前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Canny边缘检测在形状识别中的应用]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Python
Canny边缘检测 , Canny边缘检测是一种计算机视觉中广泛应用的多级边缘检测算法,由John F. Canny于1986年提出。在本文的上下文中,它被用于Python编程中的图像处理阶段,通过计算图像灰度梯度强度的变化,以一种最优的方式找出图像中的显著边缘,从而定位潜在的正方形轮廓。 轮廓检测 , 轮廓检测是图像分析和处理中的关键技术之一,是指从数字图像中识别并提取目标物体外形轮廓的过程。在文章中,使用cv2.findContours函数来实现轮廓检测,该函数基于二值图像(如经过Canny边缘检测后的图像)找到连接像素点的连续路径,这些路径即为图像中的各个轮廓。 OpenCV (Open Source Computer Vision Library) , OpenCV是一个开源的跨平台计算机视觉库,包含了大量的图像和视频处理功能,支持多种编程语言,其中在Python环境中通常称为cv2模块。在本文的具体应用中,OpenCV提供了诸如图像读取、颜色空间转换、高斯滤波、边缘检测、轮廓查找以及形状近似等一系列图像处理函数,帮助开发者高效地完成正方形检测任务。
2023-04-20 10:25:03
50
软件工程师
Tesseract
一、引言 在图像识别领域,Tesseract是一个非常强大的工具。然而,我们经常会遇到一个问题,那就是"找不到有效的文本行边界"。这其实是个经常遇到的问题,不过在我们动手解决它之前,咱得先唠唠啥是文本行边界,以及为啥它如此关键。 二、什么是文本行边界? 文本行边界,简单来说,就是在一张图片中,我们可以看到的一行一行的文字。这是一张图片中的一个非常重要的特征,因为它是进行文本识别的关键。 三、为什么要找到文本行边界? 找到文本行边界非常重要,因为它可以帮助我们确定哪些部分是文本,哪些部分不是。这对于进行文本识别是非常关键的。如果没找到文本行的边界,那我们就没法准确地认出这些字来,就像在没有标点符号和段落分隔的情况下读一本天书一样。 四、如何解决“找不到有效的文本行边界”问题? 1. 使用Tesseract自带的参数调整功能 在使用Tesseract进行文本识别时,我们可以使用一些参数来调整其行为。比如说,我们可以通过调整--psm这个小开关,来告诉程序识别页面时应该按照横向还是纵向来识别。再比如,使用--oem参数,我们可以像选择赛车引擎那样,挑选出适合这次任务的OCR引擎进行工作。 bash tesseract image.png output.txt --psm 6 在这个例子中,我们使用了--psm参数来指定要识别的页面方向为横向。 2. 调整图像处理步骤 我们也可以通过调整图像处理步骤来改善文本行边界的识别效果。例如,我们可以先对图像进行灰度转换,然后再进行边缘检测。这样可以有效地增强图像中的文本信息,从而提高文本行边界的识别率。 3. 使用深度学习方法 最近几年,深度学习已经在图像识别领域取得了巨大的成功。我们完全可以琢磨琢磨用深度学习技术来对付这个“文本行边界识别不给力”的问题。例如,我们可以使用卷积神经网络(CNN)来进行文本行边界的识别。 五、结论 总的来说,“找不到有效的文本行边界”是一个很常见的问题,但只要我们使用正确的方法,就可以有效地解决这个问题。希望这篇技术文章能够帮助你更好地理解和解决这个问题。如果你有任何问题或建议,欢迎随时向我提问!
2023-07-23 18:49:51
116
素颜如水-t
Python
...种特别适用于实时物体检测的机器学习模型。在本文的上下文中,级联分类器是OpenCV库提供的一个工具,用于快速、高效地检测图像中的特定对象,如车辆。它通过多个阶段的弱分类器串联工作,每个阶段都对图像进行筛选,只有通过所有阶段检测的区域才会被标记为可能的目标物体。预先训练好的汽车级联分类器( cars.xml )能够识别图片中的汽车特征,从而实现车辆检测。 灰度图像(Grayscale Image) , 灰度图像是一种只包含亮度信息而没有颜色信息的图像,每个像素值代表其对应位置的灰度等级或亮度。在Python代码中,通过cv2.cvtColor函数将彩色图像转换为灰度图像,是因为在许多计算机视觉任务中,灰度图像可以简化处理过程,去除颜色带来的干扰,并且对于某些特征检测算法而言,灰度图像同样或更有效地保留了关键信息,比如在车辆检测场景下,车辆的形状和边缘特征通常与颜色无关。 预训练模型(Pre-trained Model) , 预训练模型是指已经在大规模数据集上进行了训练并取得良好性能的机器学习或深度学习模型。在本文的Python代码示例中,所使用的汽车级联分类器( cars.xml )就是一个预训练模型,意味着该模型已经学习了大量不同角度、大小、光照条件下的车辆样本数据,并能据此识别新图像中的车辆。使用预训练模型的好处在于可以大大减少从零开始训练所需的时间和计算资源,同时提高模型在目标检测任务上的准确性。在实际应用中,开发者可以直接调用这样的预训练模型,针对具体应用场景进行微调或者直接使用。
2023-12-14 13:35:31
42
键盘勇士
转载文章
...春运购票等极富挑战的应用场景中,阿里云保持着良好的运行纪录 阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本 猿辅导、中泰证券、小米、媛福达、Soul和当贝,这些我们耳熟能详的APP或企业中,阿里云给他们提供了性能强大、安全、稳定的云产品与服务。 计算,容器,存储,网络与CDN,安全、中间件、数据库、大数据计算、人工智能与机器学习、媒体服务、企业服务与云通信、物联网、开发工具、迁移与运维管理和专有云等方面,阿里云都做的很不错。 2.2 证件照生成背景 传统做法:通常是人工进行P图,不仅费时费力,而且效果也很难保障,容易有瑕疵。 机器学习做法:通常利用边缘检测算法进行人物轮廓提取。 深度学习做法:通常使用分割算法进行人物分割。例如U-Net网络。 2.3 图像分割算法 《BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks》里的SeedNet网络是很经典的网络,它把分割任务转变成多个任务。作者的思想是:尽可能的通过多任务学习收拢语义,这样或许会分割的更好或姿态估计的更好。其实这个模型就是多阶段学习网络的一部分,作者想通过中间监督来提高网络的性能。 我提取bihand网络中的SeedNet与训练权重,进行分割结果展示如下 我是用的模型不是全程的,是第一阶段的。为了可视化出最好的效果,我把第一阶段也就是SeedNet网络的输出分别采用不同的方式可视化。 从左边数第一张图为原图,第二张图为sigmoid后利用plt.imshow(colored_mask, cmap=‘jet’)进行彩色映射。第三张图为网络输出的张量经过sigmoid后,二色分割图,阀闸值0.5。第四张为网络的直接输出,利用直接产生的张量图进行颜色映射。第五张为使用sigmoid处理张量后进行的颜色映射。第六张为使用sigmoid处理张量后进行0,1分割掩码映射。使用原模型和网络需要添加很多代码。下面为修改后的的代码: 下面为修改后的net_seedd代码: Copyright (c) Lixin YANG. All Rights Reserved.r"""Networks for heatmap estimation from RGB images using Hourglass Network"Stacked Hourglass Networks for Human Pose Estimation", Alejandro Newell, Kaiyu Yang, Jia Deng, ECCV 2016"""import numpy as npimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom skimage import io,transform,utilfrom termcolor import colored, cprintfrom bihand.models.bases.bottleneck import BottleneckBlockfrom bihand.models.bases.hourglass import HourglassBisectedimport bihand.utils.func as funcimport matplotlib.pyplot as pltfrom bihand.utils import miscimport matplotlib.cm as cmdef color_mask(output_ok): 颜色映射cmap = plt.cm.get_cmap('jet') 将张量转换为numpy数组mask_array = output_ok.detach().numpy() 创建彩色图像cmap = cm.get_cmap('jet')colored_mask = cmap(mask_array)return colored_mask 可视化 plt.imshow(colored_mask, cmap='jet') plt.axis('off') plt.show()def two_color(mask_tensor): 将张量转换为numpy数组mask_array = mask_tensor.detach().numpy() 将0到1之间的值转换为二值化掩码threshold = 0.5 阈值,大于阈值的为白色,小于等于阈值的为黑色binary_mask = np.where(mask_array > threshold, 1, 0)return binary_mask 可视化 plt.imshow(binary_mask, cmap='gray') plt.axis('off') plt.show()class SeedNet(nn.Module):def __init__(self,nstacks=2,nblocks=1,njoints=21,block=BottleneckBlock,):super(SeedNet, self).