前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Java元组库的使用方法 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...看一下发布订阅命令的使用方法。 订阅者订阅频道:可以一次订阅多个,比如这个客户端订阅了 3 个频道。 subscribe channel-1 channel-2 channel-3 发布者可以向指定频道发布消息(并不支持一次向多个频道发送消息): publish channel-1 2673 取消订阅(不能在订阅状态下使用): unsubscribe channel-1 1.2.2 按规则(Pattern)订阅频道 支持 ?和 占位符。? 代表一个字符, 代表 0 个或者多个字符。 消费端 1,关注运动信息: psubscribe sport 消费端 2,关注所有新闻: psubscribe news 消费端 3,关注天气新闻: psubscribe news-weather 生产者,发布 3 条信息 publish news-sport yaoming publish news-music jaychou publish news-weather rain 2、Redis 事务 2.1 为什么要用事务 我们知道 Redis 的单个命令是原子性的(比如 get set mget mset),如果涉及到多个命令的时候,需要把多个命令作为一个不可分割的处理序列,就需要用到事务。 例如我们之前说的用 setnx 实现分布式锁,我们先 set,然后设置对 key 设置 expire, 防止 del 发生异常的时候锁不会被释放,业务处理完了以后再 del,这三个动作我们就希望它们作为一组命令执行。 Redis 的事务有两个特点: 1、按进入队列的顺序执行。 2、不会受到其他客户端的请求的影响。 Redis 的事务涉及到四个命令:multi(开启事务),exec(执行事务),discard (取消事务),watch(监视) 2.2 事务的用法 案例场景:tom 和 mic 各有 1000 元,tom 需要向 mic 转账 100 元。tom 的账户余额减少 100 元,mic 的账户余额增加 100 元。 通过 multi 的命令开启事务。事务不能嵌套,多个 multi 命令效果一样。 multi 执行后,客户端可以继续向服务器发送任意多条命令,这些命令不会立即被执行,而是被放到一个队列中,当 exec 命令被调用时,所有队列中的命令才会被执行。 通过 exec 的命令执行事务。如果没有执行 exec,所有的命令都不会被执行。如果中途不想执行事务了,怎么办? 可以调用 discard 可以清空事务队列,放弃执行。 2.3 watch命令 在 Redis 中还提供了一个 watch 命令。 它可以为 Redis 事务提供 CAS 乐观锁行为(Check and Set / Compare and Swap),也就是多个线程更新变量的时候,会跟原值做比较,只有它没有被其他线程修改的情况下,才更新成新的值。 我们可以用 watch 监视一个或者多个 key,如果开启事务之后,至少有一个被监视 key 键在 exec 执行之前被修改了,那么整个事务都会被取消(key 提前过期除外)。可以用 unwatch 取消。 2.4 事务可能遇到的问题 我们把事务执行遇到的问题分成两种,一种是在执行 exec 之前发生错误,一种是在执行 exec 之后发生错误。 2.4.1 在执行 exec 之前发生错误 比如:入队的命令存在语法错误,包括参数数量,参数名等等(编译器错误)。 在这种情况下事务会被拒绝执行,也就是队列中所有的命令都不会得到执行。 2.4.2 在执行 exec 之后发生错误 比如,类型错误,比如对 String 使用了 Hash 的命令,这是一种运行时错误。 最后我们发现 set k1 1 的命令是成功的,也就是在这种发生了运行时异常的情况下, 只有错误的命令没有被执行,但是其他命令没有受到影响。 这个显然不符合我们对原子性的定义,也就是我们没办法用 Redis 的这种事务机制来实现原子性,保证数据的一致。 3、Lua脚本 Lua/ˈluə/是一种轻量级脚本语言,它是用 C 语言编写的,跟数据的存储过程有点类似。 使用 Lua 脚本来执行 Redis 命令的好处: 1、一次发送多个命令,减少网络开销。 2、Redis 会将整个脚本作为一个整体执行,不会被其他请求打断,保持原子性。 3、对于复杂的组合命令,我们可以放在文件中,可以实现程序之间的命令集复用。 3.1 在Redis中调用Lua脚本 使用 eval /ɪ’væl/ 方法,语法格式: redis> eval lua-script key-num [key1 key2 key3 ....] [value1 value2 value3 ....] eval代表执行Lua语言的命令。 lua-script代表Lua语言脚本内容。 key-num表示参数中有多少个key,需要注意的是Redis中key是从1开始的,如果没有key的参数,那么写0。 [key1key2key3…]是key作为参数传递给Lua语言,也可以不填,但是需要和key-num的个数对应起来。 [value1 value2 value3 …]这些参数传递给 Lua 语言,它们是可填可不填的。 示例,返回一个字符串,0 个参数: redis> eval "return 'Hello World'" 0 3.2 在Lua脚本中调用Redis命令 使用 redis.call(command, key [param1, param2…])进行操作。语法格式: redis> eval "redis.call('set',KEYS[1],ARGV[1])" 1 lua-key lua-value command是命令,包括set、get、del等。 key是被操作的键。 param1,param2…代表给key的参数。 注意跟 Java 不一样,定义只有形参,调用只有实参。 Lua 是在调用时用 key 表示形参,argv 表示参数值(实参)。 3.2.1 设置键值对 在 Redis 中调用 Lua 脚本执行 Redis 命令 redis> eval "return redis.call('set',KEYS[1],ARGV[1])" 1 gupao 2673 redis> get gupao 以上命令等价于 set gupao 2673。 在 redis-cli 中直接写 Lua 脚本不够方便,也不能实现编辑和复用,通常我们会把脚本放在文件里面,然后执行这个文件。 3.2.2 在 Redis 中调用 Lua 脚本文件中的命令,操作 Redis 创建 Lua 脚本文件: cd /usr/local/soft/redis5.0.5/src vim gupao.lua Lua 脚本内容,先设置,再取值: cd /usr/local/soft/redis5.0.5/src redis-cli --eval gupao.lua 0 得到返回值: root@localhost src] redis-cli --eval gupao.lua 0 "lua666" 3.2.3 案例:对 IP 进行限流 需求:在 X 秒内只能访问 Y 次。 设计思路:用 key 记录 IP,用 value 记录访问次数。 拿到 IP 以后,对 IP+1。如果是第一次访问,对 key 设置过期时间(参数 1)。否则判断次数,超过限定的次数(参数 2),返回 0。如果没有超过次数则返回 1。超过时间, key 过期之后,可以再次访问。 KEY[1]是 IP, ARGV[1]是过期时间 X,ARGV[2]是限制访问的次数 Y。 -- ip_limit.lua-- IP 限流,对某个 IP 频率进行限制 ,6 秒钟访问 10 次 local num=redis.call('incr',KEYS[1])if tonumber(num)==1 thenredis.call('expire',KEYS[1],ARGV[1])return 1elseif tonumber(num)>tonumber(ARGV[2]) thenreturn 0 elsereturn 1 end 6 秒钟内限制访问 10 次,调用测试(连续调用 10 次): ./redis-cli --eval "ip_limit.lua" app:ip:limit:192.168.8.111 , 6 10 app:ip:limit:192.168.8.111 是 key 值 ,后面是参数值,中间要加上一个空格和一个逗号,再加上一个空格 。 即:./redis-cli –eval [lua 脚本] [key…]空格,空格[args…] 多个参数之间用一个空格分割 。 代码:LuaTest.java 3.2.4 缓存 Lua 脚本 为什么要缓存 在脚本比较长的情况下,如果每次调用脚本都需要把整个脚本传给 Redis 服务端, 会产生比较大的网络开销。为了解决这个问题,Redis 提供了 EVALSHA 命令,允许开发者通过脚本内容的 SHA1 摘要来执行脚本。 如何缓存 Redis 在执行 script load 命令时会计算脚本的 SHA1 摘要并记录在脚本缓存中,执行 EVALSHA 命令时 Redis 会根据提供的摘要从脚本缓存中查找对应的脚本内容,如果找到了则执行脚本,否则会返回错误:“NOSCRIPT No matching script. Please use EVAL.” 127.0.0.1:6379> script load "return 'Hello World'" "470877a599ac74fbfda41caa908de682c5fc7d4b"127.0.0.1:6379> evalsha "470877a599ac74fbfda41caa908de682c5fc7d4b" 0 "Hello World" 3.2.5 自乘案例 Redis 有 incrby 这样的自增命令,但是没有自乘,比如乘以 3,乘以 5。我们可以写一个自乘的运算,让它乘以后面的参数: local curVal = redis.call("get", KEYS[1]) if curVal == false thencurVal = 0 elsecurVal = tonumber(curVal)endcurVal = curVal tonumber(ARGV[1]) redis.call("set", KEYS[1], curVal) return curVal 把这个脚本变成单行,语句之间使用分号隔开 local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal script load ‘命令’ 127.0.0.1:6379> script load 'local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal' "be4f93d8a5379e5e5b768a74e77c8a4eb0434441" 调用: 127.0.0.1:6379> set num 2OK127.0.0.1:6379> evalsha be4f93d8a5379e5e5b768a74e77c8a4eb0434441 1 num 6 (integer) 12 3.2.6 脚本超时 Redis 的指令执行本身是单线程的,这个线程还要执行客户端的 Lua 脚本,如果 Lua 脚本执行超时或者陷入了死循环,是不是没有办法为客户端提供服务了呢? eval 'while(true) do end' 0 为了防止某个脚本执行时间过长导致 Redis 无法提供服务,Redis 提供了 lua-time-limit 参数限制脚本的最长运行时间,默认为 5 秒钟。 lua-time-limit 5000(redis.conf 配置文件中) 当脚本运行时间超过这一限制后,Redis 将开始接受其他命令但不会执行(以确保脚本的原子性,因为此时脚本并没有被终止),而是会返回“BUSY”错误。 Redis 提供了一个 script kill 的命令来中止脚本的执行。新开一个客户端: script kill 如果当前执行的 Lua 脚本对 Redis 的数据进行了修改(SET、DEL 等),那么通过 script kill 命令是不能终止脚本运行的。 127.0.0.1:6379> eval "redis.call('set','gupao','666') while true do end" 0 因为要保证脚本运行的原子性,如果脚本执行了一部分终止,那就违背了脚本原子性的要求。最终要保证脚本要么都执行,要么都不执行。 127.0.0.1:6379> script kill(error) UNKILLABLE Sorry the script already executed write commands against the dataset. You can either wait the scripttermination or kill the server in a hard way using the SHUTDOWN NOSAVE command. 遇到这种情况,只能通过 shutdown nosave 命令来强行终止 redis。 shutdown nosave 和 shutdown 的区别在于 shutdown nosave 不会进行持久化操作,意味着发生在上一次快照后的数据库修改都会丢失。 4、Redis 为什么这么快? 4.1 Redis到底有多快? 根据官方的数据,Redis 的 QPS 可以达到 10 万左右(每秒请求数)。 4.2 Redis为什么这么快? 总结:1)纯内存结构、2)单线程、3)多路复用 4.2.1 内存 KV 结构的内存数据库,时间复杂度 O(1)。 第二个,要实现这么高的并发性能,是不是要创建非常多的线程? 恰恰相反,Redis 是单线程的。 4.2.2 单线程 单线程有什么好处呢? 1、没有创建线程、销毁线程带来的消耗 2、避免了上线文切换导致的 CPU 消耗 3、避免了线程之间带来的竞争问题,例如加锁释放锁死锁等等 4.2.3 异步非阻塞 异步非阻塞 I/O,多路复用处理并发连接。 4.3 Redis为什么是单线程的? 不是白白浪费了 CPU 的资源吗? 因为单线程已经够用了,CPU 不是 redis 的瓶颈。Redis 的瓶颈最有可能是机器内存或者网络带宽。既然单线程容易实现,而且 CPU 不会成为瓶颈,那就顺理成章地采用单线程的方案了。 4.4 单线程为什么这么快? 因为 Redis 是基于内存的操作,我们先从内存开始说起。 4.4.1 虚拟存储器(虚拟内存 Vitual Memory) 名词解释:主存:内存;辅存:磁盘(硬盘) 计算机主存(内存)可看作一个由 M 个连续的字节大小的单元组成的数组,每个字节有一个唯一的地址,这个地址叫做物理地址(PA)。早期的计算机中,如果 CPU 需要内存,使用物理寻址,直接访问主存储器。 这种方式有几个弊端: 1、在多用户多任务操作系统中,所有的进程共享主存,如果每个进程都独占一块物理地址空间,主存很快就会被用完。我们希望在不同的时刻,不同的进程可以共用同一块物理地址空间。 2、如果所有进程都是直接访问物理内存,那么一个进程就可以修改其他进程的内存数据,导致物理地址空间被破坏,程序运行就会出现异常。 为了解决这些问题,我们就想了一个办法,在 CPU 和主存之间增加一个中间层。CPU 不再使用物理地址访问,而是访问一个虚拟地址,由这个中间层把地址转换成物理地址,最终获得数据。这个中间层就叫做虚拟存储器(Virtual Memory)。 具体的操作如下所示: 在每一个进程开始创建的时候,都会分配一段虚拟地址,然后通过虚拟地址和物理地址的映射来获取真实数据,这样进程就不会直接接触到物理地址,甚至不知道自己调用的哪块物理地址的数据。 目前,大多数操作系统都使用了虚拟内存,如 Windows 系统的虚拟内存、Linux 系统的交换空间等等。Windows 的虚拟内存(pagefile.sys)是磁盘空间的一部分。 在 32 位的系统上,虚拟地址空间大小是 2^32bit=4G。在 64 位系统上,最大虚拟地址空间大小是多少? 是不是 2^64bit=10241014TB=1024PB=16EB?实际上没有用到 64 位,因为用不到这么大的空间,而且会造成很大的系统开销。Linux 一般用低 48 位来表示虚拟地址空间,也就是 2^48bit=256T。 cat /proc/cpuinfo address sizes : 40 bits physical, 48 bits virtual 实际的物理内存可能远远小于虚拟内存的大小。 总结:引入虚拟内存,可以提供更大的地址空间,并且地址空间是连续的,使得程序编写、链接更加简单。并且可以对物理内存进行隔离,不同的进程操作互不影响。还可以通过把同一块物理内存映射到不同的虚拟地址空间实现内存共享。 4.4.2 用户空间和内核空间 为了避免用户进程直接操作内核,保证内核安全,操作系统将虚拟内存划分为两部分,一部分是内核空间(Kernel-space)/ˈkɜːnl /,一部分是用户空间(User-space)。 内核是操作系统的核心,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的权限。 内核空间中存放的是内核代码和数据,而进程的用户空间中存放的是用户程序的代码和数据。不管是内核空间还是用户空间,它们都处于虚拟空间中,都是对物理地址的映射。 在 Linux 系统中, 内核进程和用户进程所占的虚拟内存比例是 1:3。 当进程运行在内核空间时就处于内核态,而进程运行在用户空间时则处于用户态。 进程在内核空间以执行任意命令,调用系统的一切资源;在用户空间只能执行简单的运算,不能直接调用系统资源,必须通过系统接口(又称 system call),才能向内核发出指令。 top 命令: us 代表 CPU 消耗在 User space 的时间百分比; sy 代表 CPU 消耗在 Kernel space 的时间百分比。 4.4.3 进程切换(上下文切换) 多任务操作系统是怎么实现运行远大于 CPU 数量的任务个数的? 当然,这些任务实际上并不是真的在同时运行,而是因为系统通过时间片分片算法,在很短的时间内,将 CPU 轮流分配给它们,造成多任务同时运行的错觉。 为了控制进程的执行,内核必须有能力挂起正在 CPU 上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。 什么叫上下文? 在每个任务运行前,CPU 都需要知道任务从哪里加载、又从哪里开始运行,也就是说,需要系统事先帮它设置好 CPU 寄存器和程序计数器(ProgramCounter),这个叫做 CPU 的上下文。 而这些保存下来的上下文,会存储在系统内核中,并在任务重新调度执行时再次加载进来。这样就能保证任务原来的状态不受影响,让任务看起来还是连续运行。 在切换上下文的时候,需要完成一系列的工作,这是一个很消耗资源的操作。 4.4.4 进程的阻塞 正在运行的进程由于提出系统服务请求(如 I/O 操作),但因为某种原因未得到操作系统的立即响应,该进程只能把自己变成阻塞状态,等待相应的事件出现后才被唤醒。 进程在阻塞状态不占用 CPU 资源。 4.4.5 文件描述符 FD Linux 系统将所有设备都当作文件来处理,而 Linux 用文件描述符来标识每个文件对象。 文件描述符(File Descriptor)是内核为了高效管理已被打开的文件所创建的索引,用于指向被打开的文件,所有执行 I/O 操作的系统调用都通过文件描述符;文件描述符是一个简单的非负整数,用以表明每个被进程打开的文件。 Linux 系统里面有三个标准文件描述符。 0:标准输入(键盘); 1:标准输出(显示器); 2:标准错误输出(显示器)。 4.4.6 传统 I/O 数据拷贝 以读操作为例: 当应用程序执行 read 系统调用读取文件描述符(FD)的时候,如果这块数据已经存在于用户进程的页内存中,就直接从内存中读取数据。如果数据不存在,则先将数据从磁盘加载数据到内核缓冲区中,再从内核缓冲区拷贝到用户进程的页内存中。(两次拷贝,两次 user 和 kernel 的上下文切换)。 I/O 的阻塞到底阻塞在哪里? 4.4.7 Blocking I/O 当使用 read 或 write 对某个文件描述符进行过读写时,如果当前 FD 不可读,系统就不会对其他的操作做出响应。从设备复制数据到内核缓冲区是阻塞的,从内核缓冲区拷贝到用户空间,也是阻塞的,直到 copy complete,内核返回结果,用户进程才解除 block 的状态。 为了解决阻塞的问题,我们有几个思路。 1、在服务端创建多个线程或者使用线程池,但是在高并发的情况下需要的线程会很多,系统无法承受,而且创建和释放线程都需要消耗资源。 2、由请求方定期轮询,在数据准备完毕后再从内核缓存缓冲区复制数据到用户空间 (非阻塞式 I/O),这种方式会存在一定的延迟。 能不能用一个线程处理多个客户端请求? 4.4.8 I/O 多路复用(I/O Multiplexing) I/O 指的是网络 I/O。 多路指的是多个 TCP 连接(Socket 或 Channel)。 复用指的是复用一个或多个线程。它的基本原理就是不再由应用程序自己监视连接,而是由内核替应用程序监视文件描述符。 客户端在操作的时候,会产生具有不同事件类型的 socket。在服务端,I/O 多路复用程序(I/O Multiplexing Module)会把消息放入队列中,然后通过文件事件分派器(File event Dispatcher),转发到不同的事件处理器中。 多路复用有很多的实现,以 select 为例,当用户进程调用了多路复用器,进程会被阻塞。内核会监视多路复用器负责的所有 socket,当任何一个 socket 的数据准备好了,多路复用器就会返回。这时候用户进程再调用 read 操作,把数据从内核缓冲区拷贝到用户空间。 所以,I/O 多路复用的特点是通过一种机制一个进程能同时等待多个文件描述符,而这些文件描述符(套接字描述符)其中的任意一个进入读就绪(readable)状态,select() 函数就可以返回。 Redis 的多路复用, 提供了 select, epoll, evport, kqueue 几种选择,在编译的时 候来选择一种。 evport 是 Solaris 系统内核提供支持的; epoll 是 LINUX 系统内核提供支持的; kqueue 是 Mac 系统提供支持的; select 是 POSIX 提供的,一般的操作系统都有支撑(保底方案); 源码 ae_epoll.c、ae_select.c、ae_kqueue.c、ae_evport.c 5、内存回收 Reids 所有的数据都是存储在内存中的,在某些情况下需要对占用的内存空间进行回 收。内存回收主要分为两类,一类是 key 过期,一类是内存使用达到上限(max_memory) 触发内存淘汰。 5.1 过期策略 要实现 key 过期,我们有几种思路。 5.1.1 定时过期(主动淘汰) 每个设置过期时间的 key 都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的 CPU 资源去处理过期的 数据,从而影响缓存的响应时间和吞吐量。 5.1.2 惰性过期(被动淘汰) 只有当访问一个 key 时,才会判断该 key 是否已过期,过期则清除。该策略可以最大化地节省 CPU 资源,却对内存非常不友好。极端情况可能出现大量的过期 key 没有再次被访问,从而不会被清除,占用大量内存。 例如 String,在 getCommand 里面会调用 expireIfNeeded server.c expireIfNeeded(redisDb db, robj key) 第二种情况,每次写入 key 时,发现内存不够,调用 activeExpireCycle 释放一部分内存。 expire.c activeExpireCycle(int type) 5.1.3 定期过期 源码:server.h typedef struct redisDb { dict dict; / 所有的键值对 /dict expires; / 设置了过期时间的键值对 /dict blocking_keys; dict ready_keys; dict watched_keys; int id;long long avg_ttl;list defrag_later; } redisDb; 每隔一定的时间,会扫描一定数量的数据库的 expires 字典中一定数量的 key,并清除其中已过期的 key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得 CPU 和内存资源达到最优的平衡效果。 Redis 中同时使用了惰性过期和定期过期两种过期策略。 5.2 淘汰策略 Redis 的内存淘汰策略,是指当内存使用达到最大内存极限时,需要使用淘汰算法来决定清理掉哪些数据,以保证新数据的存入。 5.2.1 最大内存设置 redis.conf 参数配置: maxmemory <bytes> 如果不设置 maxmemory 或者设置为 0,64 位系统不限制内存,32 位系统最多使用 3GB 内存。 动态修改: redis> config set maxmemory 2GB 到达最大内存以后怎么办? 5.2.2 淘汰策略 https://redis.io/topics/lru-cache redis.conf maxmemory-policy noeviction 先从算法来看: LRU,Least Recently Used:最近最少使用。判断最近被使用的时间,目前最远的数据优先被淘汰。 LFU,Least Frequently Used,最不常用,4.0 版本新增。 random,随机删除。 如果没有符合前提条件的 key 被淘汰,那么 volatile-lru、volatile-random、 volatile-ttl 相当于 noeviction(不做内存回收)。 动态修改淘汰策略: redis> config set maxmemory-policy volatile-lru 建议使用 volatile-lru,在保证正常服务的情况下,优先删除最近最少使用的 key。 5.2.3 LRU 淘汰原理 问题:如果基于传统 LRU 算法实现 Redis LRU 会有什么问题? 需要额外的数据结构存储,消耗内存。 Redis LRU 对传统的 LRU 算法进行了改良,通过随机采样来调整算法的精度。如果淘汰策略是 LRU,则根据配置的采样值 maxmemory_samples(默认是 5 个), 随机从数据库中选择 m 个 key, 淘汰其中热度最低的 key 对应的缓存数据。所以采样参数m配置的数值越大, 就越能精确的查找到待淘汰的缓存数据,但是也消耗更多的CPU计算,执行效率降低。 问题:如何找出热度最低的数据? Redis 中所有对象结构都有一个 lru 字段, 且使用了 unsigned 的低 24 位,这个字段用来记录对象的热度。对象被创建时会记录 lru 值。在被访问的时候也会更新 lru 的值。 但是不是获取系统当前的时间戳,而是设置为全局变量 server.lruclock 的值。 源码:server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; server.lruclock 的值怎么来的? Redis 中有个定时处理的函数 serverCron,默认每 100 毫秒调用函数 updateCachedTime 更新一次全局变量的 server.lruclock 的值,它记录的是当前 unix 时间戳。 源码:server.c void updateCachedTime(void) { time_t unixtime = time(NULL); atomicSet(server.unixtime,unixtime); server.mstime = mstime();struct tm tm; localtime_r(&server.unixtime,&tm);server.daylight_active = tm.tm_isdst; } 问题:为什么不获取精确的时间而是放在全局变量中?不会有延迟的问题吗? 这样函数 lookupKey 中更新数据的 lru 热度值时,就不用每次调用系统函数 time,可以提高执行效率。 OK,当对象里面已经有了 LRU 字段的值,就可以评估对象的热度了。 函数 estimateObjectIdleTime 评估指定对象的 lru 热度,思想就是对象的 lru 值和全局的 server.lruclock 的差值越大(越久没有得到更新),该对象热度越低。 源码 evict.c / Given an object returns the min number of milliseconds the object was never requested, using an approximated LRU algorithm. /unsigned long long estimateObjectIdleTime(robj o) {unsigned long long lruclock = LRU_CLOCK(); if (lruclock >= o->lru) {return (lruclock - o->lru) LRU_CLOCK_RESOLUTION; } else {return (lruclock + (LRU_CLOCK_MAX - o->lru)) LRU_CLOCK_RESOLUTION;} } server.lruclock 只有 24 位,按秒为单位来表示才能存储 194 天。当超过 24bit 能表 示的最大时间的时候,它会从头开始计算。 server.h define LRU_CLOCK_MAX ((1<<LRU_BITS)-1) / Max value of obj->lru / 在这种情况下,可能会出现对象的 lru 大于 server.lruclock 的情况,如果这种情况 出现那么就两个相加而不是相减来求最久的 key。 为什么不用常规的哈希表+双向链表的方式实现?需要额外的数据结构,消耗资源。而 Redis LRU 算法在 sample 为 10 的情况下,已经能接近传统 LRU 算法了。 问题:除了消耗资源之外,传统 LRU 还有什么问题? 如图,假设 A 在 10 秒内被访问了 5 次,而 B 在 10 秒内被访问了 3 次。因为 B 最后一次被访问的时间比 A 要晚,在同等的情况下,A 反而先被回收。 问题:要实现基于访问频率的淘汰机制,怎么做? 5.2.4 LFU server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; 当这 24 bits 用作 LFU 时,其被分为两部分: 高 16 位用来记录访问时间(单位为分钟,ldt,last decrement time) 低 8 位用来记录访问频率,简称 counter(logc,logistic counter) counter 是用基于概率的对数计数器实现的,8 位可以表示百万次的访问频率。 对象被读写的时候,lfu 的值会被更新。 db.c——lookupKey void updateLFU(robj val) {unsigned long counter = LFUDecrAndReturn(val); counter = LFULogIncr(counter);val->lru = (LFUGetTimeInMinutes()<<8) | counter;} 增长的速率由,lfu-log-factor 越大,counter 增长的越慢 redis.conf 配置文件。 lfu-log-factor 10 如果计数器只会递增不会递减,也不能体现对象的热度。没有被访问的时候,计数器怎么递减呢? 减少的值由衰减因子 lfu-decay-time(分钟)来控制,如果值是 1 的话,N 分钟没有访问就要减少 N。 redis.conf 配置文件 lfu-decay-time 1 6、持久化机制 https://redis.io/topics/persistence Redis 速度快,很大一部分原因是因为它所有的数据都存储在内存中。如果断电或者宕机,都会导致内存中的数据丢失。为了实现重启后数据不丢失,Redis 提供了两种持久化的方案,一种是 RDB 快照(Redis DataBase),一种是 AOF(Append Only File)。 6.1 RDB RDB 是 Redis 默认的持久化方案。当满足一定条件的时候,会把当前内存中的数据写入磁盘,生成一个快照文件 dump.rdb。Redis 重启会通过加载 dump.rdb 文件恢复数据。 什么时候写入 rdb 文件? 6.1.1 RDB 触发 1、自动触发 a)配置规则触发。 redis.conf, SNAPSHOTTING,其中定义了触发把数据保存到磁盘的触发频率。 如果不需要 RDB 方案,注释 save 或者配置成空字符串""。 save 900 1 900 秒内至少有一个 key 被修改(包括添加) save 300 10 400 秒内至少有 10 个 key 被修改save 60 10000 60 秒内至少有 10000 个 key 被修改 注意上面的配置是不冲突的,只要满足任意一个都会触发。 RDB 文件位置和目录: 文件路径,dir ./ 文件名称dbfilename dump.rdb 是否是LZF压缩rdb文件 rdbcompression yes 开启数据校验 rdbchecksum yes 问题:为什么停止 Redis 服务的时候没有 save,重启数据还在? RDB 还有两种触发方式: b)shutdown 触发,保证服务器正常关闭。 c)flushall,RDB 文件是空的,没什么意义(删掉 dump.rdb 演示一下)。 2、手动触发 如果我们需要重启服务或者迁移数据,这个时候就需要手动触 RDB 快照保存。Redis 提供了两条命令: a)save save 在生成快照的时候会阻塞当前 Redis 服务器, Redis 不能处理其他命令。如果内存中的数据比较多,会造成 Redis 长时间的阻塞。生产环境不建议使用这个命令。 为了解决这个问题,Redis 提供了第二种方式。 执行 bgsave 时,Redis 会在后台异步进行快照操作,快照同时还可以响应客户端请求。 具体操作是 Redis 进程执行 fork 操作创建子进程(copy-on-write),RDB 持久化过程由子进程负责,完成后自动结束。它不会记录 fork 之后后续的命令。阻塞只发生在 fork 阶段,一般时间很短。 用 lastsave 命令可以查看最近一次成功生成快照的时间。 6.1.2 RDB 数据的恢复(演示) 1、shutdown 持久化添加键值 添加键值 redis> set k1 1 redis> set k2 2 redis> set k3 3 redis> set k4 4 redis> set k5 5 停服务器,触发 save redis> shutdown 备份 dump.rdb 文件 cp dump.rdb dump.rdb.bak 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 啥都没有: redis> keys 3、通过备份文件恢复数据停服务器 redis> shutdown 重命名备份文件 mv dump.rdb.bak dump.rdb 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 查看数据 redis> keys 6.1.3 RDB 文件的优势和劣势 一、优势 1.RDB 是一个非常紧凑(compact)的文件,它保存了 redis 在某个时间点上的数据集。这种文件非常适合用于进行备份和灾难恢复。 2.生成 RDB 文件的时候,redis 主进程会 fork()一个子进程来处理所有保存工作,主进程不需要进行任何磁盘 IO 操作。 3.RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。 二、劣势 1、RDB 方式数据没办法做到实时持久化/秒级持久化。因为 bgsave 每次运行都要执行 fork 操作创建子进程,频繁执行成本过高。 2、在一定间隔时间做一次备份,所以如果 redis 意外 down 掉的话,就会丢失最后一次快照之后的所有修改(数据有丢失)。 如果数据相对来说比较重要,希望将损失降到最小,则可以使用 AOF 方式进行持久化。 6.2 AOF Append Only File AOF:Redis 默认不开启。AOF 采用日志的形式来记录每个写操作,并追加到文件中。开启后,执行更改 Redis 数据的命令时,就会把命令写入到 AOF 文件中。 Redis 重启时会根据日志文件的内容把写指令从前到后执行一次以完成数据的恢复工作。 6.2.1 AOF 配置 配置文件 redis.conf 开关appendonly no 文件名appendfilename "appendonly.aof" AOF 文件的内容(vim 查看): 问题:数据都是实时持久化到磁盘吗? 由于操作系统的缓存机制,AOF 数据并没有真正地写入硬盘,而是进入了系统的硬盘缓存。什么时候把缓冲区的内容写入到 AOF 文件? 问题:文件越来越大,怎么办? 由于 AOF 持久化是 Redis 不断将写命令记录到 AOF 文件中,随着 Redis 不断的进行,AOF 的文件会越来越大,文件越大,占用服务器内存越大以及 AOF 恢复要求时间越长。 例如 set xxx 666,执行 1000 次,结果都是 xxx=666。 为了解决这个问题,Redis 新增了重写机制,当 AOF 文件的大小超过所设定的阈值时,Redis 就会启动 AOF 文件的内容压缩,只保留可以恢复数据的最小指令集。 可以使用命令 bgrewriteaof 来重写。 AOF 文件重写并不是对原文件进行重新整理,而是直接读取服务器现有的键值对,然后用一条命令去代替之前记录这个键值对的多条命令,生成一个新的文件后去替换原来的 AOF 文件。 重写触发机制 auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb 问题:重写过程中,AOF 文件被更改了怎么办? 另外有两个与 AOF 相关的参数: 6.2.2 AOF 数据恢复 重启 Redis 之后就会进行 AOF 文件的恢复。 6.2.3 AOF 优势与劣势 优点: 1、AOF 持久化的方法提供了多种的同步频率,即使使用默认的同步频率每秒同步一次,Redis 最多也就丢失 1 秒的数据而已。 缺点: 1、对于具有相同数据的的 Redis,AOF 文件通常会比 RDB 文件体积更大(RDB 存的是数据快照)。 2、虽然 AOF 提供了多种同步的频率,默认情况下,每秒同步一次的频率也具有较高的性能。在高并发的情况下,RDB 比 AOF 具好更好的性能保证。 6.3 两种方案比较 那么对于 AOF 和 RDB 两种持久化方式,我们应该如何选择呢? 如果可以忍受一小段时间内数据的丢失,毫无疑问使用 RDB 是最好的,定时生成 RDB 快照(snapshot)非常便于进行数据库备份, 并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度要快。 否则就使用 AOF 重写。但是一般情况下建议不要单独使用某一种持久化机制,而是应该两种一起用,在这种情况下,当 redis 重启的时候会优先载入 AOF 文件来恢复原始的数据,因为在通常情况下 AOF 文件保存的数据集要比 RDB 文件保存的数据集要完整。 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhoutaochun/article/details/120075092。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-18 12:25:04
