC的安全性时,我们首先需要了解其基础设计和潜在的风险点。Hessian RPC这个东西,就像是个超级快递员,它能把各种复杂难懂的数据结构,比如大包小包的货物,都转化成容易邮寄的格式。这样一来,信息传递的速度大大提升了,但这也带来了一个问题——得保证这些包裹在运输过程中不被拆开或者丢失,还得防止别人偷看里面的东西。这就需要我们好好设计一套系统,确保数据的安全和完整性,就像给每个包裹贴上专属标签和密码一样。例如,恶意用户可以通过构造特定的输入数据来触发异常或执行未授权操作。 三、服务级别的自动化安全检测 服务级别的自动化安全检测旨在通过自动化工具和策略,定期对服务进行安全评估,从而及时发现并修复潜在的安全漏洞。对于HessianRPC而言,实现这一目标的关键在于: - 输入验证:确保所有传入的Hessian对象都经过严格的类型检查和边界值检查,防止任意构造的输入导致的错误行为。 - 异常处理:合理设置异常处理机制,确保异常信息不会泄露敏感信息,并提供足够的日志记录,以便后续分析和审计。 - 权限控制:通过API层面的权限校验,确保只有被授权的客户端能够调用特定的服务方法。 四、HessianRPC实例代码示例 下面是一个简单的HessianRPC服务端实现,用于展示如何在服务层实现基本的安全措施: java import org.apache.hessian.io.HessianInput; import org.apache.hessian.io.HessianOutput; import org.apache.hessian.message.MessageFactory; public class SimpleService { public String echo(String message) throws Exception { // 基本的输入验证 if (message == null || message.isEmpty()) { throw new IllegalArgumentException("Message cannot be null or empty"); } return message; } public void run() { try (ServerFactory sf = ServerFactory.createServerFactory(8080)) { sf.addService(new SimpleServiceImpl()); sf.start(); } catch (Exception e) { e.printStackTrace(); } } } class SimpleServiceImpl implements SimpleService { @Override public String echo(String message) { return "Echo: " + message; } } 这段代码展示了如何通过简单的异常处理和输入验证来增强服务的安全性。尽管这是一个简化的示例,但它为理解如何在实际应用中集成安全措施提供了基础。 五、结论与展望 HessianRPC虽然在自动化安全检测方面存在一定的支持,但其核心依赖于开发者对安全实践的深入理解和实施。通过采用现代的编程模式、遵循最佳实践、利用现有的安全工具和技术,开发者可以显著提升HessianRPC服务的安全性。哎呀,未来啊,软件工程的那些事儿和安全技术就像开挂了一样突飞猛进。想象一下,HessianRPC这些好东西,还有它的好伙伴们,它们会变得超级厉害,能自动帮我们检查代码有没有啥安全隐患,就像个超级安全小卫士。这样一来,咱们开发分布式系统的时候,就不用那么担心安全问题了,可以更轻松地搞出既安全又高效的系统,爽歪歪! --- 通过上述内容,我们不仅深入探讨了HessianRPC在自动化安全检测方面的支持情况,还通过具体的代码示例展示了如何在实践中应用这些安全措施。嘿,小伙伴们!这篇小文的目的是要咱们一起嗨起来,共同关注分布式系统的安全性。咱们得动动脑筋,别让那些不怀好意的小家伙有机可乘。怎么样,是不是觉得有点热血沸腾?咱们要团结起来,探索更多新鲜有趣的安全策略和技术,让我们的代码更安全,世界更美好!一起加油吧,开发者们!
2024-09-08 16:12:35
102
岁月静好
Beego
...引发了广泛关注。这一事件再次提醒我们,即使是最先进的技术框架,如Beego,也需要在权限管理上投入足够的关注和资源。 从技术角度看,该电商平台可能未能充分运用RBAC和JWT等成熟的技术手段,导致用户数据保护措施存在漏洞。RBAC能够有效简化权限管理,减少人为错误,而JWT则能在无状态认证中提供更高的安全性和便利性。此外,中间件的合理使用可以进一步提升系统的安全性和可维护性。 值得注意的是,除了技术层面,企业文化和内部流程也是保障系统安全的关键因素。定期进行安全审计、员工培训以及持续的安全意识提升活动,对于构建全方位的安全防护体系至关重要。正如网络安全专家指出的那样:“技术固然重要,但人的因素往往起着决定性作用。” 另外,一些前沿的研究也表明,未来的权限管理系统将更加注重自动化和智能化,例如利用机器学习算法自动识别异常行为,提前预警潜在的安全威胁。这不仅提高了系统的响应速度,还降低了人为干预的复杂度。 总之,无论是对于企业还是开发者而言,强化用户权限管理不仅是一项技术任务,更是一场关乎企业信誉和用户信任的战略行动。希望这篇文章能够为企业和个人提供有价值的参考,共同构建更加安全可靠的网络环境。
2024-10-31 16:13:08
166
初心未变
Redis
