前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Docker容器化SpringBoot应...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Docker
一、引言 Docker是一种轻量级的容器化平台,它允许开发者将应用程序及其依赖打包在一个可移植的容器中,使得开发、测试和部署变得更加容易和高效。不过,当你在用Docker捣鼓SpringBoot应用部署的时候,经常会碰到些小插曲。就比如说,那个Docker里的Nginx老兄,有时候会闹脾气,没法同时给多个SpringBoot应用做反向代理服务,真是让人头疼的问题啊。本文将会深入探讨这个问题,并提供解决方案。 二、Docker Nginx反向代理SpringBoot 在Docker中,我们通常使用Nginx作为反向代理服务器,以便能够对外暴露我们的SpringBoot应用。以下是一个简单的示例: 1. 创建一个Docker镜像,该镜像包含Nginx和SpringBoot应用。 bash FROM alpine:latest RUN apk add --no-cache nginx openssh-client && \ rm -rf /var/cache/apk/ COPY nginx.conf /etc/nginx/nginx.conf CMD ["nginx", "-g", "daemon off;"] 2. 在Dockerfile中,我们可以自定义Nginx配置文件的内容。以下是一个简单的示例: bash server { listen 80; server_name example.com; location / { proxy_pass http://localhost:8080; proxy_set_header Host $host; proxy_set_header X-Real-IP $remote_addr; } } 在这个示例中,我们将SpringBoot应用暴露在端口8080上,并通过Nginx将其映射到端口80上。 三、问题的出现与原因分析 然而,在实际的应用场景中,当我们试图在Docker Nginx中反向代理多个SpringBoot应用时,却可能遇到问题。具体来说,当我们在Nginx配置文件中指定了多个location块,每个block对应一个SpringBoot应用时,却发现只有第一个location块能够正常工作,而其他location块则无法访问。这是为什么呢? 经过分析,我们认为这个问题的主要原因是,Nginx在处理请求时,只会选择匹配的第一个location块来响应请求。换句话说,假如Nginx里头有多个location区域,甭管客户端用什么URL发送请求,Nginx都会优先挑中第一个对得上的location区域来处理这个请求。 四、解决方案 那么,我们该如何解决这个问题呢?其实,只需要稍作改动,就可以让Nginx能够正确地处理所有的location块。简单来说,我们可以在每个location区域前头,加一个“万能”location区域,它的作用就是抓住所有其他location没抓到的请求。就像是在门口安排一个接待员,专门接待那些其他部门都没接走的客人一样。以下是具体的示例: bash server { listen 80; server_name example.com; location /app1 { proxy_pass http://localhost:8081; proxy_set_header Host $host; proxy_set_header X-Real-IP $remote_addr; } location ~ ^/(?!app1)(.)$ { proxy_pass http://localhost:8082; proxy_set_header Host $host; proxy_set_header X-Real-IP $remote_addr; } } 在这个示例中,我们首先创建了一个匹配所有未被其他location块匹配的请求的location块,然后在其内部指定了第二个SpringBoot应用的proxy_pass设置。这样,无论客户端发送的请求URL是什么,Nginx都能够正确地处理它。 五、总结 总的来说,虽然Docker Nginx反向代理多个SpringBoot应用可能会遇到一些问题,但只要我们了解了问题的原因,并采取相应的措施,就能够有效地解决这些问题。所以,对广大的开发者盆友们来说,掌握Docker和Nginx这两门“武功秘籍”可是灰常重要的!
2024-01-24 15:58:35
617
柳暗花明又一村_t
SpringBoot
...A中使用Maven对SpringBoot项目进行打包之后,我们进一步了解这一过程的相关技术和实践。近期,随着SpringBoot 2.5版本的发布,其在构建和打包方面引入了一些新特性与优化。例如,Spring Boot Maven插件现在支持自定义 layered JARs,这有助于满足更严格的容器需求,并允许在容器环境中解压层叠jar以节省空间和提高启动速度。 此外,对于云原生应用部署场景,Spring Boot也增强了对容器化工具Docker的支持,用户可以通过Maven或Gradle构建直接生成Docker镜像,简化了将SpringBoot应用部署到Kubernetes或其他容器环境的过程。例如,在pom.xml文件中配置spring-boot-maven-plugin的dockerBuild目标,可以自动化地完成从打包到构建Docker镜像的全流程。 同时,针对依赖管理,Spring Boot团队持续改进了依赖解析策略,确保开发者能更好地控制哪些依赖应包含在最终构建产物中,从而避免运行时依赖缺失的问题。为此,建议开发者密切关注Spring Boot官方文档及更新日志,以便及时掌握最新打包技术动态,提升开发效率并确保应用部署稳定可靠。
2023-02-09 19:33:58
67
飞鸟与鱼_
Docker
...因为需要在多个环境中部署你的应用而花费大量时间?如果答案是肯定的,那么我想告诉你一个好消息:Docker可以解决这些问题。 Docker是一个开源的应用容器引擎,它允许开发者打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化。让我们一起开始学习如何安装和使用Docker吧! 二、Docker的基本概念 在我们深入学习Docker之前,我们需要先理解一些基本的概念。首先,Docker镜像可不得了,它超级轻巧、灵活便携,而且是个全能自给自足的小型运行环境容器。这些镜像,你可以随意选择从仓库直接下载,或者更 DIY 一点,通过 Dockerfile 自己动手打造! 接下来,我们来了解下Dockerfile是什么。Dockerfile,你可把它想象成一本菜谱,里面密密麻麻记录了一连串神奇的指令。这些指令啊,就像是做一道道工序,一步步告诉你如何从零开始,精心打造出一个完整的Docker镜像。当你准备动手构建一个新的Docker镜像时,完全可以告诉Docker那个藏着构建秘籍的Dockerfile在哪儿,然后Docker就会超级听话地根据这个文件一步步自动搭建出你的新镜像来。 最后,我们要知道Docker容器。Docker容器是在宿主机(主机)上运行的独立的进程空间。每个容器都有自己的文件系统,网络,端口映射等特性。 三、Docker的安装步骤 1. 更新操作系统的软件源列表 在Ubuntu上,可以通过以下命令更新软件源列表: bash sudo apt-get update 2. 安装Docker Ubuntu用户可以在终端中输入以下命令安装Docker: bash sudo apt-get install docker-ce docker-ce-cli containerd.io 3. 启动Docker服务并设置开机启动 在Ubuntu上,可以执行以下命令启动Docker服务,并设置为开机启动: bash sudo systemctl start docker sudo systemctl enable docker 4. 验证Docker的安装 你可以使用以下命令验证Docker的安装: bash docker run hello-world 5. 设置Docker加速器 如果你在中国,为了提高Docker镜像下载速度,可以设置Docker加速器。首先,需要在Docker官网注册账号,然后复制加速器的地址。在终端中,输入以下命令添加加速器: bash docker pull --registry-username= --registry-password= registry.cn-shanghai.aliyuncs.com/: 将、、和替换为你自己的信息。 四、使用Docker的基本命令 现在,我们已经完成了Docker的安装,接下来让我们一起学习一些基本的Docker命令吧! 1. 查看Docker版本 bash docker version 2. 显示正在运行的容器 bash docker ps 3. 列出所有的镜像 bash docker images 4. 创建一个新的Docker镜像 bash docker build -t . 5. 运行一个Docker容器 bash docker run -it 6. 查看所有容器的日志 bash docker logs 五、总结 总的来说,Docker是一个非常强大的工具,可以帮助我们更高效地管理我们的应用程序。通过本篇文章的学习,我相信你对Docker已经有了初步的理解。希望你以后不论是上班摸鱼,还是下班享受生活,都能更溜地用上Docker这个神器,让效率嗖嗖往上升。