541
转载
转载文章
...功能。它能够添加到 Java 源代码的语法元数据。类、方法、变量、参数、包都可以被注解,可用来将信息元数据与程序元素进行关联。目前很多开源库都使用到了注解,最熟悉的ButtonKnife中的@ViewInject(R.id.x)就可以替代findViewId,不懂这一块技术的同学第一眼看上去肯定会一脸懵逼,下面会手把手带大家写出ButtonKnife的注解使用。使用注解可以简化代码,提高开发效率。本文简单介绍下注解的使用,并对几个 Android 开源库的注解使用原理进行简析。 1、作用 标记,用于告诉编译器一些信息 ; 编译时动态处理,如动态生成代码 ; 运行时动态处理,如得到注解信息。 2、分类 标准 Annotation, 包括 Override, Deprecated, SuppressWarnings。也都是Java自带的几个 Annotation,上面三个分别表示重写函数,不鼓励使用(有更好方式、使用有风险或已不在维护),忽略某项 Warning; 元 Annotation ,@Retention, @Target, @Inherited, @Documented。元 Annotation 是指用来定义 Annotation 的 Annotation,在后面 Annotation 自定义部分会详细介绍含义; 自定义 Annotation , 表示自己根据需要定义的 Annotation,定义时需要用到上面的元 Annotation 这里只是一种分类而已,也可以根据作用域分为源码时、编译时、运行时 Annotation。通过 @interface 定义,注解名即为自定义注解名。 一、自定义注解 例如,注解@MethodInfo: @Documented@Retention(RetentionPolicy.RUNTIME)@Target(ElementType.METHOD)@Inheritedpublic @interface MethodInfo {String author() default "annotation@gmail.com";String date();int version() default 1;} 使用到了元Annotation: @Documented 是否会保存到 Javadoc 文档中 ; @Retention 保留时间,可选值 SOURCE(源码时),CLASS(编译时),RUNTIME(运行时),默认为 CLASS,值为 SOURCE 大都为 Mark Annotation,这类 Annotation 大都用来校验,比如 Override, Deprecated, SuppressWarnings ; @Target 用来指定修饰的元素,如 CONSTRUCTOR:用于描述构造器、FIELD:用于描述域、LOCAL_VARIABLE:用于描述局部变量、METHOD:用于描述方法、PACKAGE:用于描述包、PARAMETER:用于描述参数、TYPE:用于描述类、接口(包括注解类型) 或enum声明。 @Inherited 是否可以被继承,默认为 false。 注解的参数名为注解类的方法名,且: 所有方法没有方法体,没有参数没有修饰符,实际只允许 public & abstract 修饰符,默认为 public ,不允许抛异常; 方法返回值只能是基本类型,String, Class, annotation, enumeration 或者是他们的一维数组; 若只有一个默认属性,可直接用 value() 函数。一个属性都没有表示该 Annotation 为 Mark Annotation。 public class App {@MethodInfo(author = “annotation.cn+android@gmail.com”,date = "2011/01/11",version = 2)public String getAppName() {return "appname";} } 调用自定义MethodInfo 的示例,这里注解的作用实际是给方法添加相关信息: author、date、version 。 二、实战注解Butter Knife 首先,先定义一个ViewInject注解。 public @interface ViewInject { int value() default -1;} 紧接着,为刚自定义注解添加元注解。 @Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.METHOD})@Retention(RetentionPolicy.RUNTIME)public @interface ViewInject {int value() default -1;} 再定义一个注解LayoutInject @Target(ElementType.TYPE)@Retention(RetentionPolicy.RUNTIME)public @interface LayoutInject {int value() default -1;} 定义一个基础的Activity。 package cn.wsy.myretrofit.annotation;import android.os.Bundle;import android.support.v7.app.AppCompatActivity;import android.util.Log;import java.lang.reflect.Field;public class InjectActivity extends AppCompatActivity {private int mLayoutId = -1;@Overrideprotected void onCreate(Bundle savedInstanceState) {super.onCreate(savedInstanceState);displayInjectLayout();displayInjectView();}/ 解析注解view id/private void displayInjectView() {if (mLayoutId <=0){return ;}Class<?> clazz = this.getClass();Field[] fields = clazz.getDeclaredFields();//获得声明的成员变量for (Field field : fields) {//判断是否有注解try {if (field.getAnnotations() != null) {if (field.isAnnotationPresent(ViewInject.class)) {//如果属于这个注解//为这个控件设置属性field.setAccessible(true);//允许修改反射属性ViewInject inject = field.getAnnotation(ViewInject.class);field.set(this, this.findViewById(inject.value()));} }} catch (Exception e) {Log.e("wusy", "not found view id!");} }}/ 注解布局Layout id/private void displayInjectLayout() {Class<?> clazz = this.getClass();if (clazz.getAnnotations() != null){if (clazz.isAnnotationPresent(LayouyInject.class)){LayouyInject inject = clazz.getAnnotation(LayouyInject.class);mLayoutId = inject.value();setContentView(mLayoutId);} }} } 首先,这里是根据映射实现设置控件的注解,java中使用反射的机制效率性能并不高。这里只是举例子实现注解。ButterKnife官方申明不是通过反射机制,因此效率会高点。 package cn.wsy.myretrofit;import android.os.Bundle;import android.widget.TextView;import cn.wsy.myretrofit.annotation.InjectActivity;import cn.wsy.myretrofit.annotation.LayouyInject;import cn.wsy.myretrofit.annotation.ViewInject;@LayoutInject(R.layout.activity_main)public class MainActivity extends InjectActivity {@ViewInject(R.id.textview)private TextView textView;@ViewInject(R.id.textview1)private TextView textview1;@ViewInject(R.id.textview2)private TextView textview2;@ViewInject(R.id.textview3)private TextView textview3;@ViewInject(R.id.textview4)private TextView textview4;@ViewInject(R.id.textview5)private TextView textview5;@Overrideprotected void onCreate(Bundle savedInstanceState) {super.onCreate(savedInstanceState);//设置属性textView.setText("OK");textview1.setText("OK1");textview2.setText("OK2");textview3.setText("OK3");textview4.setText("OK4");textview5.setText("OK5");} } 上面直接继承InjectActivity即可,文章上面也有说过:LayouyInject为什么作用域是TYPE,首先在加载view的时候,肯定是优先加载布局啊,ButterKnife也不例外。因此选择作用域在描述类,并且存在运行时。 二、解析Annotation原理 1、运行时 Annotation 解析 (1) 运行时 Annotation 指 @Retention 为 RUNTIME 的 Annotation,可手动调用下面常用 API 解析 method.getAnnotation(AnnotationName.class);method.getAnnotations();method.isAnnotationPresent(AnnotationName.class); 其他 @Target 如 Field,Class 方法类似 。 getAnnotation(AnnotationName.class) 表示得到该 Target 某个 Annotation 的信息,一个 Target 可以被多个 Annotation 修饰; getAnnotations() 则表示得到该 Target 所有 Annotation ; isAnnotationPresent(AnnotationName.class) 表示该 Target 是否被某个 Annotation 修饰; (2) 解析示例如下: public static void main(String[] args) {try {Class cls = Class.forName("cn.trinea.java.test.annotation.App");for (Method method : cls.getMethods()) {MethodInfo methodInfo = method.getAnnotation(MethodInfo.class);if (methodInfo != null) {System.out.println("method name:" + method.getName());System.out.println("method author:" + methodInfo.author());System.out.println("method version:" + methodInfo.version());System.out.println("method date:" + methodInfo.date());} }} catch (ClassNotFoundException e) {e.printStackTrace();} } 以之前自定义的 MethodInfo 为例,利用 Target(这里是 Method)getAnnotation 函数得到 Annotation 信息,然后就可以调用 Annotation 的方法得到响应属性值 。 2、编译时 Annotation 解析 (1) 编译时 Annotation 指 @Retention 为 CLASS 的 Annotation,甴 apt(Annotation Processing Tool) 解析自动解析。 使用方法: 自定义类集成自 AbstractProcessor; 重写其中的 process 函数 这块很多同学不理解,实际是 apt(Annotation Processing Tool) 在编译时自动查找所有继承自 AbstractProcessor 的类,然后调用他们的 process 方法去处理。 (2) 假设之前自定义的 MethodInfo 的 @Retention 为 CLASS,解析示例如下: @SupportedAnnotationTypes({ "cn.trinea.java.test.annotation.MethodInfo" })public class MethodInfoProcessor extends AbstractProcessor {@Overridepublic boolean process(Set<? extends TypeElement> annotations, RoundEnvironment env) {HashMap<String, String> map = new HashMap<String, String>();for (TypeElement te : annotations) {for (Element element : env.getElementsAnnotatedWith(te)) {MethodInfo methodInfo = element.getAnnotation(MethodInfo.class);map.put(element.getEnclosingElement().toString(), methodInfo.author());} }return false;} } SupportedAnnotationTypes 表示这个 Processor 要处理的 Annotation 名字。 process 函数中参数 annotations 表示待处理的 Annotations,参数 env 表示当前或是之前的运行环境 process 函数返回值表示这组 annotations 是否被这个 Processor 接受,如果接受后续子的 rocessor 不会再对这个 Annotations 进行处理 三、几个 Android 开源库 Annotation 原理简析 1、Retrofit (1) 调用 @GET("/users/{username}")User getUser(@Path("username") String username); (2) 定义 @Documented@Target(METHOD)@Retention(RUNTIME)@RestMethod("GET")public @interface GET {String value();} 从定义可看出 Retrofit 的 Get Annotation 是运行时 Annotation,并且只能用于修饰 Method (3) 原理 private void parseMethodAnnotations() {for (Annotation methodAnnotation : method.getAnnotations()) {Class<? extends Annotation> annotationType = methodAnnotation.annotationType();RestMethod methodInfo = null;for (Annotation innerAnnotation : annotationType.getAnnotations()) {if (RestMethod.class == innerAnnotation.annotationType()) {methodInfo = (RestMethod) innerAnnotation;break;} }……} } RestMethodInfo.java 的 parseMethodAnnotations 方法如上,会检查每个方法的每个 Annotation, 看是否被 RestMethod 这个 Annotation 修饰的 Annotation 修饰,这个有点绕,就是是否被 GET、DELETE、POST、PUT、HEAD、PATCH 这些 Annotation 修饰,然后得到 Annotation 信息,在对接口进行动态代理时会掉用到这些 Annotation 信息从而完成调用。 因为 Retrofit 原理设计到动态代理,这里只介绍 Annotation。 2、Butter Knife (1) 调用 @InjectView(R.id.user) EditText username; (2) 定义 @Retention(CLASS) @Target(FIELD)public @interface InjectView {int value();} 可看出 Butter Knife 的 InjectView Annotation 是编译时 Annotation,并且只能用于修饰属性 (3) 原理 @Override public boolean process(Set<? extends TypeElement> elements, RoundEnvironment env) {Map<TypeElement, ViewInjector> targetClassMap = findAndParseTargets(env);for (Map.Entry<TypeElement, ViewInjector> entry : targetClassMap.entrySet()) {TypeElement typeElement = entry.getKey();ViewInjector viewInjector = entry.getValue();try {JavaFileObject jfo = filer.createSourceFile(viewInjector.getFqcn(), typeElement);Writer writer = jfo.openWriter();writer.write(viewInjector.brewJava());writer.flush();writer.close();} catch (IOException e) {error(typeElement, "Unable to write injector for type %s: %s", typeElement, e.getMessage());} }return true;} ButterKnifeProcessor.java 的 process 方法如上,编译时,在此方法中过滤 InjectView 这个 Annotation 到 targetClassMap 后,会根据 targetClassMap 中元素生成不同的 class 文件到最终的 APK 中,然后在运行时调用 ButterKnife.inject(x) 函数时会到之前编译时生成的类中去找。 3、ActiveAndroid (1) 调用 @Column(name = “Name") public String name; (2) 定义 @Target(ElementType.FIELD)@Retention(RetentionPolicy.RUNTIME)public @interface Column {……} 可看出 ActiveAndroid 的 Column Annotation 是运行时 Annotation,并且只能用于修饰属性 (3) 原理 Field idField = getIdField(type);mColumnNames.put(idField, mIdName);List<Field> fields = new LinkedList<Field>(ReflectionUtils.getDeclaredColumnFields(type));Collections.reverse(fields);for (Field field : fields) {if (field.isAnnotationPresent(Column.class)) {final Column columnAnnotation = field.getAnnotation(Column.class);String columnName = columnAnnotation.name();if (TextUtils.isEmpty(columnName)) {columnName = field.getName();}mColumnNames.put(field, columnName);} } TableInfo.java 的构造函数如上,运行时,得到所有行信息并存储起来用来构件表信息。 ———————————————————————— 最后一个问题,看看这段代码最后运行结果: public class Person {private int id;private String name;public Person(int id, String name) {this.id = id;this.name = name;}public boolean equals(Person person) {return person.id == id;}public int hashCode() {return id;}public static void main(String[] args) {Set<Person> set = new HashSet<Person>();for (int i = 0; i < 10; i++) {set.add(new Person(i, "Jim"));}System.out.println(set.size());} } 答案:示例代码运行结果应该是 10 而不是 1,这个示例代码程序实际想说明的是标记型注解 Override 的作用,为 equals 方法加上 Override 注解就知道 equals 方法的重载是错误的,参数不对。 本篇文章为转载内容。原文链接:https://blog.csdn.net/csdn_aiyang/article/details/81564408。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-28 22:30:35
104
转载
转载文章
...实并删除相应内容。 Java中的元组Tuple 文章目录 Java中的元组Tuple 1. 概念 2. 使用 2.1 依赖Jar包 2.2 基本使用 2.2.1 直接调用 2.2.2 自定义工具类 2.2.3 示例代码 1. 概念 Java中的Tuple是一种数据结构,可存放多个元素,每个元素的数据类型可不同。Tuple与List集合类似,但是不同的是,List集合只能存储一种数据类型,而Tuple可存储多种数据类型。 可能你会说,Object类型的List实际也是可以存储多种类型的啊?但是在创建List的时候,需要指定元素数据类型,也就是只能指定为Object类型,获取的元素类型就是Object,如有需要则要进行强转。而Tuple在创建的时候,则可以直接指定多个元素数据类型。 Tuple具体是怎么的数据结构呢? 元组(tuple)是关系数据库中的基本概念,关系是一张表,表中的每行(即数据库中的每条记录)就是一个元组,每列就是一个属性。 在二维表里,元组也称为行。 以上是百度百科中的"元组"概念,我们将一个元组理解为数据表中的一行,而一行中每个字段的类型是可以不同的。这样我们就可以简单理解Java中的Tuple数据结构了。 2. 使用 2.1 依赖Jar包 Maven坐标如下: <dependency><groupId>org.javatuples</groupId><artifactId>javatuples</artifactId><version>1.2</version></dependency> 引入相关依赖后,可以看出jar包中的结构很简单,其中的类主要是tuple基础类、扩展的一元组、二元组…十元组,以及键值对元组;接口的作用是提供【获取创建各元组时传入参数值】的方法。 2.2 基本使用 2.2.1 直接调用 以下以三元组为例,部分源码如下: package org.javatuples;import java.util.Collection;import java.util.Iterator;import org.javatuples.valueintf.IValue0;import org.javatuples.valueintf.IValue1;import org.javatuples.valueintf.IValue2;/ <p> A tuple of three elements. </p> @since 1.0 @author Daniel Fernández/public final class Triplet<A,B,C> extends Tupleimplements IValue0<A>,IValue1<B>,IValue2<C> {private static final long serialVersionUID = -1877265551599483740L;private static final int SIZE = 3;private final A val0;private final B val1;private final C val2;public static <A,B,C> Triplet<A,B,C> with(final A value0, final B value1, final C value2) {return new Triplet<A,B,C>(value0,value1,value2);} 我们一般调用静态方法with,传入元组数据,创建一个元组。当然了,也可以通过有参构造、数组Array、集合Collection、迭代器Iterator来创建一个元组,直接调用相应方法即可。 但是,我们可能记不住各元组对象的名称(Unit、Pair、Triplet、Quartet、Quintet、Sextet、Septet、Octet、Ennead、Decade),还要背下单词…因此,我们可以自定义一个工具类,提供公共方法,根据传入的参数个数,返回不同的元组对象。 2.2.2 自定义工具类 package com.superchen.demo.utils;import org.javatuples.Decade;import org.javatuples.Ennead;import org.javatuples.Octet;import org.javatuples.Pair;import org.javatuples.Quartet;import org.javatuples.Quintet;import org.javatuples.Septet;import org.javatuples.Sextet;import org.javatuples.Triplet;import org.javatuples.Unit;/ ClassName: TupleUtils Function: <p> Tuple helper to create numerous items of tuple. the maximum is 10. if you want to create tuple which elements count more than 10, a new class would be a better choice. if you don't want to new a class, just extends the class {@link org.javatuples.Tuple} and do your own implemention. </p> date: 2019/9/2 16:16 @version 1.0.0 @author Chavaer @since JDK 1.8/public class TupleUtils{/ <p>Create a tuple of one element.</p> @param value0 @param <A> @return a tuple of one element/public static <A> Unit<A> with(final A value0) {return Unit.with(value0);}/ <p>Create a tuple of two elements.</p> @param value0 @param value1 @param <A> @param <B> @return a tuple of two elements/public static <A, B> Pair<A, B> with(final A value0, final B value1) {return Pair.with(value0, value1);}/ <p>Create a tuple of three elements.</p> @param value0 @param value1 @param value2 @param <A> @param <B> @param <C> @return a tuple of three elements/public static <A, B, C> Triplet<A, B, C> with(final A value0, final B value1, final C value2) {return Triplet.with(value0, value1, value2);} } 以上的TupleUtils中提供了with的重载方法,调用时根据传入的参数值个数,返回对应的元组对象。 2.2.3 示例代码 若有需求: 现有pojo类Student、Teacher、Programmer,需要存储pojo类的字节码文件、对应数据库表的主键名称、对应数据库表的毕业院校字段名称,传到后层用于组装sql。 可以再定义一个对象类,但是如果还要再添加条件字段的话,又得重新定义…所以我们这里直接使用元组Tuple实现。 public class TupleTest {public static void main(String[] args) {List<Triplet<Class, String, String>> roleList = new ArrayList<Triplet<Class, String, String>>();/三元组,存储数据:对应实体类字节码文件、数据表主键名称、数据表毕业院校字段名称/Triplet<Class, String, String> studentTriplet = TupleUtils.with(Student.class, "sid", "graduate");Triplet<Class, String, String> teacherTriplet = TupleUtils.with(Teacher.class, "tid", "graduate");Triplet<Class, String, String> programmerTriplet = TupleUtils.with(Programmer.class, "id", "graduate");roleList.add(studentTriplet);roleList.add(teacherTriplet);roleList.add(programmerTriplet);for (Triplet<Class, String, String> triplet : roleList) {System.out.println(triplet);} }} 存储数据结构如下: 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_35006663/article/details/100301416。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 17:43:51
257
转载
Apache Solr
...r配置错误分析及解决方法 1.1 全文索引导入失败 根据知识库中的资料,我们发现一位开发者在2021年5月28日遇到了“solr配置错误”的问题。具体表现为:Full Import failed:java.lang.RuntimeException:java.lang.RuntimeException:org.apache.solr.handler.dataimport.DataImportHandlerException:One of driver or jndiName must be specified。 对于这个问题,我们可以从以下几个方面进行排查: - 首先,检查solr的配置文件,确认数据源驱动类是否正确配置; - 其次,检查数据库连接参数是否正确设置; - 最后,查看日志文件,查看是否有其他异常信息。 在实践中,我们可以尝试如下代码实现: java // 创建DataImporter对象 DataImporter importer = new DataImporter(); // 设置数据库连接参数 importer.setDataSource(new JdbcDataSource()); importer.setSql("SELECT FROM table_name"); // 执行数据导入 importer.fullImport("/path/to/solr/home"); 如果以上步骤无法解决问题,建议查阅相关文档或寻求专业人士的帮助。 1.2 集群配置错误 另一位开发者在2020年7月25日反馈了一个关于Solr集群配置的错误问题。其问题描述为:“淘淘商城第60讲——搭建Solr集群时,报错:org.apache.solr.common.SolrException: Could not find collection : core1”。读了这位开发者的文章,我们发现他在搭建Solr集群的时候,实实在在地碰到了上面提到的那些问题。 对于这个问题,我们可以从以下几个方面进行排查: - 首先,检查solr的配置文件,确认核心集合是否正确配置; - 其次,检查集群状态,确认所有节点是否都已经正常启动; - 最后,查看日志文件,查看是否有其他异常信息。 在实践中,我们可以尝试如下代码实现: java // 启动集群 CoreContainer cc = CoreContainer.create(CoreContainer.DEFAULT_CONFIG); cc.load(new File("/path/to/solr/home/solr.xml")); cc.start(); // 查询集群状态 Collections cores = cc.getCores(); for (SolrCore core : cores) { System.out.println(core.getName() + " status : " + core.getStatus()); } 如果以上步骤无法解决问题,建议查阅相关文档或寻求专业人士的帮助。 三、Solr代码执行漏洞排查及解决方法 近年来,随着Apache Solr的广泛应用,安全问题日益突出。嘿,你知道吗?在2019年11月19日曝出的一条消息,Apache Solr这个家伙在默认设置下有个不小的安全隐患。如果它以cloud模式启动,并且对外开放的话,那么远程的黑客就有机会利用这个漏洞,在目标系统上随心所欲地执行任何代码呢!就像是拿到了系统的遥控器一样,想想都有点让人捏把汗呐! 对于这个问题,我们可以从以下几个方面进行排查: - 首先,检查solr的安全配置,确保只允许受信任的IP地址访问; - 其次,关闭不必要的服务端功能,如远程管理、JMX等; - 最后,定期更新solr到最新版本,以获取最新的安全补丁。 在实践中,我们可以尝试如下代码实现: java // 关闭JMX服务 String configPath = "/path/to/solr/home/solr.xml"; File configFile = new File(configPath); DocumentBuilder db = DocumentBuilderFactory.newInstance().newDocumentBuilder(); Document doc = db.parse(configFile); Element root = doc.getDocumentElement(); if (!root.getElementsByTagName("jmx").isEmpty()) { Node jmxNode = root.getElementsByTagName("jmx").item(0); jmxNode.getParentNode().removeChild(jmxNode); } TransformerFactory tf = TransformerFactory.newInstance(); Transformer transformer = tf.newTransformer(); transformer.setOutputProperty(OutputKeys.INDENT, "yes"); transformer.setOutputProperty("{http://xml.apache.org/xslt}indent-amount", "2"); DOMSource source = new DOMSource(doc); StreamResult result = new StreamResult(new File(configPath)); transformer.transform(source, result); 如果以上步骤无法解决问题,建议查阅相关文档或寻求专业人士的帮助。 四、总结 总的来说,Apache Solr虽然强大,但在使用过程中也会遇到各种各样的问题。了解并搞定这些常见问题后,咱们就能把Solr的潜能发挥得更淋漓尽致,这样一来,工作效率蹭蹭上涨,用户体验也噌噌提升,妥妥的双赢局面!希望本文能对你有所帮助!
