前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[素因子]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...n中一个或多个数的素因子,a1,a2,..,an关于p的次数分别为r1,r2,..,rn,在r1,r2,..,rn中最大值为rc1=rc2=..=rcm=rmax,最小值为rd1=rd2=..=rdt=rmin,即r1,r2,..,rn中有m个数所含p的次数为最大值,有t个数所含p的次数为最小值。例如:4,12,16中关于素因子2的次数分别为2,2,4,有1个数所含2的次数为最大值,有2个数所含2的次数为最小值;关于素因子3的次数分别为0,1,0,有1个数所含3的次数为最大值,有2个数所含3的次数为最小值。 对最大公约数有,只包含a1,a2,..,an中含有的素因子,且每个素因子次数为a1,a2,..,an中该素因子的最低次数,最低次数为0表示不包含[1]。 对最小公倍数有,只包含a1,a2,..,an中含有的素因子,且每个素因子次数为a1,a2,..,an中该素因子的最高次数[1]。 定理1:[a1,a2,..,an]=M/(M/a1,M/a2,..,M/an),其中M为a1,a2,..,an的乘积,a1,a2,..,an为正整数。 例如:对于4,6,8,10,有[4,6,8,10]=120,而M=46810=1920,M/(M/a1,M/a2,..,M/an) =1920/(6810,4810,4610,468)=1920/16=120。 证明: M/a1,M/a2,..,M/an中p的次数都大于等于r1+r2+..+rn-rmax,且有p的次数等于r1+r2+..+rn-rmax的。这是因为 (1) M/ai中p的次数为r1+r2+..+rn-ri,因而M/a1,M/a2,..,M/an中p的次数最小为r1+r2+..+rn-rmax。 (2) 对于a1,a2,..,an中p的次数最大的项aj(1项或多项),M/aj中p的次数为r1+r2+..+rn-rmax。 或者对于a1,a2,..,an中p的次数最大的项aj,M/aj中p的次数小于等于M/ak,其中ak为a1,a2,..,an中除aj外其他的n-1个项之一,而M/aj中p的次数为r1+r2+..+rn-rmax。 因此,(M/a1,M/a2,..,M/an)中p的次数为r1+r2+..+rn-rmax,从而M/(M/a1,M/a2,..,M/an)中p的次数为rmax。 上述的p并没有做任何限制。由于a1,a2,..,an中包含的所有素因子在M/(M/a1,M/a2,..,M/an)中都为a1,a2,..,an中的最高次数,故有[a1,a2,..,an]=M/(M/a1,M/a2,..,M/an)成立。 得证。 定理1对于2个数的情况为[a,b]=ab/(ab/a,ab/b)=ab/(b,a)=ab/(a,b),即[a,b]=ab/(a,b)。因此,定理1为2个数最小公倍数公式[a,b]=ab/(a,b)的扩展。利用定理1能够把求多个数的最小公倍数转化为求多个数的最大公约数。 2.多个数最大公约数的算法实现 根据定理1,求多个数最小公倍数可以转化为求多个数的最大公约数。求多个数的最大公约数(a1,a2,..,an)的传统方法是多次求两个数的最大公约数,即 (1) 用辗转相除法[2]计算a1和a2的最大公约数(a1,a2) (2) 用辗转相除法计算(a1,a2)和a3的最大公约数,求得(a1,a2,a3) (3) 用辗转相除法计算(a1,a2,a3)和a4的最大公约数,求得(a1,a2,a3,a4) (4) 依此重复,直到求得(a1,a2,..,an) 上述方法需要n-1次辗转相除运算。 本文将两个数的辗转相除法扩展为n个数的辗转相除法,即用一次n个数的辗转相除法计算n个数的最大公约数,基本方法是采用反复用最小数模其它数的方法进行计算,依据是下面的定理2。 定理2:多个非负整数a1,a2,..,an,若aj>ai,i不等于j,则在a1,a2,..,an中用aj-ai替换aj,其最大公约数不变,即 (a1,a2,..,aj-1,aj,aj+1,..an)=(a1,a2,..,aj-1,aj-ai,aj+1,..an)。 例如:(34,24,56,68)=(34,24,56-34,68)=(34,24,22,68)。 证明: 根据最大公约数的交换律和结合率,有 (a1,a2,..,aj-1,aj,aj+1,..an)= ((ai,aj),(a1,a2,..,ai-1,ai+1,..aj-1,aj+1,..an))(i>j情况),或者 (a1,a2,..,aj-1,aj,aj+1,..an)= ((ai,aj),(a1,a2,..,aj-1,aj+1,..ai-1,ai+1,..an))(i<j情况)。 而对(a1,a2,..,aj-1,aj-ai,aj+1,..an),有 (a1,a2,..,aj-1,aj-ai,aj+1,..an)= ((ai, aj-ai),( a1,a2,..,ai-1,ai+1,.. aj-1,aj+1,..an))(i>j情况),或者 (a1,a2,..,aj-1,aj-ai,aj+1,..an)= ((ai, aj-ai),( a1,a2,..,aj-1,aj+1,.. ai-1,ai+1,..an))(i<j情况)。 因此只需证明(ai,aj)=( ai, aj-ai)即可。 由于(aj-ai)= aj-ai,因此ai,aj的任意公因子必然也是(aj-ai)的因子,即也是ai,( aj-ai)的公因子。由于aj = (aj-ai)+ai,因此ai,( aj-ai)的任意公因子必然也是aj的因子,即也是ai,aj的公因子。所以,ai,aj的最大公约数和ai,(aj-ai) 的最大公约数必须相等,即(ai,aj)=(ai,aj-ai)成立。 得证。 定理2类似于矩阵的初等变换,即 令一个向量的最大公约数为该向量各个分量的最大公约数。对于向量<a1,a2,..,an>进行变换:在一个分量中减去另一个分量,新向量和原向量的最大公约数相等。 求多个数的最大公约数采用反复用最小数模其它数的方法,即对其他数用最小数多次去减,直到剩下比最小数更小的余数。