...实现队列、栈或者保存事件历史记录。列表的特性使其在处理序列化数据或消息队列时非常有用。 代码示例: bash 向列表尾部添加元素 redis-cli rpush messages "Hello" redis-cli rpush messages "World" 从列表头部弹出元素 redis-cli lpop messages 查看列表中的元素 redis-cli lrange messages 0 -1 移除列表中的指定元素 redis-cli lrem messages "World" 1 思考过程: 列表的动态性质使得它们成为处理实时数据流的理想选择。比如说,在咱们常用的聊天软件里头,新来的消息就像新鲜出炉的面包一样,被放到了面包篮的最底下,而那些老掉牙的消息就给挤到一边去了,这样做的目的就是为了保证咱们聊天界面能一直保持最新鲜、最实时的状态。就像是在超市里,你每次买完东西,最前面的架子上总是最新的商品,那些旧货就被推到后面去一样。 4. 集合(Sets) 集合是无序、不重复的元素集合,适合用于存储唯一项或进行元素计数。Redis的集合操作既高效又安全,是实现去重、投票系统或用户兴趣聚合的理想选择。 代码示例: bash 向集合添加元素 redis-cli sadd users alice bob charlie 检查元素是否在集合中 redis-cli sismember users alice 移除集合中的元素 redis-cli srem users bob 计算集合的大小 redis-cli scard users 思考过程: 集合的唯一性保证了数据的纯净度,同时其高效的操作速度使其成为处理大量用户交互数据的首选。在投票系统中,用户的选择会被自动去重,确保了统计的准确性。 结语 Redis提供的这些数据结构,无论是单独使用还是结合使用,都能极大地提升应用的性能和灵活性。通过上述代码示例和思考过程的展示,我们可以看到,Redis不仅仅是一个简单的键值存储系统,而是内存世界中的一把万能钥匙,帮助我们解决各种复杂问题。哎呀,不管你是想捣鼓个能秒回消息的聊天软件,还是想要打造个能精准推荐的神器,亦或是设计一套复杂到让人头大的分布式计算平台,Redis这货简直就是你的秘密武器啊!它就像个全能的魔法师,能搞定各种棘手的问题,让你在编程的路上顺风顺水,轻松应对各种挑战。在未来的开发旅程中,掌握这些数据结构的使用技巧,将使你能够更加游刃有余地应对各种挑战。
2024-08-20 16:11:43
98
百转千回
转载文章
...符串作为实际消息内容传递。 窗口类名 , 在Windows操作系统中,每个窗口都有一个类名,它是创建窗口时定义的,用来区分不同类型的窗口。在文中,作者通过查找窗口的类名来识别特定的“文件另存为”弹出框和其他相关控件,比如ComboBox、Edit或Button等,以便精确操控这些窗口组件完成自动化任务。 模拟按键点击 , 模拟按键点击是指在程序中模拟用户的键盘或鼠标动作,使得程序可以如同真实用户一样与应用程序交互。在本文中,作者使用win32api模块提供的keybd_event函数模拟按下Enter键和Ctrl+V键等操作,以实现路径选择和回车确认的功能,还通过mouse_event函数模拟鼠标左键单击事件,来点击取消按钮,这些都是对用户交互行为的自动化模拟。
2023-12-17 22:46:11
253
转载
SpringBoot
...起来就挺专业的,它的作用就是检查连接是不是还正常好用;最后那个“test-while-idle”,它就像是个“巡逻兵”,负责判断要不要在连接空闲的时候去检测一下这条连接还能不能用。 --- 4. 查询超时问题的初步排查 当我第一次遇到查询超时问题时,我的第一反应是:是不是Oracle那边的SQL语句太慢了?于是,我开始检查SQL语句的性能。 4.1 检查SQL语句 我用PL/SQL Developer连接到Oracle数据库,运行了一下报错的SQL语句。结果显示,这条SQL语句确实需要花费较长时间才能完成。但问题是,为什么Spring Boot会直接抛出超时异常呢? 这时,我才意识到,可能是Druid的数据源配置有问题。于是我翻阅了Druid的官方文档,发现了一个关键点:Druid默认的查询超时时间为10秒。 4.2 修改Druid的查询超时时间 为了延长查询超时时间,我在application.yml中加入了以下配置: yaml spring: datasource: druid: query-timeout: 30000 这里的query-timeout参数就是用来设置查询超时时间的,单位是毫秒。经过这次调整后,我发现查询超时的问题暂时得到了缓解。 --- 5. 进一步优化 结合Oracle的设置 虽然Druid的配置解决了部分问题,但我仍然觉得不够完美。于是,我又转向了Oracle数据库本身的设置。 5.1 设置Oracle的查询超时 在Oracle中,可以通过设置statement_timeout参数来控制查询超时时间。这个参数可以在会话级别或全局级别进行设置。 例如,在Spring Boot项目中,我们可以通过JDBC连接字符串传递这个参数: yaml spring: datasource: url: jdbc:oracle:thin:@localhost:1521:orcl?oracle.net.CONNECT_TIMEOUT=30000&oracle.jdbc.ReadTimeout=30000 这里的CONNECT_TIMEOUT和ReadTimeout分别表示连接超时时间和读取超时时间。通过这种方式,我们可以进一步提高系统的容错能力。 --- 6. 我的感悟与总结 经过这次折腾,我对Spring Boot与Druid的集成有了更深的理解。说实话,好多技术难题没那么玄乎,就是看着吓人而已。只要你肯静下心来琢磨琢磨,肯定能想出个辙来! 在这里,我也想给新手朋友们一些建议: 1. 多看官方文档 无论是Spring Boot还是Druid,它们的官方文档都非常详细,很多时候答案就在那里。 2. 学会调试 遇到问题时,不要急于求解,先用调试工具一步步分析问题所在。 3. 保持耐心 技术问题往往需要反复尝试,不要轻易放弃。 最后,我想说的是,编程之路充满了挑战,但也正因为如此才显得有趣。希望大家都能在这个过程中找到属于自己的乐趣! --- 好了,这篇文章就到这里啦!如果你也有类似的经历或想法,欢迎在评论区跟我交流哦!