2023-05-31 15:50:32
496
山涧溪流-t
转载文章
...tvirt-sfc JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk CLASSPATH=.:$JAVA_HOME/lib/tools.jar PATH=$JAVA_HOME/bin:$PATH JVM_OPTS="-Xms256m -XX:PermSize=256m -XX:MaxPermSize=512m" MAVEN_OPTS="$MAVEN_OPTS -Xms512m -Xmx1024m -XX:PermSize=256m -XX:MaxPermSize=512m" export MAVEN_OPTS JAVA_HOME CLASSPATH JVM_OPTS PATH [root@localhost ~] netstat -ntpl Active Internet connections (only servers) Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name tcp 0 0 0.0.0.0:22 0.0.0.0: LISTEN 3327/sshd tcp 0 0 127.0.0.1:25 0.0.0.0: LISTEN 3620/master tcp6 0 0 :::6633 ::: LISTEN 868/java tcp6 0 0 127.0.0.1:1099 ::: LISTEN 868/java tcp6 0 0 :::6640 ::: LISTEN 868/java tcp6 0 0 127.0.0.1:6644 ::: LISTEN 868/java tcp6 0 0 :::8181 ::: LISTEN 868/java tcp6 0 0 127.0.0.1:2550 ::: LISTEN 868/java tcp6 0 0 :::22 ::: LISTEN 3327/sshd tcp6 0 0 :::8185 ::: LISTEN 868/java tcp6 0 0 127.0.0.1:44601 ::: LISTEN 868/java tcp6 0 0 :::33273 ::: LISTEN 868/java tcp6 0 0 ::1:25 ::: LISTEN 3620/master tcp6 0 0 :::44444 ::: LISTEN 868/java tcp6 0 0 :::6653 ::: LISTEN 868/java tcp6 0 0 :::39169 ::: LISTEN 868/java tcp6 0 0 :::8101 ::: LISTEN 868/java tcp6 0 0 :::6886 ::: LISTEN 868/java openstack配置 openstack的networking-odl插件安装方式 https://docs.openstack.org/networking-odl/latest/install/installation.htmlodl-installation yum install python-networking-odl.noarch -y https://docs.openstack.org/networking-odl/latest/install/installation.htmlnetworking-odl-configuration systemctl restart neutron-server /etc/neutron/plugins/ml2 测试端口可连接性 curl -u admin:admin http://10.13.80.34:8181/controller/nb/v2/neutron/networks odl配置文件修改 etc/custom.properties ovsdb.l3.fwd.enabled=yes ovsdb.l3gateway.mac=0a:00:27:00:00:0d telnet 10.13.80.34 8181 netstat -nlp | grep 8181 telnet 127.0.0.1 8181 telnet 10.13.80.34 8181 systemctl status firewall iptables iptables -nvL iptables -F 清空iptables openstack server create --flavor tiny --image cirros --nic net-id=24449ee2-b84e-493f-8d76-139ac3e4f3cd --key-name mykey provider-instance nova service-list nova show ae5e26d1-c84d-40fa-bb27-f0b46d6a7061 查看虚机详情 ovs-vsctl set Open_vSwitch 89444614-3bf8-4d7a-b3a0-df5d20b48b7a other_config={'local_ip'='192.168.56.102'} ovs-vsctl set Open_vSwitch b084eccf-b92e-470c-8dff-8549e92c2104 other_config={'local_ip'='192.168.56.122'} ovs-vsctl list interface eth0 ovs-appctl fdb/show br-int [root@rcontroller01 ~] openstack security group rule list 2e19a748-9086-49f8-9498-01abc1a964fe 一个神奇的命令 +--------------------------------------+-------------+-----------+------------+--------------------------------------+ | ID | IP Protocol | IP Range | Port Range | Remote Security Group | +--------------------------------------+-------------+-----------+------------+--------------------------------------+ | 0184e6b3-4f7f-4fd5-8125-b80682e7ee48 | None | None | | 2e19a748-9086-49f8-9498-01abc1a964fe | | 1e0bfedc-8f25-408a-9328-708113bbbc52 | icmp | 0.0.0.0/0 | | None | | 39116d39-454b-4d82-867e-bbfd3ea63182 | None | None | | None | | 4032366f-3ac9-4862-85a7-c7411a8b7678 | None | None | | 2e19a748-9086-49f8-9498-01abc1a964fe | | dc7bc251-f0d0-456a-9102-c5b66646aa84 | tcp | 0.0.0.0/0 | 22:22 | None | | ddacf7ea-57ea-4c8a-8b68-093766284595 | None | None | | None | +--------------------------------------+-------------+-----------+------------+--------------------------------------+ dpif/dump-flows dp 想控制端打印dp中流表的所有条目。 这个命令主要来与debugOpen Vswitch.它所打印的流表不是openFlow的流条目。 它打印的是由dp模块维护的简单的流。 如果你想查看OpenFlow条目,请使用ovs-ofctl dump-flows。dpif/del-fow dp 删除指定dp上所有流表。同上所述,这些不是OpenFlow流表。 ovs-appctl dpif/dump-flows br-int 创建网络 openstack network create --share --external --provider-physical-network provider --provider-network-type flat provider $ openstack subnet create --network provider \ --allocation-pool start=192.168.56.100,end=192.168.56.200 \ --dns-nameserver 8.8.8.8 --gateway 192.168.56.1 \ --subnet-range 192.168.56.0/24 provider openstack network create selfservice $ openstack subnet create --network selfservice \ --dns-nameserver 8.8.8.8 --gateway 192.168.1.1 \ --subnet-range 192.168.1.0/24 selfservice openstack router create router openstack router add subnet router selfservice openstack router set router --external-gateway provider openstack port list --router router +--------------------------------------+------+-------------------+-------------------------------------------------------------------------------+--------+ | ID | Name | MAC Address | Fixed IP Addresses | Status | +--------------------------------------+------+-------------------+-------------------------------------------------------------------------------+--------+ | bff6605d-824c-41f9-b744-21d128fc86e1 | | fa:16:3e:2f:34:9b | ip_address='172.16.1.1', subnet_id='3482f524-8bff-4871-80d4-5774c2730728' | ACTIVE | | d6fe98db-ae01-42b0-a860-37b1661f5950 | | fa:16:3e:e8:c1:41 | ip_address='203.0.113.102', subnet_id='5cc70da8-4ee7-4565-be53-b9c011fca011' | ACTIVE | +--------------------------------------+------+-------------------+-------------------------------------------------------------------------------+--------+ $ ping -c 4 203.0.113.102 创建虚机 openstack keypair list $ ssh-keygen -q -N "" $ openstack keypair create --public-key ~/.ssh/id_rsa.pub mykey openstack flavor list openstack image list openstack network list openstack server create --flavor tiny --image cirros --nic net-id=27616098-0374-4ab4-95a8-b5bf4839dcf8 --key-name mykey provider-instance 网络配置 python /usr/lib/python2.7/site-packages/networking_odl/cmd/set_ovs_hostconfigs.py --ovs_hostconfigs='{ "ODL L2": { "allowed_network_types": [ "flat", "vlan", "vxlan" ], "bridge_mappings": { "provider": "br-int" }, "supported_vnic_types": [ { "vnic_type": "normal", "vif_type": "ovs", "vif_details": {} } ] }, "ODL L3": {} }' ovs-vsctl list open . [2019/1/16 19:09] 高正伟: ovs-vsctl set Open_vSwitch . other_config:local_ip=hostip ovs-vsctl set Open_vSwitch . other_config:local_ip=192.168.56.122 ovs-vsctl set Open_vSwitch . other_config:remote_ip=192.168.56.122 ovs-vsctl remove interface tunca7b782f232 options remote_ip ovs-vsctl set Open_vSwitch . other_config:provider_mappings=provider:br-ex ovs-vsctl set Open_vSwitch . external_ids:provider_mappings="{\"provider\": \"br-ex\"}" 清空 ovs-vsctl clear Open_vSwitch . external_ids ovs-vsctl set-manager tcp:10.13.80.34:6640 ovs-vsctl set-controller br-ex tcp:10.13.80.34:6640 ovs-vsctl del-controller br-ex sudo neutron-odl-ovs-hostconfig ovs-vsctl show ovs-vsctl add-port <bridge name> <port name> ovs-vsctl add-port br-ex enp0s10 ovs-vsctl del-port br-ex phy-br-ex ovs-vsctl del-port br-ex tun2ad7e9e91e4 重启odl后 systemctl restart openvswitch.service systemctl restart neutron-server.service systemctl stop neutron-server.service 创建虚机 openstack network create --share --external --provider-physical-network provider --provider-network-type flat provider openstack subnet create --network provider --allocation-pool start=192.168.56.2,end=192.168.56.100 --dns-nameserver 8.8.8.8 --gateway 192.168.56.1 --subnet-range 192.168.56.0/24 provider nova boot --image cirros --flavor tiny --nic net-id= --availability-zone nova:rcontroller01 vm-01 openstack server create --flavor tiny --image cirros --nic net-id= --key-name mykey test nova boot --image cirros --flavor tiny --nic net-id=0fe983c2-8178-403b-a00e-e8561580b210 --availability-zone nova:rcontroller01 vm-01 虚机可以学习到mac但是ping不通 抓包,先在虚机网卡上抓包, 然后在br-int上抓包 发现虚拟网卡上是发送了icmp请求报文的,但是br-int上没有 查看报文情况 [root@rcontroller01 ~] ovs-appctl dpif/dump-flows br-int recirc_id(0),tunnel(tun_id=0x0,src=192.168.56.102,dst=192.168.56.122,flags(-df-csum+key)),in_port(4),eth(),eth_type(0x0800),ipv4(proto=17,frag=no),udp(dst=3784), packets:266436, bytes:17584776, used:0.591s, actions:userspace(pid=4294962063,slow_path(bfd)) recirc_id(0xa0),in_port(5),ct_state(+new-est-rel-inv+trk),ct_mark(0/0x1),eth(),eth_type(0x0800),ipv4(frag=no), packets:148165, bytes:14520170, used:0.566s, actions:drop recirc_id(0),in_port(3),eth(),eth_type(0x0806), packets:1, bytes:60, used:5.228s, actions:drop recirc_id(0),tunnel(tun_id=0xb,src=192.168.56.102,dst=192.168.56.122,flags(-df-csum+key)),in_port(4),eth(dst=fa:16:3e:ab:ba:7e),eth_type(0x0806), packets:0, bytes:0, used:never, actions:5 recirc_id(0),in_port(5),eth(src=fa:16:3e:ab:ba:7e),eth_type(0x0800),ipv4(src=192.168.0.16,proto=1,frag=no), packets:148165, bytes:14520170, used:0.566s, actions:ct(zone=5004),recirc(0xa0) recirc_id(0),in_port(3),eth(),eth_type(0x0800),ipv4(frag=no), packets:886646, bytes:316947183, used:0.210s, flags:SFPR., actions:drop recirc_id(0),in_port(5),eth(src=fa:16:3e:ab:ba:7e,dst=fa:16:3e:7d:95:75),eth_type(0x0806),arp(sip=192.168.0.16,tip=192.168.0.5,op=1/0xff,sha=fa:16:3e:ab:ba:7e), packets:0, bytes:0, used:never, actions:userspace(pid=4294961925,controller(reason=4,dont_send=0,continuation=0,recirc_id=4618,rule_cookie=0x822002d,controller_id=0,max_len=65535)),set(tunnel(tun_id=0xb,src=192.168.56.122,dst=192.168.56.102,ttl=64,tp_dst=4789,flags(df|key))),4 安全组设置 openstack security group rule create --proto tcp 2e19a748-9086-49f8-9498-01abc1a964fe openstack security group rule create --proto tcp 6095293d-c2cd-433d-8a8f-e77ecb03609e openstack security group rule create --proto udp 2e19a748-9086-49f8-9498-01abc1a964fe openstack security group rule create --proto udp 6095293d-c2cd-433d-8a8f-e77ecb03609e ovs-vsctl add-port br-ex "ex-patch-int" ovs-vsctl set interface "ex-patch-int" type=patch ovs-vsctl set interface "ex-patch-int" options:peer=int-patch-ex ovs-vsctl add-port br-int "int-patch-ex" ovs-vsctl set interface "int-patch-ex" type=patch ovs-vsctl set interface "int-patch-ex" options:peer=ex-patch-int ovs-vsctl del-port br-ex "ex-patch-int" ovs-vsctl del-port br-int "int-patch-ex" ovs-vsctl del-port br-ex enp0s9 ovs-vsctl add-port br-int enp0s9 ovs-appctl ofproto/trace 重要命令 sudo ovs-ofctl -O OpenFlow13 show br-int sudo ovs-appctl ofproto/trace br-int "in_port=5,ip,nw_src=192.168.0.16,nw_dst=192.168.0.5" ovs-appctl dpctl/dump-conntrack 11.查看接口id等 ovs-appctl dpif/show 12.查看接口统计 ovs-ofctl dump-ports br-int 查看接口 sudo ovs-ofctl show br-int -O OpenFlow13 ovs常用命令 控制管理类 1.查看网桥和端口 ovs-vsctl show 1 2.创建一个网桥 ovs-vsctl add-br br0 ovs-vsctl set bridge br0 datapath_type=netdev 1 2 3.添加/删除一个端口 for system interfaces ovs-vsctl add-port br0 eth1 ovs-vsctl del-port br0 eth1 for DPDK ovs-vsctl add-port br0 dpdk1 -- set interface dpdk1 type=dpdk options:dpdk-devargs=0000:01:00.0 for DPDK bonds ovs-vsctl add-bond br0 dpdkbond0 dpdk1 dpdk2 \ -- set interface dpdk1 type=dpdk options:dpdk-devargs=0000:01:00.0 \ -- set interface dpdk2 type=dpdk options:dpdk-devargs=0000:02:00.0 1 2 3 4 5 6 7 8 9 4.设置/清除网桥的openflow协议版本 ovs-vsctl set bridge br0 protocols=OpenFlow13 ovs-vsctl clear bridge br0 protocols 1 2 5.查看某网桥当前流表 ovs-ofctl dump-flows br0 ovs-ofctl -O OpenFlow13 dump-flows br0 ovs-appctl bridge/dump-flows br0 1 2 3 6.设置/删除控制器 ovs-vsctl set-controller br0 tcp:1.2.3.4:6633 ovs-vsctl del-controller br0 1 2 7.查看控制器列表 ovs-vsctl list controller 1 8.设置/删除被动连接控制器 ovs-vsctl set-manager tcp:1.2.3.4:6640 ovs-vsctl get-manager ovs-vsctl del-manager 1 2 3 9.设置/移除可选选项 ovs-vsctl set Interface eth0 options:link_speed=1G ovs-vsctl remove Interface eth0 options link_speed 1 2 10.设置fail模式,支持standalone或者secure standalone(default):清除所有控制器下发的流表,ovs自己接管 secure:按照原来流表继续转发 ovs-vsctl del-fail-mode br0 ovs-vsctl set-fail-mode br0 secure ovs-vsctl get-fail-mode br0 1 2 3 11.查看接口id等 ovs-appctl dpif/show 1 12.查看接口统计 ovs-ofctl dump-ports br0 1 流表类 流表操作 1.添加普通流表 ovs-ofctl add-flow br0 in_port=1,actions=output:2 1 2.删除所有流表 ovs-ofctl del-flows br0 1 3.按匹配项来删除流表 ovs-ofctl del-flows br0 "in_port=1" 1 匹配项 1.匹配vlan tag,范围为0-4095 ovs-ofctl add-flow br0 priority=401,in_port=1,dl_vlan=777,actions=output:2 1 2.匹配vlan pcp,范围为0-7 ovs-ofctl add-flow br0 priority=401,in_port=1,dl_vlan_pcp=7,actions=output:2 1 3.匹配源/目的MAC ovs-ofctl add-flow br0 in_port=1,dl_src=00:00:00:00:00:01/00:00:00:00:00:01,actions=output:2 ovs-ofctl add-flow br0 in_port=1,dl_dst=00:00:00:00:00:01/00:00:00:00:00:01,actions=output:2 1 2 4.匹配以太网类型,范围为0-65535 ovs-ofctl add-flow br0 in_port=1,dl_type=0x0806,actions=output:2 1 5.匹配源/目的IP 条件:指定dl_type=0x0800,或者ip/tcp ovs-ofctl add-flow br0 ip,in_port=1,nw_src=10.10.0.0/16,actions=output:2 ovs-ofctl add-flow br0 ip,in_port=1,nw_dst=10.20.0.0/16,actions=output:2 1 2 6.匹配协议号,范围为0-255 条件:指定dl_type=0x0800或者ip ICMP ovs-ofctl add-flow br0 ip,in_port=1,nw_proto=1,actions=output:2 7.匹配IP ToS/DSCP,tos范围为0-255,DSCP范围为0-63 条件:指定dl_type=0x0800/0x86dd,并且ToS低2位会被忽略(DSCP值为ToS的高6位,并且低2位为预留位) ovs-ofctl add-flow br0 ip,in_port=1,nw_tos=68,actions=output:2 ovs-ofctl add-flow br0 ip,in_port=1,ip_dscp=62,actions=output:2 8.匹配IP ecn位,范围为0-3 条件:指定dl_type=0x0800/0x86dd ovs-ofctl add-flow br0 ip,in_port=1,ip_ecn=2,actions=output:2 9.匹配IP TTL,范围为0-255 ovs-ofctl add-flow br0 ip,in_port=1,nw_ttl=128,actions=output:2 10.匹配tcp/udp,源/目的端口,范围为0-65535 匹配源tcp端口179 ovs-ofctl add-flow br0 tcp,tcp_src=179/0xfff0,actions=output:2 匹配目的tcp端口179 ovs-ofctl add-flow br0 tcp,tcp_dst=179/0xfff0,actions=output:2 匹配源udp端口1234 ovs-ofctl add-flow br0 udp,udp_src=1234/0xfff0,actions=output:2 匹配目的udp端口1234 ovs-ofctl add-flow br0 udp,udp_dst=1234/0xfff0,actions=output:2 11.匹配tcp flags tcp flags=fin,syn,rst,psh,ack,urg,ece,cwr,ns ovs-ofctl add-flow br0 tcp,tcp_flags=ack,actions=output:2 12.匹配icmp code,范围为0-255 条件:指定icmp ovs-ofctl add-flow br0 icmp,icmp_code=2,actions=output:2 13.匹配vlan TCI TCI低12位为vlan id,高3位为priority,例如tci=0xf123则vlan_id为0x123和vlan_pcp=7 ovs-ofctl add-flow br0 in_port=1,vlan_tci=0xf123,actions=output:2 14.匹配mpls label 条件:指定dl_type=0x8847/0x8848 ovs-ofctl add-flow br0 mpls,in_port=1,mpls_label=7,actions=output:2 15.匹配mpls tc,范围为0-7 条件:指定dl_type=0x8847/0x8848 ovs-ofctl add-flow br0 mpls,in_port=1,mpls_tc=7,actions=output:2 1 16.匹配tunnel id,源/目的IP 匹配tunnel id ovs-ofctl add-flow br0 in_port=1,tun_id=0x7/0xf,actions=output:2 匹配tunnel源IP ovs-ofctl add-flow br0 in_port=1,tun_src=192.168.1.0/255.255.255.0,actions=output:2 匹配tunnel目的IP ovs-ofctl add-flow br0 in_port=1,tun_dst=192.168.1.0/255.255.255.0,actions=output:2 一些匹配项的速记符 速记符 匹配项 ip dl_type=0x800 ipv6 dl_type=0x86dd icmp dl_type=0x0800,nw_proto=1 icmp6 dl_type=0x86dd,nw_proto=58 tcp dl_type=0x0800,nw_proto=6 tcp6 dl_type=0x86dd,nw_proto=6 udp dl_type=0x0800,nw_proto=17 udp6 dl_type=0x86dd,nw_proto=17 sctp dl_type=0x0800,nw_proto=132 sctp6 dl_type=0x86dd,nw_proto=132 arp dl_type=0x0806 rarp dl_type=0x8035 mpls dl_type=0x8847 mplsm dl_type=0x8848 指令动作 1.动作为出接口 从指定接口转发出去 ovs-ofctl add-flow br0 in_port=1,actions=output:2 1 2.动作为指定group group id为已创建的group table ovs-ofctl add-flow br0 in_port=1,actions=group:666 1 3.动作为normal 转为L2/L3处理流程 ovs-ofctl add-flow br0 in_port=1,actions=normal 1 4.动作为flood 从所有物理接口转发出去,除了入接口和已关闭flooding的接口 ovs-ofctl add-flow br0 in_port=1,actions=flood 1 5.动作为all 从所有物理接口转发出去,除了入接口 ovs-ofctl add-flow br0 in_port=1,actions=all 1 6.动作为local 一般是转发给本地网桥 ovs-ofctl add-flow br0 in_port=1,actions=local 1 7.动作为in_port 从入接口转发回去 ovs-ofctl add-flow br0 in_port=1,actions=in_port 1 8.动作为controller 以packet-in消息上送给控制器 ovs-ofctl add-flow br0 in_port=1,actions=controller 1 9.动作为drop 丢弃数据包操作 ovs-ofctl add-flow br0 in_port=1,actions=drop 1 10.动作为mod_vlan_vid 修改报文的vlan id,该选项会使vlan_pcp置为0 ovs-ofctl add-flow br0 in_port=1,actions=mod_vlan_vid:8,output:2 1 11.动作为mod_vlan_pcp 修改报文的vlan优先级,该选项会使vlan_id置为0 ovs-ofctl add-flow br0 in_port=1,actions=mod_vlan_pcp:7,output:2 1 12.动作为strip_vlan 剥掉报文内外层vlan tag ovs-ofctl add-flow br0 in_port=1,actions=strip_vlan,output:2 1 13.动作为push_vlan 在报文外层压入一层vlan tag,需要使用openflow1.1以上版本兼容 ovs-ofctl add-flow -O OpenFlow13 br0 in_port=1,actions=push_vlan:0x8100,set_field:4097-\>vlan_vid,output:2 1 ps: set field值为4096+vlan_id,并且vlan优先级为0,即4096-8191,对应的vlan_id为0-4095 14.动作为push_mpls 修改报文的ethertype,并且压入一个MPLS LSE ovs-ofctl add-flow br0 in_port=1,actions=push_mpls:0x8847,set_field:10-\>mpls_label,output:2 1 15.动作为pop_mpls 剥掉最外层mpls标签,并且修改ethertype为非mpls类型 ovs-ofctl add-flow br0 mpls,in_port=1,mpls_label=20,actions=pop_mpls:0x0800,output:2 1 16.动作为修改源/目的MAC,修改源/目的IP 修改源MAC ovs-ofctl add-flow br0 in_port=1,actions=mod_dl_src:00:00:00:00:00:01,output:2 修改目的MAC ovs-ofctl add-flow br0 in_port=1,actions=mod_dl_dst:00:00:00:00:00:01,output:2 修改源IP ovs-ofctl add-flow br0 in_port=1,actions=mod_nw_src:192.168.1.1,output:2 修改目的IP ovs-ofctl add-flow br0 in_port=1,actions=mod_nw_dst:192.168.1.1,output:2 17.动作为修改TCP/UDP/SCTP源目的端口 修改TCP源端口 ovs-ofctl add-flow br0 tcp,in_port=1,actions=mod_tp_src:67,output:2 修改TCP目的端口 ovs-ofctl add-flow br0 tcp,in_port=1,actions=mod_tp_dst:68,output:2 修改UDP源端口 ovs-ofctl add-flow br0 udp,in_port=1,actions=mod_tp_src:67,output:2 修改UDP目的端口 ovs-ofctl add-flow br0 udp,in_port=1,actions=mod_tp_dst:68,output:2 18.动作为mod_nw_tos 条件:指定dl_type=0x0800 修改ToS字段的高6位,范围为0-255,值必须为4的倍数,并且不会去修改ToS低2位ecn值 ovs-ofctl add-flow br0 ip,in_port=1,actions=mod_nw_tos:68,output:2 1 19.动作为mod_nw_ecn 条件:指定dl_type=0x0800,需要使用openflow1.1以上版本兼容 修改ToS字段的低2位,范围为0-3,并且不会去修改ToS高6位的DSCP值 ovs-ofctl add-flow br0 ip,in_port=1,actions=mod_nw_ecn:2,output:2 1 20.动作为mod_nw_ttl 修改IP报文ttl值,需要使用openflow1.1以上版本兼容 ovs-ofctl add-flow -O OpenFlow13 br0 in_port=1,actions=mod_nw_ttl:6,output:2 1 21.动作为dec_ttl 对IP报文进行ttl自减操作 ovs-ofctl add-flow br0 in_port=1,actions=dec_ttl,output:2 1 22.动作为set_mpls_label 对报文最外层mpls标签进行修改,范围为20bit值 ovs-ofctl add-flow br0 in_port=1,actions=set_mpls_label:666,output:2 1 23.动作为set_mpls_tc 对报文最外层mpls tc进行修改,范围为0-7 ovs-ofctl add-flow br0 in_port=1,actions=set_mpls_tc:7,output:2 1 24.动作为set_mpls_ttl 对报文最外层mpls ttl进行修改,范围为0-255 ovs-ofctl add-flow br0 in_port=1,actions=set_mpls_ttl:255,output:2 1 25.动作为dec_mpls_ttl 对报文最外层mpls ttl进行自减操作 ovs-ofctl add-flow br0 in_port=1,actions=dec_mpls_ttl,output:2 1 26.动作为move NXM字段 使用move参数对NXM字段进行操作 将报文源MAC复制到目的MAC字段,并且将源MAC改为00:00:00:00:00:01 ovs-ofctl add-flow br0 in_port=1,actions=move:NXM_OF_ETH_SRC[]-\>NXM_OF_ETH_DST[],mod_dl_src:00:00:00:00:00:01,output:2 1 2 ps: 常用NXM字段参照表 NXM字段 报文字段 NXM_OF_ETH_SRC 源MAC NXM_OF_ETH_DST 目的MAC NXM_OF_ETH_TYPE 以太网类型 NXM_OF_VLAN_TCI vid NXM_OF_IP_PROTO IP协议号 NXM_OF_IP_TOS IP ToS值 NXM_NX_IP_ECN IP ToS ECN NXM_OF_IP_SRC 源IP NXM_OF_IP_DST 目的IP NXM_OF_TCP_SRC TCP源端口 NXM_OF_TCP_DST TCP目的端口 NXM_OF_UDP_SRC UDP源端口 NXM_OF_UDP_DST UDP目的端口 NXM_OF_SCTP_SRC SCTP源端口 NXM_OF_SCTP_DST SCTP目的端口 27.