令n个正整数为a1,a2,..,an,求多个数最大共约数的算法描述为: (1) 找到a1,a2,..,an中的最小非零项aj,若有多个最小非零项则任取一个 (2) aj以外的所有其他非0项ak用ak mod aj代替;若没有除aj以外的其他非0项,则转到(4) (3) 转到(3) (4) a1,a2,..,an的最大公约数为aj 例如:对于5个数34, 56, 78, 24, 85,有 (34, 56, 78, 24, 85)=(10,8,6,24,13)=(4,2,6,0,1)=(0,0,0,0,1)=1, 对于6个数12, 24, 30, 32, 36, 42,有 (12, 24, 30, 32, 36, 42)=(12,0,6,8,0,6)=(0,0,0,2,0,6)=(0,0,0,2,0,0)=2。 3. 多个数最小共倍数的算法实现 求多个数最小共倍数的算法为: (1) 计算m=a1a2..an (2) 把a1,a2,..,an中的所有项ai用m/ai代换 (3) 找到a1,a2,..,an中的最小非零项aj,若有多个最小非零项则任取一个 (4) aj以外的所有其他非0项ak用ak mod aj代替;若没有除aj以外的其他非0项,则转到(6) (5) 转到(3) (6) 最小公倍数为m/aj 上述算法在VC环境下用高级语言进行了编程实现,通过多组求5个随机数最小公倍数的实例,与标准方法进行了比较,验证了其正确性。标准计算方法为:求5个随机数最小公倍数通过求4次两个数的最小公倍数获得,而两个数的最小公倍数通过求两个数的最大公约数获得。 5.结论 计算多个数的最小公倍数是常见的基本运算。n个数的最小公倍数可以表示成另外n个数的最大公约数,因而可以通过求多个数的最大公约数计算。求多个数最大公约数可采用向量转换算法一次性求得。 本篇文章为转载内容。原文链接:https://blog.csdn.net/u012349696/article/details/21233457。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-04 16:29:43
39
转载
Python
Python
...-1;若n含有重复质因子,则μ(n)等于0;若n为质数的乘积,则μ(n)等于+1。在文中提到的正负交替数列与莫比乌斯函数之间存在联系,这种函数可以用于素数分解、约数分析等领域。 列表(List) , 在Python编程语言中,列表是一种基本的数据结构,它可以存储一系列有序的元素,并且支持动态增删改查操作。在本文中,我们使用列表seq来存储生成的正负交替数列,通过append()方法将计算得到的新元素添加至列表末尾,从而实现序列的构建。 循环语句(Loop Statement) , 在编程中,循环语句是一种控制结构,允许程序根据条件重复执行一段代码。在本文所给出的Python代码片段中,使用了for循环语句,从1遍历到参数n,每次迭代时更新数列元素的正负值并将其追加到列表seq中,直至完成指定长度的正负交替数列的创建。 函数(Function) , 在编程中,函数是一段可重用的代码块,接受输入参数并产生输出结果。本文介绍了一个名为alternating_sequence()的函数,该函数接收一个参数n,基于此参数值生成一个长度为n的正负交替数列,展示了Python中如何定义和使用函数以封装特定逻辑,方便后续调用和复用。
2023-01-27 13:46:53
343
电脑达人
Kafka
...在Kafka中,复制因子是指每个主题分区的副本数量。它决定了消息在集群中被复制的次数,从而影响了数据的冗余度和容错能力。例如,如果一个主题的复制因子设置为3,则该主题的每个分区都会在不同broker上保存3个副本。在文章中提到的场景中,由于尝试创建的主题设置了与实际集群规模不符的复制因子,引发了UnknownReplicaAssignmentException异常。解决方法是将复制因子调整为与当前Kafka集群规模相匹配的值,确保所有指定的副本都能成功分配到存在的broker上。
2023-02-04 14:29:39
435
寂静森林
Kafka
...有两个分区和一个副本因子的Topic: bash bin/kafka-topics.sh --create --bootstrap-server localhost:9092 --replication-factor 1 --partitions 2 --topic my-topic 上述命令会告诉Kafka在本地服务器上创建一个名为my-topic的主题,并指定其拥有两个分区和一个副本。 3. 查看Topic列表 创建了Topic之后,我们可能想要查看当前Kafka集群中存在的所有Topic。执行如下命令: bash bin/kafka-topics.sh --list --bootstrap-server localhost:9092 屏幕上将会列出所有已存在的Topic名称,其中包括我们刚才创建的my-topic。 4. 查看Topic详情 进一步地,我们可以获取某个Topic的详细信息,包括分区数量、副本分布等。比如查询my-topic的详细信息: bash bin/kafka-topics.sh --describe --bootstrap-server localhost:9092 --topic my-topic 此命令返回的结果将包含每个分区的详细信息,如分区编号、领导者(Leader)、副本集及其状态等。 5. 修改Topic配置 有时我们需要调整Topic的分区数或者副本因子,这时可以使用kafka-topics.sh的--alter选项: bash bin/kafka-topics.sh --alter --bootstrap-server localhost:9092 --topic my-topic --partitions 3 这个命令将会把my-topic的分区数量从原来的2个增加到3个。 6. 删除Topic 若某个Topic不再使用,可通过以下命令将其删除: bash bin/kafka-topics.sh --delete --bootstrap-server localhost:9092 --topic my-topic 但请注意,删除Topic是一个不可逆的操作,一旦删除,该Topic下的所有消息也将一并消失。 总结一下,Kafka提供的命令行工具极大地简化了我们在日常运维中的管理工作。无论是创建、查看、修改还是删除话题,你只需轻松输入几条命令,就像跟朋友聊天一样简单,就能搞定一切!在这个过程中,咱们不仅能实实在在地感受到Kafka那股灵活又顺手的劲儿,更能深深体验到身为开发者或是运维人员,那种对系统玩转于掌心、一切尽在掌握中的爽快与乐趣。当然啦,遇到更复杂的场合,咱们还能使上编程API这个神器,对场景进行更加精细巧妙的管理和操控。这可是我们在未来学习和实践中一个大有可为、值得好好琢磨探索的领域!