2023-02-21 20:40:21
478
星河万里-t
Docker
Docker , Docker是一种开源的应用容器引擎,它通过将应用程序及其依赖项打包在可移植的容器中,实现了软件开发、打包和部署的一致性环境。在本文中,Docker作为一种容器化平台,使得用户能够在单一主机上运行多个相互隔离的应用程序,并能够方便地管理和优化服务器资源。 容器 , 在Docker环境下,容器是一种轻量级的虚拟化技术实现,每个容器包含一个应用程序及其所有依赖(如库、配置文件等),并在主机操作系统上以隔离的方式运行。容器与宿主机共享内核,但拥有独立的用户空间,从而实现高效、快速且资源占用少的应用部署和运行环境。 Docker run命令 , docker run是Docker CLI(命令行界面)中的一个核心命令,用于创建并启动一个新的Docker容器。当执行该命令时,用户可以指定容器使用的镜像、容器运行时的配置选项以及命名容器等信息。例如,在文中提到的docker run --name my-container docker-image命令,就是用来基于特定的docker-image创建并启动一个名为my-container的新容器。
2023-07-24 13:07:20
782
软件工程师
Docker
Docker 是一款容器技术,可将应用及其附属程序封装在一个容器中,使其可以容易地在不同的系统和环境下运行。而迅雷是一款流行的获取客户端,如果您想在 Docker 中运行迅雷,必须先部署 Docker 和迅雷。下面是Docker怎么部署迅雷的详细步骤。 步骤一:部署 Docker 在开始部署迅雷之前,您必须在您的系统中部署 Docker。 yum install docker-ce 以上命令在CentOS 7上部署 Docker。在 Ubuntu 18.04 上部署 Docker,请执行以下指令: apt install docker-ce 步骤二:获取 迅雷 Docker 镜像 获取迅雷 Docker 镜像,您必须在命令行中执行以下指令: docker pull liumiaocn/thunder-linux 步骤三:开启 迅雷 Docker 容器 在获取完成之后,您必须开启 Docker 容器。请执行以下指令: docker run --name thunder -d -v /tmp/.X11-unix:/tmp/.X11-unix -v ${HOME}/Downloads:/root/Downloads -e DISPLAY=$DISPLAY liumiaocn/thunder-linux:latest thunder 以上命令将新建名为“ thunder”的 Docker 容器,并将它连接到 X11 服务器以显示应用窗口。容器将您的获取存储在本地计算机的 ~/Downloads 目录中。 步骤四:运行 迅雷 现在,您可以通过执行以下指令来开启 迅雷: docker exec -it thunder thunder 既然您已经进入了容器,现在就可以运行迅雷。完成此操作后,您可以通过执行以下指令来离开容器: exit
2023-01-28 13:49:08
526
程序媛
Docker
Docker技艺是一种打包技艺,可以将应用及其依赖包打包在一个独立的容器中,并在不同的OS上启动。Docker使用的是OS级别的模拟,每个容器都是一个独立的OS实例化。 在Docker中,一个容器可以由一个或多个映像构成。Docker映像是模板,用于创建容器,类似于虚拟机中的映像文件。Docker映像包括了启动应用所需的一切,包括OS、应用及其依赖包。 启动Docker容器时,可以通过选项设置容器的名称、所使用的映像、需要绑定的接口等。使用Docker命令可以检查容器状况、记录等,例如: docker ps -a docker logs [container_name] 通过Dockerfile可以设定容器的构建过程。Dockerfile是一个文本文件,其中包括了构建Docker映像的环节,例如部署软件包、设置环境参数等。使用docker build命令可以根据Dockerfile构建映像。 FROM ubuntu:latest RUN apt-get update && apt-get install -y nginx EXPOSE 80/tcp CMD ["nginx", "-g", "daemon off;"] Docker还支持Docker Compose工具,用于设定和启动多个Docker容器。通过编写docker-compose.yml文件可以创建和管理多个Docker容器,这些容器可以通过设定的网络和数据卷进行交互。 version: "3.9" services: web: build: . ports: - "80:80" db: image: postgres:latest environment: POSTGRES_USER: example_user POSTGRES_PASSWORD: example_password 总之,Docker技艺对于应用的开发、测试和部署都有很大的帮助。通过打包的方式,可以使得应用更加可移植、可扩展,并能够快速地部署和升级。
2024-01-21 17:25:00
424
电脑达人
Docker
如何部署WGCLOUD的agent? 1. 引言 嘿,各位小伙伴们!今天我们要聊的是如何在Docker上部署WGCLOUD的agent。好多小伙伴可能对这个概念还摸不着头脑,别急,我来带你们一步一步搞懂然后搞定它。装个监控工具(咱们叫它agent)可能听着挺麻烦,但实际上它就是个帮手,能让我们更轻松地照顾好服务器。废话不多说,让我们开始吧! 2. Docker基础 首先,我们需要确保你已经安装了Docker,并且对它有一定的了解。如果你是第一次用Docker,可以把它想象成一个轻量级的“虚拟房间”,在这个房间里,你可以跑你的应用,完全不用操心那些烦人的环境配置问题。就像你搬进一个新的公寓,不需要重新装修或买新家具,直接就可以住进去一样方便。 bash 检查Docker是否已安装 docker --version 安装Docker(以Ubuntu为例) sudo apt-get update sudo apt-get install docker.io 3. 获取WGCLOUD的agent镜像 接下来,我们需要获取WGCLOUD的agent镜像。这可以通过Docker Hub来完成。Docker Hub就像是一个大超市,里面摆满了各种Docker镜像,你想找啥都有,真是太方便了! bash 拉取WGCLOUD的agent镜像 docker pull wgc/wgcloud-agent:latest 4. 创建Docker容器 现在我们已经有了镜像,下一步就是创建一个Docker容器来运行这个agent。我们可以使用docker run命令来完成这个操作。在这过程中,你可能得设定一些东西,比如说容器的名称啊,端口映射之类的。 bash 创建并启动Docker容器 docker run -d --name wgcloud-agent \ -p 8080:8080 \ -v /path/to/config:/config \ wgc/wgcloud-agent:latest 这里,-d表示后台运行,--name用来指定容器的名字,-p用于映射端口,-v则用于挂载卷,将宿主机上的某个目录挂载到容器内的某个目录。/path/to/config是你本地的配置文件路径,你需要根据实际情况修改。 5. 配置WGCLOUD的agent 配置文件是WGCLOUD agent运行的关键,它包含了agent的一些基本设置,如服务器地址、认证信息等。我们需要将这些信息正确地配置到文件中。 yaml 示例配置文件 server: url: "http://your-server-address" auth_token: "your-auth-token" 将上述内容保存为config.yaml文件,并按照上面的步骤挂载到容器内。 6. 启动与验证 一切准备就绪后,我们就可以启动容器了。启动后,你可以通过访问http://localhost:8080来验证agent是否正常工作。如果一切顺利,你应该能看到一些监控数据。 bash 查看容器日志 docker logs wgcloud-agent 如果日志中没有错误信息,恭喜你,你的agent已经成功部署并运行了! 7. 总结 好了,到这里我们的教程就结束了。跟着这个教程,你不仅搞定了在Docker上部署WGCLOUD代理的事儿,还顺带学会了几个玩转Docker的小技巧。如果你有任何疑问或者遇到任何问题,欢迎随时联系我。我们一起学习,一起进步! --- 希望这篇教程对你有所帮助,如果你觉得这篇文章有用,不妨分享给更多的人。最后,记得给我点个赞哦!