2025-04-21 15:34:10
39
冬日暖阳_
Saiku
...sh脚本。这个脚本的作用就是调用MySQL的dump命令,生成数据库的备份文件。这样就不用担心忘记备份了,挺方便的。 bash 编辑crontab crontab -e 添加如下行,每周日凌晨两点执行一次备份 0 2 0 /usr/bin/mysqldump -u username -p'password' database_name > /path/to/backup/db_backup_$(date +\%Y\%m\%d).sql 4. 恢复策略的设计 现在我们已经了解了为什么需要一个好的恢复计划,接下来谈谈如何设计这样一个计划。首先,你需要明确哪些数据是最关键的。然后,根据这些数据的重要程度制定相应的恢复策略。比如说,如果你每天都在更新的数据,那就得时不时地备份一下,甚至可以每一小时就来一次。但如果是那种好几天都不动弹的数据,那就可以放宽心,不用那么频繁地备份了。 另外,别忘了测试你的恢复计划!只有经过实践检验的恢复流程才能真正发挥作用。你可以定期模拟一些常见故障场景,看看你的系统是否能够顺利恢复到正常状态。 5. 代码示例 为了让大家更好地理解,下面我会给出几个具体的代码示例,展示如何使用Saiku API来进行数据恢复操作。 示例1:连接到Saiku服务器 java import org.saiku.service.datasource.IDatasourceService; import org.saiku.service.datasource.MondrianDatasource; public class SaikuConnectionExample { public static void main(String[] args) { // 假设我们已经有了一个名为"myDataSource"的数据源实例 MondrianDatasource myDataSource = new MondrianDatasource(); myDataSource.setName("myDataSource"); // 使用datasource服务保存数据源配置 IDatasourceService datasourceService = ...; // 获取datasource服务实例 datasourceService.save(myDataSource); } } 示例2:从备份文件中恢复数据 这里假设你已经有一个包含所有必要信息的备份文件,比如SQL脚本。 java import java.io.BufferedReader; import java.io.FileReader; import java.sql.Connection; import java.sql.DriverManager; import java.sql.Statement; public class RestoreFromBackupExample { public static void main(String[] args) { try (Connection conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/mydb", "username", "password")) { Statement stmt = conn.createStatement(); // 读取备份文件内容并执行 BufferedReader reader = new BufferedReader(new FileReader("/path/to/backup/file.sql")); String line; StringBuilder sql = new StringBuilder(); while ((line = reader.readLine()) != null) { sql.append(line); if (line.trim().endsWith(";")) { stmt.execute(sql.toString()); sql.setLength(0); // 清空StringBuilder } } reader.close(); } catch (Exception e) { e.printStackTrace(); } } } 6. 结语 好了,到这里我们的讨论就告一段落了。希望今天聊的这些能让大家更看重系统恢复计划,也赶紧动手做点啥来提高自己的数据安全,毕竟防患于未然嘛。记住,预防总是胜于治疗,提前做好准备总比事后补救要好得多! 最后,如果你有任何想法或建议,欢迎随时与我交流。数据分析的世界充满了无限可能,让我们一起探索吧! --- 以上就是本次关于“Saiku的系统恢复计划不充分”的全部内容。希望这篇文章能够对你有所帮助,也欢迎大家提出宝贵的意见和建议。
2024-11-18 15:31:47
36
寂静森林
Lua
...图形渲染、音频处理和事件管理功能,极大地降低了游戏开发的技术门槛。此外,大量的游戏开发资源和社区支持,使得开发者能够快速定位问题、获取灵感,甚至直接复用已有代码片段,从而节省时间成本。 3. 性能优化与内存管理 Lua本身具备高效的内存管理和垃圾回收机制,能够有效地处理游戏中的大量数据和实时事件。这对于资源密集型的游戏开发尤为重要,能够确保游戏在多种硬件平台上流畅运行。同时,Lua的跨平台特性使得开发者无需重新编译代码即可在不同的操作系统上部署游戏,大大减少了开发和维护的成本。 4. 结合现代开发趋势 随着云游戏、虚拟现实和增强现实技术的发展,Lua的应用范围也在不断扩大。开发者可以通过Lua与现代游戏引擎(如Unity、Unreal Engine)结合,实现在云端运行游戏、创建沉浸式体验或者开发跨平台应用。这种融合不仅扩展了Lua的应用场景,也为游戏开发者提供了更多创新的可能性。 5. 总结 Lua凭借其灵活性、易用性、丰富的社区资源、高效的性能管理和适应现代开发趋势的能力,在现代游戏开发中扮演着不可或缺的角色。随着技术的不断进步,Lua有望继续在游戏行业发挥重要作用,推动游戏开发向更高水平迈进。对于游戏开发者而言,掌握Lua语言,不仅能够提升个人技能,还能为项目带来更高的效率和创新空间。
2024-09-19 16:01:49
91
秋水共长天一色
转载文章