2023-11-26 15:04:54
457
青山绿水
Mahout
...分解为用户和物品的隐因子矩阵,从而揭示潜在的用户兴趣和物品特性,用于生成精准的推荐结果。
2023-01-22 17:10:27
67
凌波微步
Hive
...网络中断导致数据复制因子不足或者数据块损坏,都可能导致Hive表数据不可用。 (3)并发写入冲突 多线程并发写入Hive表时,如果未做好事务隔离和并发控制,可能导致数据覆盖或损坏。 3. 数据损坏的影响及应对思考 数据损坏直接影响业务的正常运行,可能导致数据分析结果错误、报表异常、甚至业务决策失误。因此,发现数据损坏后,首要任务是尽快定位问题根源,并采取相应措施: - 立即停止受影响的服务,防止进一步的数据写入和错误传播。 - 备份当前状态,为后续分析和恢复提供依据。 - 根据日志排查,查找是否有异常操作记录或其他相关线索。 4. 数据恢复实战 (1)元数据恢复 对于元数据损坏,通常需要从备份中恢复,或重新执行DDL语句以重建表结构和分区信息。 sql -- 重新创建分区(假设已知分区详情) ALTER TABLE my_table ADD PARTITION (dt='2022-01-01') LOCATION '/path/to/backup/data'; (2)HDFS数据恢复 对于HDFS层的数据损坏,可利用Hadoop自带的hdfs fsck命令检测并修复损坏的文件块。 bash hdfs fsck /path/to/hive/table -blocks -locations -files -delete 此外,如果存在完整的数据备份,也可直接替换损坏的数据文件。 (3)并发控制优化 对于因并发写入引发的数据损坏,应在设计阶段就充分考虑并发控制策略,例如使用Hive的Transactional Tables(ACID特性),确保数据的一致性和完整性。 sql -- 开启Hive ACID支持 SET hive.support.concurrency=true; SET hive.txn.manager=org.apache.hadoop.hive.ql.lockmgr.DbTxnManager; 5. 结语 面对Hive表数据损坏的挑战,我们需要具备敏锐的问题洞察力和快速的应急响应能力。同时,别忘了在日常运维中做好预防工作,这就像给你的数据湖定期打个“小强针”,比如按时备份数据、设立警戒线进行监控告警、灵活配置并发策略等等,这样一来,咱们的数据湖就能健健康康,稳稳当当地运行啦。说实在的,对任何一个大数据平台来讲,数据安全和完整性可是咱们绝对不能马虎、时刻得捏在手心里的“命根子”啊!
2023-09-09 20:58:28
642
月影清风
Mahout
...进行分解,得到用户隐因子向量和商品隐因子向量,从而实现对未知用户-商品交互评分的预测,进一步给出个性化推荐。在文中,Mahout库中的ALS算法被用来构建推荐模型,并通过调整参数如隐藏层维度来优化模型性能。
2023-01-30 16:29:18
121
风轻云淡-t
Java
...一个数能被分解成两个因子,至少有一个因子会小于等于平方根。这种优化减少了不必要的计算,提升了判断素数的效率。
2025-03-17 15:54:40
61
林中小径
转载文章
...命的影响,用方差膨胀因子来处理的话会非常繁琐。通过正则化处理如Lasso回归,能够产生某些严格等于0的系数,从而达到变量筛选的目的。接下来以Lasso为例,首先用LassoCV来找到最优的alpha。由于statsmodels中的ols的fit_regularized方法没有很好的实现,所以用sklearn中linear_model模块来进行建模 from sklearn.preprocessing import StandardScaler sklearn进行线性回归前必须要进行标准化from sklearn.linear_model import LassoCV Lasso的交叉验证方法con_xcols = ['Age', 'Income', 'dist_home_val', 'dist_avg_income']scaler = StandardScaler()X = scaler.fit_transform(raw_1[con_xcols])y = raw_1['avg_exp_ln']lasso_alphas = np.logspace(-3, 0, 100, base = 10)lcv = LassoCV(alphas = lasso_alphas, cv = 10)lcv.fit(X, y)print('best alpha %.4f' % lcv.alpha_)print('the r-square %.4f' % lcv.score(X, y)) 接下来画出不同alpha下的岭迹图,来看alpha值对系数的影响 from sklearn.linear_model import Lassocoefs = []lasso = Lasso()for i in lasso_alphas:lasso.set_params(alpha = i)lasso.fit(X, y)coefs.append(lasso.coef_)ax = plt.gca()ax.plot(lasso_alphas, coefs)ax.set_xscale('log')ax.set_xlabel('$\\alpha$')ax.set_ylabel('coefs value') 从图中可以看到随着alpha的增大,系数不断在减小,有些系数会优先收缩为0,再继续增大时所欲系数都会为0,通过该特性从而达到变量筛选的目的。将LassoCV得到的系数打印出来,可以看到用户月均信用卡支出和当地小区均价、当地人均收入成正比,当地人均收入水平的影响更大。 以上就是线形回归在应用时的注意事项。 本篇文章为转载内容。原文链接:https://blog.csdn.net/baidu_26137595/article/details/123766191。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 15:52:56
106
转载
转载文章