2025-03-09 16:19:42
87
青春印记_
Docker
Docker日志等级输出:深入理解与实战查看最后100行 一、Docker日志概览 在我们日常的开发运维工作中,Docker作为容器化技术的领军者,极大地简化了应用部署和管理的过程。而Docker容器产生的日志,则是我们洞察程序运行状态、排查问题的重要依据。这篇东西,咱们要聊的就是怎么让Docker日志等级输出变得灵活可控,再就是怎么轻轻松松看透最后那100行日志的高效秘籍。 二、Docker日志级别设置 在Docker中,日志级别的调整通常是在容器启动时通过--log-driver和--log-opt参数指定。比如,我们可以设定日志级别为info,以便只输出信息级别及以上的日志: bash docker run -it --log-driver=json-file --log-opt max-size=10m --log-opt max-file=3 --log-opt labels=info your-image-name 上述命令设置了日志驱动为json-file(这是Docker默认的日志驱动),同时限制了单个日志文件最大10M,最多保存3个文件,并且只记录info及以上级别的日志。 三、查看Docker容器日志的几种方式 1. 使用docker logs命令 Docker提供了一个内置命令docker logs来查看容器的日志,默认情况下,它会显示容器的所有输出。 bash docker logs -f --tail 100 your-container-id-or-name 上述命令中的-f表示实时(follow)输出日志,--tail 100则表示仅显示最后100行日志内容。这就是咱们今天讨论主题的重点操作环节,说白了,就是用来快速瞅一眼某个容器最近都干了啥。 2. 结合journalctl查看systemd驱动的日志 若你配置了Docker使用journald日志驱动,可以借助journalctl工具查看: bash journalctl -u docker.service --since "1 hour ago" _COMM=docker 这里并没有直接实现查看容器最后100行日志,但你可以根据实际需要调整journalctl的查询条件以达到类似效果。 四、深入思考 为什么我们需要查看日志最后100行? 当我们面对复杂的系统环境或突发的问题时,快速定位到问题发生的时间窗口至关重要。瞧瞧Docker容器日志最后的100条信息,就像是翻看最近发生的故事一样,能让我们闪电般地抓住最新的动态,更快地寻找到解决问题的关键线索。这就好比侦探破案,总是先从最新的线索入手,逐步揭开谜团。 五、实践探索 自定义日志输出格式与存储 除了基础的日志查看功能外,Docker还支持丰富的自定义日志处理选项。例如,我们可以将日志发送至syslog服务器,或者对接第三方日志服务如Logstash等。对于资深用户来说,这种灵活性简直就是个宝藏,它意味着无限多的可能性。你可以根据自家业务的具体需求,随心所欲地打造一套最适合自己的日志管理系统,就像私人订制一般,让一切都变得恰到好处。 总结来说,理解和熟练掌握Docker日志管理,尤其是如何便捷地查看日志最后100行,是每个Docker使用者必备技能之一。经过不断动手尝试和摸爬滚打,我们定能把Docker这玩意儿玩得溜起来,让它在咱们的开发运维工作中大显身手,发挥出更大的价值。下次当你面对茫茫日志海洋时,希望这篇指南能助你快速锁定目标,犹如海上的灯塔照亮前行的方向。
2024-01-02 22:55:08
507
青春印记
转载文章
...删除相应内容。 随着容器技术越来越火热,各种大会上标杆企业分享容器化收益,带动其他还未实施容器的企业也在考虑实施容器化。不过真要在自己企业实践容器的时候,会认识到容器化不是一个简单工程,甚至会有一种茫然不知从何入手的感觉。 本文总结了通用的企业容器化实施线路图,主要针对企业有存量系统改造为容器,或者部分新开发的系统使用容器技术的场景。不包含企业系统从0开始全新构建的场景,这种场景相对简单。 容器实践路线图 企业着手实践容器的路线,建议从3个维度评估,然后根据评估结果落地实施。3个评估维度为:商业目标,技术选型,团队配合。 商业目标是重中之重,需要回答为何要容器化,这个也是牵引团队在容器实践路上不断前行的动力,是遇到问题是解决问题的方向指引,最重要的是让决策者认同商业目标,并能了解到支持商业目标的技术原理,上下目标对齐才好办事。 商业目标确定之后,需要确定容器相关的技术选型,容器是一种轻量化的虚拟化技术,与传统虚拟机比较有优点也有缺点,要找出这些差异点识别出对基础设施与应用的影响,提前识别风险并采取应对措施。 技术选型明确之后,在公司或部门内部推广与评审,让开发人员、架构师、测试人员、运维人员相关人员与团队理解与认同方案,听取他们意见,他们是直接使用容器的客户,不要让他们有抱怨。 最后是落地策略,一般是选取一些辅助业务先试点,在实践过程中不断总结经验。 商业目标 容器技术是以应用为中心的轻量级虚拟化技术,而传统的Xen与KVM是以资源为中心的虚拟化技术,这是两者的本质差异。以应用为中心是容器技术演进的指导原则,正是在这个原则指导下,容器技术相对于传统虚拟化有几个特点:打包既部署、镜像分层、应用资源调度。 打包即部署:打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 镜像分层:容器镜像包是分层结构,同一个主机上的镜像层是可以在多个容器之间共享的,这个机制可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 应用资源调度:资源(计算/存储/网络)都是以应用为中心的,中心体现在资源分配是按照应用粒度分配资源、资源随应用迁移。 基于上述容器技术特点,可以推导出容器技术的3大使用场景:CI/CD、提升资源利用率、弹性伸缩。这3个使用场景自然推导出通用的商业层面收益:CI/CD提升研发效率、提升资源利用率降低成本、按需弹性伸缩在体验与成本之间达成平衡。 当然,除了商业目标之外,可能还有其他一些考虑因素,如基于容器技术实现计算任务调度平台、保持团队技术先进性等。 CI/CD提升研发效率 为什么容器技术适合CI/CD CI/CD是DevOps的关键组成部分,DevOps是一套软件工程的流程,用于持续提升软件开发效率与软件交付质量。DevOps流程来源于制造业的精益生产理念,在这个领域的领头羊是丰田公司,《丰田套路》这本书总结丰田公司如何通过PDCA(Plan-Do-Check-Act)方法实施持续改进。PDCA通常也称为PDCA循环,PDCA实施过程简要描述为:确定目标状态、分析当前状态、找出与目标状态的差距、制定实施计划、实施并总结、开始下一个PDCA过程。 DevOps基本也是这么一个PDCA流程循环,很容易认知到PDCA过程中效率是关键,同一时间段内,实施更多数量的PDCA过程,收益越高。在软件开发领域的DevOps流程中,各种等待(等待编译、等待打包、等待部署等)、各种中断(部署失败、机器故障)是影响DevOps流程效率的重要因素。 容器技术出来之后,将容器技术应用到DevOps场景下,可以从技术手段消除DevOps流程中的部分等待与中断,从而大幅度提升DevOps流程中CI/CD的效率。 容器的OCI标准定义了容器镜像规范,容器镜像包与传统的压缩包(zip/tgz等)相比有两个关键区别点:1)分层存储;2)打包即部署。 分层存储可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 基于容器镜像的这些优势,容器镜像用到CI/CD场景下,可以减少CI/CD过程中的等待时间,减少因环境差异而导致的部署中断,从而提升CI/CD的效率,提升整体研发效率。 CI/CD的关键诉求与挑战 快 开发人员本地开发调试完成后,提交代码,执行构建与部署,等待部署完成后验证功能。这个等待的过程尽可能短,否则开发人员工作容易被打断,造成后果就是效率降低。