动作为load NXM字段 使用load参数对NXM字段进行赋值操作 push mpls label,并且把10(0xa)赋值给mpls label ovs-ofctl add-flow br0 in_port=1,actions=push_mpls:0x8847,load:0xa-\>OXM_OF_MPLS_LABEL[],output:2 对目的MAC进行赋值 ovs-ofctl add-flow br0 in_port=1,actions=load:0x001122334455-\>OXM_OF_ETH_DST[],output:2 1 2 3 4 28.动作为pop_vlan 弹出报文最外层vlan tag ovs-ofctl add-flow br0 in_port=1,dl_type=0x8100,dl_vlan=777,actions=pop_vlan,output:2 1 meter表 常用操作 由于meter表是openflow1.3版本以后才支持,所以所有命令需要指定OpenFlow1.3版本以上 ps: 在openvswitch-v2.8之前的版本中,还不支持meter 在v2.8版本之后已经实现,要正常使用的话,需要注意的是datapath类型要指定为netdev,band type暂时只支持drop,还不支持DSCP REMARK 1.查看当前设备对meter的支持 ovs-ofctl -O OpenFlow13 meter-features br0 2.查看meter表 ovs-ofctl -O OpenFlow13 dump-meters br0 3.查看meter统计 ovs-ofctl -O OpenFlow13 meter-stats br0 4.创建meter表 限速类型以kbps(kilobits per second)计算,超过20kb/s则丢弃 ovs-ofctl -O OpenFlow13 add-meter br0 meter=1,kbps,band=type=drop,rate=20 同上,增加burst size参数 ovs-ofctl -O OpenFlow13 add-meter br0 meter=2,kbps,band=type=drop,rate=20,burst_size=256 同上,增加stats参数,对meter进行计数统计 ovs-ofctl -O OpenFlow13 add-meter br0 meter=3,kbps,stats,band=type=drop,rate=20,burst_size=256 限速类型以pktps(packets per second)计算,超过1000pkt/s则丢弃 ovs-ofctl -O OpenFlow13 add-meter br0 meter=4,pktps,band=type=drop,rate=1000 5.删除meter表 删除全部meter表 ovs-ofctl -O OpenFlow13 del-meters br0 删除meter id=1 ovs-ofctl -O OpenFlow13 del-meter br0 meter=1 6.创建流表 ovs-ofctl -O OpenFlow13 add-flow br0 in_port=1,actions=meter:1,output:2 group表 由于group表是openflow1.1版本以后才支持,所以所有命令需要指定OpenFlow1.1版本以上 常用操作 group table支持4种类型 all:所有buckets都执行一遍 select: 每次选择其中一个bucket执行,常用于负载均衡应用 ff(FAST FAILOVER):快速故障修复,用于检测解决接口等故障 indirect:间接执行,类似于一个函数方法,被另一个group来调用 1.查看当前设备对group的支持 ovs-ofctl -O OpenFlow13 dump-group-features br0 2.查看group表 ovs-ofctl -O OpenFlow13 dump-groups br0 3.创建group表 类型为all ovs-ofctl -O OpenFlow13 add-group br0 group_id=1,type=all,bucket=output:1,bucket=output:2,bucket=output:3 类型为select ovs-ofctl -O OpenFlow13 add-group br0 group_id=2,type=select,bucket=output:1,bucket=output:2,bucket=output:3 类型为select,指定hash方法(5元组,OpenFlow1.5+) ovs-ofctl -O OpenFlow15 add-group br0 group_id=3,type=select,selection_method=hash,fields=ip_src,bucket=output:2,bucket=output:3 4.删除group表 ovs-ofctl -O OpenFlow13 del-groups br0 group_id=2 5.创建流表 ovs-ofctl -O OpenFlow13 add-flow br0 in_port=1,actions=group:2 goto table配置 数据流先从table0开始匹配,如actions有goto_table,再进行后续table的匹配,实现多级流水线,如需使用goto table,则创建流表时,指定table id,范围为0-255,不指定则默认为table0 1.在table0中添加一条流表条目 ovs-ofctl add-flow br0 table=0,in_port=1,actions=goto_table=1 2.在table1中添加一条流表条目 ovs-ofctl add-flow br0 table=1,ip,nw_dst=10.10.0.0/16,actions=output:2 tunnel配置 如需配置tunnel,必需确保当前系统对各tunnel的remote ip网络可达 gre 1.创建一个gre接口,并且指定端口id=1001 ovs-vsctl add-port br0 gre1 -- set Interface gre1 type=gre options:remote_ip=1.1.1.1 ofport_request=1001 2.可选选项 将tos或者ttl在隧道上继承,并将tunnel id设置成123 ovs-vsctl set Interface gre1 options:tos=inherit options:ttl=inherit options:key=123 3.创建关于gre流表 封装gre转发 ovs-ofctl add-flow br0 ip,in_port=1,nw_dst=10.10.0.0/16,actions=output:1001 解封gre转发 ovs-ofctl add-flow br0 in_port=1001,actions=output:1 vxlan 1.创建一个vxlan接口,并且指定端口id=2001 ovs-vsctl add-port br0 vxlan1 -- set Interface vxlan1 type=vxlan options:remote_ip=1.1.1.1 ofport_request=2001 2.可选选项 将tos或者ttl在隧道上继承,将vni设置成123,UDP目的端为设置成8472(默认为4789) ovs-vsctl set Interface vxlan1 options:tos=inherit options:ttl=inherit options:key=123 options:dst_port=8472 3.创建关于vxlan流表 封装vxlan转发 ovs-ofctl add-flow br0 ip,in_port=1,nw_dst=10.10.0.0/16,actions=output:2001 解封vxlan转发 ovs-ofctl add-flow br0 in_port=2001,actions=output:1 sflow配置 1.对网桥br0进行sflow监控 agent: 与collector通信所在的网口名,通常为管理口 target: collector监听的IP地址和端口,端口默认为6343 header: sFlow在采样时截取报文头的长度 polling: 采样时间间隔,单位为秒 ovs-vsctl -- --id=@sflow create sflow agent=eth0 target=\"10.0.0.1:6343\" header=128 sampling=64 polling=10 -- set bridge br0 sflow=@sflow 2.查看创建的sflow ovs-vsctl list sflow 3.删除对应的网桥sflow配置,参数为sFlow UUID ovs-vsctl remove bridge br0 sflow 7b9b962e-fe09-407c-b224-5d37d9c1f2b3 4.删除网桥下所有sflow配置 ovs-vsctl -- clear bridge br0 sflow 1 QoS配置 ingress policing 1.配置ingress policing,对接口eth0入流限速10Mbps ovs-vsctl set interface eth0 ingress_policing_rate=10000 ovs-vsctl set interface eth0 ingress_policing_burst=8000 2.清除相应接口的ingress policer配置 ovs-vsctl set interface eth0 ingress_policing_rate=0 ovs-vsctl set interface eth0 ingress_policing_burst=0 3.查看接口ingress policer配置 ovs-vsctl list interface eth0 4.查看网桥支持的Qos类型 ovs-appctl qos/show-types br0 端口镜像配置 1.配置eth0收到/发送的数据包镜像到eth1 ovs-vsctl -- set bridge br0 mirrors=@m \ -- --id=@eth0 get port eth0 \ -- --id=@eth1 get port eth1 \ -- --id=@m create mirror name=mymirror select-dst-port=@eth0 select-src-port=@eth0 output-port=@eth1 2.删除端口镜像配置 ovs-vsctl -- --id=@m get mirror mymirror -- remove bridge br0 mirrors @m 3.清除网桥下所有端口镜像配置 ovs-vsctl clear bridge br0 mirrors 4.查看端口镜像配置 ovs-vsctl get bridge br0 mirrors Open vSwitch中有多个命令,分别有不同的作用,大致如下: ovs-vsctl用于控制ovs db ovs-ofctl用于管理OpenFlow switch 的 flow ovs-dpctl用于管理ovs的datapath ovs-appctl用于查询和管理ovs daemon 转载于:https://www.cnblogs.com/liuhongru/p/10336849.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30876945/article/details/99916308。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-08 17:13:19
294
转载
Dubbo
一、引言 在使用Dubbo的过程中,我们可能会遇到各种各样的问题,其中环境配置问题是非常常见的一种。这些问题包括环境变量未正确设置、日志配置错误等等。本文将详细介绍如何解决这些问题。 二、环境变量未正确设置 环境变量未正确设置是导致Dubbo无法正常运行的一个重要原因。比如说,如果你没把JAVA_HOME环境变量设置对,Dubbo就找不到Java的藏身之处(也就是安装路径),这样一来,它就没法正常启动运行啦。 解决这个问题的方法非常简单,只需要在系统环境变量中添加JAVA_HOME即可。例如,在Windows系统中,可以在"我的电脑" -> "属性" -> "高级系统设置" -> "环境变量"中添加。 三、日志配置错误 日志配置错误也是导致Dubbo无法正常运行的一个重要原因。要是你日志的配置文件,比如说logback.xml,搞错了设定,那就等于给日志输出挖了个坑。这样一来,日志就无法顺畅地“说话”了,我们也就没法通过这些日志来摸清系统的运行状况,了解它到底是怎么干活儿的了。 解决这个问题的方法也很简单,只需要检查日志配置文件中的配置是否正确即可。比如,我们可以瞅瞅日志输出的目的地是不是设定对了,还有日志的详细程度级别是否也调得恰到好处,这些小细节都值得我们关注检查一下。 四、代码示例 为了更直观地理解环境配置问题和日志配置错误,下面给出一些代码示例。 首先,来看一下不正确的环境变量设置。假设我们在没有设置JAVA_HOME的情况下尝试启动Dubbo,那么就会出现以下错误: Exception in thread "main" java.lang.UnsatisfiedLinkError: no javassist in java.library.path at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1867) at java.lang.Runtime.loadLibrary0(Runtime.java:870) at java.lang.System.loadLibrary(System.java:1122) at com.alibaba.dubbo.common.logger.LoggerFactory.getLogger(LoggerFactory.java:39) at com.alibaba.dubbo.common.logger.LoggerFactory.getLogger(LoggerFactory.java:51) at com.alibaba.dubbo.config.ApplicationConfig.(ApplicationConfig.java:114) at com.example.demo.DemoApplication.main(DemoApplication.java:12) Caused by: java.lang.ClassNotFoundException: javassist at java.net.URLClassLoader.findClass(URLClassLoader.java:382) at java.lang.ClassLoader.loadClass(ClassLoader.java:424) at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:349) at java.lang.ClassLoader.loadClass(ClassLoader.java:357) ... 6 more 可以看出,由于JAVA_HOME环境变量未设置,所以无法找到Java的安装路径,从而导致了这个错误。 接下来,来看一下不正确的日志配置。假设我们在日志配置文件中错误地指定了日志输出的目标位置,那么就会出现以下错误: 2022-03-08 15:29:54,742 ERROR [main] org.apache.log4j.ConsoleAppender - Error initializing ConsoleAppender appenders named [STDOUT] org.apache.log4j.AppenderSkeleton$InvalidAppenderException: No such appender 'STDOUT' in category [com.example.demo]. at org.apache.log4j.Category.forcedLog(Category.java:393) at org.apache.log4j.Category.access$100(Category.java:67) at org.apache.log4j.Category$AppenderAttachedObject.append(Category.java:839) at org.apache.log4j.AppenderSkeleton.doAppend(AppenderSkeleton.java:248) at org.apache.log4j.helpers.AppenderAttachableImpl.appendLoopOnAppenders(AppenderAttachableImpl.java:51) at org.apache.log4j.Category.callAppenders(Category.java:206) at org.apache.log4j.Category.debug(Category.java:267) at org.apache.log4j.Category.info(Category.java:294) at org.apache.log4j.Logger.info(Logger.java:465) at com.example.demo.DemoApplication.main(DemoApplication.java:16) 可以看出,由于日志配置文件中的配置错误,所以无法将日志输出到指定的位置,从而导致了这个错误。 五、总结 通过以上分析,我们可以看出,环境配置问题和日志配置错误都是非常严重的问题,如果不及时处理,就会导致Dubbo无法正常运行,从而影响我们的工作。所以呢,咱们得好好学习、掌握这些知识点,这样一来,在实际工作中碰到问题时,就能更有效率地避开陷阱,解决麻烦了。同时,我们也应该养成良好的编程习惯,比如定期检查环境变量和日志配置文件,确保它们的正确性。
2023-06-21 10:00:14
435
春暖花开-t
转载文章
...n.net/grd_java/article/details/113116244。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 网页右边,向下滑有目录索引,可以根据标题跳转到你想看的内容 如果右边没有就找找左边 上一节:JUC锁,一些面试题和源码讲解 1、引用 java引用共4种,强软弱虚 强引用:我们普通的new一个对象,就是强引用,只有它指向为空了,或者已经没用了,才会被回收 软引用:JVM内存不够了,就回收软引用 弱引用:只要碰见垃圾回收器(System.gc()),就被回收 虚引用:对象当被回收时,会将其放在队列中 1、软引用 / 软引用 软引用是用来描述一些还有用但并非必须的对象。 对于软引用关联着的对象,在系统将要发生内存溢出异常之前,将会把这些对象列进回收范围进行第二次回收。 如果这次回收还没有足够的内存,才会抛出内存溢出异常。 -Xmx20M/import java.lang.ref.SoftReference;public class T02_SoftReference {public static void main(String[] args) {SoftReference<byte[]> m = new SoftReference<>(new byte[1024102410]);//创建软引用,分配10M//m = null;System.out.println(m.get());//获取System.gc();//垃圾回收try {Thread.sleep(500);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(m.get());//再分配一个数组,heap将装不下,这时候系统会垃圾回收,先回收一次,如果不够,会把软引用干掉byte[] b = new byte[1024102415];System.out.println(m.get());} }//软引用非常适合缓存使用 2、弱引用 public class M {@Overrideprotected void finalize() throws Throwable {System.out.println("finalize");} } 上图中,tl对象强引用指向ThreadLocal,map中key弱引用指向ThreadLocal,当tl=null时,强引用消失,此时弱引用也将自动被回收,但是此时key=null,value指向10M这个就永远访问不到,既内存泄露 下图中,18行到20行为解决内存泄露问题的,那就是通过remove()将它消除了 / 弱引用遭到gc就会回收/import java.lang.ref.WeakReference;public class T03_WeakReference {public static void main(String[] args) {WeakReference<M> m = new WeakReference<>(new M());System.out.println(m.get());System.gc();System.out.println(m.get());ThreadLocal<M> tl = new ThreadLocal<>();tl.set(new M());tl.remove();} } 3、虚引用 虚引用 虚引用不是给开发人员用的,一般是给写JVM(java虚拟机,没有它java程序运行不了),Netty等技术大牛用的 虚引用,对象当被回收时,会将其放在队列中,此时我们监听到队列中有新值了,就知道有虚引用被回收了 此时我们要做相应的处理,虚引用指向的值,是无法直接get()获取的 虚引用使用场景 一般情况(其它情况暂时没什么用),虚引用指向堆外内存(直接被操作系统管理的内存),JVM无法对其回收 当虚引用对象被回收时,JVM的垃圾回收无法自动回收堆外内存, 但是此时,虚引用对象被回收,会将其放在队列中 操作人员,看到队列中有对象被回收,就进行相应操作,回收堆内存 如何回收堆外内存 C和C++有函数可以用 java现在也提供了Unsafe类可以操作堆外内存,具体请参考上一篇博客,总之,JDK1.8只能通过反射来用,JDK1.9以上可以通过new Unsafe对象来用 Unsafe类的方法有: copyMemory():直接访问内存 allocateMemory():直接分配内存,这就必须手动回收内存了 freeMemory():回收内存 下面是一个虚引用例子,自己看吧,懂得自然懂,现在看不懂的,先收藏或者保存上,以后回来看 / 一个对象是否有虚引用的存在,完全不会对其生存时间构成影响, 也无法通过虚引用来获取一个对象的实例。 为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。 虚引用和弱引用对关联对象的回收都不会产生影响,如果只有虚引用活着弱引用关联着对象, 那么这个对象就会被回收。它们的不同之处在于弱引用的get方法,虚引用的get方法始终返回null, 弱引用可以使用ReferenceQueue,虚引用必须配合ReferenceQueue使用。 jdk中直接内存的回收就用到虚引用,由于jvm自动内存管理的范围是堆内存, 而直接内存是在堆内存之外(其实是内存映射文件,自行去理解虚拟内存空间的相关概念), 所以直接内存的分配和回收都是有Unsafe类去操作,java在申请一块直接内存之后, 会在堆内存分配一个对象保存这个堆外内存的引用, 这个对象被垃圾收集器管理,一旦这个对象被回收, 相应的用户线程会收到通知并对直接内存进行清理工作。 事实上,虚引用有一个很重要的用途就是用来做堆外内存的释放, DirectByteBuffer就是通过虚引用来实现堆外内存的释放的。/import java.lang.ref.PhantomReference;import java.lang.ref.Reference;import java.lang.ref.ReferenceQueue;import java.util.LinkedList;import java.util.List;public class T04_PhantomReference {private static final List<Object> LIST = new LinkedList<>();private static final ReferenceQueue<M> QUEUE = new ReferenceQueue<>();public static void main(String[] args) {PhantomReference<M> phantomReference = new PhantomReference<>(new M(), QUEUE);new Thread(() -> {while (true) {LIST.add(new byte[1024 1024]);try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();Thread.currentThread().interrupt();}System.out.println(phantomReference.get());} }).start();new Thread(() -> {while (true) {Reference<? extends M> poll = QUEUE.poll();if (poll != null) {System.out.println("--- 虚引用对象被jvm回收了 ---- " + poll);} }}).start();try {Thread.sleep(500);} catch (InterruptedException e) {e.printStackTrace();} }} 2、容器 1、发展历史(一定要了解) map容器你需要了解的历史 JDK早期,java提供了Vector和Hashtable两个容器,这两个容器,很多操作都加了锁Synchronized,对于某些不需要用锁的情况下,就显得十分影响性能,所以现在基本没人用这两个容器,但是面试经常问这两个容器里面的数据结构等内容 后来,出现了HashMap,此容器完全不加锁,是用的最多的容器 但是完全不加锁未免不完善,所以java提供了如下方式,将HashMap变为加锁的 //通过Collections.synchronizedMap(HashMap)方法,将其变为加锁Map集合,其中泛型随意,UUID只是举例。static Map<UUID, UUID> m = Collections.synchronizedMap(new HashMap<UUID, UUID>()); 通过阅读源码发现,上面方法将HashMap变为加锁,也是使用Synchronized,只是锁的内容更细,但并不比HashTable效率高多少 所以衍生除了新的容器ConcurrentHashMap ConcurrentHashMap 此容器,插入效率不如上面的,因为它做了各种判断和CAS,但是差距不是特别大 读取效率很高,100个线程同时访问,每个线程读取一百万次实测 Hashtable 39s ,SynchronizedHashMap 38s ,ConcurrentHashMap 1.7s 前两个将近40秒,ConcurrentHashMap只需要不到2s,由此可见此容器读取效率极高 2、为什么推荐使用Queue来做高并发 为什么推荐Queue(队列) Queue接口提供了很多针对多线程非常友好的API(offer ,peek和poll,其中BlockingQueue还添加了put和take可以阻塞),可以说专门为多线程高并发而创造的接口,所以一般我们使用Queue而不用List 以下代码分别使用链表LinkList和ConcurrentQueue,对比一下速度 LinkList用了5s多,ConcurrentQueue几乎瞬间完成 Concurrent接口就是专为多线程设计,多线程设计要多考虑Queue(高并发用)的使用,少使用List / 有N张火车票,每张票都有一个编号 同时有10个窗口对外售票 请写一个模拟程序 分析下面的程序可能会产生哪些问题? 重复销售?超量销售? 使用Vector或者Collections.synchronizedXXX 分析一下,这样能解决问题吗? 就算操作A和B都是同步的,但A和B组成的复合操作也未必是同步的,仍然需要自己进行同步 就像这个程序,判断size和进行remove必须是一整个的原子操作 @author 马士兵/import java.util.LinkedList;import java.util.List;import java.util.concurrent.TimeUnit;public class TicketSeller3 {static List<String> tickets = new LinkedList<>();static {for(int i=0; i<1000; i++) tickets.add("票 编号:" + i);}public static void main(String[] args) {for(int i=0; i<10; i++) {new Thread(()->{while(true) {synchronized(tickets) {if(tickets.size() <= 0) break;try {TimeUnit.MILLISECONDS.sleep(10);} catch (InterruptedException e) {e.printStackTrace();}System.out.println("销售了--" + tickets.remove(0));} }}).start();} }} 队列 import java.util.Queue;import java.util.concurrent.ConcurrentLinkedQueue;public class TicketSeller4 {static Queue<String> tickets = new ConcurrentLinkedQueue<>();static {for(int i=0; i<1000; i++) tickets.add("票 编号:" + i);}public static void main(String[] args) {for(int i=0; i<10; i++) {new Thread(()->{while(true) {String s = tickets.poll();if(s == null) break;else System.out.println("销售了--" + s);} }).start();} }} 3、多线程常用容器 1、ConcurrentHashMap(无序)和ConcurrentSkipListMap(有序,链表,使用跳表数据结构,让查询更快) 跳表:http://blog.csdn.net/sunxianghuang/article/details/52221913 import java.util.;import java.util.concurrent.ConcurrentHashMap;import java.util.concurrent.ConcurrentSkipListMap;import java.util.concurrent.CountDownLatch;public class T01_ConcurrentMap {public static void main(String[] args) {Map<String, String> map = new ConcurrentHashMap<>();//Map<String, String> map = new ConcurrentSkipListMap<>(); //高并发并且排序//Map<String, String> map = new Hashtable<>();//Map<String, String> map = new HashMap<>(); //Collections.synchronizedXXX//TreeMapRandom r = new Random();Thread[] ths = new Thread[100];CountDownLatch latch = new CountDownLatch(ths.length);long start = System.currentTimeMillis();for(int i=0; i<ths.length; i++) {ths[i] = new Thread(()->{for(int j=0; j<10000; j++) map.put("a" + r.nextInt(100000), "a" + r.nextInt(100000));latch.countDown();});}Arrays.asList(ths).forEach(t->t.start());try {latch.await();} catch (InterruptedException e) {e.printStackTrace();}long end = System.currentTimeMillis();System.out.println(end - start);System.out.println(map.size());} } 2、CopyOnWriteList(写时复制)和CopyOnWriteSet 适用于,高并发是,读的多,写的少的情况 当我们写的时候,将容器复制,让写线程去复制的线程写(写的时候加锁) 而读线程依旧去读旧的(读的时候不加锁) 当写完,将对象指向复制后的已经写完的容器,原来容器销毁 大大提高读的效率 / 写时复制容器 copy on write 多线程环境下,写时效率低,读时效率高 适合写少读多的环境 @author 马士兵/import java.util.ArrayList;import java.util.Arrays;import java.util.List;import java.util.Random;import java.util.Vector;import java.util.concurrent.CopyOnWriteArrayList;public class T02_CopyOnWriteList {public static void main(String[] args) {List<String> lists = //new ArrayList<>(); //这个会出并发问题!//new Vector();new CopyOnWriteArrayList<>();Random r = new Random();Thread[] ths = new Thread[100];for(int i=0; i<ths.length; i++) {Runnable task = new Runnable() {@Overridepublic void run() {for(int i=0; i<1000; i++) lists.add("a" + r.nextInt(10000));} };ths[i] = new Thread(task);}runAndComputeTime(ths);System.out.println(lists.size());}static void runAndComputeTime(Thread[] ths) {long s1 = System.currentTimeMillis();Arrays.asList(ths).forEach(t->t.start());Arrays.asList(ths).forEach(t->{try {t.join();} catch (InterruptedException e) {e.printStackTrace();} });long s2 = System.currentTimeMillis();System.out.println(s2 - s1);} } 3、synchronizedList和ConcurrentLinkedQueue package com.mashibing.juc.c_025;import java.util.ArrayList;import java.util.Collections;import java.util.List;import java.util.Queue;import java.util.concurrent.ConcurrentLinkedQueue;public class T04_ConcurrentQueue {public static void main(String[] args) {List<String> strsList = new ArrayList<>();List<String> strsSync = Collections.synchronizedList(strsList);//加锁ListQueue<String> strs = new ConcurrentLinkedQueue<>();//Concurrent链表队列,就是读快for(int i=0; i<10; i++) {strs.offer("a" + i); //add添加,但是不同点是,此方法会返回一个布尔值}System.out.println(strs);System.out.println(strs.size());System.out.println(strs.poll());//取出,取完后将元素去除System.out.println(strs.size());System.out.println(strs.peek());//取出,但是不会将元素从队列删除System.out.println(strs.size());//双端队列Deque} } 4、LinkedBlockingQueue 链表阻塞队列(无界链表,可以一直装东西,直到内存满(其实,也不是无限,其长度Integer.MaxValue就是上限,毕竟最大就这么大)) 主要体现在put和take方法,put添加的时候,如果队列满了,就阻塞当前线程,直到队列有空位,继续插入。