...、镜面反射阿尔法、雾因子(固定功能流水线从镜面反射的阿尔法分量中取得,可编程顶点流水线则从雾寄存器中取得)。顶点数据通过顶点声明定义。 对一些顶点数据的插值取决于当前的着色模式,如下表所示。 着色模式 描述 平面 在平面着色模式下只对雾因子进行插值。对所有其它的插值对象,整个面都使用三角形第一个顶点的颜色。 高洛德 在所有三个顶点间进行线性插值。 根据不同的颜色模型,对漫反射色和镜面反射色的处理是不同的。在RGB颜色模型中,系统在插值时使用红、绿和蓝颜色分量。 颜色的阿尔法成员作为单独的插值对象对待,因为设备驱动程序可以以两种不同的方法实现透明:使用纹理混合或使用点画法(stippling)。 可以用D3DCAPS9结构的ShadeCaps成员确定设备驱动程序支持何种插值。 向量、顶点和四元数 贯穿Microsoft® Direct3D®,顶点用于描述位置和方向。图元中的每个顶点由指定其位置的向量、颜色、纹理坐标和指定其方向的法向量描述。 四元数给三元素向量的[ x, y, z]值增加了第四个元素。用于三维旋转的方法,除了典型的矩阵以外,四元数是另一种选择。四元数表示三维空间中的一根轴及围绕该轴的一个旋转。例如,一个四元数可能表示轴(1,1,2)和1度的旋转。四元数包含了有价值的信息,但它们真正的威力源自可对它们执行的两种操作:合成和插值。 对四元数进行插值与合成它们类似。两个四元数的合成如下表示: 将两个四元数的合成应用于几何体意味着“把几何体绕axis2轴旋转rotation2角度,然后绕axis1轴旋转rotation1角度”。在这种情况下,Q表示绕单根轴的旋转,该旋转是先后将q2和q1应用于几何体的结果。 使用四元数,应用程序可以计算出一条从一根轴和一个方向到另一根轴和另一个方向的平滑、合理的路径。因此,在q1和q2间插值提供了一个从一个方向变化到另一个方向的简单方法。 当同时使用合成与插值时,四元数提供了一个看似复杂而实际简单的操作几何体的方法。例如,设想我们希望把一个几何体旋转到某个给定方向。我们已经知道希望将它绕axis2轴旋转r2度,然后绕axis1轴旋转r1度,但是我们不知道最终的四元数。通过使用合成,我们可以在几何体上合成两个旋转并得到最终单个的四元数。然后,我们可以在原始四元数和合成的四元数间进行插值,得到两者之间的平滑转换。 Direct3D扩展(D3DX)工具库包含了帮助用户使用四元数的函数。例如,D3DXQuaternionRotationAxis函数给一个定义旋转轴的向量增加一个旋转值,并在由D3DXQUTERNION结构定义的四元数中返回结果。另外,D3DXQuaternionMultiply函数合成四元数,D3DXQuaternionSlerp函数在两个四元数间进行球面线性插值(spherical linear interpolation)。 Direct3D应用程序可以使用下列函数简化对四元数的使用。 D3DXQuaternionBaryCentric D3DXQuaternionConjugate D3DXQuaternionDot D3DXQuaternionExp D3DXQuaternionIdentity D3DXQuaternionInverse D3DXQuaternionIsIdentity D3DXQuaternionLength D3DXQuaternionLengthSq D3DXQuaternionLn D3DXQuaternionMultiply D3DXQuaternionNormalize D3DXQuaternionRotationAxis D3DXQuaternionRotationMatrix D3DXQuaternionRotationYawPitchRoll D3DXQuaternionSlerp D3DXQuaternionSquad D3DXQuaternionToAxisAngle Direct3D应用程序可以使用下列函数简化对三成员向量的使用。 D3DXVec3Add D3DXVec3BaryCentric D3DXVec3CatmullRom D3DXVec3Cross D3DXVec3Dot D3DXVec3Hermite D3DXVec3Length D3DXVec3LengthSq D3DXVec3Lerp D3DXVec3Maximize D3DXVec3Minimize D3DXVec3Normalize D3DXVec3Project D3DXVec3Scale D3DXVec3Subtract D3DXVec3Transform D3DXVec3TransformCoord D3DXVec3TransformNormal D3DXVec3Unproject D3DX工具库提供的数学函数中包含了许多辅助函数,可以简化对二成员和四成员向量的使用 http://www.gesoftfactory.com/developer/3DCS.htm 本篇文章为转载内容。原文链接:https://blog.csdn.net/okvee/article/details/3438011。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-24 12:49:42
271
转载
转载文章
...方式,如页拆分、填充因子等。 二、索引的基本概念 索引是一种特殊类型的数据库对象,它与表有着密切的联系。 索引是为检索而存在的。如一些书籍的末尾就专门附有索引,指明了某个关键字在正文中的出现的页码位置,方便我们查找,但大多数的书籍只有目录,目录不是索引,只是书中内容的排序,并不提供真正的检索功能。可见建立索引要单独占用空间;索引也并不是必须要建立的,它们只是为更好、更快的检索和定位关键字而存在。 再进一步说,我们要在图书馆中查阅图书,该怎么办呢?图书馆的前台有很多叫做索引卡片柜的小柜子,里面分了若干的类别供我们检索图书,比如你可以用书名的笔画顺序或者拼音顺序作为查找的依据,你还可以从作者名的笔画顺序或拼音顺序去查询想要的图书,反正有许多检索方式,但有一点很明白,书库中的书并没有按照这些卡片柜中的顺序排列——虽然理论上可以这样做,事实上,所有图书的脊背上都人工的粘贴了一个特定的编号①,它们是以这个顺序在排列。索引卡片中并没有指明这本书摆放在书库中的第几个书架的第几本,仅仅指明了这个特定的编号。管理员则根据这一编号将请求的图书返回到读者手中。这是很形象的例子,以下的讲解将会反复用到它。 