如果提交代码后几秒钟就能够完成部署,那么开发人员几乎不用等待,工作也不会被打断;如果需要好几分钟或十几分钟,那么可以想象,这十几分钟就是浪费了,这时候很容易做点别的事情,那么思路又被打断了。 所以构建CI/CD环境时候,快是第一个需要考虑的因素。要达到快,除了有足够的机器资源免除排队等待,引入并行编译技术也是常用做法,如Maven3支持多核并行构建。 自定义流程 不同行业存在不同的行业规范、监管要求,各个企业有一套内部质量规范,这些要求都对软件交付流程有定制需求,如要求使用商用的代码扫描工具做安全扫描,如构建结果与企业内部通信系统对接发送消息。 在团队协同方面,不同的公司,对DevOps流程在不同团队之间分工有差异,典型的有开发者负责代码编写构建出构建物(如jar包),而部署模板、配置由运维人员负责;有的企业开发人员负责构建并部署到测试环境;有的企业开发人员直接可以部署到生产环境。这些不同的场景,对CI/CD的流程、权限管控都有定制需求。 提升资源利用率 OCI标准包含容器镜像标准与容器运行时标准两部分,容器运行时标准聚焦在定义如何将镜像包从镜像仓库拉取到本地并更新、如何隔离运行时资源这些方面。得益于分层存储与打包即部署的特性,容器镜像从到镜像仓库拉取到本地运行速度非常快(通常小于30秒,依赖镜像本身大小等因素),基于此可以实现按需分配容器运行时资源(cpu与内存),并限定单个容器资源用量;然后根据容器进程资源使用率设定弹性伸缩规则,实现自动的弹性伸缩。 这种方式相对于传统的按峰值配置资源方式,可以提升资源利用率。 按需弹性伸缩在体验与成本之间达成平衡 联动弹性伸缩 应用运行到容器,按需分配资源之后,理想情况下,Kubernetes的池子里没有空闲的资源。这时候扩容应用实例数,新扩容的实例会因资源不足调度失败。这时候需要资源池能自动扩容,加入新的虚拟机,调度新扩容的应用。 由于应用对资源的配比与Flavor有要求,因此新加入的虚拟机,应当是与应用所需要的资源配比与Flavor一致的。缩容也是类似。 弹性伸缩还有一个诉求点是“平滑”,对业务做到不感知,也称为“优雅”扩容/缩容。 请求风暴 上面提到的弹性伸缩一般是有计划或缓慢增压的场景,存在另外一种无法预期的请求风暴场景,这种场景的特征是无法预测、突然请求量增大数倍或数十倍、持续时间短。典型的例子如行情交易系统,当行情突变的时候,用户访问量徒增,持续几十分钟或一个小时。 这种场景的弹性诉求,要求短时间内能将资源池扩大数倍,关键是速度要快(秒级),否则会来不及扩容,系统已经被冲垮(如果无限流的话)。 目前基于 Virtual Kubelet 与云厂家的 Serverless 容器,理论上可以提供应对请求风暴的方案。不过在具体实施时候,需要考虑传统托管式Kubernetes容器管理平台与Serverless容器之间互通的问题,需要基于具体厂家提供的能力来评估。 基于容器技术实现计算调度平台 计算(大数据/AI训练等)场景的特征是短时间内需要大量算力,算完即释放。容器的环境一致性以及调度便利性适合这种场景。 技术选型 容器技术是属于基础设施范围,但是与传统虚拟化技术(Xen/KVM)比较,容器技术是应用虚拟化,不是纯粹的资源虚拟化,与传统虚拟化存在差异。在容器技术选型时候,需要结合当前团队在应用管理与资源管理的现状,对照容器技术与虚拟化技术的差异,选择最合适的容器技术栈。 什么是容器技术 (1)容器是一种轻量化的应用虚拟化技术。 在讨论具体的容器技术栈的时候,先介绍目前几种常用的应用虚拟化技术,当前有3种主流的应用虚拟化技术: LXC,MicroVM,UniKernel(LibOS)。 LXC: Linux Container,通过 Linux的 namespace/cgroups/chroot 等技术隔离进程资源,目前应用最广的docker就是基于LXC实现应用虚拟化的。 MicroVM: MicroVM 介于 传统的VM 与 LXC之间,隔离性比LXC好,但是比传统的VM要轻量,轻量体现在体积小(几M到几十M)、启动快(小于1s)。 AWS Firecracker 就是一种MicroVM的实现,用于AWS的Serverless计算领域,Serverless要求启动快,租户之间隔离性好。 UniKernel: 是一种专用的(特定编程语言技术栈专用)、单地址空间、使用 library OS 构建出来的镜像。UniKernel要解决的问题是减少应用软件的技术栈层次,现代软件层次太多导致越来越臃肿:硬件+HostOS+虚拟化模拟+GuestOS+APP。UniKernel目标是:硬件+HostOS+虚拟化模拟+APP-with-libos。 三种技术对比表: 开销 体积 启动速度 隔离/安全 生态 LXC 低(几乎为0) 小 快(等同进程启动) 差(内核共享) 好 MicroVM 高 大 慢(小于1s) 好 中(Kata项目) UniKernel 中 中 中 好 差 根据上述对比来看,LXC是应用虚拟化首选的技术,如果LXC无法满足隔离性要,则可以考虑MicroVM这种技术。当前社区已经在着手融合LXC与MicroVM这两种技术,从应用打包/发布调度/运行层面统一规范,Kubernetes集成Kata支持混合应用调度特性可以了解一下。 UniKernel 在应用生态方面相对比较落后,目前在追赶中,目前通过 linuxkit 工具可以在UniKernel应用镜像中使用docker镜像。这种方式笔者还未验证过,另外docker镜像运行起来之后,如何监控目前还未知。 从上述三种应用虚拟化技术对比,可以得出结论: (2)容器技术与传统虚拟化技术不断融合中。 再从规范视角来看容器技术,可以将容器技术定义为: (3)容器=OCI+CRI+辅助工具。 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 辅助工具用户构建镜像,验证镜像签名,管理存储卷等。 容器定义 容器是一种轻量化的应用虚拟化技术。 容器=OCI+CRI+辅助工具。 容器技术与传统虚拟化技术不断融合中。 什么是容器编排与调度 选择了应用虚拟化技术之后,还需要应用调度编排,当前Kubernetes是容器领域内编排的事实标准,不管使用何种应用虚拟化技术,都已经纳入到了Kubernetes治理框架中。 Kubernetes 通过 CRI 接口规范,将应用编排与应用虚拟化实现解耦:不管使用何种应用虚拟化技术(LXC, MicroVM, LibOS),都能够通过Kubernetes统一编排。 当前使用最多的是docker,其次是cri-o。docker与crio结合kata-runtime都能够支持多种应用虚拟化技术混合编排的场景,如LXC与MicroVM混合编排。 docker(now): Moby 公司贡献的 docker 相关部件,当前主流使用的模式。 docker(daemon) 提供对外访问的API与CLI(docker client) containerd 提供与 kubelet 对接的 CRI 接口实现 shim负责将Pod桥接到Host namespace。 cri-o: 由 RedHat/Intel/SUSE/IBM/Hyper 公司贡献的实现了CRI接口的符合OCI规范的运行时,当前包括 runc 与 kata-runtime ,也就是说使用 cir-o 可以同时运行LXC容器与MicroVM容器,具体在Kata介绍中有详细说明。 CRI-O: 实现了CRI接口的进程,与 kubelet 交互 crictl: 类似 docker 的命令行工具 conmon: Pod监控进程 other cri runtimes: 其他的一些cri实现,目前没有大规模应用到生产环境。 容器与传统虚拟化差异 容器(container)的技术构成 前面主要讲到的是容器与编排,包括CRI接口的各种实现,我们把容器领域的规范归纳为南向与北向两部分,CRI属于北向接口规范,对接编排系统,OCI就属于南向接口规范,实现应用虚拟化。 简单来讲,可以这么定义容器: 容器(container) ~= 应用打包(build) + 应用分发(ship) + 应用运行/资源隔离(run)。 