take方法取的时候,如果没有值,就阻塞,等有值了,立马去取 import java.util.Random;import java.util.concurrent.BlockingQueue;import java.util.concurrent.LinkedBlockingQueue;import java.util.concurrent.TimeUnit;public class T05_LinkedBlockingQueue {static BlockingQueue<String> strs = new LinkedBlockingQueue<>();static Random r = new Random();public static void main(String[] args) {new Thread(() -> {for (int i = 0; i < 100; i++) {try {strs.put("a" + i); //如果满了,当前线程就会等待(实现阻塞),等多会有空位,将值插入TimeUnit.MILLISECONDS.sleep(r.nextInt(1000));} catch (InterruptedException e) {e.printStackTrace();} }}, "p1").start();for (int i = 0; i < 5; i++) {new Thread(() -> {for (;;) {try {System.out.println(Thread.currentThread().getName() + " take -" + strs.take()); //取内容,如果空了,当前线程就会等待(实现阻塞)} catch (InterruptedException e) {e.printStackTrace();} }}, "c" + i).start();} }} 5、ArrayBlockingQueue 有界阻塞队列(因为Array需要指定长度) import java.util.Random;import java.util.concurrent.ArrayBlockingQueue;import java.util.concurrent.BlockingQueue;import java.util.concurrent.TimeUnit;public class T06_ArrayBlockingQueue {static BlockingQueue<String> strs = new ArrayBlockingQueue<>(10);static Random r = new Random();public static void main(String[] args) throws InterruptedException {for (int i = 0; i < 10; i++) {strs.put("a" + i);}//strs.put("aaa"); //满了就会等待,程序阻塞//strs.add("aaa");//strs.offer("aaa");strs.offer("aaa", 1, TimeUnit.SECONDS);System.out.println(strs);} } 6、特殊的阻塞队列1:DelayQueue 延时队列(按时间进行调度,就是隔多长时间运行,谁隔的少,谁先) 以下例子中,我们添加线程到队列顺序为t12345,正常情况下,会按照顺序运行,但是这里有了延时时间,也就是时间越短,越先执行 步骤很简单,拿到延时队列 指定构造方法 继承 implements Delayed 重写 compareTo和getDelay import java.util.Calendar;import java.util.Random;import java.util.concurrent.BlockingQueue;import java.util.concurrent.DelayQueue;import java.util.concurrent.Delayed;import java.util.concurrent.TimeUnit;public class T07_DelayQueue {static BlockingQueue<MyTask> tasks = new DelayQueue<>();static Random r = new Random();static class MyTask implements Delayed {String name;long runningTime;MyTask(String name, long rt) {this.name = name;this.runningTime = rt;}@Overridepublic int compareTo(Delayed o) {if(this.getDelay(TimeUnit.MILLISECONDS) < o.getDelay(TimeUnit.MILLISECONDS))return -1;else if(this.getDelay(TimeUnit.MILLISECONDS) > o.getDelay(TimeUnit.MILLISECONDS)) return 1;else return 0;}@Overridepublic long getDelay(TimeUnit unit) {return unit.convert(runningTime - System.currentTimeMillis(), TimeUnit.MILLISECONDS);}@Overridepublic String toString() {return name + " " + runningTime;} }public static void main(String[] args) throws InterruptedException {long now = System.currentTimeMillis();MyTask t1 = new MyTask("t1", now + 1000);MyTask t2 = new MyTask("t2", now + 2000);MyTask t3 = new MyTask("t3", now + 1500);MyTask t4 = new MyTask("t4", now + 2500);MyTask t5 = new MyTask("t5", now + 500);tasks.put(t1);tasks.put(t2);tasks.put(t3);tasks.put(t4);tasks.put(t5);System.out.println(tasks);for(int i=0; i<5; i++) {System.out.println(tasks.take());//获取的是toString方法返回值} }} 7、特殊的阻塞队列2:PriorityQueque 优先队列(二叉树算法,就是排序) import java.util.PriorityQueue;public class T07_01_PriorityQueque {public static void main(String[] args) {PriorityQueue<String> q = new PriorityQueue<>();q.add("c");q.add("e");q.add("a");q.add("d");q.add("z");for (int i = 0; i < 5; i++) {System.out.println(q.poll());} }} 8、特殊的阻塞队列3:SynchronusQueue 同步队列(线程池用处非常大) 此队列容量为0,当插入元素时,必须同时有个线程往外取 就是说,当你往这个队列里面插入一个元素,它就拿着这个元素站着(阻塞),直到有个取元素的线程来,它就把元素交给它 就是用来同步数据的,也就是线程间交互数据用的一个特殊队列 package com.mashibing.juc.c_025;import java.util.concurrent.BlockingQueue;import java.util.concurrent.SynchronousQueue;public class T08_SynchronusQueue { //容量为0public static void main(String[] args) throws InterruptedException {BlockingQueue<String> strs = new SynchronousQueue<>();new Thread(()->{//这个线程就是消费者,来取值try {System.out.println(strs.take());//和同步队列要值} catch (InterruptedException e) {e.printStackTrace();} }).start();strs.put("aaa"); //阻塞等待消费者消费,就拿着aaa站着,等线程来取//strs.put("bbb");//strs.add("aaa");System.out.println(strs.size());} } 9、特殊的阻塞队列4:TransferQueue 传递队列 此队列加入了一个方法transfer()用来向队列添加元素 但是和put()方法不同的是,put添加完元素就走了 而这个方法,添加完自己就阻塞了,直到有人将这个元素取走,它才继续工作(省去我们手动阻塞) import java.util.concurrent.LinkedTransferQueue;public class T09_TransferQueue {public static void main(String[] args) throws InterruptedException {LinkedTransferQueue<String> strs = new LinkedTransferQueue<>();new Thread(() -> {try {System.out.println(strs.take());} catch (InterruptedException e) {e.printStackTrace();} }).start();strs.transfer("aaa");//放东西到队列,同时阻塞等待消费者线程,取走元素//strs.put("aaa");//如果用put就和普通队列一样,放完东西就走了/new Thread(() -> {try {System.out.println(strs.take());} catch (InterruptedException e) {e.printStackTrace();} }).start();/} } 3、线程池 线程池 由于单独创建线程,十分影响效率,而且无法对线程集中管理,一旦疏落,可能线程无限执行,浪费资源 线程池就是一个存储线程的游泳池,而每个线程就是池子里面的赛道 池子里的线程不执行任何任务,只是提供一个资源 而谁提交了任务,比如我想来游泳,那么池子就给你一个赛道,让你游泳 比如它想练憋气,那么给它一个赛道练憋气 当他们用完,走了,那么后面其它人再过来继续用 这就是线程池,始终只有这几个线程,不做实现,而是借用这几个线程的用户,自己掌控用这些线程资源做什么(提交任务给线程,线程空闲就帮他们完成任务) 线程池的两种类型(两类,不是两个) ThreadPoolExecutor(简称TPE) ForkJoinPool(分解汇总任务(将任务细化,最后汇总结果),少量线程执行多个任务(子任务,TPE做不到先执行子任务),CPU密集型) Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 1、常用类 Executor ExecutorService 扩展了execute方法,具有一个返回值 规定了异步执行机制,提供了一些执行器方法,比如shutdown()关闭等 但是它不知道执行器中的线程何时执行完 Callable 对Runnable进行了扩展,实现Callable的调用,可以有返回值,表示线程的状态 但是无法返回线程执行结果 Future 获得未来线程执行结果 由此,我们可以得知线程池基本的一个使用步骤 其中service.submit():为异步提交,也就是说,主线程该干嘛干嘛,我是异步执行的,和同步不一样(当前线程执行完,主线程才能继续执行,叫同步) futuer.get():获取结果集结果,此时因为异步,主线程执行到这里,结果集可能还没封装好,所以此时如果没有值,就阻塞,直到结果集出来 public static void main(String[] args) throws ExecutionException, InterruptedException {Callable<String> c = new Callable() {@Overridepublic String call() throws Exception {return "Hello Callable";} };ExecutorService service = Executors.newCachedThreadPool();Future<String> future = service.submit(c); //异步System.out.println(future.get());//阻塞service.shutdown();} 2、FutureTask 可充当任务的结果集 上面我们介绍Future是用来得到任务的执行结果的 而FutureTask,可以当做一个任务用,并且返回任务的结果,也就是可以跑线程,然后还可以得到线程结果 public static void main(String[] args) throws InterruptedException, ExecutionException {FutureTask<Integer> task = new FutureTask<>(()->{TimeUnit.MILLISECONDS.sleep(500);return 1000;}); //new Callable () { Integer call();}new Thread(task).start();System.out.println(task.get()); //阻塞} 3、CompletableFuture 非常灵活的任务结果集 一个非常灵活的结果集 他可以将很多执行不同任务的线程的结果进行汇总 比如一个网站,它可以启动多个线程去各大电商网站,比如淘宝,京东,收集某些或某一个商品的价格 最后,将获取的数据进行整合封装 最终,客户就可以通过此网站,获取某类商品在各网站的价格信息 / 假设你能够提供一个服务 这个服务查询各大电商网站同一类产品的价格并汇总展示 @author 马士兵 http://mashibing.com/import java.io.IOException;import java.util.Random;import java.util.concurrent.CompletableFuture;import java.util.concurrent.ExecutionException;import java.util.concurrent.TimeUnit;public class T06_01_CompletableFuture {public static void main(String[] args) throws ExecutionException, InterruptedException {long start, end;/start = System.currentTimeMillis();priceOfTM();priceOfTB();priceOfJD();end = System.currentTimeMillis();System.out.println("use serial method call! " + (end - start));/start = System.currentTimeMillis();CompletableFuture<Double> futureTM = CompletableFuture.supplyAsync(()->priceOfTM());CompletableFuture<Double> futureTB = CompletableFuture.supplyAsync(()->priceOfTB());CompletableFuture<Double> futureJD = CompletableFuture.supplyAsync(()->priceOfJD());CompletableFuture.allOf(futureTM, futureTB, futureJD).join();//当所有结果集都获取到,才汇总阻塞CompletableFuture.supplyAsync(()->priceOfTM()).thenApply(String::valueOf).thenApply(str-> "price " + str).thenAccept(System.out::println);end = System.currentTimeMillis();System.out.println("use completable future! " + (end - start));try {System.in.read();} catch (IOException e) {e.printStackTrace();} }private static double priceOfTM() {delay();return 1.00;}private static double priceOfTB() {delay();return 2.00;}private static double priceOfJD() {delay();return 3.00;}/private static double priceOfAmazon() {delay();throw new RuntimeException("product not exist!");}/private static void delay() {int time = new Random().nextInt(500);try {TimeUnit.MILLISECONDS.sleep(time);} catch (InterruptedException e) {e.printStackTrace();}System.out.printf("After %s sleep!\n", time);} } 4、TPE型线程池1:ThreadPoolExecutor 原理及其参数 线程池由两个集合组成,一个集合存储线程,一个集合存储任务 存储线程:可以规定大小,最多可以有多少个,以及指定核心线程数量(不会被回收) 任务队列:存储任务 细节:初始线程池没有线程,当有一个任务来,线程池起一个线程,又有一个任务来,再起一个线程,直到达到核心线程数量 核心线程数量达到时,新来的任务将存储到任务队列中等待核心线程处理完成,直到任务队列也满了 当任务队列满了,此时再次启动一个线程(非核心线程,一旦空闲,达到指定时间将会消失),直到达到线程最大数量 当线程容器和任务容器都满了,又来了线程,将会执行拒绝策略 上面的细节涉及的所有步骤内容,均由创建线程池的参数执行 下面是ThreadPoolExecutor构造方法参数的源码注释 / 用给定的初始值,创建一个新的线程池 @param corePoolSize 核心线程数量 @param maximumPoolSize 最大线程数量 @param keepAliveTime 当线程数大于核心线程数量时,空闲的线程可生存的时间 @param unit 时间单位 @param workQueue 任务队列,只能包含由execute提交的Runnable任务 @param threadFactory 工厂,用于创建线程给线程池调度的工厂,可以自定义 @param handler 拒绝策略(可以自定义,JDK默认提供4种),当线程边界和队列容量已经满了,新来线程被阻塞时使用的处理程序/public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) JDK提供的4种拒绝策略,不常用,一般都是自己定义拒绝策略 Abort:抛异常 Discard:扔掉,不抛异常 DiscardOldest:扔掉排队时间最久的(将队列中排队时间最久的扔掉,然后让新来的进来) CallerRuns:调用者处理任务(谁通过execute方法提交任务,谁处理) ThreadPoolExecutor继承关系 继承关系:ThreadPoolExecutor->AbstractExectorService类->ExectorService接口->Exector接口 Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 看看下面创建线程池,哪里用到了它 使用实例 import java.io.IOException;import java.util.concurrent.;public class T05_00_HelloThreadPool {static class Task implements Runnable {private int i;public Task(int i) {this.i = i;}@Overridepublic void run() {System.out.println(Thread.currentThread().getName() + " Task " + i);try {System.in.read();} catch (IOException e) {e.printStackTrace();} }@Overridepublic String toString() {return "Task{" +"i=" + i +'}';} }public static void main(String[] args) {ThreadPoolExecutor tpe = new ThreadPoolExecutor(2, 4,60, TimeUnit.SECONDS,new ArrayBlockingQueue<Runnable>(4),Executors.defaultThreadFactory(),new ThreadPoolExecutor.CallerRunsPolicy());//创建线程池,核心2个,最大4个,空闲线程存活时间60s,任务队列容量4,使用默认线程工程,创建线程。拒绝策略是JDK提供的for (int i = 0; i < 8; i++) {tpe.execute(new Task(i));//供提交8次任务}System.out.println(tpe.getQueue());//查看任务队列tpe.execute(new Task(100));//提交新的任务System.out.println(tpe.getQueue());tpe.shutdown();//关闭线程池} } 5、TPE型线程池2:SingleThreadPool 单例线程池(只有一个线程) 为什么有单例线程池 有任务队列,有线程池管理机制 Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 看看下面哪里用到了它 /创建单例线程池,扔5个任务进去,查看输出结果,看看有几个线程执行任务/import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class T07_SingleThreadPool {public static void main(String[] args) {ExecutorService service = Executors.newSingleThreadExecutor();for(int i=0; i<5; i++) {final int j = i;service.execute(()->{System.out.println(j + " " + Thread.currentThread().getName());});} }} 6、TPE型线程池3:CachedPool 缓存,存储线程池 此线程池没有核心线程,来一个任务启动一个线程(最多Integer.MaxValue,不会放在任务队列,因为任务队列容量为0),每个线程空闲后,只能活60s 实例 import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class T07_SingleThreadPool {public static void main(String[] args) {ExecutorService service = Executors.newSingleThreadExecutor();//通过Executors获取池子for(int i=0; i<5; i++) {final int j = i;service.execute(()->{//提交任务System.out.println(j + " " + Thread.currentThread().getName());});}service.shutdown();} } 7、TPE型线程池4:FixedThreadPool 固定线程池 此线次池,用于创建一个固定线程数量的线程池,不会回收 实例 import java.util.ArrayList;import java.util.List;import java.util.concurrent.Callable;import java.util.concurrent.ExecutionException;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.Future;public class T09_FixedThreadPool {public static void main(String[] args) throws InterruptedException, ExecutionException {//并发执行long start = System.currentTimeMillis();getPrime(1, 200000); long end = System.currentTimeMillis();System.out.println(end - start);//输出并发执行耗费时间final int cpuCoreNum = 4;//并行执行ExecutorService service = Executors.newFixedThreadPool(cpuCoreNum);MyTask t1 = new MyTask(1, 80000); //1-5 5-10 10-15 15-20MyTask t2 = new MyTask(80001, 130000);MyTask t3 = new MyTask(130001, 170000);MyTask t4 = new MyTask(170001, 200000);Future<List<Integer>> f1 = service.submit(t1);Future<List<Integer>> f2 = service.submit(t2);Future<List<Integer>> f3 = service.submit(t3);Future<List<Integer>> f4 = service.submit(t4);start = System.currentTimeMillis();f1.get();f2.get();f3.get();f4.get();end = System.currentTimeMillis();System.out.println(end - start);//输出并行耗费时间}static class MyTask implements Callable<List<Integer>> {int startPos, endPos;MyTask(int s, int e) {this.startPos = s;this.endPos = e;}@Overridepublic List<Integer> call() throws Exception {List<Integer> r = getPrime(startPos, endPos);return r;} }static boolean isPrime(int num) {for(int i=2; i<=num/2; i++) {if(num % i == 0) return false;}return true;}static List<Integer> getPrime(int start, int end) {List<Integer> results = new ArrayList<>();for(int i=start; i<=end; i++) {if(isPrime(i)) results.add(i);}return results;} } 8、TPE型线程池5:ScheduledPool 预定,延时线程池 根据延时时间(隔多长时间后运行),排序,哪个线程先执行,用户只需要指定核心线程数量 此线程池返回的池对象,和提交任务方法都不一样,比较涉及到时间 import java.util.Random;import java.util.concurrent.Executors;import java.util.concurrent.ScheduledExecutorService;import java.util.concurrent.TimeUnit;public class T10_ScheduledPool {public static void main(String[] args) {ScheduledExecutorService service = Executors.newScheduledThreadPool(4);service.scheduleAtFixedRate(()->{//提交延时任务try {TimeUnit.MILLISECONDS.sleep(new Random().nextInt(1000));} catch (InterruptedException e) {e.printStackTrace();}System.out.println(Thread.currentThread().getName());}, 0, 500, TimeUnit.MILLISECONDS);//指定延时时间和单位,第一个任务延时0毫秒,之后的任务,延时500毫秒} } 9、手写拒绝策略小例子 import java.util.concurrent.;public class T14_MyRejectedHandler {public static void main(String[] args) {ExecutorService service = new ThreadPoolExecutor(4, 4,0, TimeUnit.SECONDS, new ArrayBlockingQueue<>(6),Executors.defaultThreadFactory(),new MyHandler());//将手写拒绝策略传入}static class MyHandler implements RejectedExecutionHandler {//1、继承RejectedExecutionHandler@Overridepublic void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {//2、重写方法//log("r rejected")//伪代码,表示通过log4j.log()报一下日志,拒绝的时间,线程名//save r kafka mysql redis//可以尝试保存队列//try 3 times //可以尝试几次,比如3次,重新去抢队列,3次还不行就丢弃if(executor.getQueue().size() < 10000) {//尝试条件,如果size>10000了,就执行拒绝策略//try put again();//如果小于10000,尝试将其放到队列中} }} } 10、ForkJoinPool线程池1:ForkJoinPool 前面我们讲过线程分为两大类,TPE和FJP ForkJoinPool(分解汇总任务(将任务细化,最后汇总结果),少量线程执行多个任务(子任务,TPE做不到先执行子任务),CPU密集型) 适合将大任务切分成多个小任务运行 两个方法,fork():分子任务,将子任务分配到线程池中 join():当前任务的计算结果,如果有子任务,等子任务结果返回后再汇总 下面实例实现,一百万个随机数求和,由两种方法实现,一种ForkJoinPool分任务并行,一种使用单线程做 import java.io.IOException;import java.util.Arrays;import java.util.Random;import java.util.concurrent.ForkJoinPool;import java.util.concurrent.RecursiveAction;import java.util.concurrent.RecursiveTask;public class T12_ForkJoinPool {//1000000个随机数求和static int[] nums = new int[1000000];//一堆数static final int MAX_NUM = 50000;//分任务时,每个任务的操作量不能多于50000个,否则就继续细分static Random r = new Random();//使用随机数将数组初始化static {for(int i=0; i<nums.length; i++) {nums[i] = r.nextInt(100);}System.out.println("---" + Arrays.stream(nums).sum()); //stream api 单线程就这么做,一个一个加}//分任务,需要继承,可以继承RecursiveAction(不需要返回值,一般用在不需要返回值的场景)或//RecursiveTask(需要返回值,我们用这个,因为我们需要最后获取求和结果)两个更好实现的类,//他俩继承与ForkJoinTaskstatic class AddTaskRet extends RecursiveTask<Long> {private static final long serialVersionUID = 1L;int start, end;AddTaskRet(int s, int e) {start = s;end = e;}@Overrideprotected Long compute() {if(end-start <= MAX_NUM) {//如果任务操作数小于规定的最大操作数,就进行运算,long sum = 0L;for(int i=start; i<end; i++) sum += nums[i];return sum;//返回结果} //如果分配的操作数大于规定,就继续细分(简单的重中点分,两半)int middle = start + (end-start)/2;//获取中间值AddTaskRet subTask1 = new AddTaskRet(start, middle);//传入起始值和中间值,表示一个子任务AddTaskRet subTask2 = new AddTaskRet(middle, end);//中间值和结尾值,表示一个子任务subTask1.fork();//分任务subTask2.fork();//分任务return subTask1.join() + subTask2.join();//最后返回结果汇总} }public static void main(String[] args) throws IOException {/ForkJoinPool fjp = new ForkJoinPool();AddTask task = new AddTask(0, nums.length);fjp.execute(task);/ForkJoinPool fjp = new ForkJoinPool();//创建线程池AddTaskRet task = new AddTaskRet(0, nums.length);//创建任务fjp.execute(task);//传入任务long result = task.join();//返回汇总结果System.out.println(result);//System.in.read();} } 11、ForkJoinPool线程池2:WorkStealingPool 任务偷取线程池 原来的线程池,都是有一个任务队列,而这个不同,它给每个线程都分配了一个任务队列 当某一个线程的任务队列没有任务,并且自己空闲,它就去其它线程的任务队列中偷任务,所以叫任务偷取线程池 细节:当线程自己从自己的任务队列拿任务时,不需要加锁,但是偷任务时,因为有两个线程,可能发生同步问题,需要加锁 此线程继承FJP 实例 import java.io.IOException;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.TimeUnit;public class T11_WorkStealingPool {public static void main(String[] args) throws IOException {ExecutorService service = Executors.newWorkStealingPool();System.out.println(Runtime.getRuntime().availableProcessors());service.execute(new R(1000));service.execute(new R(2000));service.execute(new R(2000));service.execute(new R(2000)); //daemonservice.execute(new R(2000));//由于产生的是精灵线程(守护线程、后台线程),主线程不阻塞的话,看不到输出System.in.read(); }static class R implements Runnable {int time;R(int t) {this.time = t;}@Overridepublic void run() {try {TimeUnit.MILLISECONDS.sleep(time);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(time + " " + Thread.currentThread().getName());} }} 12、流式API:ParallelStreamAPI 不懂的请参考:https://blog.csdn.net/grd_java/article/details/110265219 实例 import java.util.ArrayList;import java.util.List;import java.util.Random;public class T13_ParallelStreamAPI {public static void main(String[] args) {List<Integer> nums = new ArrayList<>();Random r = new Random();for(int i=0; i<10000; i++) nums.add(1000000 + r.nextInt(1000000));//System.out.println(nums);long start = System.currentTimeMillis();nums.forEach(v->isPrime(v));long end = System.currentTimeMillis();System.out.println(end - start);//使用parallel stream apistart = System.currentTimeMillis();nums.parallelStream().forEach(T13_ParallelStreamAPI::isPrime);//并行流,将任务切分成子任务执行end = System.currentTimeMillis();System.out.println(end - start);}static boolean isPrime(int num) {for(int i=2; i<=num/2; i++) {if(num % i == 0) return false;}return true;} } 13、总结 总结 Callable相当于一Runnable但是它有返回值 Future:存储执行完产生的结果 FutureTask 相当于Future+Runnable,既可以执行任务,又能获取任务执行的Future结果 CompletableFuture 可以多任务异步,并对多任务控制,整合任务结果,细化完美,比如可以一个任务完成就可以整合结果,也可以所有任务完成才整合结果 4、ThreadPoolExecutor源码解析 依然只讲重点,实际还需要大家按照上篇博客中看源码的方式来看 1、常用变量的解释 // 1. ctl,可以看做一个int类型的数字,高3位表示线程池状态,低29位表示worker数量private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));// 2. COUNT_BITS,Integer.SIZE为32,所以COUNT_BITS为29private static final int COUNT_BITS = Integer.SIZE - 3;// 3. CAPACITY,线程池允许的最大线程数。1左移29位,然后减1,即为 2^29 - 1private static final int CAPACITY = (1 << COUNT_BITS) - 1;// runState is stored in the high-order bits// 4. 线程池有5种状态,按大小排序如下:RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATEDprivate static final int RUNNING = -1 << COUNT_BITS;private static final int SHUTDOWN = 0 << COUNT_BITS;private static final int STOP = 1 << COUNT_BITS;private static final int TIDYING = 2 << COUNT_BITS;private static final int TERMINATED = 3 << COUNT_BITS;// Packing and unpacking ctl// 5. runStateOf(),获取线程池状态,通过按位与操作,低29位将全部变成0private static int runStateOf(int c) { return c & ~CAPACITY; }// 6. workerCountOf(),获取线程池worker数量,通过按位与操作,高3位将全部变成0private static int workerCountOf(int c) { return c & CAPACITY; }// 7. ctlOf(),根据线程池状态和线程池worker数量,生成ctl值private static int ctlOf(int rs, int wc) { return rs | wc; }/ Bit field accessors that don't require unpacking ctl. These depend on the bit layout and on workerCount being never negative./// 8. runStateLessThan(),线程池状态小于xxprivate static boolean runStateLessThan(int c, int s) {return c < s;}// 9. runStateAtLeast(),线程池状态大于等于xxprivate static boolean runStateAtLeast(int c, int s) {return c >= s;} 2、构造方法 public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) {// 基本类型参数校验if (corePoolSize < 0 ||maximumPoolSize <= 0 ||maximumPoolSize < corePoolSize ||keepAliveTime < 0)throw new IllegalArgumentException();// 空指针校验if (workQueue == null || threadFactory == null || handler == null)throw new NullPointerException();this.corePoolSize = corePoolSize;this.maximumPoolSize = maximumPoolSize;this.workQueue = workQueue;// 根据传入参数unit和keepAliveTime,将存活时间转换为纳秒存到变量keepAliveTime 中this.keepAliveTime = unit.toNanos(keepAliveTime);this.threadFactory = threadFactory;this.handler = handler;} 3、提交执行task的过程 public void execute(Runnable command) {if (command == null)throw new NullPointerException();/ Proceed in 3 steps: 1. If fewer than corePoolSize threads are running, try to start a new thread with the given command as its first task. The call to addWorker atomically checks runState and workerCount, and so prevents false alarms that would add threads when it shouldn't, by returning false. 