__init__()self.njoints = njointsself.nstacks = nstacksself.in_planes = 64self.conv1 = nn.Conv2d(3, self.in_planes, kernel_size=7, stride=2, padding=3, bias=True)self.bn1 = nn.BatchNorm2d(self.in_planes)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(2, stride=2)self.layer1 = self._make_residual(block, nblocks, self.in_planes, 2self.in_planes) current self.in_planes is 64 2 = 128self.layer2 = self._make_residual(block, nblocks, self.in_planes, 2self.in_planes) current self.in_planes is 128 2 = 256self.layer3 = self._make_residual(block, nblocks, self.in_planes, self.in_planes)ch = self.in_planes 256hg2b, res1, res2, fc1, _fc1, fc2, _fc2= [],[],[],[],[],[],[]hm, _hm, mask, _mask = [], [], [], []for i in range(nstacks): 2hg2b.append(HourglassBisected(block, nblocks, ch, depth=4))res1.append(self._make_residual(block, nblocks, ch, ch))res2.append(self._make_residual(block, nblocks, ch, ch))fc1.append(self._make_fc(ch, ch))fc2.append(self._make_fc(ch, ch))hm.append(nn.Conv2d(ch, njoints, kernel_size=1, bias=True))mask.append(nn.Conv2d(ch, 1, kernel_size=1, bias=True))if i < nstacks-1:_fc1.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_fc2.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_hm.append(nn.Conv2d(njoints, ch, kernel_size=1, bias=False))_mask.append(nn.Conv2d(1, ch, kernel_size=1, bias=False))self.hg2b = nn.ModuleList(hg2b) hgs: hourglass stackself.res1 = nn.ModuleList(res1)self.fc1 = nn.ModuleList(fc1)self._fc1 = nn.ModuleList(_fc1)self.res2 = nn.ModuleList(res2)self.fc2 = nn.ModuleList(fc2)self._fc2 = nn.ModuleList(_fc2)self.hm = nn.ModuleList(hm)self._hm = nn.ModuleList(_hm)self.mask = nn.ModuleList(mask)self._mask = nn.ModuleList(_mask)def _make_fc(self, in_planes, out_planes):bn = nn.BatchNorm2d(in_planes)conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False)return nn.Sequential(conv, bn, self.relu)def _make_residual(self, block, nblocks, in_planes, out_planes):layers = []layers.append( block( in_planes, out_planes) )self.in_planes = out_planesfor i in range(1, nblocks):layers.append(block( self.in_planes, out_planes))return nn.Sequential(layers)def forward(self, x):l_hm, l_mask, l_enc = [], [], []x = self.conv1(x) x: (N,64,128,128)x = self.bn1(x)x = self.relu(x)x = self.layer1(x)x = self.maxpool(x) x: (N,128,64,64)x = self.layer2(x)x = self.layer3(x)for i in range(self.nstacks): 2y_1, y_2, _ = self.hg2b[i](x)y_1 = self.res1[i](y_1)y_1 = self.fc1[i](y_1)est_hm = self.hm[i](y_1)l_hm.append(est_hm)y_2 = self.res2[i](y_2)y_2 = self.fc2[i](y_2)est_mask = self.mask[i](y_2)l_mask.append(est_mask)if i < self.nstacks-1:_fc1 = self._fc1[i](y_1)_hm = self._hm[i](est_hm)_fc2 = self._fc2[i](y_2)_mask = self._mask[i](est_mask)x = x + _fc1 + _fc2 + _hm + _maskl_enc.append(x)else:l_enc.append(x + y_1 + y_2)assert len(l_hm) == self.nstacksreturn l_hm, l_mask, l_encif __name__ == '__main__':a = torch.randn(10, 3, 256, 256) SeedNetmodel = SeedNet() output1,output2,output3 = SeedNetmodel(a) print(output1,output2,output3)total_params = sum(p.numel() for p in SeedNetmodel.parameters())/1000000print("Total parameters: ", total_params)pretrained_weights_path = 'E:/bihand/released_checkpoints/ckp_seednet_all.pth.tar'img_rgb_path=r"E:\FreiHAND\training\rgb\00000153.jpg"img=io.imread(img_rgb_path)resized_img = transform.resize(img, (256, 256), anti_aliasing=True)img256=util.img_as_ubyte(resized_img)plt.imshow(resized_img)plt.axis('off') 关闭坐标轴plt.show()''' implicit HWC -> CHW, 255 -> 1 '''img1 = func.to_tensor(img256).float() 转换为张量并且进行标准化处理''' 0-mean, 1 std, [0,1] -> [-0.5, 0.5] '''img2 = func.normalize(img1, [0.5, 0.5, 0.5], [1, 1, 1])img3 = torch.unsqueeze(img2, 0)ok=img3print(img.shape)SeedNetmodel = SeedNet()misc.load_checkpoint(SeedNetmodel, pretrained_weights_path)加载权重output1, output2, output3 = SeedNetmodel(img3)mask_tensor = torch.rand(1, 64, 64)output=output2[1] 1,1,64,64output_1=output[0] 