build-ship-run 的内容都被定义到了OCI规范中,因此也可以这么定义容器: 容器(container) == OCI规范 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 容器与虚拟机差异对比 容器与虚拟机的差异可以总结为2点:应用打包与分发的差异,应用资源隔离的差异。当然,导致这两点差异的根基是容器是以应用为中心来设计的,而虚拟化是以资源为中心来设计的,本文对比容器与虚拟机的差异,更多的是站在应用视角来对比。 从3个方面对比差异:资源隔离,应用打包与分发,延伸的日志/监控/DFX差异。 1.资源隔离 隔离机制差异 容器 虚拟化 mem/cpu cgroup, 使用时候设定 require 与 limit 值 QEMU, KVM network Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), 跨虚拟机或出公网访问:SNAT/DNAT, service转发:iptables/ipvs, SR-IOV Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), QEMU, SR-IOV storage 本地存储: 容器存储驱动 本地存储:virtio-blk 差异引入问题与实践建议 应用程序未适配 cgroup 的内存隔离导致问题: 典型的是 JVM 虚拟机,在 JVM 启动时候会根据系统内存自动设置 MaxHeapSize 值,通常是系统内存的1/4,但是 JVM 并未考虑 cgroup 场景,读系统内存时候任然读取主机的内存来设置 MaxHeapSize,这样会导致内存超过 cgroup 限制从而导致进程被 kill 。问题详细阐述与解决建议参考Java inside docker: What you must know to not FAIL。 多次网络虚拟化问题: 如果在虚拟机内使用容器,会多一层网络虚拟化,并加入了SNAT/DNAT技术, iptables/ipvs技术,对网络吞吐量与时延都有影响(具体依赖容器网络方案),对问题定位复杂度变高,同时还需要注意网络内核参数调优。 典型的网络调优参数有:转发表大小 /proc/sys/net/netfilter/nf_conntrack_max 使用iptables 作为service转发实现的时候,在转发规则较多的时候,iptables更新由于需要全量更新导致非常耗时,建议使用ipvs。详细参考[华为云在 K8S 大规模场景下的 Service 性能优化实践](https://zhuanlan.zhihu.com/p/37230013)。 容器IP地址频繁变化不固定,周边系统需要协调适配,包括基于IP地址的白名单或防火墙控制策略需要调整,CMDB记录的应用IP地址需要适配动态IP或者使用服务名替代IP地址。 存储驱动带来的性能损耗: 容器本地文件系统是通过联合文件系统方式堆叠出来的,当前主推与默认提供的是overlay2驱动,这种模式应用写本地文件系统文件或修改已有文件,使用Copy-On-Write方式,也就是会先拷贝源文件到可写层然后修改,如果这种操作非常频繁,建议使用 volume 方式。 2.应用打包与分发 应用打包/分发/调度差异 容器 虚拟化 打包 打包既部署 一般不会把应用程序与虚拟机打包在一起,通过部署系统部署应用 分发 使用镜像仓库存储与分发 使用文件存储 调度运行 使用K8S亲和/反亲和调度策略 使用部署系统的调度能力 差异引入问题与实践建议 部署提前到构建阶段,应用需要支持动态配置与静态程序分离;如果在传统部署脚本中依赖外部动态配置,这部分需要做一些调整。 打包格式发生变化,制作容器镜像需要注意安全/效率因素,可参考Dockerfile最佳实践 容器镜像存储与分发是按layer来组织的,镜像在传输过程中放篡改的方式是传统软件包有差异。 3.监控/日志/DFX 差异 容器 虚拟化 监控 cpu/mem的资源上限是cgroup定义的;containerd/shim/docker-daemon等进程的监控 传统进程监控 日志采集 stdout/stderr日志采集方式变化;日志持久化需要挂载到volume;进程会被随机调度到其他节点导致日志需要实时采集否则分散很难定位 传统日志采集 问题定位 进程down之后自动拉起会导致问题定位现场丢失;无法停止进程来定位问题因为停止即删除实例 传统问题定位手段 差异引入问题实践与建议 使用成熟的监控工具,运行在docker中的应用使用cadvisor+prometheus实现采集与警报,cadvisor中预置了常用的监控指标项 对于docker管理进程(containerd/shim/docker-daemon)也需要一并监控 使用成熟的日志采集工具,如果已有日志采集Agent,则可以考虑将日志文件挂载到volume后由Agent采集;需要注意的是stderr/stdout输出也要一并采集 如果希望容器内应用进程退出后保留现场定位问题,则可以将Pod的restartPolicy设置为never,进程退出后进程文件都还保留着(/var/lib/docker/containers)。但是这么做的话需要进程没有及时恢复,会影响业务,需要自己实现进程重拉起。 团队配合 与周边的开发团队、架构团队、测试团队、运维团队评审并交流方案,与周边团队达成一致。 落地策略与注意事项 逐步演进过程中网络互通 根据当前已经存在的基础实施情况,选择容器化落地策略。通常使用逐步演进的方式,由于容器化引入了独立的网络namespace导致容器与传统虚拟机进程网络隔离,逐步演进过程中如何打通隔离的网络是最大的挑战。 分两种场景讨论: 不同服务集群之间使用VIP模式互通: 这种模式相对简单,基于VIP做灰度发布。 不同服务集群之间使用微服务点对点模式互通(SpringCloud/ServiceComb/Dubbo都是这一类): 这种模式相对复杂,在逐步容器化过程中,要求容器网络与传统虚拟机网络能够互通(难点是在虚拟机进程内能够直接访问到容器网络的IP地址),当前解决这个问题有几种方法。 自建Kubernetes场景,可使用开源的kube-router,kube-router 使用BGP协议实现容器网络与传统虚拟机网络之间互通,要求网络交换机支持BGP协议。 使用云厂商托管Kubernetes场景,选择云厂商提供的VPC-Router互通的网络插件,如阿里云的Terway网络插件, 华为云的Underlay网络模式。 选择物理机还是虚拟机 选择物理机运行容器还是虚拟机运行容器,需要结合基础设施与业务隔离性要求综合考虑。分两种场景:自建IDC、租用公有云。 自建IDC: 理想情况是使用物理机组成一个大集群,根据业务诉求,对资源保障与安全性要求高的应用,使用MicorVM方式隔离;普通应用使用LXC方式隔离。所有物理机在一个大集群内,方便削峰填谷提升资源利用率。 租用公有云:当前公有云厂家提供的裸金属服务价格较贵且只能包周期,使用裸金属性价比并不高,使用虚拟机更合适。 集群规模与划分 选择集群时候,是多个应用共用一个大集群,还是按应用分组分成多个小集群呢?我们把节点规模数量>=1000的定义为大集群,节点数<1000的定义为小集群。 大集群的优点是资源池共享容器,方便资源调度(削峰填谷);缺点是随着节点数量与负载数量的增多,会引入管理性能问题(需要量化): DNS 解析表变大,增加/删除 Service 或 增加/删除 Endpoint 导致DNS表刷新慢 K8S Service 转发表变大,导致工作负载增加/删除刷新iptables/ipvs记录变慢 etcd 存储空间变大,如果加上ConfigMap,可能导致 etcd 访问时延增加 小集群的优点是不会有管理性能问题,缺点是会导致资源碎片化,不容易共享。共享分两种情况: 应用之间削峰填谷:目前无法实现 计算任务与应用之间削峰填谷:由于计算任务是短时任务,可以通过上层的任务调度软件,在多个集群之间分发计算任务,从而达到集群之间资源共享的目的。 选择集群规模的时候,可以参考上述分析,结合实际情况选择适合的集群划分。 