2. If a task can be successfully queued, then we still need to double-check whether we should have added a thread (because existing ones died since last checking) or that the pool shut down since entry into this method. So we recheck state and if necessary roll back the enqueuing if stopped, or start a new thread if there are none. 3. If we cannot queue task, then we try to add a new thread. If it fails, we know we are shut down or saturated and so reject the task./int c = ctl.get();// worker数量比核心线程数小,直接创建worker执行任务if (workerCountOf(c) < corePoolSize) {if (addWorker(command, true))return;c = ctl.get();}// worker数量超过核心线程数,任务直接进入队列if (isRunning(c) && workQueue.offer(command)) {int recheck = ctl.get();// 线程池状态不是RUNNING状态,说明执行过shutdown命令,需要对新加入的任务执行reject()操作。// 这儿为什么需要recheck,是因为任务入队列前后,线程池的状态可能会发生变化。if (! isRunning(recheck) && remove(command))reject(command);// 这儿为什么需要判断0值,主要是在线程池构造方法中,核心线程数允许为0else if (workerCountOf(recheck) == 0)addWorker(null, false);}// 如果线程池不是运行状态,或者任务进入队列失败,则尝试创建worker执行任务。// 这儿有3点需要注意:// 1. 线程池不是运行状态时,addWorker内部会判断线程池状态// 2. addWorker第2个参数表示是否创建核心线程// 3. addWorker返回false,则说明任务执行失败,需要执行reject操作else if (!addWorker(command, false))reject(command);} 4、addworker源码解析 private boolean addWorker(Runnable firstTask, boolean core) {retry:// 外层自旋for (;;) {int c = ctl.get();int rs = runStateOf(c);// 这个条件写得比较难懂,我对其进行了调整,和下面的条件等价// (rs > SHUTDOWN) || // (rs == SHUTDOWN && firstTask != null) || // (rs == SHUTDOWN && workQueue.isEmpty())// 1. 线程池状态大于SHUTDOWN时,直接返回false// 2. 线程池状态等于SHUTDOWN,且firstTask不为null,直接返回false// 3. 线程池状态等于SHUTDOWN,且队列为空,直接返回false// Check if queue empty only if necessary.if (rs >= SHUTDOWN &&! (rs == SHUTDOWN &&firstTask == null &&! workQueue.isEmpty()))return false;// 内层自旋for (;;) {int wc = workerCountOf(c);// worker数量超过容量,直接返回falseif (wc >= CAPACITY ||wc >= (core ? corePoolSize : maximumPoolSize))return false;// 使用CAS的方式增加worker数量。// 若增加成功,则直接跳出外层循环进入到第二部分if (compareAndIncrementWorkerCount(c))break retry;c = ctl.get(); // Re-read ctl// 线程池状态发生变化,对外层循环进行自旋if (runStateOf(c) != rs)continue retry;// 其他情况,直接内层循环进行自旋即可// else CAS failed due to workerCount change; retry inner loop} }boolean workerStarted = false;boolean workerAdded = false;Worker w = null;try {w = new Worker(firstTask);final Thread t = w.thread;if (t != null) {final ReentrantLock mainLock = this.mainLock;// worker的添加必须是串行的,因此需要加锁mainLock.lock();try {// Recheck while holding lock.// Back out on ThreadFactory failure or if// shut down before lock acquired.// 这儿需要重新检查线程池状态int rs = runStateOf(ctl.get());if (rs < SHUTDOWN ||(rs == SHUTDOWN && firstTask == null)) {// worker已经调用过了start()方法,则不再创建workerif (t.isAlive()) // precheck that t is startablethrow new IllegalThreadStateException();// worker创建并添加到workers成功workers.add(w);// 更新largestPoolSize变量int s = workers.size();if (s > largestPoolSize)largestPoolSize = s;workerAdded = true;} } finally {mainLock.unlock();}// 启动worker线程if (workerAdded) {t.start();workerStarted = true;} }} finally {// worker线程启动失败,说明线程池状态发生了变化(关闭操作被执行),需要进行shutdown相关操作if (! workerStarted)addWorkerFailed(w);}return workerStarted;} 5、线程池worker任务单元 private final class Workerextends AbstractQueuedSynchronizerimplements Runnable{/ This class will never be serialized, but we provide a serialVersionUID to suppress a javac warning./private static final long serialVersionUID = 6138294804551838833L;/ Thread this worker is running in. Null if factory fails. /final Thread thread;/ Initial task to run. Possibly null. /Runnable firstTask;/ Per-thread task counter /volatile long completedTasks;/ Creates with given first task and thread from ThreadFactory. @param firstTask the first task (null if none)/Worker(Runnable firstTask) {setState(-1); // inhibit interrupts until runWorkerthis.firstTask = firstTask;// 这儿是Worker的关键所在,使用了线程工厂创建了一个线程。传入的参数为当前workerthis.thread = getThreadFactory().newThread(this);}/ Delegates main run loop to outer runWorker /public void run() {runWorker(this);}// 省略代码...} 6、核心线程执行逻辑-runworker final void runWorker(Worker w) {Thread wt = Thread.currentThread();Runnable task = w.firstTask;w.firstTask = null;// 调用unlock()是为了让外部可以中断w.unlock(); // allow interrupts// 这个变量用于判断是否进入过自旋(while循环)boolean completedAbruptly = true;try {// 这儿是自旋// 1. 如果firstTask不为null,则执行firstTask;// 2. 如果firstTask为null,则调用getTask()从队列获取任务。// 3. 阻塞队列的特性就是:当队列为空时,当前线程会被阻塞等待while (task != null || (task = getTask()) != null) {// 这儿对worker进行加锁,是为了达到下面的目的// 1. 降低锁范围,提升性能// 2. 保证每个worker执行的任务是串行的w.lock();// If pool is stopping, ensure thread is interrupted;// if not, ensure thread is not interrupted. This// requires a recheck in second case to deal with// shutdownNow race while clearing interrupt// 如果线程池正在停止,则对当前线程进行中断操作if ((runStateAtLeast(ctl.get(), STOP) ||(Thread.interrupted() &&runStateAtLeast(ctl.get(), STOP))) &&!wt.isInterrupted())wt.interrupt();// 执行任务,且在执行前后通过beforeExecute()和afterExecute()来扩展其功能。// 这两个方法在当前类里面为空实现。try {beforeExecute(wt, task);Throwable thrown = null;try {task.run();} catch (RuntimeException x) {thrown = x; throw x;} catch (Error x) {thrown = x; throw x;} catch (Throwable x) {thrown = x; throw new Error(x);} finally {afterExecute(task, thrown);} } finally {// 帮助gctask = null;// 已完成任务数加一 w.completedTasks++;w.unlock();} }completedAbruptly = false;} finally {// 自旋操作被退出,说明线程池正在结束processWorkerExit(w, completedAbruptly);} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/grd_java/article/details/113116244。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-21 16:19:45
327
转载
转载文章
...oadAction.java package nuc.sw.action;import java.io.InputStream;import org.apache.struts2.ServletActionContext;import com.opensymphony.xwork2.ActionSupport;public class DocDownloadAction extends ActionSupport { private String downPath;//返回InputStream流方法public InputStream getInputStream() throws Exception{ downPath = new String(downPath.getBytes("ISO8859-1"),"utf-8");//默认从WebAPP根目录下取资源return ServletActionContext.getServletContext().getResourceAsStream(downPath);}public String getDownPath(){return downPath;}public void setDownPath(String downPath){this.downPath=downPath;}public String getDownloadFileName(){//downPath.subString是截取downPath的一部分String downFileName=downPath.substring(7);try{downFileName = new String(downFileName.getBytes("iso8859-1"),"utf-8");//downFileName=new String(downFileName.getBytes(),"utf-8");}catch(Exception e){e.printStackTrace();}return downFileName;}@Overridepublic String execute() throws Exception { return SUCCESS;} } /20171105_shiyan_upanddown/src/nuc/sw/action/DocUploadAction.java package nuc.sw.action;import java.io.BufferedInputStream;import java.io.BufferedOutputStream;import java.io.File;import java.io.FileInputStream;import java.io.FileOutputStream;import java.io.IOException;import java.io.InputStream;import java.io.OutputStream;import java.util.Date;import org.apache.struts2.ServletActionContext;import com.opensymphony.xwork2.ActionSupport;public class DocUploadAction extends ActionSupport {private String name;private File[] upload;private String[] uploadContentType;private String[] uploadFileName;private String savePath;private Date createTime;public String getName() {return name;}public void setName(String name) {this.name = name;}public File[] getUpload() {return upload;}public void setUpload(File[] upload) {this.upload = upload;}public String[] getUploadContentType() {return uploadContentType;}public void setUploadContentType(String[] uploadContentType) {this.uploadContentType = uploadContentType;}public String[] getUploadFileName() {return uploadFileName;}public void setUploadFileName(String[] uploadFileName) {this.uploadFileName = uploadFileName;}public String getSavePath() {return savePath;}public void setSavePath(String savePath) {this.savePath = savePath;}public Date getCreateTime(){ createTime=new Date();return createTime;}public static void copy(File source,File target){ InputStream inputStream=null;OutputStream outputStream=null;try{inputStream=new BufferedInputStream(new FileInputStream(source));outputStream=new BufferedOutputStream(new FileOutputStream(target));byte[] buffer=new byte[1024];int length=0;while((length=inputStream.read(buffer))>0){outputStream.write(buffer, 0, length);} }catch(Exception e){e.printStackTrace();}finally{if(null!=inputStream){try {inputStream.close();} catch (IOException e2) {e2.printStackTrace();} }if(null!=outputStream){try{outputStream.close();}catch(Exception e2){e2.printStackTrace();} }} }@Overridepublic String execute() throws Exception { for(int i=0;i<upload.length;i++){ String path=ServletActionContext.getServletContext().getRealPath(this.getSavePath())+"\\"+this.uploadFileName[i];File target=new File(path);copy(this.upload[i],target);}return SUCCESS;} } /20171105_shiyan_upanddown/src/nuc/sw/action/LoginAction.java package nuc.sw.action;import java.util.regex.Pattern;import com.opensymphony.xwork2.ActionContext;import com.opensymphony.xwork2.ActionSupport;public class LoginAction extends ActionSupport {//属性驱动校验private String username;private String password;public String getUsername() {return username;}public void setUsername(String username) {this.username = username;}public String getPassword() {return password;}public void setPassword(String password) {this.password = password;}//手动检验@Overridepublic void validate() {// TODO Auto-generated method stub//进行数据校验,长度6~15位 if(username.trim().length()<6||username.trim().length()>15||username==null) {this.addFieldError("username", "用户名长度不合法!");}if(password.trim().length()<6||password.trim().length()>15||password==null) {this.addFieldError("password", "密码长度不合法!");} }//登陆业务逻辑public String loginMethod() {if(username.equals("chenghaoran")&&password.equals("12345678")) {ActionContext.getContext().getSession().put("user", username);return "loginOK";}else {this.addFieldError("err","用户名或密码不正确!");return "loginFail";} }//手动校验validateXxxpublic void validateLoginMethod() {//使用正则校验if(username==null||username.trim().equals("")) {this.addFieldError("username","用户名不能为空!");}else {if(!Pattern.matches("[a-zA-Z]{6,15}", username.trim())) {this.addFieldError("username", "用户名格式错误!");} }if(password==null||password.trim().equals("")) {this.addFieldError("password","密码不能为空!");}else {if(!Pattern.matches("\\d{6,15}", password.trim())) {this.addFieldError("password", "密码格式错误!");} }} } /20171105_shiyan_upanddown/src/nuc/sw/interceptor/LoginInterceptor.java package nuc.sw.interceptor;import com.opensymphony.xwork2.Action;import com.opensymphony.xwork2.ActionContext;import com.opensymphony.xwork2.ActionInvocation;import com.opensymphony.xwork2.ActionSupport;import com.opensymphony.xwork2.interceptor.AbstractInterceptor;public class LoginInterceptor extends AbstractInterceptor {@Overridepublic String intercept(ActionInvocation arg0) throws Exception {// TODO Auto-generated method stub//判断是否登陆,通过ActionContext访问SessionActionContext ac=arg0.getInvocationContext();String username=(String)ac.getSession().get("user");if(username!=null&&username.equals("chenghaoran")) {return arg0.invoke();//放行}else {((ActionSupport)arg0.getAction()).addActionError("请先登录!");return Action.LOGIN;} }} /20171105_shiyan_upanddown/src/struts.xml <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE struts PUBLIC "-//Apache Software Foundation//DTD Struts Configuration 2.1.7//EN""http://struts.apache.org/dtds/struts-2.1.7.dtd"><struts><constant name="struts.i18n.encoding" value="utf-8"/><package name="default" extends="struts-default"><interceptors><interceptor name="login" class="nuc.sw.interceptor.LoginInterceptor"></interceptor></interceptors> <action name="docUpload" class="nuc.sw.action.DocUploadAction"><!-- 使用fileUpload拦截器 --><interceptor-ref name="fileUpload"><!-- 指定允许上传的文件大小最大为50000字节 --><param name="maximumSize">50000</param></interceptor-ref><!-- 配置默认系统拦截器栈 --><interceptor-ref name="defaultStack"/><!-- param子元素配置了DocUploadAction类中savePath属性值为/upload --><param name="savePath">/upload</param><result>/showFile.jsp</result><!-- 指定input逻辑视图,即不符合上传要求,被fileUpload拦截器拦截后,返回的视图页面 --><result name="input">/uploadFile.jsp</result></action> <action name="docDownload" class="nuc.sw.action.DocDownloadAction"><!-- 指定结果类型为stream --><result type="stream"><!-- 指定下载文件的文件类型 text/plain表示纯文本 --><param name="contentType">application/msword,text/plain</param><!-- 指定下载文件的入口输入流 --><param name="inputName">inputStream</param><!-- 指定下载文件的处理方式与文件保存名 attachment表示以附件形式下载,也可以用inline表示内联即在浏览器中直接显示,默认值为inline --><param name="contentDisposition">attachment;filename="${downloadFileName}"</param><!-- 指定下载文件的缓冲区大小,默认为1024 --><param name="bufferSize">40960</param></result></action><action name="loginAction" class="nuc.sw.action.LoginAction" method="loginMethod"><result name="loginOK">/uploadFile.jsp</result><result name="loginFail">/login.jsp</result><result name="input">/login.jsp</result></action> </package></struts> /20171105_shiyan_upanddown/WebContent/login.jsp <%@ page language="java" contentType="text/html; charset=UTF-8"pageEncoding="UTF-8"%><%@ taglib prefix="s" uri="/struts-tags" %> <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>登录页</title><s:head/></head><body><s:actionerror/><s:fielderror fieldName="err"></s:fielderror><s:form action="loginAction" method="post"> <s:textfield label="用户名" name="username"></s:textfield><s:password label="密码" name="password"></s:password><s:submit value="登陆"></s:submit></s:form></body></html> /20171105_shiyan_upanddown/WebContent/showFile.jsp <%@ page language="java" contentType="text/html; charset=UTF-8"pageEncoding="UTF-8"%><%@ taglib prefix="s" uri="/struts-tags" %><!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>显示上传文档</title></head><body><center><font style="font-size:18px;color:red">上传者:<s:property value="name"/></font><table width="45%" cellpadding="0" cellspacing="0" border="1"><tr><th>文件名称</th><th>上传者</th><th>上传时间</th></tr><s:iterator value="uploadFileName" status="st" var="doc"><tr><td align="center"><a href="docDownload.action?downPath=upload/<s:property value="doc"/>"><s:property value="doc"/> </a></td><td align="center"><s:property value="name"/></td><td align="center"><s:date name="createTime" format="yyyy-MM-dd HH:mm:ss"/></td></tr></s:iterator></table></center></body></html> /20171105_shiyan_upanddown/WebContent/uploadFile.jsp <%@ page language="java" contentType="text/html; charset=UTF-8"pageEncoding="UTF-8"%><%@ taglib prefix="s" uri="/struts-tags" %><!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>多文件上传</title></head><body><center><s:form action="docUpload" method="post" enctype="multipart/form-data"><s:textfield name="name" label="姓名" size="20"/><s:file name="upload" label="选择文档" size="20"/><s:file name="upload" label="选择文档" size="20"/><s:file name="upload" label="选择文档" size="20"/><s:submit value="确认上传" align="center"/></s:form></center></body></html> 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_34101492/article/details/78811741。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-12 20:53:42
140
转载
转载文章
在深入理解了使用Java和Jsoup库进行HTML解析与信息提取的技术实践后,我们可以进一步关注该领域的一些最新动态和技术应用实例。近期,《信息安全技术与应用》期刊报道了一项关于网络空间安全监控的研究,其中就利用了类似的HTML内容抓取和分析技术,对全球范围内的公开漏洞报告进行了实时监测和智能分析,有效提升了漏洞管理效率并降低了潜在风险。 同时,随着Web技术的快速发展,HTML5标准的普及以及各类网站结构的复杂化,如何更精准高效地从海量网页中提取关键数据成为一个亟待解决的问题。例如,Mozilla最近发布的一篇博客文章详细介绍了其如何借助类似Jsoup的开源库优化Firefox浏览器的安全更新通告系统,通过精确筛选和解析HTML页面中的特定元素,实现了对安全漏洞信息的自动化获取和分类。 此外,针对网络安全领域,国内外众多安全研究团队正积极研发新型的信息抽取模型,结合机器学习、深度学习等先进技术,提升对网页内容的理解能力,以便更快更准确地定位高危漏洞。近日,在Black Hat USA 2023大会上,就有专家演示了利用强化学习方法训练出的智能爬虫,成功在大量网页中挖掘出尚未被广泛认知的隐蔽性安全漏洞。 综上所述,无论是基于Jsoup的传统HTML解析技术,还是结合AI前沿发展的智能信息抽取手段,都在不断推动网络安全监控和漏洞管理领域的进步,为构建更加安全可靠的网络环境提供了有力支持。
2023-07-19 10:42:16
295
转载
转载文章