...lerview的滚动事件来实现子view的曝光量统计,我们这里说的view都是列表中的子item条目(子view) 先来看下统计结果图 左边是我们的列表,右边是我们统计到每个条目的曝光量。下面就来讲讲具体实现步骤。 一,activity中使用recylerview并显示数据 这里我不再啰嗦,recylerview最基础的使用。 二,监听recylerview的滚动事件OnScrollListener onScrollStateChanged:监听滚动状态 onScrolled:监听滚动 我们接下来的统计工作,就是拿这两个方法做文章。 //检测recylerview的滚动事件recyclerView.addOnScrollListener(new RecyclerView.OnScrollListener() {@Overridepublic void onScrollStateChanged(RecyclerView recyclerView, int newState) {/我这里通过的是停止滚动后屏幕上可见view。如果滚动过程中的可见view也要统计,你可以根据newState去做区分SCROLL_STATE_IDLE:停止滚动SCROLL_STATE_DRAGGING: 用户慢慢拖动SCROLL_STATE_SETTLING:惯性滚动/if (newState == RecyclerView.SCROLL_STATE_IDLE) {.....} }@Overridepublic void onScrolled(RecyclerView recyclerView, int dx, int dy) {super.onScrolled(recyclerView, dx, dy);........} });复制代码 首先再次明确下,我们要统计的是用户停止滑动时,显示在屏幕的上控件。所以我们要监测到onScrollStateChanged 方法中 newState == RecyclerView.SCROLL_STATE_IDLE 时,也就是用户停止滚动。然后在这里做文章。 三,获取屏幕内可见条目的起始位置 这里的起始位置就是指我们屏幕当中最上面和最下面条目的位置。比如下图的0就是最上面的可见条目,3就是最下面的可见条目。我们次数的曝光view就是0,1,2,3 这个时候这四个条目显示在屏幕中。我们这时就要对这4个view的曝光量进行加1 那么接下来的重点就是要去获取屏幕内可见条目的起始位置。获取到起始位置后,当前屏幕里的可见条目就都能拿到了。 而recylerview的manager正好给我们提供的有对应的方法。 findFirstVisibleItemPosition()和findLastVisibleItemPosition() 看字面意思就能知道这时干嘛用的。 但是我们的manager不止LinearLayoutManager一种,所以我们要做下区分, //这里我们用一个数组来记录起始位置int[] range = new int[2];RecyclerView.LayoutManager manager = reView.getLayoutManager();if (manager instanceof LinearLayoutManager) {range = findRangeLinear((LinearLayoutManager) manager);} else if (manager instanceof GridLayoutManager) {range = findRangeGrid((GridLayoutManager) manager);} else if (manager instanceof StaggeredGridLayoutManager) {range = findRangeStaggeredGrid((StaggeredGridLayoutManager) manager);}复制代码 LinearLayoutManager和GridLayoutManager获取起始位置方法如下 private int[] findRangeLinear(LinearLayoutManager manager) {int[] range = new int[2];range[0] = manager.findFirstVisibleItemPosition();range[1] = manager.findLastVisibleItemPosition();return range;}private int[] findRangeGrid(GridLayoutManager manager) {int[] range = new int[2];range[0] = manager.findFirstVisibleItemPosition();range[1] = manager.findLastVisibleItemPosition();return range;}复制代码 StaggeredGridLayoutManager获取起始位置有点复杂,如下 private int[] findRangeStaggeredGrid(StaggeredGridLayoutManager manager) {int[] startPos = new int[manager.getSpanCount()];int[] endPos = new int[manager.getSpanCount()];manager.findFirstVisibleItemPositions(startPos);manager.findLastVisibleItemPositions(endPos);int[] range = findRange(startPos, endPos);return range;}private int[] findRange(int[] startPos, int[] endPos) {int start = startPos[0];int end = endPos[0];for (int i = 1; i < startPos.length; i++) {if (start > startPos[i]) {start = startPos[i];} }for (int i = 1; i < endPos.length; i++) {if (end < endPos[i]) {end = endPos[i];} }int[] res = new int[]{start, end};return res;}复制代码 四,获取到起始位置以后,我们就根据位置获取到view及view中的数据 上面第三步拿到屏幕内可见条目的起始位置以后,我们就用一个for循环,获取当前屏幕内可见的所有子view for (int i = range[0]; i <= range[1]; i++) {View view = manager.findViewByPosition(i);recordViewCount(view);}复制代码 recordViewCount是我自己写的用于获取子view内绑定数据的方法 //获取view绑定的数据private void recordViewCount(View view) {if (view == null || view.getVisibility() != View.VISIBLE ||!view.isShown() || !view.getGlobalVisibleRect(new Rect())) {return;}int top = view.getTop();int halfHeight = view.getHeight() / 2;int screenHeight = UiUtils.getScreenHeight((Activity) view.getContext());int statusBarHeight = UiUtils.getStatusBarHeight(view.getContext());if (top < 0 && Math.abs(top) > halfHeight) {return;}if (top > screenHeight - halfHeight - statusBarHeight) {return;}//这里获取的是我们view绑定的数据,相应的你要去在你的view里setTag,只有set了,才能getItemData tag = (ItemData) view.getTag();String key = tag.toString();if (TextUtils.isEmpty(key)) {return;}hashMap.put(key, !hashMap.containsKey(key) ? 1 : (hashMap.get(key) + 1));Log.i("qcl0402", key + "----出现次数:" + hashMap.get(key));}复制代码 这里有几点需要注意 1,这这里起始位置的view显示区域如果不超过50%,就不算这个view可见,进而也就不统计曝光。 2,我们通过view.getTag();获取view里的数据,必须在此之前setTag()数据,我这里setTag是在viewholder中把数据set进去的 到这里我们就实现了recylerview列表中view控件曝光量的统计了。下面贴出来完整的代码给大家 package com.example.qcl.demo.xuexi.baoguang;import android.app.Activity;import android.graphics.Rect;import android.support.v7.widget.GridLayoutManager;import android.support.v7.widget.LinearLayoutManager;import android.support.v7.widget.RecyclerView;import android.support.v7.widget.StaggeredGridLayoutManager;import android.text.TextUtils;import android.util.Log;import android.view.View;import com.example.qcl.demo.utils.UiUtils;import java.util.concurrent.ConcurrentHashMap;/ 2019/4/2 13:31 author: qcl desc: 安卓曝光量统计工具类 wechat:2501902696/public class ViewShowCountUtils {//刚进入列表时统计当前屏幕可见viewsprivate boolean isFirstVisible = true;//用于统计曝光量的mapprivate ConcurrentHashMap<String, Integer> hashMap = new ConcurrentHashMap<String, Integer>();/ 统计RecyclerView里当前屏幕可见子view的曝光量 /void recordViewShowCount(RecyclerView recyclerView) {hashMap.clear();if (recyclerView == null || recyclerView.getVisibility() != View.VISIBLE) {return;}//检测recylerview的滚动事件recyclerView.addOnScrollListener(new RecyclerView.OnScrollListener() {@Overridepublic void onScrollStateChanged(RecyclerView recyclerView, int newState) {/我这里通过的是停止滚动后屏幕上可见view。如果滚动过程中的可见view也要统计,你可以根据newState去做区分SCROLL_STATE_IDLE:停止滚动SCROLL_STATE_DRAGGING: 用户慢慢拖动SCROLL_STATE_SETTLING:惯性滚动/if (newState == RecyclerView.SCROLL_STATE_IDLE) {getVisibleViews(recyclerView);} }@Overridepublic void onScrolled(RecyclerView recyclerView, int dx, int dy) {super.onScrolled(recyclerView, dx, dy);//刚进入列表时统计当前屏幕可见viewsif (isFirstVisible) {getVisibleViews(recyclerView);isFirstVisible = false;} }});}/ 获取当前屏幕上可见的view /private void getVisibleViews(RecyclerView reView) {if (reView == null || reView.getVisibility() != View.VISIBLE ||!reView.isShown() || !reView.getGlobalVisibleRect(new Rect())) {return;}//保险起见,为了不让统计影响正常业务,这里做下try-catchtry {int[] range = new int[2];RecyclerView.LayoutManager manager = reView.getLayoutManager();if (manager instanceof LinearLayoutManager) {range = findRangeLinear((LinearLayoutManager) manager);} else if (manager instanceof GridLayoutManager) {range = findRangeGrid((GridLayoutManager) manager);} else if (manager instanceof StaggeredGridLayoutManager) {range = findRangeStaggeredGrid((StaggeredGridLayoutManager) manager);}if (range == null || range.length < 2) {return;}Log.i("qcl0402", "屏幕内可见条目的起始位置:" + range[0] + "---" + range[1]);for (int i = range[0]; i <= range[1]; i++) {View view = manager.findViewByPosition(i);recordViewCount(view);} } catch (Exception e) {e.printStackTrace();} }//获取view绑定的数据private void recordViewCount(View view) {if (view == null || view.getVisibility() != View.VISIBLE ||!view.isShown() || !view.getGlobalVisibleRect(new Rect())) {return;}int top = view.getTop();int halfHeight = view.getHeight() / 2;int screenHeight = UiUtils.getScreenHeight((Activity) view.getContext());int statusBarHeight = UiUtils.getStatusBarHeight(view.getContext());if (top < 0 && Math.abs(top) > halfHeight) {return;}if (top > screenHeight - halfHeight - statusBarHeight) {return;}//这里获取的是我们view绑定的数据,相应的你要去在你的view里setTag,只有set了,才能getItemData tag = (ItemData) view.getTag();String key = tag.toString();if (TextUtils.isEmpty(key)) {return;}hashMap.put(key, !hashMap.containsKey(key) ? 1 : (hashMap.get(key) + 1));Log.i("qcl0402", key + "----出现次数:" + hashMap.get(key));}private int[] findRangeLinear(LinearLayoutManager manager) {int[] range = new int[2];range[0] = manager.findFirstVisibleItemPosition();range[1] = manager.findLastVisibleItemPosition();return range;}private int[] findRangeGrid(GridLayoutManager manager) {int[] range = new int[2];range[0] = manager.findFirstVisibleItemPosition();range[1] = manager.findLastVisibleItemPosition();return range;}private int[] findRangeStaggeredGrid(StaggeredGridLayoutManager manager) {int[] startPos = new int[manager.getSpanCount()];int[] endPos = new int[manager.getSpanCount()];manager.findFirstVisibleItemPositions(startPos);manager.findLastVisibleItemPositions(endPos);int[] range = findRange(startPos, endPos);return range;}private int[] findRange(int[] startPos, int[] endPos) {int start = startPos[0];int end = endPos[0];for (int i = 1; i < startPos.length; i++) {if (start > startPos[i]) {start = startPos[i];} }for (int i = 1; i < endPos.length; i++) {if (end < endPos[i]) {end = endPos[i];} }int[] res = new int[]{start, end};return res;} }复制代码 使用就是在我们的recylerview设置完数据以后,把recylerview传递进去就可以了。如下图: 我们统计到曝光量,拿到曝光view绑定的数据,就可以结合后面的view点击,来看下那些商品view的曝光量高,那些商品的转化率高。当然,这都是运营小伙伴的事了,我们只需要负责把曝光量统计到即可。 如果你有任何编程方面的问题,可以加我微信交流 2501902696(备注编程) by:年糕妈妈qcl 转载于:https://juejin.im/post/5ca30ad1e51d4514c01634f1 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34150503/article/details/91475198。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-29 13:55:00
322
转载
RabbitMQ
...不仅提供了强大的消息传递功能,还支持多种消息模式和协议。不过嘛,在实际用起来的时候,因为网络不给力或者服务器罢工啥的,客户端和RabbitMQ服务器之间的连接就可能出问题了。因此,如何优雅地处理这些连接故障,成为确保系统稳定运行的关键。 1. 了解RabbitMQ的基本概念 在深入探讨如何处理连接故障之前,我们先来简单了解一下RabbitMQ的基础知识。RabbitMQ就像是一个开源的邮局,它负责在不同的程序之间传递消息,就像是给它们送信一样。你可以把消息发到一个或者多个队列里,然后消费者应用就从这些队列里面把消息取出来处理掉。RabbitMQ可真是个多才多艺的小能手,支持好几种消息传递方式,比如点对点聊天和广播式发布/订阅。这就让它变得特别灵活,不管你是要一对一私聊还是要群发消息,它都能轻松搞定。 2. 连接故障 常见原因与影响 在探讨如何处理连接故障之前,我们有必要了解连接故障通常是由哪些因素引起的,以及它们会对系统造成什么样的影响。 - 网络问题:这是最常见的原因,比如网络延迟增加、丢包等。 - 服务器问题:服务器宕机、重启或者维护时,也会导致连接中断。 - 配置错误:不正确的配置可能导致客户端无法正确连接到服务器。 - 资源限制:当服务器资源耗尽时(如内存不足),也可能导致连接失败。 这些故障不仅会打断正在进行的消息传递,还可能影响到整个系统的响应时间,严重时甚至会导致数据丢失或服务不可用。所以啊,我们要想办法让系统变得更皮实,就算碰到那些麻烦事儿,它也能稳如老狗,继续正常运转。 3. 如何优雅地处理连接故障 3.1 使用重试机制 首先,我们可以利用重试机制来应对短暂的网络波动或临时性的服务不可用。通过设置合理的重试次数和间隔时间,可以有效地提高消息传递的成功率。以下是一个简单的Python代码示例,展示了如何使用pika库连接到RabbitMQ服务器,并在连接失败时进行重试: python import pika from time import sleep def connect_to_rabbitmq(): max_retries = 5 retry_delay = 5 seconds for i in range(max_retries): try: connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) print("成功连接到RabbitMQ") return connection except Exception as e: print(f"尝试{i+1}连接失败,将在{retry_delay}秒后重试...") sleep(retry_delay) print("多次重试后仍无法连接到RabbitMQ,程序将退出") exit(1) 调用函数尝试建立连接 connection = connect_to_rabbitmq() 3.2 实施断线重连策略 除了基本的重试机制外,我们还可以实现更复杂的断线重连策略。例如,当检测到连接异常时,立即尝试重新建立连接,并记录重连日志以便后续分析。另外,我们也可以试试用指数退避算法来调整重连的时间间隔,这样就不会在短时间内反复向服务器发起连接请求,也能让服务器稍微轻松一点。 下面展示了一个基于RabbitMQ官方客户端库pika的断线重连示例: python import pika from time import sleep class ReconnectingRabbitMQClient: def __init__(self, host='localhost'): self.host = host self.connection = None self.channel = None def connect(self): while True: try: self.connection = pika.BlockingConnection(pika.ConnectionParameters(self.host)) self.channel = self.connection.channel() print("成功连接到RabbitMQ") break except Exception as e: print(f"尝试连接失败,将在{2self.retry_count}秒后重试...") self.retry_count += 1 sleep(2self.retry_count) def close(self): if self.connection: self.connection.close() def send_message(self, message): if not self.channel: self.connect() self.channel.basic_publish(exchange='', routing_key='hello', body=message) client = ReconnectingRabbitMQClient() client.send_message('Hello World!') 在这个例子中,我们创建了一个ReconnectingRabbitMQClient类,它包含了连接、关闭连接以及发送消息的方法。特别要注意的是connect方法里的那个循环,这家伙每次连接失败后都会先歇一会儿,然后再杀回来试试看。而且这休息的时间也是越来越长,越往后重试间隔就按指数往上翻。 3.3 异步处理与心跳机制 对于那些需要长时间保持连接的应用场景,我们还可以采用异步处理方式,配合心跳机制来维持连接的有效性。心跳其实就是一种简单的保活方法,就像定时给对方发个信息或者挥挥手,确认一下对方还在不在。这样就能赶紧发现并搞定那些断掉的连接,免得因为放太长时间没动静而导致连接中断的问题。 4. 总结与展望 处理RabbitMQ中的连接故障是一项复杂但至关重要的任务。通过上面提到的几种招数——比如重试机制、断线重连和心跳监测,我们的系统会变得更强壮,也更靠谱了。当然,针对不同应用场景和需求,还需要进一步定制化和优化这些方案。比如说,对于那些对延迟特别敏感的应用,你得更仔细地调整重试策略,不然用户可能会觉得卡顿或者直接闪退。至于那些需要应对海量并发连接的场景嘛,你就得上点“硬货”了,比如用更牛的技术来搞定负载均衡和集群管理,这样才能保证系统稳如老狗。总而言之,就是咱们得不停地试啊试的,然后就能慢慢弄出个既快又稳的分布式消息传递系统。 --- 以上就是关于RabbitMQ中如何处理连接故障的一些探讨。希望这些内容能帮助你在实际工作中更好地应对挑战,打造更加可靠的应用程序。如果你有任何疑问或想要分享自己的经验,请随时留言讨论!
2024-12-02 16:11:51
94
红尘漫步
Kafka
...、低延迟、可靠的消息传递特性,成为了构建实时数据流处理系统的首选工具。Kafka中的一个关键概念是Consumer Group,它允许多个消费者同时消费来自同一主题的消息,从而实现负载均衡和容错。哎呀,你懂的,有时候在Consumer Group群里,突然有人掉线了,或者人少了点,这可就有点棘手了。毕竟,要是咱们这个小团体不稳当,效率也上不去啊。就像是打游戏,队伍一散,那可就难玩了不是?得想办法让咱们这个小组子,既能稳住阵脚,又能跑得快,对吧?本文将深入探讨这一问题,并提供解决方案。 二、问题现象与原因分析 现象描述: 在实际应用中,一旦某个Consumer Group成员(即消费者实例)发生故障或网络中断,该成员将停止接收新的消息。哎呀,你知道的,如果团队里的小伙伴们没能在第一时间察觉并接手这部分信息的处理任务,那可就麻烦了。就像你堆了一大堆未读邮件在收件箱里,久而久之,不光显得杂乱无章,还可能拖慢你整日的工作节奏,对不对?同样的道理,信息堆积多了,整个系统的运行效率就会变慢,稳定性也容易受到威胁。所以,大家得互相帮忙,及时分担任务,保持信息流通顺畅,这样才能让我们的工作更高效,系统也更稳定! 原因分析: 1. 成员间通信机制不足 Kafka默认不提供成员间的心跳检测机制,依赖于应用开发者自行实现。 2. 配置管理不当 如未能正确配置自动重平衡策略,可能导致成员在故障恢复后无法及时加入Group,或加入错误的Group。 3. 