1,64,64output_ok=torch.sigmoid(output_1[0])output_real=output_1[0].detach().numpy()直接产生的张量图color_mask=color_mask(output_ok) 显示彩色分割图two_color=two_color(output_ok)显示黑白分割图see=output_ok.detach().numpy() 使用Matplotlib库显示分割掩码 plt.imshow(see, cmap='gray') plt.axis('off') plt.show() print(output1, output2, output3)images = [resized_img, color_mask, two_color,output_real,see,see]rows = 1cols = 4 创建子图并展示图像fig, axes = plt.subplots(1, 6, figsize=(30, 5)) 遍历图像列表,并在每个子图中显示图像for i, image in enumerate(images):ax = axes[i] if cols > 1 else axes 如果只有一列,则直接使用axesif i ==5:ax.imshow(image, cmap='gray')else:ax.imshow(image)ax.imshowax.axis('off') 调整子图之间的间距plt.subplots_adjust(wspace=0.1, hspace=0.1) 展示图像plt.show() 上述的代码文件是在bihand/models/net_seed.py中,全部代码链接在https://github.com/lixiny/bihand。 把bihand/models/net_seed.p中的代码修改为我提供的代码即可使用作者训练好的模型和进行各种可视化。(预训练模型根据作者代码提示下载) 3.调用阿里云API进行证件照生成实例 3.1 准备工作 1.找到接口 进入下面链接即可快速访问 link 2.购买试用包 3.查看APPcode 4.下载代码 5.参数说明 3.2 实验代码 !/usr/bin/python encoding: utf-8"""===========================证件照制作接口==========================="""import requestsimport jsonimport base64import hashlibclass Idphoto:def __init__(self, appcode, timeout=7):self.appcode = appcodeself.timeout = timeoutself.make_idphoto_url = 'https://idp2.market.alicloudapi.com/idphoto/make'self.headers = {'Authorization': 'APPCODE ' + appcode,}def get_md5_data(self, body):"""md5加密:param body_json::return:"""md5lib = hashlib.md5()md5lib.update(body.encode("utf-8"))body_md5 = md5lib.digest()body_md5 = base64.b64encode(body_md5)return body_md5def get_photo_base64(self, file_path):with open(file_path, 'rb') as fp:photo_base64 = base64.b64encode(fp.read())photo_base64 = photo_base64.decode('utf8')return photo_base64def aiseg_request(self, url, data, headers):resp = requests.post(url=url, data=data, headers=headers, timeout=self.timeout)res = {"status_code": resp.status_code}try:res["data"] = json.loads(resp.text)return resexcept Exception as e:print(e)def make_idphoto(self, file_path, bk, spec="2"):"""证件照制作接口:param file_path::param bk::param spec::return:"""photo_base64 = self.get_photo_base64(file_path)body_json = {"photo": photo_base64,"bk": bk,"with_photo_key": 1,"spec": spec,"type": "jpg"}body = json.dumps(body_json)body_md5 = self.get_md5_data(body=body)self.headers.update({'Content-MD5': body_md5})data = self.aiseg_request(url=self.make_idphoto_url, data=body, headers=self.headers)return dataif __name__ == "__main__":file_path = "图片地址"idphoto = Idphoto(appcode="你的appcode")d = idphoto.make_idphoto(file_path, "red", "2")print(d) 3.3 实验结果与分析 原图片 背景为红色生成的证件照 背景为蓝色生成的证件照 另外尝试了使用柴犬照片做实验,也生成了证件照 原图 背景为红色生成的证件照 参考(可供参考的链接和引用文献) 1.参考:BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks(BMVC2020) 论文链接:https://arxiv.org/pdf/2008.05079.pdf 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37758063/article/details/131128967。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 23:36:51
131
转载
Tesseract
...seract就是一个应用广泛的OCR工具,用于识别并提取模糊或清晰图片中的字符信息。 CRNN(Convolutional Recurrent Neural Network)模型 , CRNN是一种深度学习模型,结合了卷积神经网络(CNN)和循环神经网络(RNN)的优点,特别适用于图像序列的识别任务。在Tesseract中,CRNN模型被用于同时处理图像特征和序列文本信息,以实现对图像中字符的高效识别。 图像预处理 , 图像预处理是指在进行图像分析、识别等操作之前,对原始图像进行的一系列增强、优化或变换操作。文中提到的高斯滤波器和中值滤波器都是图像预处理方法的例子,通过去除噪声、增强边缘和提高对比度等方式,改善模糊图像的质量,从而提升Tesseract对这些图像的识别效果。 注意力机制 , 注意力机制是深度学习中的一种技术,它允许模型动态地关注输入数据的不同部分,以便更准确地执行特定任务。在OCR领域,带有注意力机制的模型可以更精确地聚焦于图像中的字符区域,忽略无关背景或其他干扰因素,从而提高识别精度。
2023-05-12 09:28:36
115
时光倒流-t
Tesseract
...处理图像时遇到的文本边缘模糊问题。这个问题就像我们在翻阅一本发黄的老书时,那些模糊不清的字迹让人看得直皱眉头,根本看不清上面写了啥。Tesseract是一款挺牛的开源OCR工具,但也不是全能的,在应对某些难题时也会犯难。别怕,我来带你一起搞定这个难题,让我们的OCR识别技术更上一层楼! 2. 文本边缘模糊的影响 首先,我们得明白为什么文本边缘模糊会对识别造成困扰。你可以试试看,当你在读文章的时候,如果字的边缘糊糊的,那你就得眯起眼睛,凑近点才能看清每个单词到底说的是啥。就像我们用眼睛看东西一样,Tesseract这样的OCR工具也要能清晰地分辨出每个字母的形状和细节,这样才能准确无误地认出它们。不过呢,如果图片里的字边边糊糊的,Tesseract 就抓不住那些细节了,结果就是它可能会认错字,甚至压根儿认不出来。 3. 常见的解决方案 那么,我们应该如何应对这种问题呢?这里有几个常见的方法,我们可以尝试一下: 3.1 图像预处理 3.1.1 二值化 首先,我们可以对图像进行二值化处理。这就像给图像穿上一件黑白的外衣,使得图像中的文本更加突出。这样,Tesseract就能更容易地识别出文本的轮廓。 python import cv2 import numpy as np 读取图像 image = cv2.imread('example.jpg', cv2.IMREAD_GRAYSCALE) 二值化处理 _, binary_image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY) 保存结果 cv2.imwrite('binary_example.jpg', binary_image) 3.1.2 锐化 其次,我们可以使用图像锐化技术来增强图像的边缘。这就像给图像打了一剂强心针,让它看起来更加清晰。 