...把图片素材另存到桌面使用,手机端可长按图片保存到本地相册,夏欢和认为有用的话就点个赞,三连就更满足我的期待了 JPanel切换案例 package swing; public class mains { public static void main(String[] args) { new swingJpanelQieHuan(); } } package swing; import java.awt.Color; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import javax.swing.; public class swingJpanelQieHuan extends JFrame{ public static JPanel jpRed,jpPink,jpBlueRightBottom1, jpGreenRightBottom2; public static JButton anNiu1,anNiu2; JLabel JLabel1; public static JLabel JLabel2; public swingJpanelQieHuan(){ this.setLayout(null); this.setSize(700,700); this.setLocationRelativeTo(null); jpRed=new JPanel(); jpPink=new JPanel(); jpBlueRightBottom1=new JPanel(); jpGreenRightBottom2=new JPanel(); jpRed.setLayout(null); anNiu1=new JButton("点赞界面"); anNiu2=new JButton("三连关注界面"); anNiu1.setBounds(150,30,120,30); anNiu2.setBounds(300,30,120,30); anNiu1.addActionListener(new swingJpanelShiJian(this)); anNiu2.addActionListener(new swingJpanelShiJian(this)); jpRed.add(anNiu1);jpRed.add(anNiu2); jpRed.setBorder(BorderFactory.createLineBorder(Color.red)); jpPink.setBorder(BorderFactory.createLineBorder(Color.pink)); jpBlueRightBottom1.setBorder (BorderFactory.createLineBorder(Color.blue)); jpGreenRightBottom2.setBorder (BorderFactory.createLineBorder(Color.green)); jpRed.setBounds(10,10,600,150); jpPink.setBounds(10,170,200,450); jpBlueRightBottom1.setBounds(220, 170, 380, 450); jpGreenRightBottom2.setBounds(220, 170, 380, 450); JLabel1 = new JLabel(); JLabel2=new JLabel(); JLabel1. setIcon(new ImageIcon("img//1.png")); JLabel2. setIcon(new ImageIcon("img//2.png")); jpBlueRightBottom1.add(JLabel1); jpGreenRightBottom2.add(JLabel2); this.add(jpRed);this.add(jpPink); this.add(jpGreenRightBottom2); this.add(jpBlueRightBottom1); this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); this.setVisible(true); } } class swingJpanelShiJian implements ActionListener{ //jieShou接收 //chuangTi窗体 public static swingJpanelQieHuan jieShou; public swingJpanelShiJian(swingJpanelQieHuan chuangTi){ jieShou=chuangTi; } @Override public void actionPerformed(ActionEvent arg0) { String neiRong=arg0.getActionCommand(); if(neiRong.equals("点赞界面")){ jieShou.jpBlueRightBottom1.setVisible(true); jieShou.jpGreenRightBottom2.setVisible(false); }else if(neiRong.equals("三连关注界面")){ jieShou.jpBlueRightBottom1.setVisible(false); jieShou.jpGreenRightBottom2.setVisible(true); } } } JTree树形控件点击内容弹出新的窗体 package swing; public class mains { public static void main(String[] args) { new swingJpanelQieHuan(); } } package swing; import java.awt.Color; import java.awt.Font; import javax.swing.; public class newDengLu extends JFrame{ public static JLabel lb1,lb2,lb3,lb4=null; public static JTextField txt1=null; public static JPasswordField pwd=null; public static JComboBox com=null; public static JButton btn1,btn2=null; public newDengLu(){ this.setTitle("诗书画唱登录页面"); this.setLayout(null); this.setSize(500,400); this.setLocationRelativeTo(null); lb1=new JLabel("用户名"); lb2=new JLabel("用户密码"); lb3=new JLabel("用户类型"); lb4=new JLabel("登录窗体"); Font f=new Font("微软雅黑",Font.BOLD,35); lb4.setFont(f); lb4.setForeground(Color.red); lb4.setBounds(160,30,140,40); lb1.setBounds(100, 100, 70,30); lb2.setBounds(100,140,70,30); lb3.setBounds(100,180,70,30); txt1=new JTextField(); txt1.setBounds(170,100,150,30); pwd=new JPasswordField(); pwd.setBounds(170,140,150,30); com=new JComboBox(); com.addItem("会员用户"); com.addItem("普通用户"); com.setBounds(170,180,150,30); btn1=new JButton("登录"); btn1.setBounds(130,220,70,30); btn2=new JButton("取消"); btn2.setBounds(240,220,70,30); this.add(lb1);this.add(lb2);this.add(lb3); this.add(txt1);this.add(pwd);this.add(com); this.add(btn1);this.add(btn2);this.add(lb4); //this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); this.setVisible(true); } } package swing; import java.awt.Color; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import javax.swing.; import javax.swing.event.TreeSelectionEvent; import javax.swing.event.TreeSelectionListener; import javax.swing.tree.DefaultMutableTreeNode; public class swingJpanelQieHuan extends JFrame{ public static JPanel jpRed,jpPinkLeft,jpBlueRightBottom1, jpGreenRightBottom2; public static JTree JTree1,JTree2; public static JButton anNiu1,anNiu2; public static JLabel JLabel1,JLabel2; public swingJpanelQieHuan(){ this.setLayout(null); this.setSize(700,700); this.setLocationRelativeTo(null); jpRed=new JPanel(); jpPinkLeft=new JPanel(); jpBlueRightBottom1=new JPanel(); jpGreenRightBottom2=new JPanel(); jpRed.setLayout(null); anNiu1=new JButton("点赞界面"); anNiu2=new JButton("三连关注界面"); anNiu1.setBounds(150,30,120,30); anNiu2.setBounds(300,30,120,30); anNiu1.addActionListener(new swingJpanelShiJian(this)); anNiu2.addActionListener(new swingJpanelShiJian(this)); jpRed.add(anNiu1);jpRed.add(anNiu2); jpRed.setBorder(BorderFactory.createLineBorder(Color.red)); jpPinkLeft.setBorder(BorderFactory.createLineBorder(Color.pink)); jpBlueRightBottom1.setBorder (BorderFactory.createLineBorder(Color.blue)); jpGreenRightBottom2.setBorder (BorderFactory.createLineBorder(Color.green)); jpRed.setBounds(10,10,600,150); jpPinkLeft.setBounds(10,170,200,450); jpBlueRightBottom1.setBounds(220, 170, 380, 450); jpGreenRightBottom2.setBounds(220, 170, 380, 450); JLabel1 = new JLabel(); JLabel2=new JLabel(); JLabel1. setIcon(new ImageIcon("img//1.png")); JLabel2. setIcon(new ImageIcon("img//2.png")); jpBlueRightBottom1.add(JLabel1); jpGreenRightBottom2.add(JLabel2); DefaultMutableTreeNode dmtn1 = new DefaultMutableTreeNode("图书管理"); DefaultMutableTreeNode dmtn_yonghu = new DefaultMutableTreeNode ("用户管理"); DefaultMutableTreeNode dmtnQieHuan = new DefaultMutableTreeNode ("切换到登录界面"); DefaultMutableTreeNode dmtn_yonghu_insert = new DefaultMutableTreeNode("增加用户"); DefaultMutableTreeNode dmtn_yonghu_update = new DefaultMutableTreeNode("修改用户"); DefaultMutableTreeNode dmtn_yonghu_delete = new DefaultMutableTreeNode("删除用户"); DefaultMutableTreeNode dmtn_yonghu_select = new DefaultMutableTreeNode("查询用户"); DefaultMutableTreeNode dmtn_jieyue = new DefaultMutableTreeNode("借阅管理"); DefaultMutableTreeNode dmtn_jieyue_insert = new DefaultMutableTreeNode("增加借阅信息"); DefaultMutableTreeNode dmtn_jieyue_update = new DefaultMutableTreeNode("修改借阅信息"); DefaultMutableTreeNode dmtn_jieyue_delete = new DefaultMutableTreeNode("删除借阅信息"); DefaultMutableTreeNode dmtn_jieyue_select = new DefaultMutableTreeNode("查询借阅信息"); dmtn_yonghu.add(dmtnQieHuan); dmtn_yonghu.add(dmtn_yonghu_insert); dmtn_yonghu.add(dmtn_yonghu_update); dmtn_yonghu.add(dmtn_yonghu_delete); dmtn_yonghu.add(dmtn_yonghu_select); dmtn_jieyue.add(dmtn_jieyue_insert); dmtn_jieyue.add(dmtn_jieyue_update); dmtn_jieyue.add(dmtn_jieyue_delete); dmtn_jieyue.add(dmtn_jieyue_select); dmtn1.add(dmtn_yonghu); dmtn1.add(dmtn_jieyue); JTree1 = new JTree(dmtn1); JTree1.addTreeSelectionListener(new swingJpanelShiJian(this)); JTree1.setBackground(Color.white); jpPinkLeft.setBackground(Color.white); //JTree1.setBounds(10,170,200,450);在这里是一句没效果的代码 jpPinkLeft.add(JTree1); this.add(jpRed);this.add(jpPinkLeft); this.add(jpGreenRightBottom2); this.add(jpBlueRightBottom1); this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); this.setVisible(true); } } class swingJpanelShiJian implements ActionListener, TreeSelectionListener{ //jieShou接收 //chuangTi窗体 public static swingJpanelQieHuan jieShou; public swingJpanelShiJian(swingJpanelQieHuan chuangTi){ jieShou=chuangTi; } @Override public void actionPerformed(ActionEvent arg0) { String neiRong=arg0.getActionCommand(); if(neiRong.equals("点赞界面")){ jieShou.jpBlueRightBottom1.setVisible(true); jieShou.jpGreenRightBottom2.setVisible(false); }else if(neiRong.equals("三连关注界面")){ jieShou.jpBlueRightBottom1.setVisible(false); jieShou.jpGreenRightBottom2.setVisible(true); } } @Override public void valueChanged(TreeSelectionEvent arg0) { DefaultMutableTreeNode str = (DefaultMutableTreeNode) jieShou.JTree1 .getLastSelectedPathComponent(); if (str.toString().equals("切换到登录界面")) { new newDengLu(); } else { } } } JTable初始化表格 package swing; public class mains { public static void main(String[] args) { new swingBiaoGe(); } } package swing; import java.util.Vector; import javax.swing.; import javax.swing.table.DefaultTableModel; public class swingBiaoGe extends JFrame{ //要声明 : 装载内容的容器,table的控件, 容器的标题, 容器的具体的内容。 public static JTable biaoGe=null;//JTable为表格的控件 //要声明装载内容的容器,如下: public static DefaultTableModel DTM=null; //Vector中: //一个放标题,一个放内容 //>表示只接受集合的类型 Vector biaoTi; Vector> neiRong; public swingBiaoGe(){ this.setLayout(null); this.setSize(600,600); this.setLocationRelativeTo(null); //给标题赋值: biaoTi=new Vector(); biaoTi.add("编号");biaoTi.add("姓名"); biaoTi.add("性别");biaoTi.add("年龄"); //给内容赋值: neiRong=new Vector>(); for(int i=0;i<5;i++){ Vector v=new Vector(); v.add("编号"+(i+6));v.add("诗书画唱"+(i+6)); v.add("性别"+(i+6));v.add("年龄"+(i+6)); neiRong.add(v); } //将内容添加到装载内容的容器中: DTM=new DefaultTableModel(neiRong,biaoTi); DTM=new DefaultTableModel(neiRong,biaoTi) { @Override public boolean isCellEditable(int a, int b) { return false; } }; biaoGe=new JTable(DTM); //设置滚动条: JScrollPane jsp=new JScrollPane(biaoGe); jsp.setBounds(10,10,400,400); this.add(jsp); this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); this.setVisible(true); } } JTable初始化数据,数据要求链接JDBC获取 create database yonghu select from shangpin; select from sp_Type; create table sp_Type( sp_TypeID int primary key identity(1,1), sp_TypeName varchar(100) not null ); insert into sp_Type values('水果'); insert into sp_Type values('零食'); insert into sp_Type values('小吃'); insert into sp_Type values('日常用品'); create table shangpin( sp_ID int primary key identity(1,1), sp_Name varchar(100) not null, sp_Price decimal(10,2) not null, sp_TypeID int, sp_Jieshao varchar(300) ); insert into shangpin values('苹果',12,1,'好吃的苹果'); insert into shangpin values('香蕉',2,1,'好吃的香蕉'); insert into shangpin values('橘子',4,1,'好吃的橘子'); insert into shangpin values('娃哈哈',3,2,'好吃营养好'); insert into shangpin values('牙刷',5,4,'全自动牙刷'); package SwingJdbc; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.MouseEvent; import java.awt.event.MouseListener; import java.sql.ResultSet; import java.sql.SQLException; import java.util.Vector; import javax.swing.JButton; import javax.swing.JComboBox; import javax.swing.JFrame; import javax.swing.JLabel; import javax.swing.JOptionPane; import javax.swing.JPanel; import javax.swing.JScrollPane; import javax.swing.JTable; import javax.swing.JTextField; import javax.swing.table.DefaultTableModel; public class biaoGe extends JFrame { class shiJian implements MouseListener, ActionListener { public biaoGe jieShou = null; public shiJian(biaoGe chuangTi) { this.jieShou = chuangTi; } @Override public void actionPerformed(ActionEvent arg0) { String name = jieShou.wenBenKuangName.getText(); String price = jieShou.wenBenKuangPrice.getText(); String type = jieShou.wenBenKuangTypeId.getText(); String jieshao = jieShou.wenBenKuangJieShao. getText(); String sql = "insert into shangpin values('" + name + "'" + ", " + price + "," + type + ",'" + jieshao + "')"; if (DBUtils.ZSG(sql)) { JOptionPane.showMessageDialog(null, "增加成功"); jieShou.chaxunchushihua(); } else { JOptionPane.showMessageDialog(null, "出现了未知的错误,增加失败"); } } @Override public void mouseClicked(MouseEvent arg0) { if (arg0.getClickCount() == 2) { int row = jieShou.biaoGe1.getSelectedRow(); jieShou.wenBenKuangBianHao .setText(jieShou.biaoGe1.getValueAt( row, 0).toString()); jieShou.wenBenKuangName .setText(jieShou.biaoGe1.getValueAt( row, 1).toString()); jieShou.wenBenKuangPrice .setText(jieShou.biaoGe1.getValueAt( row, 2).toString()); jieShou.wenBenKuangTypeId .setText(jieShou.biaoGe1.getValueAt( row, 3).toString()); jieShou.wenBenKuangJieShao .setText(jieShou.biaoGe1.getValueAt( row, 4).toString()); } if (arg0.isMetaDown()) { int num = JOptionPane.showConfirmDialog(null, "是否确认删除这条信息?"); if (num == 0) { int row = jieShou.biaoGe1 .getSelectedRow(); String sql = "delete shangpin where sp_id=" + jieShou.biaoGe1.getValueAt( row, 0) + ""; if (DBUtils.ZSG(sql)) { JOptionPane.showMessageDialog(null, "册除成功"); jieShou.chaxunchushihua(); } else { JOptionPane.showMessageDialog(null, "出现了未知的错误,请重试"); } } } } @Override public void mouseEntered(MouseEvent arg0) { // TODO Auto-generated method stub } @Override public void mouseExited(MouseEvent arg0) { // TODO Auto-generated method stub } @Override public void mousePressed(MouseEvent arg0) { // TODO Auto-generated method stub } @Override public void mouseReleased(MouseEvent arg0) { // TODO Auto-generated method stub } } static JButton zengJiaAnNiu = null; static DefaultTableModel biaoGeMoXing1 = null; static JScrollPane gunDongTiao = null; static JTable biaoGe1 = null; static JLabel wenZiBianHao, wenZiName, wenZiPrice, wenZiTypeId, wenZiJieShao; static JTextField wenBenKuangBianHao, wenBenKuangName, wenBenKuangPrice, wenBenKuangTypeId, wenBenKuangJieShao; static Vector BiaoTiJiHe = null; static Vector> NeiRongJiHe = null; JPanel mianBan1, mianBan2 = null; public biaoGe() { this.setTitle("登录后的界面"); this.setSize(800, 600); this.setLayout(null); this.setLocationRelativeTo(null); wenZiBianHao = new JLabel("编号"); wenZiName = new JLabel("名称"); wenZiPrice = new JLabel("价格"); wenZiTypeId = new JLabel("类型ID"); wenZiJieShao = new JLabel("介绍"); zengJiaAnNiu = new JButton("添加数据"); zengJiaAnNiu.setBounds(530, 390, 100, 30); zengJiaAnNiu.addActionListener(new shiJian(this)); this.add(zengJiaAnNiu); wenZiBianHao.setBounds(560, 100, 70, 30); wenZiName.setBounds(560, 140, 70, 30); wenZiPrice.setBounds(560, 180, 70, 30); wenZiTypeId.setBounds(560, 220, 70, 30); wenZiJieShao.setBounds(560, 260, 70, 30); this.add(wenZiBianHao); this.add(wenZiName); this.add(wenZiPrice); this.add(wenZiTypeId); this.add(wenZiJieShao); wenBenKuangBianHao = new JTextField(); wenBenKuangBianHao.setEditable(false); wenBenKuangName = new JTextField(); wenBenKuangPrice = new JTextField(); wenBenKuangTypeId = new JTextField(); wenBenKuangJieShao = new JTextField(); wenBenKuangBianHao.setBounds(640, 100, 130, 30); wenBenKuangName.setBounds(640, 140, 130, 30); wenBenKuangPrice.setBounds(640, 180, 130, 30); wenBenKuangTypeId.setBounds(640, 220, 130, 30); wenBenKuangJieShao.setBounds(640, 260, 130, 30); this.add(wenBenKuangBianHao); this.add(wenBenKuangName); this.add(wenBenKuangPrice); this.add(wenBenKuangTypeId); this.add(wenBenKuangJieShao); biaoGeFengZhuangFangFa(); this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); this.setVisible(true); } //biaoGeFengZhuangFangFa表格的封装方法 private void biaoGeFengZhuangFangFa() { BiaoTiJiHe = new Vector(); BiaoTiJiHe.add("编号"); BiaoTiJiHe.add("名称"); BiaoTiJiHe.add("价格"); BiaoTiJiHe.add("类型"); BiaoTiJiHe.add("介绍"); String sql = "select from shangpin"; ResultSet res = DBUtils.Select(sql); try { NeiRongJiHe = new Vector>(); while (res.next()) { Vector v = new Vector(); v.add(res.getInt("sp_ID")); v.add(res.getString("sp_Name")); v.add(res.getDouble("sp_price")); v.add(res.getInt("sp_TypeID")); v.add(res.getString("sp_Jieshao")); NeiRongJiHe.add(v); } biaoGeMoXing1 = new DefaultTableModel(NeiRongJiHe, BiaoTiJiHe) { @Override public boolean isCellEditable(int a, int b) { return false; } }; biaoGe1 = new JTable(biaoGeMoXing1); biaoGe1.addMouseListener(new shiJian(this)); biaoGe1.setBounds(0, 0, 500, 500); gunDongTiao= new JScrollPane(biaoGe1); gunDongTiao .setBounds(0, 0, 550, 150); mianBan1 = new JPanel(); mianBan1.add(gunDongTiao ); mianBan1.setBounds(0, 0, 550, 250); this.add(mianBan1); } catch (SQLException e) { e.printStackTrace(); } } public void chaxunchushihua() { if (this.mianBan1 != null) { this.remove(mianBan1); } biaoGeFengZhuangFangFa(); // 释放资源:this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); this.setVisible(true); } } package SwingJdbc; import java.sql.; public class DBUtils { static Connection con=null; static Statement sta=null; static ResultSet res=null; //在静态代码块中执行 static{ try { Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver"); } catch (ClassNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } } //封装链接数据库的方法 public static Connection getCon(){ if(con==null){ try { con=DriverManager.getConnection ("jdbc:sqlserver://localhost;databaseName=yonghu","qqq","123"); } catch (SQLException e) { // TODO Auto-generated catch block e.printStackTrace(); } } return con; } //查询的方法 public static ResultSet Select(String sql){ con=getCon();//建立数据库链接 try { sta=con.createStatement(); res=sta.executeQuery(sql); } catch (SQLException e) { // TODO Auto-generated catch block e.printStackTrace(); } return res; } //增删改查的方法 //返回int类型的数据 public static boolean ZSG(String sql){ con=getCon();//建立数据库链接 boolean b=false; try { sta=con.createStatement(); int num=sta.executeUpdate(sql); //0就是没有执行成功,大于0 就成功了 if(num>0){ b=true; } } catch (SQLException e) { // TODO Auto-generated catch block e.printStackTrace(); } return b; } } package SwingJdbc; public class mains { public static void main(String[] args) { new biaoGe(); } } 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39929646/article/details/114190817。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-18 08:36:23
525
转载
Sqoop
Sqoop使用中的ClassNotFoundException for a Specific Table Column Type问题详解 当我们利用Sqoop进行大数据生态中RDBMS与Hadoop之间数据迁移时,偶尔会遇到ClassNotFoundException这一特定错误,尤其是在处理特殊类型数据库表列的时候。本文将针对这个问题进行深入剖析,并通过实例代码探讨解决方案。 1. Sqoop工具简介与常见应用场景 Sqoop(SQL-to-Hadoop)作为一款强大的数据迁移工具,主要用于在关系型数据库(如MySQL、Oracle等)和Hadoop生态组件(如HDFS、Hive等)间进行高效的数据导入导出操作。不过在实际操作的时候,由于各家数据库系统对数据类型的定义各不相同,Sqoop这家伙在处理一些特定的数据库表字段类型时,可能就会尥蹶子,给你抛出个ClassNotFoundException异常来。 2. “ClassNotFoundException”问题浅析 场景还原: 假设我们有一个MySQL数据库表,其中包含一种自定义的列类型MEDIUMBLOB。当尝试使用Sqoop将其导入到HDFS或Hive时,可能会遭遇如下错误: bash java.lang.ClassNotFoundException: com.mysql.jdbc.MySQLBlobInputStream 这是因为Sqoop在默认配置下可能并不支持所有数据库特定的内置类型,尤其是那些非标准的或者用户自定义的类型。 3. 解决方案详述 3.1 自定义jdbc驱动类映射 为了解决上述问题,我们需要帮助Sqoop识别并正确处理这些特定的列类型。Sqoop这个工具超级贴心,它让用户能够自由定制JDBC驱动的类映射。你只需要在命令行耍个“小魔法”,也就是加上--map-column-java这个参数,就能轻松指定源表中特定列在Java环境下的对应类型啦,就像给不同数据类型找到各自合适的“变身衣裳”一样。 例如,对于上述的MEDIUMBLOB类型,我们可以将其映射为Java的BytesWritable类型: bash sqoop import \ --connect jdbc:mysql://localhost/mydatabase \ --table my_table \ --columns 'id, medium_blob_column' \ --map-column-java medium_blob_column=BytesWritable \ --target-dir /user/hadoop/my_table_data 3.2 扩展Sqoop的JDBC驱动 另一种更为复杂但更为彻底的方法是扩展Sqoop的JDBC驱动,实现对特定类型的支持。通常来说,这意味着你需要亲自操刀,写一个定制版的JDBC驱动程序。这个驱动要能“接班” Sqoop自带的那个驱动,专门对付那些原生驱动搞不定的数据类型转换问题。 java // 这是一个简化的示例,实际操作中需要对接具体的数据库API public class CustomMySQLDriver extends com.mysql.jdbc.Driver { // 重写方法以支持对MEDIUMBLOB类型的处理 @Override public java.sql.ResultSetMetaData getMetaData(java.sql.Connection connection, java.sql.Statement statement, String sql) throws SQLException { ResultSetMetaData metadata = super.getMetaData(connection, statement, sql); // 对于MEDIUMBLOB类型的列,返回对应的Java类型 for (int i = 1; i <= metadata.getColumnCount(); i++) { if ("MEDIUMBLOB".equals(metadata.getColumnTypeName(i))) { metadata.getColumnClassName(i); // 返回"java.sql.Blob" } } return metadata; } } 然后在Sqoop命令行中引用这个自定义的驱动: bash sqoop import \ --driver com.example.CustomMySQLDriver \ ... 4. 思考与讨论 尽管Sqoop在大多数情况下可以很好地处理数据迁移任务,但在面对一些特殊的数据库表列类型时,我们仍需灵活应对。无论是对JDBC驱动进行小幅度的类映射微调,还是大刀阔斧地深度定制,最重要的一点,就是要摸透Sqoop的工作机制,搞清楚它背后是怎么通过底层的JDBC接口,把那些Java对象两者之间巧妙地对应和映射起来的。想要真正玩转那个功能强大的Sqoop数据迁移神器,就得在实际操作中不断摸爬滚打、学习积累。这样,才能避免被“ClassNotFoundException”这类让人头疼的小插曲绊住手脚,顺利推进工作进程。
2023-04-02 14:43:37
83
风轻云淡
HTML
...代器的概念。本文将以Java语言为例,详细介绍如何使用迭代器。 二、什么是迭代器? 在计算机科学中,迭代器是一种设计模式,它可以让你遍历任何集合对象。迭代器是实现的接口,它提供了几个主要的方法,如hasNext(),next()和remove()。这些方法使得我们可以按照顺序访问集合中的每一个元素。 三、使用迭代器的过程 1. 创建迭代器 首先,我们需要创建一个迭代器对象。这可以通过调用集合对象的iterator()方法来完成。例如,如果我们有一个ArrayList集合,我们可以这样创建迭代器: java ArrayList list = new ArrayList(); list.add("apple"); list.add("banana"); list.add("cherry"); Iterator iter = list.iterator(); 2. 判断是否有下一个元素 接下来,我们需要判断是否有下一个元素可以被迭代。这可以通过调用迭代器的hasNext()方法来完成。如果有下一个元素,该方法会返回true,否则返回false。例如,我们可以这样判断是否有下一个元素: java if (iter.hasNext()) { System.out.println(iter.next()); } 3. 获取下一个元素 如果hasNext()方法返回true,那么我们可以调用迭代器的next()方法来获取下一个元素。例如,我们可以这样获取下一个元素: java String next = iter.next(); System.out.println(next); 4. 删除当前元素 最后,如果需要,我们可以调用迭代器的remove()方法来删除当前元素。例如,我们可以这样删除当前元素: java iter.remove(); 四、使用迭代器的优点 使用迭代器有许多优点。首先,它可以让我们避免暴露底层数据结构的具体细节。其次,它可以使我们的代码更加简洁和优雅。最后,它可以提高代码的可读性和可维护性。 五、使用迭代器的注意事项 虽然使用迭代器有很多好处,但是我们也需要注意一些事情。首先,迭代器不能保证集合的修改不会影响已经迭代过的元素。所以,如果你想对这个集合动手脚,比如说要改一改,记得先用一下remove()这个方法,把它清理一下,然后再去点一下next()这个按钮,才能接着进行下一步操作。其次,迭代器只能从头开始迭代,不能从中间开始迭代。如果需要从中间开始迭代,应该重新创建一个新的迭代器。 六、总结 总的来说,迭代器是一种非常有用的工具,它可以帮助我们更方便地遍历集合中的元素。掌握了迭代器的使用窍门后,咱们就能写出更短小精悍、流畅顺滑、高效无比的代码啦!同时,我们也需要注意迭代器的一些限制,以免出现错误或者异常。希望这篇文章能对你有所帮助!