Helm? Helm是为了解决K8S管理对象散碎的问题,在K8S中并没有"应用"的概念,只有一个个散的对象(Deployment, ConfigMap, Service, etc),而一个"应用"是多个对象组合起来的,且这些对象之间还可能存在一定的版本配套关系。 Helm 通过将K8S多个对象打包为一个包并标注版本号形成一个"应用",通过 Helm 管理进程部署/升级这个"应用"。这种方式解决了一些问题(应用分发更方便)同时也引入了一些问题(引入Helm增加应用发布/管理复杂度、在K8S修改了对象后如何同步到Helm)。对于是否需要使用Helm,建议如下: 在自运维模式下不使用Helm: 自运维模式下,很多场景是开发团队交付一个运行包,运维团队负责部署与配置下发,内部通过兼容性或软件包与配置版本配套清单、管理软件包与配置的配套关系。 在交付软件包模式下使用Helm: 交付软件包模式下,Helm 这种把散碎组件组装为一个应用的模式比较适合,使用Helm实现软件包分发/部署/升级场比较简单。 Reference DOCKER vs LXC vs VIRTUAL MACHINES Cgroup与LXC简介 Introducing Container Runtime Interface (CRI) in Kubernetes frakti rkt appc-spec OCI 和 runc:容器标准化和 docker Linux 容器技术史话:从 chroot 到未来 Linux Namespace和Cgroup Java inside docker: What you must know to not FAIL QEMU,KVM及QEMU-KVM介绍 kvm libvirt qemu实践系列(一)-kvm介绍 KVM 介绍(4):I/O 设备直接分配和 SR-IOV [KVM PCI/PCIe Pass-Through SR-IOV] prometheus-book 到底什么是Unikernel? The Rise and Fall of the Operating System The Design and Implementation of the Anykernel and Rump Kernels UniKernel Unikernel:从不入门到入门 OSv 京东如何打造K8s全球最大集群支撑万亿电商交易 Cloud Native App Hub 更多云最佳实践 https://best.practices.cloud 本篇文章为转载内容。原文链接:https://blog.csdn.net/sinat_33155975/article/details/118013855。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 15:03:28
225
转载
Docker
Docker , Docker是一种开源的应用容器引擎,它允许开发者打包应用及其依赖包到一个可移植的容器中,然后发布到任何流行的Linux或Windows机器上,也可以实现虚拟化。在本文中,Docker被用作一种工具,帮助用户构建、部署和运行包含应用程序及其所有依赖项的独立容器镜像。 Dockerfile , Dockerfile是用于自动化创建Docker镜像的一种文本文件,其中包含了若干条用于配置镜像环境及安装软件等操作的指令集合。在文章中,Dockerfile用于指导从基础镜像scratch开始,添加hello二进制文件,并设置启动命令,从而生成一个定制化的Docker镜像。 Docker镜像 , Docker镜像是Docker容器的基础,是一个只读模板,包含运行某个应用所需的所有内容,包括代码、运行时、库、环境变量和配置文件等。在本文的场景下,通过编写并执行Dockerfile中的指令,创建了一个包含hello应用程序及其依赖项的Docker镜像,随后可以基于此镜像启动Docker容器来运行该应用。 Docker容器 , Docker容器是从Docker镜像创建的运行实例,它可以被视为一个轻量级的、独立运行的一组进程,与主机系统和其他容器隔离。在文中提到,使用docker run命令启动了一个名为hello-app的Docker容器,这个容器就是基于之前构建好的hello镜像运行的,能够在其中执行预设的命令(即运行hello二进制文件)。
2023-02-25 10:58:36
491
数据库专家
Docker
Docker是一种普遍的容器技术,能够协助程序员快速构建、发布和执行应用软件。其中一个重要的特性是能够与宿主机共享网络,使得Docker容器能够与宿主机网卡进行通讯,达成网络连接。 $ docker run -it --net=host imageName 可以使用上面的指令来执行一个Docker容器,其中--net=host选项许可容器共享宿主机的网络命名空间,即使用宿主机的网络栈。 例如,如果你有一个Python应用软件在容器中执行,并且需要连接宿主机上的MySQL数据库,则可以使用以下代码来连接: import mysql.connector cnx = mysql.connector.connect(user='root', password='password', host='127.0.0.1', database='test', auth_plugin='mysql_native_password') cursor = cnx.cursor() 在这个示例中,Python应用软件在容器中执行,但是与宿主机共享网络,因此可以连接到宿主机上的MySQL数据库。 总而言之,在Docker中与宿主机共享网络是非常容易的。只需使用--net=host选项执行容器即可达成。这个特性在很多场景下非常有用,如连接数据库、调用API等。
2023-03-28 21:41:55
589
逻辑鬼才
Docker
随着容器化技术越来越完善,Docker 作为其中的领导者,成为了目前最受青睐的容器技术解决方案之一。它实现了一种易于操作、规范化、迅速安装的方式,让我们可以将应用程序与它们需要的运行时、库和依赖项封装成一个便携式环境内。 Docker 主要优势之一是它可以在任何机器上保持一致性运行,这表明我们可以在开发、测试和生产环境中确保一致性,并避免了出现“这个在我机器上可以跑起来”的现象。 在 Docker 中,容器是使用 Dockerfile 定义的,Dockerfile 可以认为是 Docker 容器的构建蓝图,其中描述了容器镜像的组成。以下是一个 Dockerfile 的样例: 使用 official Node.js 镜像作为父镜像 FROM node:10 设置容器启动时要运行的命令 CMD ["node", "index.js"] 将本地文件夹挂载到容器内的 /app 目录中 WORKDIR /app COPY . /app 在容器中运行 npm install 安装应用所需的依赖 RUN npm install Docker 通过镜像来封装应用程序及其所有依赖项,从而使部署变得更加简单,因为只需部署一个镜像即可。例如,如果我们需要部署一个 Node.js 应用程序,只需从 Docker Hub 中下载 Node.js 镜像,并将应用程序和 package.json 文件一起封装成一个镜像。 总之,在使用 Docker 部署应用程序时,我们只需要定义应用程序的镜像,然后将镜像部署到任何支持 Docker 的服务器上即可。这使得应用程序的部署和运行变得非常简单、可靠和可重复。
2023-01-30 11:42:25
445
数据库专家
Docker