python 使用自定义核进行锐化 kernel = np.array([[0, -1, 0], [-1, 5,-1], [0, -1, 0]], dtype=np.float32) sharpened_image = cv2.filter2D(binary_image, -1, kernel) 保存结果 cv2.imwrite('sharpened_example.jpg', sharpened_image) 3.2 调整Tesseract参数 除了图像预处理之外,我们还可以通过调整Tesseract的参数来提高识别精度。Tesseract提供了许多参数,我们可以根据实际情况进行调整。 3.2.1 设置Page Segmentation Mode Tesseract的Page Segmentation Mode(PSM)参数可以帮助我们更好地控制文本区域的分割方式。例如,如果我们知道图像中只有一行文本,可以设置为PSM_SINGLE_LINE,这样Tesseract就会更专注于这一行文本的识别。 python import pytesseract 设置PSM参数 custom_config = r'--psm 6' text = pytesseract.image_to_string(sharpened_image, config=custom_config) print(text) 3.2.2 提高字符分割精度 另一个参数是Char Whitespace,它可以帮助我们更好地控制字符之间的间距。要是文本行与行之间的距离比较大,你可以把这数值调大一点。这样一来,Tesseract这个工具就能更轻松地分辨出每个字母了。 python 提高字符分割精度 custom_config = r'--oem 1 --psm 6 -c tessedit_char_whitesp=1' text = pytesseract.image_to_string(sharpened_image, config=custom_config) print(text) 4. 实战案例 接下来,让我们来看一个实战案例。假设我们有一张边缘模糊的文本图像,我们需要使用Tesseract来进行识别。 4.1 图像预处理 首先,我们对图像进行二值化和锐化处理: python import cv2 import numpy as np 读取图像 image = cv2.imread('example.jpg', cv2.IMREAD_GRAYSCALE) 二值化处理 _, binary_image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY) 使用自定义核进行锐化 kernel = np.array([[0, -1, 0], [-1, 5,-1], [0, -1, 0]], dtype=np.float32) sharpened_image = cv2.filter2D(binary_image, -1, kernel) 保存结果 cv2.imwrite('sharpened_example.jpg', sharpened_image) 4.2 调整Tesseract参数 然后,我们使用Tesseract进行识别,并设置一些参数来提高识别精度: python import pytesseract 设置PSM参数 custom_config = r'--psm 6' text = pytesseract.image_to_string(sharpened_image, config=custom_config) print(text) 4.3 结果分析 经过上述处理,我们得到了较为清晰的图像,并且识别结果也更加准确。当然,实际效果可能会因图像质量的不同而有所差异,但至少我们已经尽力了! 5. 总结 总之,面对文本边缘模糊的问题,我们可以通过图像预处理和调整Tesseract参数来提高识别精度。虽然这招不是啥灵丹妙药,但在很多麻烦事儿上,它已经挺管用了。希望大家在使用Tesseract时能够多尝试不同的方法,找到最适合自己的方案。
2024-12-25 16:09:16
65
飞鸟与鱼
转载文章
...探索更广阔的智能语音应用领域。近期,开源社区对基于AI的语音识别和处理技术关注度持续提升。例如,Mozilla最近推出了开源语音识别引擎DeepSpeech,它利用深度学习技术提供高精度的实时语音转文本服务,可以与Snowboy结合使用,为树莓派构建更全面的语音交互系统。 此外,针对物联网设备的嵌入式语音助手解决方案也在不断发展。Raspberry Pi Foundation联手Mozilla及多家合作伙伴共同推进Project Things,旨在通过开源平台打造智能家居控制中心,其中就包括了对语音控制的支持。将Snowboy与这类项目结合,可使树莓派成为家庭自动化的核心枢纽。 深入技术层面,Google发布了适用于边缘计算场景的TensorFlow Lite,使得在资源有限的设备如树莓派上运行复杂的机器学习模型成为可能。开发者可以尝试将Snowboy与TensorFlow Lite相结合,实现低功耗、高效的本地语音唤醒及命令识别功能,进一步丰富树莓派在语音交互领域的应用场景。 同时,在隐私保护方面,随着GDPR等法规的实施,越来越多用户关注数据安全问题。自建基于树莓派的语音助手能够有效减少云端数据传输,确保敏感信息不被第三方获取。在此背景下,研究如何优化本地语音识别系统的性能并降低误报率,对于推广和普及此类技术具有重要意义。 综上所述,随着人工智能和物联网技术的不断进步,以及用户对隐私保护意识的增强,树莓派与Snowboy等工具相结合构建的本地化语音交互方案将拥有广阔的应用前景和发展潜力。读者可以通过持续关注相关领域的最新研究成果和技术动态,推动这一技术在实践中的不断创新和突破。
2023-03-05 08:57:02
123
转载
Tesseract
...利用计算机视觉和模式识别技术,将图像中的文字内容转换为可编辑、可搜索的文本格式的技术。在本文中,Tesseract是一个开源的OCR工具,通过它可以从低质量图像中提取并识别出文本信息。 图像预处理(Image Preprocessing) , 在图像识别领域,图像预处理是指在对图像进行分析或识别之前,采取一系列算法和技术优化图像质量的过程。例如,文中提到的直方图均衡化可以增强图像的整体对比度,滤波则可以减少图像噪声,这些操作都是为了提高Tesseract等OCR工具对图像中字符的识别准确率。 轮廓检测(Contour Detection) , 轮廓检测是计算机视觉中的一个重要步骤,用于识别图像中物体的边缘或边界。在本文中,使用OpenCV库进行轮廓检测以确定低质量图像中的文本区域,进而裁剪出这个区域单独进行识别,有助于解决因图像抖动和变形导致的识别难题。轮廓检测能找出图像中每个连续像素点构成的线条集合,代表了图像中对象的外形轮廓。
2023-02-06 17:45:52
66
诗和远方-t
Etcd
...,常被用来作为分布式应用程序的配置中心。这简直就是存储数据的神器,还能在多个地方同步和分享,超方便的!说到Etcd,它对很多重要任务来说可是个大明星,所以要是它的snapshot文件出了问题,那可真够头疼的。 3. snapshot文件的重要性 snapshot文件是Etcd的一个重要组成部分,它是用来保存Etcd当前状态的完整快照。通过定时做个快照备份,万一哪天服务器挂了,咱还能迅速回到最近的状态,就像啥事都没发生一样。不过嘛,要是这个文件挂了,咱们可能就得跟很多宝贵的数据说拜拜了。这对任何系统来说,都是一记沉重的打击啊。 4. 如何检查snapshot文件是否损坏? 首先,我们需要知道如何检测snapshot文件是否已经损坏。幸运的是,Etcd提供了一些工具来帮助我们完成这项任务。你可以通过以下命令来检查: bash etcdctl snapshot status /path/to/snapshot.db 这个命令会输出一些关于快照文件的信息,包括版本号、大小等。如果文件损坏,你会看到一些错误信息提示你文件可能已损坏。 5. 解决方案一 重新创建snapshot 如果文件真的损坏了,第一步就是尝试重新创建一个新的snapshot文件。这可以通过以下命令完成: bash etcdctl snapshot save /path/to/new-snapshot.db 这个命令会创建一个新的快照文件。记得要选择一个安全的位置来保存这个新文件,以防万一。 6. 解决方案二 从其他节点恢复 如果这是集群环境下的问题,你可以尝试从另一个健康的节点恢复数据。假设你的集群中有一个节点运行正常,你可以直接复制那个节点上的snapshot文件到损坏节点,然后用它来替换现有的文件。这一步需要谨慎操作,最好在执行前备份现有文件。 7. 防患于未然 预防措施 虽然我们现在已经知道了如何应对snapshot文件损坏的情况,但更重要的是要采取预防措施,避免这种情况的发生。这里有几个建议: - 定期备份:定期创建snapshot文件,确保即使遇到问题,也能快速恢复。 - 使用可靠的存储介质:选择高质量的硬盘或其他存储设备,减少硬件故障的风险。 - 监控和警报:设置适当的监控机制,一旦检测到问题,立即发出警报,这样可以迅速采取行动。 8. 结语 经验之谈 总的来说,snapshot文件损坏确实是个棘手的问题,但它并不是不可克服的。通过正确的方法和预防措施,我们可以大大降低这种风险。我希望这篇文章能帮助你在遇到类似情况时,更快地找到解决方案。 最后,我想说,无论遇到什么技术难题,保持冷静和耐心总是很重要的。有时候,问题的解决过程本身就是一次学习的机会。希望我的经验对你有所帮助! --- 以上就是关于Etcd的snapshot文件损坏问题的探讨。如果你有任何问题或想要了解更多细节,请随时留言交流。希望我们的讨论能让你在处理这类问题时更加得心应手!