2023-03-18 12:14:48
303
梦幻星空_t
RocketMQ
...理的消息。 三、如何使用RocketMQ进行消息的延迟投递和定时投递 1. 延迟投递 RocketMQ提供了延时队列的功能,可以实现消息的延迟投递。在发送消息的时候,可以通过设置DelayLevel属性来控制消息的延迟时间。例如: java // 创建一个延迟队列的生产者 ProducerConfig producerConfig = new DefaultMQProducerConfig(); producerConfig.setInstanceName("instance"); DefaultMQProducer producer = new DefaultMQProducer(producerConfig); producer.start(); // 创建一个消息对象,并设置DelayLevel为2 Message msg = new Message(topic, tag, ("hello world").getBytes(), 2); msg.putUserProperty(MessageConst.PROPERTY_DELAY_TIME_LEVEL, "2"); // 发送消息 producer.send(msg); 在这个例子中,我们创建了一个延迟时间为2秒的消息,并通过生产者发送到了RocketMQ。 2. 定时投递 除了延迟投递之外,RocketMQ还提供了定时消息的功能。在发送消息的时候,可以通过设置MessageExt属性来控制消息的投递时间。例如: java // 创建一个定时队列的生产者 ProducerConfig producerConfig = new DefaultMQProducerConfig(); producerConfig.setInstanceName("instance"); DefaultMQProducer producer = new DefaultMQProducer(producerConfig); producer.start(); // 创建一个消息对象,并设置Tag为"mytag" Message msg = new Message(topic, "mytag", ("hello world").getBytes()); // 设置投递时间为2小时后 long timestamp = System.currentTimeMillis() + (2 60 60 1000L); msg.setBornTimestamp(timestamp); // 发送消息 producer.send(msg); 在这个例子中,我们创建了一个在2小时后投递的消息,并通过生产者发送到了RocketMQ。 四、如何实现定时任务的调度和触发机制 在微服务架构中,定时任务的调度和触发是非常常见的需求。RocketMQ提供了消息监听器的功能,可以通过监听特定主题的消息来触发定时任务。具体来说,我们可以创建一个定时任务类,然后通过消息监听器来监听指定主题的消息,当接收到消息的时候,就执行这个定时任务。 下面是一个简单的例子: java // 创建一个定时任务类 public class MyTask implements Runnable { @Override public void run() { // 执行定时任务 System.out.println("Execute my task..."); } } // 创建一个消息监听器 public class MyListener extends AbstractModelBasedRebalanceListener { private MyTask myTask; public MyListener(MyTask myTask) { this.myTask = myTask; } @Override public void messagePullBacked(List msgs, PullResult pullResult) { // 当接收到消息的时候,就执行定时任务 for (MessageExt msg : msgs) { if (msg.getTopic().equals("mytopic")) { myTask.run(); break; } } } } 在这个例子中,我们首先创建了一个定时任务类MyTask,然后创建了一个消息监听器MyListener,当接收到主题为mytopic的消息的时候,就调用MyTask的run方法来执行定时任务。 五、结论 RocketMQ作为一款高性能、高可靠性的消息中间件,为企业级应用提供了一种简单、有效的解决方案。无论是进行消息的延迟投递还是定时投递,还是实现定时任务的调度和触发机制,都可以通过 RocketMQ 来轻松实现。对于开发人员来说,只要把 RocketMQ 的核心原理摸清楚,熟练掌握它的使用方法,就能轻轻松松打造出既稳定又高效的酷炫应用系统。
2023-11-28 14:39:43
112
初心未变-t
ActiveMQ
...。这时,我们就会考虑使用ActiveMQ中的虚拟Topic来实现这一需求。虚拟Topic其实是一种很神奇的Topic模式,就像是个消息大喇叭。想象一下,发布者就像那个拿着喇叭的人,他只需要吼一嗓子(发布一条消息),而订阅者们就像站在广场上听喇叭广播的那些人,无论有多少人,都能同时接收到这条消息。这样一来,虚拟Topic就在发布者和众多订阅者之间巧妙地搭起了一座“一对多”的桥梁,让信息能够迅速、广泛地传播出去。 二、什么是虚拟Topic 在传统的Topic模式中,发布者只能向一个主题发送消息,而所有订阅该主题的消费者都会接收到这条消息。不过,假如我们希望一条消息能够像定点投递那样,只让一部分特定的消费者接收到,而不是一股脑儿扔给所有的消费者,这时候就该虚拟Topic出场帮忙了。 虚拟Topic的工作原理是这样的:当发布者尝试将消息发布到一个不存在的主题时,ActiveMQ会自动为这个主题创建一个虚拟Topic,并将其映射到一个真实存在的Topic上。这样一来,发出去的消息就能妥妥地飞到所有订阅这个真实Topic的消费者手中啦,他们都能接收到这条消息。 三、如何创建虚拟Topic 在ActiveMQ中,我们可以使用Session类的createTopic方法来创建虚拟Topic。下面是一个简单的例子: java Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); Topic virtualTopic = session.createTopic("virtualTopicName"); Producer producer = session.createProducer(virtualTopic); 在这个例子中,我们首先创建了一个Session对象,然后使用这个Session对象的createTopic方法创建了一个名为"virtualTopicName"的虚拟Topic。最后,我们捣鼓出了一个Producer小家伙,它的任务是把消息嗖地一下送到那个虚拟的Topic里头去。 四、如何发送消息到虚拟Topic 要发送消息到虚拟Topic,我们只需要将消息的Destination设置为我们之前创建的虚拟Topic即可。下面是一个简单的例子: java Message message = session.createTextMessage("Hello, World!"); message.setJMSDestination(virtualTopic); producer.send(message); 在这个例子中,我们首先创建了一个包含字符串"Hello, World!"的消息,然后设置了它的Destination为我们的虚拟Topic。最后,我们将这条消息发送出去。 五、总结 通过上述步骤,我们已经成功地创建了一个虚拟Topic,并将一条消息发送到了这个虚拟Topic。要留意的是,这个虚拟Topic可不保证消息会按照顺序到达,因为它实际上是把消息一股脑地丢到一个实际存在的Topic里头去了。如果你需要保证消息的顺序性,那么你需要使用Durable Topic或者Queue。 总的来说,虚拟Topic是一种非常实用的工具,它可以让我们在发布者和订阅者之间创建一对多的关系,从而满足我们的各种需求。希望本文能够帮助你更好地理解和使用ActiveMQ的虚拟Topic功能。
2023-02-22 12:28:12
400
春暖花开-t
Python
...、plotly的基本使用 Plotly是一个交互式的Python绘图库,可以用来创建各种各样的图表,包括散点图、折线图、柱状图等等。Plotly的优势在于它的可视化效果非常好,而且可以制作出很复杂的交互式图表。下面我们就来看一下如何使用plotly来绘制点绘图。 1. 安装plotly 首先,我们需要安装plotly。可以通过pip install plotly来安装。 sql pip install plotly 2. 导入plotly 安装好plotly后,我们就可以开始使用它了。导入plotly的方法很简单,只需要一行代码就可以了。 java import plotly.graph_objs as go 3. 创建数据 接下来,我们需要创建一些数据。这里我们将创建一个包含x坐标和y坐标的列表。 scss x = [1, 2, 3, 4, 5] y = [1, 4, 9, 16, 25] 4. 绘制点绘图 有了数据之后,我们就可以开始绘制点绘图了。绘制点绘图的代码如下所示: go trace = go.Scatter( x=x, y=y, mode='markers', marker=dict(size=12) ) data = [trace] layout = dict(title='Point Plot with plotly', xaxis=dict(title='x'), yaxis=dict(title='y')) fig = go.Figure(data=data, layout=layout) py.offline.iplot(fig, filename='scatter_hover_labels') 以上代码将会创建一个包含五个点的点绘图。在这幅点状图表里,你会发现每一个点都有一个独一无二的“身份证”,更有意思的是,只要你把鼠标轻轻挪到这个点上“搭个桥”,它就会主动告诉你这个点所代表的具体数值。 三、plotly的优点 通过上述的代码示例,相信大家都已经了解了plotly的基本使用方法。那么,plotly有哪些优点呢? 1. 可视化效果好 plotly的可视化效果非常好,无论是线条还是颜色都非常清晰明了。 2. 支持交互式操作 plotly可以制作出很多交互式的图表,用户可以通过鼠标悬停、点击等操作来获取更多的信息。 3. 功能强大 plotly的功能非常强大,不仅可以绘制基本的点绘图,还可以绘制折线图、柱状图、热力图等各种各样的图表。 四、总结 总的来说,如果你需要绘制一些非常基础的点绘图,那么plotly无疑是一个非常好的选择。它的可视化效果好,支持交互式操作,而且功能也非常强大。因此,强烈推荐大家使用plotly来绘制点绘图。当然啦,除了plotly这位大神,Python的世界里还有不少其他的可视化神器,比如说Matplotlib、seaborn这些好哥们儿,都是绘图时的得力助手。不过,每个人的需求不同,所选择的绘图工具也会有所不同。因此,希望大家可以根据自己的需求来选择最适合自己的绘图工具。
2023-07-14 11:34:15
119
落叶归根_t
Scala
...看作一种特殊的值。在Java的世界里,null可是个挺特别的小家伙,它代表着啥都没有,或者说是空荡荡的引用。你可以把它想象成一个空盒子,里面并没有实实在在的对象。但在Scala中,null并不是一种类型,而是 Any 类型的一个实例。这意味着任何类型都可以被赋值为null,例如: java val x: String = null 然而,这样赋值并没有太大的意义,因为在这种情况下,x实际上只是一个 Any 类型的对象,而不是 String 类型的对象。另外,假如你心血来潮,在x上尝试运行String类的方法,程序可不会跟你客气,它会立马给你抛出一个ClassCastException异常,让你知道这样做是不行滴。 因此,Scala引入了一种新的数据类型Option来解决这个问题。Option 是一个可以为空的容器,它可以包含两种值: Some(value) 或者 None。例如: java val y: Option[String] = Some("Hello, world!") val z: Option[String] = None 通过使用Option,我们可以更安全地处理可能出现null值的情况。当你尝试从Option里捞点啥的时候,如果这Option是个空荡荡的None,那你就甭想得到任何东东啦。如果你发现Option里可能藏着个null,别担心,有个好办法能帮咱们避免碰到NullPointerException这个讨厌鬼。那就是使用getOrElse方法,这样一来,即便值是空的,也能确保一切稳妥运行,不会出岔子。 三、如何处理Option 在Scala中,我们可以使用多种方法来处理Option。下面是一些常用的方法: 1. 使用if-else语句 这是最常见的处理Option的方法。如果Option里头有东西,那咱们就干点这个操作;要是没值的话,我们就换个操作来执行。 java val x: Option[Int] = Some(10) val y: Option[Int] = None val result: Int = if (x.isDefined) { x.get 2 } else { -1 } 2. 使用map方法 如果我们想要对Option中的值应用一些操作,那么我们可以使用map方法。map方法会创建一个新的Option,其中包含了原始Option中的值经过操作后的结果。 java val x: Option[Int] = Some(10) val result: Option[Int] = x.map(_ 2) 3. 使用filter方法 如果我们只关心Option中的值是否满足某个条件,那么我们可以使用filter方法。filter方法会创建一个新的Option,其中只包含了原始Option中满足条件的值。 java val x: Option[Int] = Some(10) val result: Option[Int] = x.filter(_ > 5) 四、结论 在Scala中,处理null值是一个非常重要的主题。咱们得摸清楚null和Option这两家伙到底有啥不同,然后学着用Option这个小帮手,更稳妥地对付那些可能冒出null值的状况。用各种各样的小窍门,咱们就能把Option问题玩得溜溜的,这样一来,代码质量噌噌往上涨,读起来也更让人觉得舒坦。 总的来说,Scala提供了一种强大且灵活的方式来处理null值。掌握好Option的正确使用方法,咱们就能写出更结实、更靠谱的代码啦!
2023-11-11 08:18:06
151
青山绿水-t
Flink
...失的情况,此时就需要使用一种方法来保护我们的数据不被永久丢失。这时Flink的Savepoint就派上用场了。本文将详细介绍Flink的Savepoint如何创建和恢复。 1. 创建Savepoint 首先,我们需要了解什么是Savepoint。Savepoint,这东西就好比是Flink在干活儿的时候,给自己拍了个快照。它会把当前正在进行的任务的所有状态,包括那些大到全局状态、小到本地状态的详细信息,还有当时正在跑的数据流图,都给妥妥地保存下来,就像是游戏存档一样,方便以后接着干。这样一来,哪怕任务突然因为某个原因挂了,我们也有办法通过Savepoint这个小救星,瞬间把一切恢复到它停止前的样子,就像啥事都没发生过一样。 接下来,我们来看一下如何创建Savepoint。在Flink的源代码中,可以通过以下方式创建Savepoint: java ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); env.enableCheckpointing(50); // 设置每50个元素触发一次checkpoint // 其他代码... Savepoint savepoint = env.createSavepoint("hdfs://path/to/savepoint"); 上述代码中的enableCheckpointing()方法用于设置每次触发checkpoint的时间间隔。在这段代码中,我们设置了每50个元素触发一次checkpoint。同时呢,我们也动手用了一个叫createSavepoint()的神奇小方法,生成了一个Savepoint宝贝。这个宝贝可厉害了,它肚子里装着所有我们万一需要恢复的重要状态信息。 2. 恢复Savepoint 创建好Savepoint后,我们就可以通过它来恢复任务的状态。在Flink的源代码中,可以通过以下方式恢复Savepoint: java ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); // 加载Savepoint Savepoint restoreSavepoint = Savepoint.load("hdfs://path/to/savepoint"); // 将恢复后的状态应用到任务中 env.setStateBackend(new RocksDBStateBackend("hdfs://path/to/state/backend")); // 设置state backend env.restore(restoreSavepoint); 上述代码中的load()方法用于加载Savepoint。在这段代码中,我们通过load()方法加载了之前创建的Savepoint。同时,我们也通过setStateBackend()方法设置了state backend的位置。最后,我们通过restore()方法将恢复后的状态应用到了任务中。 3. 注意事项 虽然Savepoint是一个非常有用的工具,但是在使用它时也有一些需要注意的地方。例如,如果任务在恢复时发生错误,那么将会导致整个应用程序崩溃。所以在应对恢复任务这个问题上,咱们得保证应用程序能够妥妥地应对这种状况,一点儿差错都不能出。 此外,Savepoint本身也会占用一定的存储空间。所以,要是你的任务碰上要处理海量数据的情况,那么很有必要隔段时间就清理一下Savepoint。 总的来说,Flink的Savepoint是一个非常有用的工具,它可以帮助我们保护数据并快速恢复任务的状态。不过,我们在使用这玩意儿的时候,也得留心一些注意事项,这样才能保证这个应用程序能够稳稳当当、靠得住地运行。
2023-08-08 16:50:09
537
初心未变-t
Cassandra
...数据安全性和可用性的方法。在Cassandra这个家伙里头,咱们可以通过调整各种复制策略,轻松实现数据的备份和冗余,就像给重要文件多备几份一样。在这其中,SimpleStrategy复制策略可是最基础、最入门的一款策略了,今天咱就把它的工作原理和使用方法掰开揉碎,好好给你说道说道。 二、SimpleStrategy复制策略概述 1.1 SimpleStrategy定义 SimpleStrategy是一种简单且易于使用的复制策略。它通过一个预设的节点数量来决定副本的数量。也就是说,对于每一张表,SimpleStrategy会创建出与预设节点数量相同的副本。例如,如果我们预设了5个节点,那么这张表就会有5份副本。 1.2 SimpleStrategy优点 SimpleStrategy最大的优点就是其简洁性和易用性。我们只需要设置好预设的节点数量,就可以自动完成数据复制的工作。另外,要知道SimpleStrategy这个策略是跟节点数量密切相关的,所以我们可以根据实际情况随时调整节点的数量,就像是拧紧或放松系统的“旋钮”,这样一来,就能轻松优化我们系统的性能和可用性了。 三、SimpleStrategy复制策略实现 2.1 简单实例 以下是一个简单的使用SimpleStrategy的例子: java Keyspace keyspace = Keyspace.open("mykeyspace"); ColumnFamilyStore cfs = keyspace.getColumnFamilyStore("mytable"); // 设置SimpleStrategy cfs.setReplicationStrategy(new SimpleStrategy(3)); 在这个例子中,我们首先打开了一个名为"mykeyspace"的键空间,并从中获取到了名为"mytable"的列族存储。接着,我们动手调用了setReplicationStrategy这个小功能,给它设定了一个“SimpleStrategy”复制策略。想象一下,这就像是告诉系统我们要用最简单直接的方式进行数据备份。而且,我们还贴心地给它传递了一个数字参数——3,这意味着我们需要整整三个副本来保障数据的安全性。 2.2 复杂实例 在实际应用中,我们可能需要更复杂的配置。比如说,就像我们在日常工作中那样,有时候会根据不同的数据类型或者业务的具体需求,灵活地选择设立不同数量的备份副本。就像是,如果手头的数据类型是个大胖子,我们可能就需要多准备几把椅子(也就是备份)来撑住场面;反之,如果业务需求比较轻便,那我们就可以适当减少备份的数量,精打细算嘛!这时,我们可以通过继承自AbstractReplicationStrategy类的自定义复制策略来实现。 四、SimpleStrategy复制策略的应用场景 3.1 数据安全性 由于SimpleStrategy可以创建多个副本,因此它可以大大提高数据的安全性。即使某个节点出现故障,我们也可以从其他节点获取到相同的数据。 3.2 数据可用性 除了提高数据的安全性之外,SimpleStrategy还可以提高数据的可用性。你知道吗,SimpleStrategy这家伙挺机智的,它会把数据制作多个备份副本。这样一来,哪怕某个节点突然罢工了,我们也能从其他活蹦乱跳的节点那儿轻松拿到相同的数据,确保服务稳稳当当地运行下去,一点儿都不耽误事儿。 五、总结 总的来说,SimpleStrategy复制策略是一种非常实用的复制策略。这东西操作起来超简单,而且相当机智灵活,能够根据实际情况随时调整复制的数量,这样一来,既能把系统的性能优化到最佳状态,又能大大提高数据的安全性和可用性,简直是一举两得的神器。
2023-08-01 19:46:50
519
心灵驿站-t
Kylin
...世界。例如: java CubeBuilder cubeBuilder = CubeBuilder.create("sales_cube"); cubeBuilder.addMeasure("revenue", MeasureType.DECIMAL); cubeBuilder.addDimension("product", Product.class); cubeBuilder.addDimension("date", Date.class); cubeBuilder.build(); 三、面向业务场景的设计 需求驱动 2. 需求分析 在开始设计前,我们需要深入了解业务需求。例如,销售部门可能关心季度销售额,而市场部门可能更关注产品线的表现。这决定了我们构建的数据立方体应该如何划分维度。 3. 设计数据模型 基于需求,我们可以设计如下的数据模型: java // 创建季度维度 cubeBuilder.addRollup("quarter", "year", "month"); // 创建产品线维度 cubeBuilder.addDimension("product_family", new ProductFamilyMapper(Product.class)); 四、优化与扩展 灵活性与性能 4. 索引与聚合 Kylin允许我们为重要的维度和事实表创建索引,提升查询性能。例如,对于频繁过滤的日期维度: java cubeBuilder.addIndex("date_idx", "date"); 5. 动态加载与缓存 为了适应业务变化,我们可以选择动态加载部分数据,或者利用缓存加速查询。例如,新产品上线初期,只加载最近一年的数据: java cubeBuilder.setSnapshotDate(Date.now().minusYears(1)); 五、结论与展望 5.1 业务场景的重要性 数据模型设计并非孤立的过程,而是需要紧密贴合业务场景。只有深入了解业务,才能设计出真正有价值的数据模型,帮助企业在数据海洋中精准导航。 5.2 Kylin的未来 随着大数据和人工智能的发展,Kylin也在不断进化,提供更智能的数据分析能力。未来,我们期待看到更多创新的数据模型设计,助力企业实现数据驱动的决策。 通过以上对Kylin数据模型设计的探讨,我们可以看到,无论是从基础的立方体构建,还是到高级的索引优化,都是为了更好地服务于实际的业务场景。设计数据模型就像玩个永不停歇的拼图游戏,关键是要时刻保持对业务那敏锐的直觉和深入的洞见,每一步都得精准对接。
2024-06-10 11:14:56
231
青山绿水
Sqoop
...行导入导出、自动生成Java类、分区导入等特性) 2.1 并行导入示例 Sqoop利用MapReduce模型实现并行数据导入,大幅提高数据迁移效率。 shell sqoop import --num-mappers 4 ... 此命令设置4个map任务并行执行数据导入操作。 3. Sqoop的基本使用 (这里详细说明Sqoop的各种命令,包括import、export、create-hive-table等,并给出实例) 3.1 Sqoop Import 实例详解 shell 示例:将Oracle表同步至Hive表 sqoop import \ --connect jdbc:oracle:thin:@//hostname:port/service_name \ --username username \ --password password \ --table source_table \ --hive-import \ --hive-table target_table 这段代码演示了如何将Oracle数据库中的source_table直接导入到Hive的target_table。 4. Sqoop高级应用与实践问题探讨 (这部分深入探讨Sqoop的一些高级用法,如增量导入、容错机制、自定义连接器等,并通过具体案例阐述) 4.1 增量导入策略 shell 使用lastmodified或incremental方式实现增量导入 sqoop import \ --connect ... \ --table source_table \ --check-column id \ --incremental lastmodified \ --last-value 这段代码展示了如何根据最后一次导入的id值进行增量导入。 5. Sqoop在实际业务场景中的应用与挑战 (在这部分,我们可以探讨Sqoop在真实业务环境下的应用场景,以及可能遇到的问题及其解决方案) 以上仅为大纲及部分内容展示,实际上每部分都需要进一步拓展、深化和情感化的表述,使读者能更好地理解Sqoop的工作机制,掌握其使用方法,并能在实际工作中灵活运用。为了达到1000字以上的要求,每个章节都需要充实详尽的解释、具体的思考过程、理解难点解析以及更多的代码实例和应用场景介绍。
2023-02-17 18:50:30
130
雪域高原
Kotlin
...以其简洁、安全以及对Java兼容性的优势,赢得了众多开发者的心。哎呀,你知道吗?在Kotlin这个编程世界里,有个特别棒的功能叫做lateinit,它就像是给我们的代码加上了一个神奇的魔法。我们可以在类里先声明一个还没准备好值的属性,然后,就像变魔术一样,在后面的代码里再给它补上合适的值。这可是大大提高了代码的灵活性和可维护性!本文将深入探讨lateinit属性的使用方法、常见错误及其解决方案,帮助你更好地理解和利用这一特性。 1. 什么是Lateinit Property? lateinit是一个预定义的关键字,在Kotlin中用于声明一个属性,该属性可以在类外部被初始化,但必须在使用之前完成初始化。这意味着当你声明一个lateinit属性时,你承诺在代码执行过程中会调用其对应的初始化方法。哎呀,这个特性啊,它主要用在那些要到执行的时候才知道具体数值的玩意儿上头,或者在编程那会儿还不清楚确切数值咋整的情况。就像是你准备做饭,但到底加多少盐,得尝了味道再定,对吧?或者是你去超市买东西,但预算还没算好,得看商品价格了再做决定。这特性就跟那个差不多,灵活应变,随情况调整。 2. 示例代码 如何使用Lateinit Property? 首先,我们来看一个简单的例子,演示如何在类中声明并使用lateinit属性: kotlin class DataProcessor { lateinit var data: String fun loadData() { // 假设在这里从网络或其他源加载数据 data = "Processed Data" } } fun main() { val processor = DataProcessor() processor.loadData() println(processor.data) // 输出:Processed Data } 在这个例子中,data属性被声明为lateinit。这意味着在main函数中创建DataProcessor实例后,我们不能立即访问data属性,而是必须先调用loadData方法来初始化它。一旦初始化,就可以安全地访问和使用data属性了。 3. 使用Lateinit Property的注意事项 虽然lateinit属性提供了很大的灵活性,但在使用时也需要注意几个关键点: - 必须在使用前初始化:这是最基础的要求。如果你尝试在未初始化的状态下访问或使用lateinit属性,编译器会抛出IllegalStateException异常。 - 不可提前初始化:一旦lateinit属性被初始化,就不能再次修改其值。尝试这样做会导致运行时错误。 - 性能考量:虽然lateinit属性可以延迟初始化,但它可能会增加应用的启动时间和内存消耗,特别是在大量对象实例化时。 4. 遇到“Lateinit Property Not Initialized Before Use”错误怎么办? 当遇到这个错误时,通常意味着你试图访问或使用了一个未初始化的lateinit属性。解决这个问题的方法通常是: - 检查初始化逻辑:确保在使用属性之前,确实调用了对应的初始化方法或进行了必要的操作。 - 代码重构:如果可能,将属性的初始化逻辑移至更合适的位置,比如构造函数、特定方法或事件处理程序中。 - 避免不必要的延迟初始化:考虑是否真的需要延迟初始化,有时候提前初始化可能更为合理和高效。 5. 实践中的应用案例 在实际项目中,lateinit属性特别适用于依赖于用户输入、网络请求或文件读取等不确定因素的数据加载场景。例如,在构建一个基于用户选择的配置文件加载器时: kotlin class ConfigLoader { lateinit var config: Map fun loadConfig() { // 假设这里通过网络或文件系统加载配置 config = loadFromDisk() } } fun main() { val loader = ConfigLoader() loader.loadConfig() println(loader.config) // 此时config已初始化 } 在这个例子中,config属性的加载逻辑被封装在loadConfig方法中,确保在使用config之前,其已经被正确初始化。 结论 lateinit属性是Kotlin中一个强大而灵活的特性,它允许你推迟属性的初始化直到运行时。然而,正确使用这一特性需要谨慎考虑其潜在的性能影响和错误情况。通过理解其工作原理和最佳实践,你可以有效地利用lateinit属性来增强你的Kotlin代码,使其更加健壮和易于维护。
2024-08-23 15:40:12
94
幽谷听泉
Maven
...论对象。Maven是Java世界的构建工具,而npm则是Node.js项目的包管理和构建工具。这两家伙虽然守护的生态圈不一样,但都是管理项目依赖和自动构建流程的高手,干活儿麻利得很!更重要的是,它们都在跨平台部署方面有着出色的表现。用这两种工具的优点结合起来看,我们就更能掌握怎么在各种平台上好好管个项目了。这么说吧,就像是把两个厉害的工具合并成一个超级工具,让你干活儿更顺手! 2. Maven入门 构建Java世界的桥梁 Maven是一个强大的构建工具,它通过一个名为pom.xml的文件来管理项目的配置和依赖关系。这个文件就像是Java项目的“大脑”,控制着整个构建过程。让我们先来看看一个简单的pom.xml示例: xml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> 4.0.0 com.example my-app 1.0-SNAPSHOT junit junit 4.12 test org.apache.maven.plugins maven-compiler-plugin 3.8.1 1.8 1.8 在这个例子中,我们定义了一个简单的Java项目,它依赖于JUnit,并且指定了编译器版本为Java 8。这样一来,不管是你在自己的电脑上搞开发,还是把东西搬到服务器上去跑,我们都能确保整个项目稳稳当当,每次都能得到一样的结果。 3. npm之旅 Node.js的魔法盒 与Maven类似,npm(Node Package Manager)是Node.js生态系统中的一个核心组件,它负责管理JavaScript库和模块。npm通过package.json文件来记录项目的依赖和配置信息。下面是一个基本的package.json示例: json { "name": "my-app", "version": "1.0.0", "description": "A simple Node.js application", "main": "index.js", "scripts": { "start": "node index.js" }, "author": "Your Name", "license": "ISC", "dependencies": { "express": "^4.17.1" } } 在这个例子中,我们创建了一个使用Express框架的简单Node.js应用。用npm,我们就能超级方便地装和管这些依赖,让项目的维护变得简单多了。 4. 跨平台部署的挑战与解决方案 尽管Maven和npm各自在其领域内表现出色,但在跨平台部署时,我们仍然会遇到一些挑战。例如,不同操作系统之间的差异可能会导致构建失败。为了应对这些问题,我们可以采取以下几种策略: - 标准化构建环境:确保所有开发和生产环境都使用相同的工具版本和配置。 - 容器化技术:利用Docker等容器技术来封装整个应用及其依赖,从而实现真正的跨平台一致性。 - 持续集成/持续部署(CI/CD):通过Jenkins、GitLab CI等工具实现自动化的构建和部署流程,减少人为错误。 5. 结语 拥抱变化,享受技术带来的乐趣 在这次旅程中,我们不仅了解了Maven和npm的基本概念和使用方法,还探讨了如何利用它们进行跨平台部署。技术这东西啊,变化莫测,但只要你保持好奇心,愿意不断学习,就能一步步往前走,还能从中找到不少乐子呢!不管是搞Java的小伙伴还是喜欢Node.js的朋友,都能用上这些给力的工具,让你的项目管理技能更上一层楼!希望这篇分享能够激发你对技术的好奇心,让我们一起在编程的海洋中畅游吧! --- 通过这样的结构和内容安排,我们不仅介绍了Maven和npm的基本知识,还穿插了个人思考和实际操作的例子,力求让文章更加生动有趣。希望这样的方式能让你感受到技术背后的温度和乐趣!
2024-12-07 16:20:37
30
青春印记
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
ncurses-based tools (例如:top, htop)
- 监控系统资源如CPU、内存等。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"