标题:Docker新功能:让你的开发更加高效、便捷 一、引言 随着云计算的发展,越来越多的企业开始关注容器化技术,而Docker作为最流行的容器引擎,不断推出新的功能,让开发者能够更加高效、便捷地进行开发工作。本文将介绍Docker新功能,希望能够对你有所帮助。 二、Docker 1.12.0将要发布的 新功能 Docker 1.12.0将会有很多新功能,其中最重要的是: 1. 集群配置改进 支持多主机网络配置,让多个主机之间可以互相访问; 2. 网络增强 增加端口映射功能,可以在容器中指定端口对外提供服务; 3. 子容器 支持子容器,可以让一个容器运行另一个容器; 4. 其他改进 包括API接口改进、安全性能提升等。 三、Docker Desktop 4.15正式发布,这些新功能值得看 Docker Desktop 4.15有许多新功能,以下是其中最重要的几个: 1. Kubernetes集成 支持Kubernetes集群,可以轻松地将应用部署到Kubernetes集群中; 2. 容器编排 支持Docker Compose,可以让开发者更好地管理多个容器; 3. 端口转发 新增端口转发功能,可以让外部机器通过Docker Desktop访问内部应用; 4. 更好的性能 包括CPU利用率提高、内存占用降低等。 四、Docker新功能 让你的开发更加高效、便捷 1. 使用Docker的新功能 例如,你可以使用Docker Compose编排多个容器,并且可以方便地启动、停止和重启容器。另外,你还可以使用Docker Swarm管理多个Docker节点,并且可以方便地创建和销毁Swarm服务。 2. 示例代码 以下是一个使用Docker Compose编排多个容器的例子: yaml version: '3' services: web: image: nginx db: image: mysql 在这个例子中,我们定义了一个名为web的服务,该服务使用nginx镜像,并且启动后会运行在80端口。还特意创建了一个叫db的服务,这个服务利用了mysql镜像。一旦启动起来,它就在3306端口上活蹦乱跳地运行起来啦。这样子做,咱们就能轻轻松松地启动和管控多个小容器,而且绝对能确保这些小家伙们之间的依赖关系都处理得明明白白的。 3. 总结 通过使用Docker的新功能,我们可以更加快捷地开发应用程序,并且可以更好地管理和维护我们的应用程序。因此,建议大家在日常工作中尽可能多地使用Docker的新功能。 五、结论 Docker新功能的推出,无疑为我们提供了更多的便利,让我们能够更快地开发应用程序,并且更好地管理和维护我们的应用程序。不过呢,咱也得留意一下,Docker这家伙的新功能确实给咱们带来不少甜头,但同时也不免带来一些小插曲和挑战。所以呢,我们在尽情享受Docker新功能带来的便利时,也得留个心眼儿,要知道每片亮光背后可能都藏着个小风险。咱得提前做好功课,采取一些应对措施,把这风险降到最低,这样才能安心玩耍不是?最后呢,我真心希望大家在玩转Docker的时候,能充分挖掘并利用它那些酷炫的新功能,这样一来,咱们的工作效率和质量都能蹭蹭地往上涨哈!
2023-01-08 13:18:42
491
草原牧歌_t
Docker
Docker 是一种虚拟环境;任何地方化发布;多个的软件;虚拟环境;任何地方化发布;多个,可以将应用;依赖项和所有依赖项封装;独立在一个独立的虚拟环境;任何地方中,并在任何地方运行。然而,有时候在使用;超时 Docker 时会遇到使用;超时已超时的情况。 这种情况通常发生在 Docker 与其他部分;交互交互时,比如;包含虚拟环境;任何地方与网络之间的通信,或虚拟环境;任何地方与 Docker Hub 之间的通信。这意味着 Docker 在一定时间内无法完成所需的使用;超时,因此出现了操作超时问题;解决。 为了解决这个问题,我们可以采取以下方法;增加: 1. 增加时间限制;避免:通过修改 Docker 的设置文件;修改,可以增加 Docker 的时间限制;避免来避免使用;超时已超时的错误。比如;包含,在/etc/docker/daemon.json文件中添加以下内容: { "live-restore": true, "storage-driver": "overlay2", "iptables": false, "max-concurrent-downloads": 10, "max-concurrent-uploads": 10, "registry-mirrors": [ "http://dockerhub.azk8s.cn", "http://hub-mirror.c.163.com" ], "debug": false, "experimental": true, "log-driver": "json-file", "log-level": "warn", "metrics-addr": "0.0.0.0:9323", "default-shm-size": "8G" } 其中,max-concurrent-downloads和max-concurrent-uploads可以根据现实情况;相应进行校准;解决方法。 2. 改进;网络环境网络环境:在虚拟环境;任何地方与网络之间的通信方面,可以改进;网络环境网络环境来避免操作超时问题;解决。比如;包含,可以增加带宽资源;更改或者更改虚拟环境;任何地方所在的网络位置。 总而言之;需要,解决 Docker 使用;超时已超时的问题需要综合考虑多个要素;进行,并根据现实情况;相应进行相应的校准;解决方法。通过这些方法;增加,我们可以更好地利用 Docker 的虚拟环境;任何地方化发布;多个,增强;系统系统的稳定性和可用性。
2023-10-26 09:32:48
557
电脑达人
Go Iris
...决方案。随着云原生、容器化技术的发展,如Docker和Kubernetes等工具广泛应用,为解决操作系统层面的差异提供了更高级别的抽象。开发者可以将应用程序及其依赖环境打包成容器镜像,从而确保应用在任何支持容器运行的操作系统上都能无缝运行。 近期,Go语言社区也在持续优化其标准库以更好地支持跨平台开发。例如,Go 1.16版本引入了os.PathListSeparator常量用于处理多值路径环境变量,这不仅增强了对路径相关操作的支持,也体现了Go语言对跨平台特性的重视与改进。 此外,许多流行的Web框架,包括Iris在内,都在借鉴并实现最新的跨平台最佳实践。例如,通过集成现代构建工具如Webpack或Parcel,它们可以帮助开发者管理静态资源路径,并在编译阶段自动转换为对应平台的标准格式,进一步简化了跨平台开发中的路径兼容性难题。 综上所述,在实际开发过程中,除了掌握Go语言和Iris框架提供的基本跨平台工具与方法外,关注行业动态和新技术的应用,能够帮助我们更高效地应对不同操作系统间的兼容性挑战,提升代码质量和应用的普适性。
2023-11-22 12:00:57
384
翡翠梦境
PHP
...算和微服务架构的广泛应用,越来越多的企业开始采用容器化技术,如Docker和Kubernetes,来管理和部署应用。然而,在容器化环境中,文件系统管理和目录访问成为了一个新的挑战。例如,最近某知名互联网公司在其Kubernetes集群中部署了一个新的应用,由于容器内的文件系统与宿主机上的文件系统隔离,导致频繁出现“无法访问目录”的错误。经过排查,发现是因为容器内指定的目录路径与宿主机上的实际路径不匹配,且权限设置不当。 这一案例提醒我们,即使是成熟的容器化技术,也需仔细规划文件系统的挂载和权限设置。例如,在Kubernetes中,可以使用hostPath卷类型将宿主机上的目录挂载到容器内,但需要注意路径的一致性和权限的正确配置。此外,还可以考虑使用存储类(StorageClass)和持久卷(PersistentVolume)等高级功能,以更好地管理数据和目录访问。 除了容器化环境外,对于传统的PHP应用部署,随着DevOps理念的普及,自动化部署工具如Jenkins、GitLab CI/CD等也被广泛使用。这些工具在执行构建和部署任务时,可能会遇到与文件系统相关的各种问题,包括目录不存在或权限不足。因此,在编写自动化脚本时,应加入必要的检查和处理逻辑,例如使用shell_exec()函数执行mkdir命令创建目录,或使用chmod命令调整目录权限,确保应用能够正常运行。 综上所述,无论是容器化环境还是传统部署方式,合理规划文件系统管理和目录访问策略,都是保障应用稳定运行的重要环节。希望这些信息能为正在面临类似问题的技术人员提供一些参考和启示。
2024-10-24 15:43:56
65
海阔天空
Shell