SQLS在安装完成之后,安装程序会自动创建master、model、tempdb等几个特殊的系统数据库,其中master是SQLS的主数据库,用于保存和管理其它系统数据库、用户数据库以及SQLS的系统信息,它在SQLS中的地位与WINDOWS下的注册表相当。 master中有一个名为sysindexes的系统表,专门管理索引。SQLS查询数据表的操作都必须用到它,毫无疑义,它是本文主角之一。 查看一张表的索引属性,可以在查询分析器中使用以下命令:select from sysindexes where id=object_id(‘tablename’) ;而要查看表的索引所占空间的大小,可以使用系统存储过程命令:sp_spaceused tablename,其中参数tablename为被索引的表名。 三、平衡树 如果你通过书后的索引知道了一个关键字所在的页码,你有可能通过随机的翻寻,最终到达正确的页码。但更科学更快捷的方法是:首先把书翻到大概二分之一的位置,如果要找的页码比该页的页码小,就把书向前翻到四分之一处,否则,就把书向后翻到四分之三的地方,依此类推,把书页续分成更小的部分,直至正确的页码。这叫“两分法”,微软在官方教程MOC里另有一种说法:叫B树(B-Tree,Balance Tree),即平衡树。 一个表索引由若干页面组成,这些页面构成了一个树形结构。B树由“根”(root)开始,称为根级节点,它通过指向另外两个页,把一个表的记录从逻辑上分成两个部分:“枝”—--非叶级节点(Non-Leaf Level);而非叶级节点又分别指向更小的部分:“叶”——叶级节点(Leaf Level)。根节点、非叶级节点和叶级节点都位于索引页中,统称为索引节点,属于索引页的范筹。这些“枝”、“叶”最终指向了具体的数据页(Page)。在根级节点和叶级节点之间的叶又叫数据中间页。 “根”(root)对应了sysindexes表的Root字段,其中记载了非叶级节点的物理位置(即指针);非叶级节点位于根节点和叶节点之间,记载了指向叶级节点的指针;而叶级节点则最终指向数据页。这就是“平衡树”。 四、聚集索引和非聚集索引 从形式上而言,索引分为聚集索引(Clustered Indexes)和非聚集索引(NonClustered Indexes)。 聚集索引相当于书籍脊背上那个特定的编号。如果对一张表建立了聚集索引,其索引页中就包含着建立索引的列的值(下称索引键值),那么表中的记录将按照该索引键值进行排序。比如,我们如果在“姓名”这一字段上建立了聚集索引,则表中的记录将按照姓名进行排列;如果建立了聚集索引的列是数值类型的,那么记录将按照该键值的数值大小来进行排列。 非聚集索引用于指定数据的逻辑顺序,也就是说,表中的数据并没有按照索引键值指定的顺序排列,而仍然按照插入记录时的顺序存放。其索引页中包含着索引键值和它所指向该行记录在数据页中的物理位置,叫做行定位符(RID:Row ID)。好似书后面的的索引表,索引表中的顺序与实际的页码顺序也是不一致的。而且一本书也许有多个索引。比如主题索引和作者索引。 SQL Server在默认的情况下建立的索引是非聚集索引,由于非聚集索引不对表中的数据进行重组,而只是存储索引键值并用一个指针指向数据所在的页面。一个表如果没有聚集索引时,理论上可以建立249个非聚集索引。每个非聚集索引提供访问数据的不同排序顺序。 五、数据是怎样被访问的 若能真正理解了以上索引的基础知识,那么再回头来看索引的工作原理就简单和轻松多了。 (一)SQLS怎样访问没有建立任何索引数据表: Heap译成汉语叫做“堆”,其本义暗含杂乱无章、无序的意思,前面提到数据值被写进数据页时,由于每一行记录之间并没地有特定的排列顺序,所以行与行的顺序就是随机无序的,当然表中的数据页也就是无序的了,而表中所有数据页就形成了“堆”,可以说,一张没有索引的数据表,就像一个只有书柜而没有索引卡片柜的图书馆,书库里面塞满了一堆乱七八糟的图书。当读者对管理员提交查询请求后,管理员就一头钻进书库,对照查找内容从头开始一架一柜的逐本查找,运气好的话,在第一个书架的第一本书就找到了,运气不好的话,要到最后一个书架的最后一本书才找到。 SQLS在接到查询请求的时候,首先会分析sysindexes表中一个叫做索引标志符(INDID: Index ID)的字段的值,如果该值为0,表示这是一张数据表而不是索引表,SQLS就会使用sysindexes表的另一个字段——也就是在前面提到过的FirstIAM值中找到该表的IAM页链——也就是所有数据页集合。 这就是对一个没有建立索引的数据表进行数据查找的方式,是不是很没效率?对于没有索引的表,对于一“堆”这样的记录,SQLS也只能这样做,而且更没劲的是,即使在第一行就找到了被查询的记录,SQLS仍然要从头到尾的将表扫描一次。这种查询称为“遍历”,又叫“表扫描”。 可见没有建立索引的数据表照样可以运行,不过这种方法对于小规模的表来说没有什么太大的问题,但要查询海量的数据效率就太低了。 (二)SQLS怎样访问建立了非聚集索引的数据表: 如前所述,非聚集索引可以建多个,具有B树结构,其叶级节点不包含数据页,只包含索引行。假定一个表中只有非聚集索引,则每个索引行包含了非聚集索引键值以及行定位符(ROW ID,RID),他们指向具有该键值的数据行。每一个RID由文件ID、页编号和在页中行的编号组成。 当INDID的值在2-250之间时,意味着表中存在非聚集索引页。此时,SQLS调用ROOT字段的值指向非聚集索引B树的ROOT,在其中查找与被查询最相近的值,根据这个值找到在非叶级节点中的页号,然后顺藤摸瓜,在叶级节点相应的页面中找到该值的RID,最后根据这个RID在Heap中定位所在的页和行并返回到查询端。 例如:假定在Lastname上建立了非聚集索引,则执行Select From Member Where Lastname=’Ota’时,查询过程是:①SQLS查询INDID值为2;②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第61页;③仅在叶级页面的第61页的Martin下搜寻Ota的RID,其RID显示为N∶706∶4,表示Lastname字段中名为Ota的记录位于堆的第707页的第4行,N表示文件的ID值,与数据无关;④根据上述信息,SQLS立马在堆的第 707页第4行将该记录“揪”出来并显示于前台(客户端)。