2024-12-03 16:04:28
98
山涧溪流
Logstash
...众多行业和领域中广泛应用。随着数据量的激增和数据处理需求的日益复杂,Logstash也在不断进化,以适应现代数据管理的挑战。 当前趋势与挑战 1. 实时数据处理的需求增长 在物联网、云计算和边缘计算的推动下,实时数据处理已成为常态。Logstash通过集成Kafka、Pulsar等实时消息队列系统,增强了其实时数据处理能力,帮助企业能够即时响应市场变化,提升决策速度和质量。 2. 多元化数据源的整合 企业数据来源越来越多样化,包括传统数据库、API接口、社交媒体、日志文件等。Logstash凭借其灵活的输入和输出插件体系,能够轻松对接不同数据源,实现数据的一体化管理和分析。 3. 安全合规与隐私保护 随着GDPR、CCPA等全球数据保护法规的实施,企业对数据安全和隐私保护的要求愈发严格。Logstash通过加密传输、数据脱敏等安全措施,确保数据在传输和处理过程中的安全性,帮助企业遵守法规要求,保护用户隐私。 4. 自动化与智能化升级 为了提高数据处理效率和智能化水平,Logstash引入了自动化脚本和机器学习算法,能够自动执行复杂的数据清洗、异常检测和预测分析任务,减少人工干预,提升数据分析的精度和速度。 结论 Logstash作为数据管道的核心组件,正逐步适应并引领现代数据管理的趋势。通过增强实时处理能力、优化多源数据整合、加强安全合规保障以及引入自动化与智能化技术,Logstash为企业提供了更高效、更安全、更智能的数据处理解决方案。未来,随着数据科学和人工智能技术的不断发展,Logstash有望在数据管道领域发挥更加重要的作用,助力企业实现数据驱动的创新与增长。 --- 本文深入探讨了Logstash在现代数据管道中的角色与发展趋势,强调了实时处理、数据源整合、安全合规和智能化升级四个关键方向。通过分析当前行业趋势和挑战,展示了Logstash如何通过技术创新和优化,满足企业在大数据时代的需求,为数据驱动的战略决策提供强有力的支持。
2024-09-15 16:15:13
151
笑傲江湖
CSS
...规则来决定哪些样式将应用于特定元素,从而实现对网页内容美工设计的灵活控制。 作用域(Scope) , 在编程中,特别是JavaScript中,作用域是指程序中的变量、函数等标识符的有效范围。一个作用域可以看作是代码块内的独立环境,在这个环境中声明的变量和函数只能在这个作用域内或者其嵌套的作用域内被访问到。超出该作用域的其他区域将无法识别和调用这些变量和函数,这便是导致“js函数未定义”错误的一个常见原因。 驼峰式命名法(CamelCase) , 驼峰式命名法是一种编程和书写代码时采用的命名约定,主要用于标识符(如变量名、函数名等)的命名。按照这种命名规则,每个单词首字母大写(除了首个单词),形成类似骆驼峰的形状。例如,“helloWorld”就是一个驼峰式命名的例子。采用驼峰式命名可以使代码更具可读性,有助于团队成员更好地理解并记忆各个标识符的含义,从而降低因拼写错误导致的函数未定义等问题的发生概率。
2023-08-12 12:30:02
429
岁月静好_t
Beego
... 引言 在构建Web应用时,服务不可用(Service Unavailable)错误是一种常见的问题,它可能由各种原因引起,如服务器超载、资源耗尽、网络故障等。本文将围绕Beego框架,深入探讨如何识别、诊断和解决服务不可用的问题,提供实用的策略和代码示例。 一、认识服务不可用错误 服务不可用错误通常在HTTP响应中表现为503状态码,表示由于服务器当前无法处理请求,请求被暂时拒绝。这可能是由于服务器过载、正在进行维护或者资源不足等原因导致的。 二、Beego框架简介 Beego是一个基于Golang的轻量级Web框架,旨在简化Web应用的开发流程。其简洁的API和强大的功能使其成为快速构建Web应用的理想选择。在处理服务不可用错误时,Beego提供了丰富的工具和机制来帮助开发者进行诊断和修复。 三、识别与诊断服务不可用 在Beego应用中,识别服务不可用错误通常通过HTTP响应的状态码来进行。当应用返回503状态码时,说明服务当前无法处理请求。哎呀,兄弟!想要更清晰地找出问题所在,咱们得好好利用Beego自带的日志系统啊。它能帮咱们记录下一大堆有用的信息,比如啥时候出的错、用户是咋操作的、到底哪一步出了问题。有了这些详细资料,咱们在后面分析问题、找解决方案的时候就方便多了,不是吗? 示例代码: go // 在启动Beego应用时设置日志级别和格式 log.SetLevel(log.DEBUG) log.SetOutput(os.Stdout) func main() { // 初始化并启动Beego应用 app := new(beego.AppConfig) app.Run(":8080") } 在上述代码中,通过log.SetLevel(log.DEBUG)设置日志级别为DEBUG,确保在发生错误时能够获取到足够的信息进行诊断。 四、处理服务不可用错误 当检测到服务不可用错误时,Beego允许开发者通过自定义中间件来响应这些异常情况。通过创建一个中间件函数,可以优雅地处理503错误,并向用户呈现友好的提示信息,例如重试机制、缓存策略或简单的等待页面。 示例代码: go // 定义一个中间件函数处理503错误 func errorMiddleware(c beego.Context) { if c.Ctx.Input.StatusCode() == 503 { c.Data["Status"] = "503 Service Unavailable" c.Data["Message"] = "Sorry, our service is currently unavailable. Please try again later." c.ServeContent("error.html", http.StatusOK) } else { c.Next() } } // 注册中间件 func init() { beego.GlobalControllerInterceptors = append(beego.GlobalControllerInterceptors, new(errorMiddleware)) } 这段代码展示了如何在Beego应用中注册一个全局中间件,用于捕获并处理503状态码。哎呀,你遇到服务挂了的情况了吧?别急,这个中间件挺贴心的,它会给你弹出个温馨的小提示,告诉你:“嘿,稍等一下,我们正忙着处理一些事情呢。”然后,它还会给你展示一个等待页面,上面可能有好看的动画或者有趣的图片,让你在等待的时候也不觉得无聊。这样,你就不会因为服务暂时不可用了而感到烦躁了,体验感大大提升! 五、优化与预防服务不可用 预防服务不可用的关键在于资源管理、负载均衡以及监控系统的建立。Beego虽然本身不直接涉及这些问题,但可以通过集成第三方库或服务来实现。 - 资源管理:合理分配和监控CPU、内存、磁盘空间等资源,避免过度消耗导致服务不可用。 - 负载均衡:利用Nginx、HAProxy等工具对流量进行分发,减轻单点压力。 - 监控系统:使用Prometheus、Grafana等工具实时监控应用性能和资源使用情况,及时发现潜在问题。 六、结论 服务不可用是Web应用中不可避免的一部分,但通过使用Beego框架的特性,结合适当的策略和实践,可以有效地识别、诊断和解决这类问题。嘿,兄弟!想做个靠谱的Web应用吗?那可得注意了,你得时刻盯着点,别让你的应用出岔子。得给资源好好规划规划,别让服务器喘不过气来。还有,万一哪天程序出错了,你得有个应对的机制,别让小问题搞大了。这三样,监控、资源管理和错误处理,可是你稳定可靠的三大法宝!别忘了它们,你的应用才能健健康康地跑起来!