资源调度问题 在高并发场景下,资源调度不均可能导致部分成员承担过多的消费压力,而其他成员则处于空闲状态。 三、解决策略 1. 实现心跳检测机制 为了检测成员状态,可以实现一个简单的心跳检测机制,通过定期向Kafka集群发送心跳信号来检查成员的存活状态。如果长时间未收到某成员的心跳响应,则认为该成员可能已故障,并从Consumer Group中移除。以下是一个简单的Java示例: java import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; public class HeartbeatConsumer extends AbstractKafkaConsumer { private static final long HEARTBEAT_INTERVAL = 60 1000; // 心跳间隔时间,单位毫秒 @Override public void onConsume() { while (true) { try { Thread.sleep(HEARTBEAT_INTERVAL); if (!isAlive()) { System.out.println("Heartbeat failure detected."); // 可以在这里添加逻辑来处理成员故障,例如重新加入组或者通知其他成员。 } } catch (InterruptedException e) { Thread.currentThread().interrupt(); } } } private boolean isAlive() { // 实现心跳检测逻辑,例如发送心跳请求并等待响应。 return true; // 假设总是返回true,需要根据实际情况调整。 } } 2. 自动重平衡策略 合理配置Kafka的自动重平衡策略,确保在成员故障或加入时能够快速、平滑地进行组内成员的重新分配。利用Kafka的API或自定义逻辑来监控成员状态,并在需要时触发重平衡操作。例如: java KafkaConsumer consumer = new KafkaConsumer<>(config); consumer.subscribe(Arrays.asList(topic)); while (true) { ConsumerRecords records = consumer.poll(Duration.ofMillis(100)); for (ConsumerRecord record : records) { // 处理消息... } // 检查组成员状态并触发重平衡 if (needRebalance()) { consumer.leaveGroup(); consumer.close(); consumer = new KafkaConsumer<>(config); consumer.subscribe(Arrays.asList(topic)); } } private boolean needRebalance() { // 根据实际情况判断是否需要重平衡,例如检查成员状态等。 return false; } 3. 资源均衡与优化 设计合理的资源分配策略,确保所有成员在消费负载上达到均衡。可以考虑动态调整成员的消费速度、优化网络路由策略等手段,以避免资源的过度集中或浪费。 四、总结 解决Consumer Group成员失散的问题,需要从基础的通信机制、配置管理、到高级的资源调度策略等多个层面综合考虑。哎呀,咱们得好好琢磨琢磨这事儿!要是咱们能按这些策略来操作,不仅能稳稳地扛住成员出了状况的难题,还能让整个系统变得更加强韧,处理问题的能力也大大提升呢!就像是给咱们的团队加了层保护罩,还能让咱们干活儿更顺畅,效率蹭蹭往上涨!哎呀,兄弟,你得明白,在真刀真枪地用上这套系统的时候,咱们可不能死板地照着书本念。得根据你的业务需求,就像给娃挑衣服一样,挑最合适的那一件。还得看咱们的系统架构,就像是厨房里的调料,少了哪一味都不行。得灵活调整,就像变魔术一样,让性能和稳定性这俩宝贝儿,一个不落地都达到最好状态。这样,咱们的系统才能像大厨做菜一样,色香味俱全,让人爱不释口!
2024-08-11 16:07:45
52
醉卧沙场
Spark
...学习等领域发挥着关键作用。然而,面对海量数据和复杂业务场景,Spark应用的稳定性和性能优化成为亟待解决的问题。本文将深入探讨如何通过优化日志记录策略、引入自动化监控工具、实施精准性能调优等方法,全面提升Spark应用的稳定性和性能,从而更好地支撑大数据时代的业务需求。 一、日志记录优化:从被动到主动 传统的日志记录方式往往侧重于问题发生后的记录和事后分析,缺乏事前预警和预防机制。为了提升Spark应用的稳定性,应采用主动监控和预测性分析相结合的日志记录策略: - 日志级别调整:根据应用不同阶段的需求动态调整日志级别,既能保证关键信息的完整记录,又能避免无谓的性能开销。 - 日志聚合与分析:利用现代大数据分析工具(如ELK Stack、Logstash、Kibana等),实现日志的实时聚合、分析与可视化,便于快速识别异常模式和性能瓶颈。 - 自定义告警规则:基于历史数据和业务特性,设定合理的异常阈值和告警规则,实现异常的即时发现和响应。 二、自动化监控工具的引入 自动化监控工具能够持续跟踪Spark应用的运行状况,及时发现潜在问题并采取措施: - 实时监控:通过集成Prometheus、Grafana等监控工具,实现对应用性能、资源使用、任务执行时间等关键指标的实时监控。 - 自动扩展:利用Kubernetes等容器化平台的自动扩展功能,根据负载变化动态调整集群规模,确保资源高效利用。 - 故障恢复:通过HDFS、Zookeeper等组件提供的容错机制,实现任务失败时的自动重试或数据冗余备份,提升应用的高可用性。 三、精准性能调优策略 针对Spark应用的特定场景,实施精准的性能调优策略,可以从以下几个方面入手: - 参数优化:根据具体工作负载,调整Spark配置参数,如executor内存分配、shuffle操作的并行度等,以达到最优性能。 - 数据倾斜处理:采用数据预洗、分桶等技术,减少数据倾斜对任务执行效率的影响。 - 任务调度优化:合理规划任务执行顺序和依赖关系,避免不必要的等待时间,提高任务执行效率。 结论 通过优化日志记录策略、引入自动化监控工具、实施精准性能调优,可以显著提升Apache Spark应用的稳定性和性能,有效应对大数据时代面临的挑战。结合实时数据分析、故障预测与自动恢复等现代技术手段,企业能够构建更加可靠、高效的Spark生态系统,支持复杂业务场景下的数据驱动决策。
2024-09-07 16:03:18
141
秋水共长天一色
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
chattr +i file
- 设置文件为不可更改(防止误删或修改)。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"