视表的数据量大小,整个查询过程费时从百分之几毫秒到数毫秒不等。 在谈到索引基本概念的时候,我们就提到了这种方式: 图书馆的前台有很多索引卡片柜,里面分了若干的类别,诸如按照书名笔画或拼音顺序、作者笔画或拼音顺序等等,但不同之处有二:① 索引卡片上记录了每本书摆放的具体位置——位于某柜某架的第几本——而不是“特殊编号”;② 书脊上并没有那个“特殊编号”。管理员在索引柜中查到所需图书的具体位置(RID)后,根据RID直接在书库中的具体位置将书提出来。 显然,这种查询方式效率很高,但资源占用极大,因为书库中书的位置随时在发生变化,必然要求管理员花费额外的精力和时间随时做好索引更新。 (三)SQLS怎样访问建立了聚集索引的数据表: 在聚集索引中,数据所在的数据页是叶级,索引数据所在的索引页是非叶级。 查询原理和上述对非聚集索引的查询相似,但由于记录是按照聚集索引中索引键值进行排序,换句话说,聚集索引的索引键值也就是具体的数据页。 这就好比书库中的书就是按照书名的拼音在排序,而且也只按照这一种排序方式建立相应的索引卡片,于是查询起来要比上述只建立非聚集索引的方式要简单得多。仍以上面的查询为例: 假定在Lastname字段上建立了聚集索引,则执行Select From Member Where Lastname=’Ota’时,查询过程是:①SQLS查询INDID值为1,这是在系统中只建立了聚集索引的标志;②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第120页;③在位于叶级页面第120页的Martin下搜寻到Ota条目,而这一条目已是数据记录本身;④将该记录返回客户端。 这一次的效率比第二种方法更高,以致于看起来更美,然而它最大的优点也恰好是它最大的缺点——由于同一张表中同时只能按照一种顺序排列,所以在任何一种数据表中的聚集索引只能建立一个;并且建立聚集索引需要至少相当于源表120%的附加空间,以存放源表的副本和索引中间页! 难道鱼和熊掌就不能兼顾了吗?办法是有的。 (四)SQLS怎样访问既有聚集索引、又有非聚集索引的数据表: 如果我们在建立非聚集索引之前先建立了聚集索引的话,那么非聚集索引就可以使用聚集索引的关键字进行检索,就像在图书馆中,前台卡片柜中的可以有不同类别的图书索引卡,然而每张卡片上都载明了那个特殊编号——并不是书籍存放的具体位置。这样在最大程度上既照顾了数据检索的快捷性,又使索引的日常维护变得更加可行,这是最为科学的检索方法。 也就是说,在只建立了非聚集索引的情况下,每个叶级节点指明了记录的行定位符(RID);而在既有聚集索引又有非聚集索引的情况下,每个叶级节点所指向的是该聚集索引的索引键值,即数据记录本身。 假设聚集索引建立在Lastname上,而非聚集索引建立在Firstname上,当执行Select From Member Where Firstname=’Mike’时,查询过程是:①SQLS查询INDID值为2;②立即从根出发,在Firstname的非聚集索引的非叶级节点中定位最接近Mike的值“Jose”条目;③从Jose条目下的叶级页面中查到Mike逻辑位置——不是RID而是聚集索引的指针;④根据这一指针所指示位置,直接进入位于Lastname的聚集索引中的叶级页面中到达Mike数据记录本身;⑤将该记录返回客户端。 这就完全和我们在“索引的基本概念”中讲到的现实场景完全一样了,当数据发生更新的时候,SQLS只负责对聚集索引的健值驾以维护,而不必考虑非聚集索引,只要我们在ID类的字段上建立聚集索引,而在其它经常需要查询的字段上建立非聚集索引,通过这种科学的、有针对性的在一张表上分别建立聚集索引和非聚集索引的方法,我们既享受了索引带来的灵活与快捷,又相对规避了维护索引所导致的大量的额外资源消耗。 六、索引的优点和不足 索引有一些先天不足:1:建立索引,系统要占用大约为表的1.2倍的硬盘和内存空间来保存索引。2:更新数据的时候,系统必须要有额外的时间来同时对索引进行更新,以维持数据和索引的一致性——这就如同图书馆要有专门的位置来摆放索引柜,并且每当库存图书发生变化时都需要有人将索引卡片重整以保持索引与库存的一致。 当然建立索引的优点也是显而易见的:在海量数据的情况下,如果合理的建立了索引,则会大大加强SQLS执行查询、对结果进行排序、分组的操作效率。 实践表明,不恰当的索引不但于事无补,反而会降低系统性能。因为大量的索引在进行插入、修改和删除操作时比没有索引花费更多的系统时间。比如在如下字段建立索引应该是不恰当的:1、很少或从不引用的字段;2、逻辑型的字段,如男或女(是或否)等。 综上所述,提高查询效率是以消耗一定的系统资源为代价的,索引不能盲目的建立,必须要有统筹的规划,一定要在“加快查询速度”与“降低修改速度”之间做好平衡,有得必有失,此消则彼长。这是考验一个DBA是否优秀的很重要的指标。 至此,我们一直在说SQLS在维护索引时要消耗系统资源,那么SQLS维护索引时究竟消耗了什么资源?会产生哪些问题?究竟应该才能优化字段的索引? 在上篇中,我们就索引的基本概念和数据查询原理作了详细阐述,知道了建立索引时一定要在“加快查询速度”与“降低修改速度”之间做好平衡,有得必有失,此消则彼长。那么,SQLS维护索引时究竟怎样消耗资源?应该从哪些方面对索引进行管理与优化?以下就从七个方面来回答这些问题。 一、页分裂 微软MOC教导我们:当一个数据页达到了8K容量,如果此时发生插入或更新数据的操作,将导致页的分裂(又名页拆分): 1、有聚集索引的情况下:聚集索引将被插入和更新的行指向特定的页,该页由聚集索引关键字决定; 2、只有堆的情况下:只要有空间就可以插入新的行,但是如果我们对行数据的更新需要更多的空间,以致大于了当前页的可用空间,行就被移到新的页中,并且在原位置留下一个转发指针,指向被移动的新行,如果具有转发指针的行又被移动了,那么原来的指针将重新指向新的位置; 3、如果堆中有非聚集索引,那么尽管插入和更新操作在堆中不会发生页分裂,但是在非聚集索引上仍然产生页分裂。 无论有无索引,大约一半的数据将保留在老页面,而另一半将放入新页面,并且新页面可能被分配到任何可用的页。所以,频繁页分裂,后果很严重,将使物理表产生大量数据碎片,导致直接造成I/O效率的急剧下降,最后,停止SQLS的运行并重建索引将是我们的唯一选择! 