2024-10-10 16:02:03
102
月影清风
Kafka
...afka在金融领域的应用与挑战 随着大数据技术的快速发展,金融机构对实时数据处理的需求日益增长。Apache Kafka凭借其强大的实时数据处理能力,已成为金融行业构建实时数据流处理系统的重要工具。本文将深入探讨Kafka在金融领域的应用案例,以及面对的挑战与解决方案。 应用案例:交易数据实时分析 在金融交易场景中,Kafka被广泛应用于实时交易数据的收集、传输与分析。例如,银行和证券公司通过Kafka收集股票价格、订单信息、交易日志等实时数据,然后利用流处理框架如Apache Flink或KSQL进行实时分析,以快速识别市场趋势、异常交易或潜在的风险点。这种实时分析能力对于金融机构提升运营效率、加强风险管理具有重要意义。 面临的挑战 1. 数据隐私与合规性:金融行业对数据隐私和合规性有着极高的要求。在使用Kafka处理敏感数据时,必须确保数据传输的安全性,遵守相关法律法规,如GDPR、CCPA等。 2. 高可用性与容错性:金融系统要求极高可用性,任何数据丢失或服务中断都可能导致重大经济损失。因此,Kafka集群需要具备高度的可扩展性、容灾能力和故障恢复机制。 3. 性能优化与成本控制:金融交易数据量庞大,对处理速度和存储容量有极高要求。如何在保证性能的同时,合理控制成本,成为金融机构面临的挑战。 解决方案与展望 1. 加密与认证:采用SSL/TLS协议加密数据传输,使用OAuth2等认证机制保护敏感数据,确保数据在Kafka集群内外的安全流通。 2. 容灾与备份:建立多数据中心的Kafka集群,通过副本复制和ZooKeeper协调,实现数据的高可用性和快速恢复。同时,定期备份数据,确保在灾难发生时能够迅速恢复服务。 3. 性能优化与成本管理:通过优化Kafka配置、使用高效的索引机制、引入缓存策略等方式提高数据处理速度。同时,采用云服务提供的弹性计算资源,根据业务需求动态调整集群规模,实现成本效益最大化。 随着金融行业数字化转型的加速,Kafka将继续发挥其不可或缺的作用。未来,随着技术的不断进步,Kafka在金融领域的应用将更加深入,同时也将面临新的挑战,如边缘计算、人工智能融合等,这些都将推动Kafka技术的发展和创新。
2024-08-11 16:07:45
52
醉卧沙场
Kafka
... 三、代码示例 如何检测和修复问题 为了更直观地理解这个问题及其解决方法,下面我们将通过一些简单的代码示例来演示如何在Kafka环境中检测并修复这类问题。 示例代码1:检查和修复日志段状态 首先,我们需要使用Kafka提供的命令行工具kafka-log-consumer来检查日志段的状态。以下是一个基本的命令示例: bash 连接到Kafka集群 bin/kafka-log-consumer.sh --zookeeper localhost:2181 --topic your-topic-name --group your-group-name 检查特定日志段的状态 bin/kafka-log-consumer.sh --zookeeper localhost:2181 --topic your-topic-name --group your-group-name --log-segment-state INVALID 如果发现特定日志段的状态为“INVALID”,可以尝试使用kafka-log-cleaner工具来修复问题: bash 启动日志清理器,修复日志段 bin/kafka-log-cleaner.sh --zookeeper localhost:2181 --topic your-topic-name --group your-group-name --repair 示例代码2:调整日志清理策略 对于日志清理策略的调整,可以通过修改Kafka配置文件server.properties来实现。以下是一个示例配置,用于延长日志段的保留时间: properties 延长日志段保留时间 log.retention.hours=24 确保在进行任何配置更改后,重启Kafka服务器以使更改生效: bash 重启Kafka服务器 service kafka-server-start.sh config/server.properties 四、最佳实践与预防措施 为了预防“InvalidProducerGroupLogPartitionLogSegmentState”错误的发生,建议采取以下最佳实践: - 定期监控:使用Kafka监控工具(如Kafka Manager)定期检查集群状态,特别是日志清理和存储情况。 - 合理配置:根据实际业务需求合理配置Kafka的参数,如日志清理策略、备份策略等,避免过度清理导致数据丢失。 - 容错机制:设计具有高容错性的生产者和消费者逻辑,能够处理临时网络中断或其他不可预测的错误。 - 定期维护:执行定期的集群健康检查和日志清理任务,及时发现并解决问题。 五、结语 从失败到成长 面对“InvalidProducerGroupLogPartitionLogSegmentState”这样的问题,虽然它可能会带来暂时的困扰,但正是这些挑战促使我们深入理解Kafka的工作机制和最佳实践。哎呀,学着怎么识别问题,然后把它们解决掉,这事儿可真挺有意思的!不仅能让你的电脑或者啥设备运行得更稳当,还不停地长本事,就像个技术侦探一样,对各种情况都能看得透透的。这不是简单地提升技能,简直是开挂啊!记住,每一次挑战都是成长的机会,让我们在技术的道路上不断前行。
2024-08-28 16:00:42
107
春暖花开
转载文章
...目录 前言 一、数字识别的模型训练 1.下载训练集 2.对数据进行调整 2.1 将ubyte格式转为jpg格式 2.2 将图片按照标签分类到具体文件夹 2.3 数据存在的缺陷 2.4 优化建议(核心) 二、模型训练 三、项目实现 1. 代码实现 2. 采用器件 2. 注意事项 总结 前言 第一次接触OpenMV也是第一次将理论用于实践,是老师让我实现的一个小测验,这几天完成后决定写下完整的过程。本文主要是当缝合怪,借鉴和参考了其他人的代码再根据我个人设备进行了一定的调整,此外还包括了我自身实践过程中的一些小意外。 !!!一定要根据个人器件型号和个人设备来参考 一、数字识别的模型训练 1.下载训练集 研究期间,我发现大部分人以及官网教程采用的都是自己拍摄照片再进行网络训练,存在的缺陷就是数据集较小不全面、操作繁琐。个人认为如果是对标准的数字进行识别,自己手动拍取照片进行识别足够了。但想要应用于更广泛的情况,应该寻找更大的数据集,所以我找到了国外手写数字的数据集MNIST。建议四个文件都下载 数据链接:MINIST数据集 2.对数据进行调整 2.1 将ubyte格式转为jpg格式 代码参考链接:python将ubyte格式的MNIST数据集转成jpg图片格式并保存 import numpy as npimport cv2import osimport structdef trans(image, label, save):image位置,label位置和转换后的数据保存位置if 'train' in os.path.basename(image):prefix = 'train'else:prefix = 'test'labelIndex = 0imageIndex = 0i = 0lbdata = open(label, 'rb').read()magic, nums = struct.unpack_from(">II", lbdata, labelIndex)labelIndex += struct.calcsize('>II')imgdata = open(image, "rb").read()magic, nums, numRows, numColumns = struct.unpack_from('>IIII', imgdata, imageIndex)imageIndex += struct.calcsize('>IIII')for i in range(nums):label = struct.unpack_from('>B', lbdata, labelIndex)[0]labelIndex += struct.calcsize('>B')im = struct.unpack_from('>784B', imgdata, imageIndex)imageIndex += struct.calcsize('>784B')im = np.array(im, dtype='uint8')img = im.reshape(28, 28)save_name = os.path.join(save, '{}_{}_{}.jpg'.format(prefix, i, label))cv2.imwrite(save_name, img)if __name__ == '__main__':需要更改的文件路径!!!!!!