...具链、持续集成/持续部署(CI/CD)、敏捷开发方法论等手段,实现快速交付高质量软件产品并优化流程效率。在文中语境下,DevOps文化推动了Shell脚本在自动化运维场景中的广泛应用。 CI/CD(Continuous Integration/Continuous Deployment) , CI/CD是现代软件工程中的一种自动化流程,其中CI(持续集成)是指开发人员频繁地将代码变更合并到主分支,并通过自动构建和测试确保新代码的质量和兼容性;CD(持续部署或持续发布)则进一步自动化了软件包从构建环境到生产环境的部署过程。文中提及将Shell脚本融入CI/CD流程,意味着开发者可以利用Shell编写自动化脚本来简化和加速软件的构建、测试及发布过程。 容器编排 , 容器编排是一种管理和自动化容器化应用部署、扩展和维护的过程,它涉及资源调度、服务发现、负载均衡、健康检查等多个环节。在文中语境下,Shell脚本在DevOps实践中可以参与到容器编排中,例如使用Shell编写脚本来启动、停止、迁移容器,或者根据需求动态调整容器集群规模,从而提高系统资源利用率和服务可靠性。Docker和Kubernetes等主流容器技术平台都支持通过脚本进行一定程度的自定义编排。
2023-09-05 16:22:17
101
山涧溪流_
Tomcat
名词 , 容器化。 解释 , 容器化是指通过容器技术(如Docker)将应用程序及其依赖打包成独立、可移植的单元,使应用可以在任何环境中运行,不受底层操作系统、硬件或库版本的影响。容器化有助于实现应用的快速部署、扩展和管理,提高资源利用率,并简化跨环境的一致性。 名词 , 云原生。 解释 , 云原生是一种设计和构建应用程序的方法,旨在充分利用云计算的优势,如自动扩展、高可用性、容器化和微服务架构。云原生应用被设计为可部署到云平台,具有高度的灵活性、可移植性和可伸缩性,能够快速响应业务需求的变化,提高开发效率和运营成本效益。 名词 , 微服务架构。 解释 , 微服务架构是一种将大型应用程序分解为一组小型、独立、可部署的服务的设计模式。每个服务负责处理特定的业务功能,通过API进行通信。这种架构提高了系统的可维护性、可扩展性和可重用性,允许团队并行开发和部署服务,同时也降低了单点故障的风险。微服务架构适用于需要高度定制化、快速迭代和灵活部署的应用场景。
2024-08-02 16:23:30
107
青春印记
Tornado
...解Tornado服务部署中可能遇到的问题及其解决方案后,进一步关注Python异步框架的最新发展动态与实践应用显得尤为重要。近期,随着Python 3.9对asyncio模块的持续优化以及对类型提示支持的增强,越来越多开发者开始探讨如何在现代异步编程环境中高效利用Tornado等库构建高性能服务。 例如,在2022年的一篇技术文章《Tornado与asyncio在生产环境中的深度融合》中,作者详细介绍了如何将Tornado与原生asyncio接口结合使用,以实现更简洁、易维护的代码结构,并通过实例演示了如何解决并发I/O瓶颈,提升系统性能。此外,文章还分享了在实际项目中针对Tornado服务进行容器化部署的最佳实践,包括Docker和Kubernetes环境下的配置优化与故障排查方法。 同时,鉴于依赖管理和版本控制在软件部署中扮演的重要角色,PyPA(Python Packaging Authority)正积极推广并完善PEP 517和518规范,旨在为Python项目提供更加统一且灵活的构建和依赖管理方案。这对于Tornado等项目在不同环境下的无缝部署具有重要意义,开发团队可以借此提升部署过程的稳定性和可靠性。 总之,在紧跟Python及Tornado框架演进的同时,深入研究相关实战案例和最佳实践,能够帮助开发者更好地应对复杂部署问题,确保服务高效稳定运行。不断学习新技术趋势和优化方案,是每一位Web开发者持续提升技术水平的关键所在。
2023-03-14 20:18:35
60
冬日暖阳
Kubernetes
...原生是一种构建和运行应用程序的方法论,旨在充分利用云计算的弹性和可扩展性。云原生应用设计时考虑到了分布式、微服务、容器化、自动化部署、持续集成/持续部署(CI/CD)以及基础设施即代码(IaC)等特性,以实现高度灵活、快速迭代和成本效益高的应用开发和运营。 名词 , Kubernetes。 解释 , Kubernetes,简称K8s,是一款开源的容器编排系统,由Google开发并于2014年开源。Kubernetes提供了一套自动化的机制来部署、扩展和管理容器化应用,支持跨多个物理或虚拟服务器的部署,同时提供了资源调度、自动重启、滚动更新、服务发现等功能。它通过抽象出一组API和工具,使得开发者能够集中精力编写应用代码,而不是管理底层的基础设施。 名词 , 微服务。 解释 , 微服务是一种架构风格,将单一应用程序分解为一组小的、独立部署的服务,每个服务专注于特定的业务功能。这种架构允许各个服务独立开发、部署和扩展,提高了系统的可维护性和可扩展性。微服务通常通过API进行通信,可以运行在不同的服务器上,甚至可以运行在不同的数据中心或云环境中,支持快速迭代和独立发布。在云原生背景下,微服务与容器技术(如Docker)、Kubernetes等结合,形成了灵活、高效、可伸缩的应用部署方式。
2024-09-05 16:21:55
60
昨夜星辰昨夜风
转载文章
...以进一步探讨现代软件部署与运维领域的相关趋势和技术。随着云计算和容器化技术的飞速发展,越来越多的企业开始采用Docker等容器技术进行应用部署,其中包括Nginx服务。通过Docker镜像的方式,即使在离线环境下也能实现高效、一致的Nginx部署。 例如,在Kubernetes集群中,运维人员可以预先下载所需的Nginx官方镜像并推送到私有镜像仓库,随后在离线节点上拉取这些镜像以完成Nginx服务的搭建。这种方式不仅简化了依赖库的管理,同时也提高了部署的标准化程度和效率。 另外,对于持续集成/持续部署(CI/CD)流程中的离线环境支持,也有一些工具如Ansible、Puppet等自动化运维工具提供了完善的解决方案,它们能够帮助用户在无网络连接或受限网络条件下,实现复杂服务栈的自动化安装配置。 此外,随着开源生态的发展,一些Linux发行版开始提供更全面的离线包管理方案,比如Fedora Silverblue项目就引入了模块化操作系统理念,使得离线安装大量软件变得更加方便和快捷。未来,离线安装技术将更加智能化和便捷化,为企业级应用部署提供更多可能。
2023-06-23 08:28:14
106
转载
转载文章
...Python编程,并应用于Web开发、数据可视化等多个热门领域,具有极强的时效性和实用性。 同时,针对近年来愈发重要的数据结构与算法领域,LeetCode等在线平台提供了大量实时更新的题目和详尽解析,为《算法导论》的学习者们提供了丰富的实战演练机会。众多科技公司也将LeetCode上的刷题成果视为衡量程序员技术水平的重要标准之一。 另外,在云计算、容器化技术大行其道的今天,《Docker in Action》成为了深入理解容器技术和实践DevOps理念的必备读物。它不仅介绍了Docker的基础操作,更探讨了如何利用Docker实现持续集成、微服务架构设计等前沿议题。 此外,随着人工智能与机器学习热潮的兴起,《Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow》成为许多想入门AI领域的读者首选。此书通过实例教学,使读者能迅速掌握使用Python进行机器学习模型构建与应用部署。 综上所述,结合经典书籍与最新技术趋势的延伸阅读,能够帮助学习者拓宽视野、增强技能,更好地应对日新月异的计算机科学技术挑战。
2023-12-11 11:49:14
119
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
cd -
- 在最近访问过的两个目录之间快速切换。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"