二、填充因子 然而在“混沌之初”,就可以在一定程度上避免不愉快出现:在创建索引时,可以为这个索引指定一个填充因子,以便在索引的每个叶级页面上保留一定百分比的空间,将来数据可以进行扩充和减少页分裂。填充因子是从0到100的百分比数值,设为100时表示将数据页填满。只有当不会对数据进行更改时(例如只读表中)才用此设置。值越小则数据页上的空闲空间越大,这样可以减少在索引增长过程中进行页分裂的需要,但这一操作需要占用更多的硬盘空间。 填充因子只在创建索引时执行,索引创建以后,当表中进行数据的添加、删除或更新时,是不会保持填充因子的,如果想在数据页上保持额外的空间,则有悖于使用填充因子的本意,因为随着数据的输入,SQLS必须在每个页上进行页拆分,以保持填充因子指定的空闲空间。因此,只有在表中的数据进行了较大的变动,才可以填充数据页的空闲空间。这时,可以从容的重建索引,重新指定填充因子,重新分布数据。 反之,填充因子指定不当,就会降低数据库的读取性能,其降低量与填充因子设置值成反比。例如,当填充因子的值为50时,数据库的读取性能会降低两倍!所以,只有在表中根据现有数据创建新索引,并且可以预见将来会对这些数据进行哪些更改时,设置填充因子才有意义。 三、两道数学题 假定数据库设计没有问题,那么是否象上篇中分析的那样,当你建立了众多的索引,在查询工作中SQLS就只能按照“最高指示”用索引处理每一个提交的查询呢?答案是否定的! 上篇“数据是怎样被访问的”章节中提到的四种索引方案只是一种静态的、标准的和理论上的分析比较,实际上,将在外,军令有所不从,SQLS几乎完全是“自主”的决定是否使用索引或使用哪一个索引! 这是怎么回事呢? 让我们先来算一道题:如果某表的一条记录在磁盘上占用1000字节(1K)的话,我们对其中10字节的一个字段建立索引,那么该记录对应的索引大小只有10字节(0.01K)。上篇说过,SQLS的最小空间分配单元是“页(Page)”,一个页面在磁盘上占用8K空间,所以一页只能存储8条“记录”,但可以存储800条“索引”。现在我们要从一个有8000条记录的表中检索符合某个条件的记录(有Where子句),如果没有索引的话,我们需要遍历8000条×1000字节/8K字节=1000个页面才能够找到结果。如果在检索字段上有上述索引的话,那么我们可以在8000条×10字节/8K字节=10个页面中就检索到满足条件的索引块,然后根据索引块上的指针逐一找到结果数据块,这样I/O访问量肯定要少得多。 然而有时用索引还不如不用索引快! 同上,如果要无条件检索全部记录(不用Where子句),不用索引的话,需要访问8000条×1000字节/8K字节=1000个页面;而使用索引的话,首先检索索引,访问8000条×10字节/8K字节=10个页面得到索引检索结果,再根据索引检索结果去对应数据页面,由于是检索全部数据,所以需要再访问8000条×1000字节/8K字节=1000个页面将全部数据读取出来,一共访问了1010个页面,这显然不如不用索引快。 SQLS内部有一套完整的数据索引优化技术,在上述情况下,SQLS会自动使用表扫描的方式检索数据而不会使用任何索引。那么SQLS是怎么知道什么时候用索引,什么时候不用索引的呢?因为SQLS除了维护数据信息外,还维护着数据统计信息! 四、统计信息 打开企业管理器,单击“Database”节点,右击Northwind数据库→单击“属性”→选择“Options”选项卡,观察“Settings”下的各项复选项,你发现了什么? 从Settings中我们可以看到,在数据库中,SQLS将默认的自动创建和更新统计信息,这些统计信息包括数据密度和分布信息,正是它们帮助SQLS确定最佳的查询策略:建立查询计划和是否使用索引以及使用什么样的索引。 在创建索引时,SQLS会创建分布数据页来存放有关索引的两种统计信息:分布表和密度表。查询优化器使用这些统计信息估算使用该索引进行查询的成本(Cost),并在此基础上判断该索引对某个特定查询是否有用。 随着表中的数据发生变化,SQLS自动定期更新这些统计信息。采样是在各个数据页上随机进行。从磁盘读取一个数据页后,该数据页上的所有行都被用来更新统计信息。统计信息更新的频率取决于字段或索引中的数据量以及数据更改量。比如,对于有一万条记录的表,当1000个索引键值发生改变时,该表的统计信息便可能需要更新,因为1000 个值在该表中占了10%,这是一个很大的比例。而对于有1千万条记录的表来说,1000个索引值发生更改的意义则可以忽略不计,因此统计信息就不会自动更新。 至于它们帮助SQLS建立查询计划的具体过程,限于篇幅,这里就省略了,请有兴趣的朋友们自己研究。 顺便多说一句,SQLS除了能自动记录统计信息之外,还可以记录服务器中所发生的其它活动的详细信息,包括I/O 统计信息、CPU 统计信息、锁定请求、T-SQL 和 RPC 统计信息、索引和表扫描、警告和引发的错误、数据库对象的创建/除去、连接/断开、存储过程操作、游标操作等等。这些信息的读取、设置请朋友们在SQLS联机帮助文档(SQL Server Books Online)中搜索字符串“Profiler”查找。 五、索引的人工维护 上面讲到,某些不合适的索引将影响到SQLS的性能,随着应用系统的运行,数据不断地发生变化,当数据变化达到某一个程度时将会影响到索引的使用。这时需要用户自己来维护索引。 随着数据行的插入、删除和数据页的分裂,有些索引页可能只包含几页数据,另外应用在执行大量I/O的时候,重建非聚聚集索引可以维护I/O的效率。重建索引实质上是重新组织B树。需要重建索引的情况有: 1) 数据和使用模式大幅度变化; 2)排序的顺序发生改变; 3)要进行大量插入操作或已经完成; 4)使用I/O查询的磁盘读次数比预料的要多; 5)由于大量数据修改,使得数据页和索引页没有充分使用而导致空间的使用超出估算; 6)dbcc检查出索引有问题。 六、索引的使用原则 接近尾声的时候,让我们再从另一个角度认识索引的两个重要属性----唯一性索引和复合性索引。 在设计表的时候,可以对字段值进行某些限制,比如可以对字段进行主键约束或唯一性约束。 主键约束是指定某个或多个字段不允许重复,用于防止表中出现两条完全相同的记录,这样的字段称为主键,每张表都可以建立并且只能建立一个主键,构成主键的字段不允许空值。例如职员表中“身份证号”字段或成绩表中“学号、课程编号”字段组合。 