此处是原始数据集位置train_images = 'C:/Users/ASUS/Desktop/train-images.idx3.ubyte'train_labels = 'C:/Users/ASUS/Desktop/train-labels.idx1.ubyte'test_images ='C:/Users/ASUS/Desktop/t10k-images.idx3.ubyte'test_labels = 'C:/Users/ASUS/Desktop/t10k-labels.idx1.ubyte'此处是我们将转化后的数据集保存的位置save_train ='C:/Users/ASUS/Desktop/MNIST/train_images/'save_test ='C:/Users/ASUS/Desktop/MNIST/test_images/'if not os.path.exists(save_train):os.makedirs(save_train)if not os.path.exists(save_test):os.makedirs(save_test)trans(test_images, test_labels, save_test)trans(train_images, train_labels, save_train) 2.2 将图片按照标签分类到具体文件夹 文章参考链接:python实现根据文件名自动分类转移至不同的文件夹 注意:为了适合这个数据集和我的win11系统对代码进行了一点调整,由于数据很多如果只需要部分数据一定要将那些数据单独放在一个文件夹。 导入库import osimport shutil 当前文件夹所在的路径,使用时需要进行修改current_path = 'C:/Users/ASUS/Desktop/MNIST/test'print('当前文件夹为:' + current_path) 读取该路径下的文件filename_list = os.listdir(current_path) 建立文件夹并且进行转移 假设原图片名称 test_001_2.jpgfor filename in filename_list:name1, name2, name3 = filename.split('_') name1 = test name2 = 001 name3 = 2.jpgname4, name5 = name3.split('.') name4 = 2 name5 = jpgif name5 == 'jpg' or name5 == 'png':try:os.mkdir(current_path+'/'+name4)print('成功建立文件夹:'+name4)except:passtry:shutil.move(current_path+'/'+filename, current_path+'/'+name4[:])print(filename+'转移成功!')except Exception as e:print('文件 %s 转移失败' % filename)print('转移错误原因:' + e)print('整理完毕!') 2.3 数据存在的缺陷 数据集内的图片数量很多,由于后面介绍的云端训练的限制,只能采用部分数据(本人采用的是1000张,大家可以自行增减数目)。 数据集为国外的数据集,很多数字写的跟我们不一样。如果想要更好的适用于我们国内的场景,可以对数据集进行手动的筛选。下面是他们写的数字2: 可以看出跟我们的不一样,不过数据集中仍然存在跟常规书写的一样的,我们需要进行人为的筛选。 2.4 优化建议(核心) 分析发现,部分数字精度不高的原因主要是国外手写很随意,我们可以通过调整网络参数(如下)、人为筛选数据(如上)、增大数据集等方式进行优化。 二、模型训练 主要参考文章:通过云端自动生成openmv的神经网络模型,进行目标检测 !!!唯一不同的点是我图像参数设置的是灰度而不是上述文章的RGB。 下面是我模型训练时的参数设置(仅供参考): 通过混淆矩阵可以看出,主要的错误在于数字2、6、8。我们可以通过查看识别错误的数字来分析可能的原因。 三、项目实现 !!!我们需要先将上述步骤中导出文件中的所有内容复制粘贴带OpenMV中自带的U盘中。然后将其中的.py文件名称改为main 1. 代码实现 本人修改后的完整代码展示如下,使用的是OpenMV IDE(官网下载): 数字识别后控制直流电机转速from pyb import Pin, Timerimport sensor, image, time, os, tf, math, random, lcd, uos, gc 根据识别的数字输出不同占比的PWM波def run(number):if inverse == True:ain1.low()ain2.high()else:ain1.high()ain2.low()ch1.pulse_width_percent(abs(number10)) 具体参数调整自行搜索sensor.reset() 初始化感光元件sensor.set_pixformat(sensor.GRAYSCALE) set_pixformat : 设置像素模式(GRAYSCALSE : 灰色; RGB565 : 彩色)sensor.set_framesize(sensor.QQVGA2) set_framesize : 设置处理图像的大小sensor.set_windowing((128, 160)) set_windowing : 设置提取区域大小sensor.skip_frames(time = 2000) skip_frames :跳过2000ms再读取图像lcd.init() 初始化lcd屏幕。inverse = False True : 电机反转 False : 电机正转ain1 = Pin('P1', Pin.OUT_PP) 引脚P1作为输出ain2 = Pin('P4', Pin.OUT_PP) 引脚P4作为输出ain1.low() P1初始化低电平ain2.low() P4初始化低电平tim = Timer(2, freq = 1000) 采用定时器2,频率为1000Hzch1 = tim.channel(4, Timer.PWM, pin = Pin('P5'), pulse_width_percent = 100) 输出通道1 配置PWM模式下的定时器(高电平有效) 端口为P5 初始占空比为100%clock = time.clock() 设置一个时钟用于追踪FPS 加载模型try:net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (641024)))except Exception as e:print(e)raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') 加载标签try:labels = [line.rstrip('\n') for line in open("labels.txt")]except Exception as e:raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') 不断的进行运行while(True):clock.tick() 更新时钟img = sensor.snapshot().binary([(0,64)]) 抓取一张图像以灰度图显示lcd.display(img) 拍照并显示图像for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5): 初始化最大值和标签max_num = -1max_index = -1print("\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())img.draw_rectangle(obj.rect()) 预测值和标签写成一个列表predictions_list = list(zip(labels, obj.output())) 输出各个标签的预测值,找到最大值进行输出for i in range(len(predictions_list)):print('%s 的概率为: %f' % (predictions_list[i][0], predictions_list[i][1]))if predictions_list[i][1] > max_num:max_num = predictions_list[i][1]max_index = int(predictions_list[i][0])run(max_index)print('该数字预测为:%d' % max_index)print('FPS为:', clock.fps())print('PWM波占空比为: %d%%' % (max_index10)) 2. 采用器件 使用的器件为OpenMV4 H7 Plus和L298N以及常用的直流电机。关键是找到器件的引脚图,再进行简单的连线即可。 参考文章:【L298N驱动模块学习笔记】–openmv驱动 参考文章:【openmv】原理图 引脚图 2. 注意事项 上述代码中我用到了lcd屏幕,主要是为了方便离机操作。使用过程中,OpenMV的lcd初始化时会重置端口,所有我们在输出PWM波的时候一定不要发生引脚冲突。我们可以在OpenMV官网查看lcd用到的端口: 可以看到上述用到的是P0、P2、P3、P6、P7和P8。所有我们输出PWM波时要避开这些端口。下面是OpenMV的PWM资源: 总结 本人第一次自己做东西也是第一次使用python,所以代码和项目写的都很粗糙,只是简单的识别数字控制直流电机。我也是四处借鉴修改后写下的大小,这篇文章主要是为了给那些像我一样的小白们提供一点帮助,减少大家查找资料的时间。模型的缺陷以及改进方法上述中已经说明,如果我有写错或者大家有更好的方法欢迎大家告诉我,大家一起进步! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_57100435/article/details/130740351。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-10 08:44:41
282
转载
JQuery插件下载
...Logo,以增加品牌识别度和视觉吸引力。你可以自由选择Logo的位置,无论是中心还是边缘,都能精准定位。除了Logo自定义功能外,插件还提供了丰富的文字样式选项。你可以调整文字的颜色、字体大小等属性,确保二维码在各种背景下的可读性。这使得二维码不仅美观,而且实用。最重要的是,这款插件操作简便,兼容多种浏览器,确保了跨平台的一致体验。无论你是网站开发者,还是需要频繁使用二维码的企业主,这款插件都能满足你的需求。通过它,你可以轻松创建出既美观又实用的二维码,提升用户体验,增强品牌形象。总之,“可自定义logo的jQuery生成二维码插件”是一款强大而灵活的工具,旨在简化二维码制作过程,让你的项目更加出色。 点我下载 文件大小:80.76 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2025-01-03 11:15:29
118
本站
JQuery插件下载
...根据图片的实际大小和形状进行自适应调整,带来流畅且富有创意的视觉反馈。尤其值得一提的是,该插件支持动态圆角效果,这意味着当鼠标移动至图片边缘时,边框可以呈现出平滑过渡的圆角样式,增强用户体验。同时,它还兼顾了对老旧浏览器如IE8的兼容性,确保即使在早期版本的浏览器中也能保证一致的良好表现。总的来说,jquery.focus-follow.js是一个轻量级、响应灵敏且极具创新性的图片交互增强插件,适用于各类网站设计,尤其是需要突出图片展示或提供丰富用户界面体验的场景。只需简单集成到项目中,即可轻松实现让访客眼前一亮的方向感知鼠标滑过图片边框特效。 点我下载 文件大小:43.63 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-07-23 10:54:40
137
本站
JQuery插件下载
...网站在iOS7时代的应用程序设计风格,旨在通过高度定制化的交互方式,提升用户体验。此插件的核心功能在于,当用户点击特定按钮时,当前页面呈现出3D倾斜的视觉效果,同时隐藏侧边栏从页面边缘优雅地滑出,实现无缝切换。插件通过巧妙融合jQuery的强大事件处理能力与CSS3的动画特效,实现了平滑且流畅的动画过渡,确保了在各种设备和浏览器上的兼容性与性能优化。开发者可以轻松配置插件的各种参数,包括动画速度、侧边栏的显示位置、以及与主内容区域的交互逻辑等,以适应不同的设计需求与应用场景。此外,该插件的设计注重用户体验的细节,确保在隐藏侧边栏的同时,不牺牲页面的可访问性和信息架构的清晰性。它支持自定义图标或文字提示,帮助用户快速识别侧边栏的功能,并在需要时轻松恢复主内容区域的完整视图。总之,“jQuery和css3超酷页面3D倾斜打开隐藏侧边栏特效”插件不仅提供了吸引人的视觉效果,还兼顾了功能性和易用性,是现代网页设计中实现高级交互效果的理想选择。无论是增强现有网站的用户体验,还是作为创新项目的一部分,这款插件都能带来显著的视觉冲击力和交互趣味性。 点我下载 文件大小:270.71 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-08-19 20:45:47
86
本站
Python
...正则表达式的更多高级应用。近日,随着大数据和机器学习领域的发展,对文本数据预处理的需求日益增强,正则表达式成为了不可或缺的工具。例如,在自然语言处理(NLP)项目中,常常需要利用正则表达式进行分词、去除标点符号、匹配特定模式的词汇等操作。 另外,针对网络安全领域,正则表达式同样发挥着关键作用。在Web爬虫开发中,开发者们常借助正则表达式提取网页中的URL、邮箱地址以及其他敏感信息,以确保网络环境的安全并提升数据抓取效率。近期一篇来自《信息安全与技术》期刊的研究报告指出,通过对复杂正则表达式的优化运用,研究人员成功提升了对恶意软件特征码的检测精度和速度。 同时,Python社区也在持续优化其内置的re模块,不断推出新的特性以适应更广泛的应用场景。比如在最新版本的Python中,正则表达式引擎已支持Unicode 13标准,能够更好地处理全球多种语言的文本匹配需求。 总之,掌握好Python正则表达式的精髓,不仅可以提升日常编程中的文本处理能力,更能紧跟时代步伐,在大数据分析、网络安全、自然语言处理等领域实现高效精准的数据挖掘与分析。因此,建议读者继续关注Python正则表达式的最新发展动态,并通过实践逐步深入学习更多复杂的正则表达式用法及其实战应用场景。
2023-12-18 14:47:10
168
编程狂人
CSS
...S世界中,边框属性的应用远不止于创建三角形形状。近年来,随着Web设计技术的不断进步和CSS3新特性的引入,开发者能够利用border属性实现更多创意十足且视觉效果惊艳的设计元素。例如,通过结合使用伪元素、box-shadow以及多种边框样式,可以构建复杂的图形和图标,甚至模拟出三维立体效果。 近期,有前端开发者分享了一种新颖的技巧,利用border-radius配合透明边框制作出了动态悬浮按钮效果,这种效果在鼠标悬停时能自然过渡,为用户带来更佳的交互体验。同时,在响应式布局中,灵活运用border-collapse属性合并表格边框,对于优化移动端网页显示也起到了关键作用。 此外,CSS Shapes模块允许设计师通过border属性定义非矩形区域,使得文本可以围绕这些自定义形状流动,大大增强了网页排版的艺术性和表现力。而在无障碍网页设计领域,合理设置元素的outline(轮廓)替代传统的border,有助于提升页面可访问性,确保视障用户也能准确感知焦点所在位置。 总之,深入理解和掌握CSS border属性的各种用法,不仅能满足日常开发中的基础需求,还能助您在Web设计与开发的道路上不断创新和突破,紧跟时代潮流,打造更为优美且功能完善的用户体验。
2023-11-15 22:30:33
460
程序媛
Python
...代科技和研究中的实际应用。近期,《自然》杂志的一篇报道指出,在生物信息学领域,信息熵已被用于评估基因序列复杂性和功能区域预测,研究人员通过计算DNA或蛋白质序列的信息熵,揭示了物种进化过程中的遗传信息变化规律。 另一方面,深度学习领域的研究者们也正在积极探索信息熵在优化模型性能上的作用。2021年的一项研究中,科学家们运用交叉熵作为损失函数改进神经网络模型的分类准确率,特别是在图像识别和自然语言处理任务上,这一策略有效降低了模型过拟合风险并提高了泛化能力。 此外,信息熵还在金融风控、网络流量分析等领域发挥着重要作用。例如,金融机构利用交易数据的信息熵来评估市场风险与不确定性,帮助投资者做出更精准的投资决策。而在网络安全方面,信息熵被用来检测异常网络行为,通过量化网络流量的随机性,可有效发现潜在的攻击行为。 总之,从理论到实践,信息熵无处不在,它不仅是一个强大的数学工具,更是推动各领域技术进步的关键要素。随着算法和计算能力的不断提升,信息熵的应用将更加广泛且深入,值得广大科研工作者和工程师持续关注和研究。
2023-08-02 10:52:00
222
数据库专家
转载文章
...yJS , 一款广泛应用于前端开发的JavaScript代码压缩工具,用于减少文件体积、提高加载速度。在文章中提到的场景下,UglifyJS默认不支持ES6语法,因此需要配合Babel等转译工具将ES6代码转换为可被其识别和处理的ES5语法。 Babel-loader , Webpack中的一个加载器,它能够调用Babel对JavaScript源代码进行编译转换。在Webpack构建流程中,当遇到.js文件时,babel-loader会根据预设(presets)和插件(plugins)配置来解析并转换ES6及以上版本的JavaScript语法到指定的目标环境(如ES5),从而确保代码能够在不同浏览器或环境中正常运行。 Webpack , 一款流行的前端模块打包工具,可以将项目中的各种静态资源(包括JavaScript、CSS、图片等)进行模块化管理,并通过一系列加载器和插件进行处理(如转译、压缩、优化等),最终输出便于部署的静态资源包。在本文中,开发者通过修改Webpack配置中的babel-loader规则,将第三方库dom7包含进include路径列表,确保其中的ES6语法也能正确地被转译为ES5语法,以便于后续使用UglifyJS进行代码压缩时不发生错误。
2023-07-11 23:10:34
49
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
cal
- 显示当前月份的日历。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"