而唯一性约束与主键约束类似,区别只在于构成唯一性约束的字段允许出现空值。 建立在主键约束和唯一性约束上的索引,由于其字段值具有唯一性,于是我们将这种索引叫做“唯一性索引”,如果这个唯一性索引是由两个以上字段的组合建立的,那么它又叫“复合性索引”。 注意,唯一索引不是聚集索引,如果对一个字段建立了唯一索引,你仅仅不能向这个字段输入重复的值。并不妨碍你可以对其它类型的字段也建立一个唯一性索引,它们可以是聚集的,也可以是非聚集的。 唯一性索引保证在索引列中的全部数据是唯一的,不会包含冗余数据。如果表中已经有一个主键约束或者唯一性约束,那么当创建表或者修改表时,SQLS自动创建一个唯一性索引。但出于必须保证唯一性,那么应该创建主键约束或者唯一性键约束,而不是创建一个唯一性索引。当创建唯一性索引时,应该认真考虑这些规则:当在表中创建主键约束或者唯一性键约束时, SQLS钭自动创建一个唯一性索引;如果表中已经包含有数据,那么当创建索引时,SQLS检查表中已有数据的冗余性,如果发现冗余值,那么SQLS就取消该语句的执行,并且返回一个错误消息,确保表中的每一行数据都有一个唯一值。 复合索引就是一个索引创建在两个列或者多个列上。在搜索时,当两个或者多个列作为一个关键值时,最好在这些列上创建复合索引。当创建复合索引时,应该考虑这些规则:最多可以把16个列合并成一个单独的复合索引,构成复合索引的列的总长度不能超过900字节,也就是说复合列的长度不能太长;在复合索引中,所有的列必须来自同一个表中,不能跨表建立复合列;在复合索引中,列的排列顺序是非常重要的,原则上,应该首先定义最唯一的列,例如在(COL1,COL2)上的索引与在(COL2,COL1)上的索引是不相同的,因为两个索引的列的顺序不同;为了使查询优化器使用复合索引,查询语句中的WHERE子句必须参考复合索引中第一个列;当表中有多个关键列时,复合索引是非常有用的;使用复合索引可以提高查询性能,减少在一个表中所创建的索引数量。 综上所述,我们总结了如下索引使用原则: 1)逻辑主键使用唯一的成组索引,对系统键(作为存储过程)采用唯一的非成组索引,对任何外键列采用非成组索引。考虑数据库的空间有多大,表如何进行访问,还有这些访问是否主要用作读写。 2)不要索引memo/note 字段,不要索引大型字段(有很多字符),这样作会让索引占用太多的存储空间。 3)不要索引常用的小型表 4)一般不要为小型数据表设置过多的索引,假如它们经常有插入和删除操作就更别这样作了,SQLS对这些插入和删除操作提供的索引维护可能比扫描表空间消耗更多的时间。 七、大结局 查询是一个物理过程,表面上是SQLS在东跑西跑,其实真正大部分压马路的工作是由磁盘输入输出系统(I/O)完成,全表扫描需要从磁盘上读表的每一个数据页,如果有索引指向数据值,则I/O读几次磁盘就可以了。但是,在随时发生的增、删、改操作中,索引的存在会大大增加工作量,因此,合理的索引设计是建立在对各种查询的分析和预测上的,只有正确地使索引与程序结合起来,才能产生最佳的优化方案。 一般来说建立索引的思路是: (1)主键时常作为where子句的条件,应在表的主键列上建立聚聚集索引,尤其当经常用它作为连接的时候。 (2)有大量重复值且经常有范围查询和排序、分组发生的列,或者非常频繁地被访问的列,可考虑建立聚聚集索引。 (3)经常同时存取多列,且每列都含有重复值可考虑建立复合索引来覆盖一个或一组查询,并把查询引用最频繁的列作为前导列,如果可能尽量使关键查询形成覆盖查询。 (4)如果知道索引键的所有值都是唯一的,那么确保把索引定义成唯一索引。 (5)在一个经常做插入操作的表上建索引时,使用fillfactor(填充因子)来减少页分裂,同时提高并发度降低死锁的发生。如果在只读表上建索引,则可以把fillfactor置为100。 (6)在选择索引字段时,尽量选择那些小数据类型的字段作为索引键,以使每个索引页能够容纳尽可能多的索引键和指针,通过这种方式,可使一个查询必须遍历的索引页面降到最小。此外,尽可能地使用整数为键值,因为它能够提供比任何数据类型都快的访问速度。 SQLS是一个很复杂的系统,让索引以及查询背后的东西真相大白,可以帮助我们更为深刻的了解我们的系统。一句话,索引就象盐,少则无味多则咸。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_28052907/article/details/75194926。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-30 23:10:07
97
转载
转载文章
...呢? 减少的值由衰减因子 lfu-decay-time(分钟)来控制,如果值是 1 的话,N 分钟没有访问就要减少 N。 redis.conf 配置文件 lfu-decay-time 1 6、持久化机制 https://redis.io/topics/persistence Redis 速度快,很大一部分原因是因为它所有的数据都存储在内存中。如果断电或者宕机,都会导致内存中的数据丢失。为了实现重启后数据不丢失,Redis 提供了两种持久化的方案,一种是 RDB 快照(Redis DataBase),一种是 AOF(Append Only File)。 6.1 RDB RDB 是 Redis 默认的持久化方案。当满足一定条件的时候,会把当前内存中的数据写入磁盘,生成一个快照文件 dump.rdb。Redis 重启会通过加载 dump.rdb 文件恢复数据。 什么时候写入 rdb 文件? 6.1.1 RDB 触发 1、自动触发 a)配置规则触发。 redis.conf, SNAPSHOTTING,其中定义了触发把数据保存到磁盘的触发频率。 如果不需要 RDB 方案,注释 save 或者配置成空字符串""。 save 900 1 900 秒内至少有一个 key 被修改(包括添加) save 300 10 400 秒内至少有 10 个 key 被修改save 60 10000 60 秒内至少有 10000 个 key 被修改 注意上面的配置是不冲突的,只要满足任意一个都会触发。 RDB 文件位置和目录: 文件路径,dir ./ 文件名称dbfilename dump.rdb 是否是LZF压缩rdb文件 rdbcompression yes 开启数据校验 rdbchecksum yes 问题:为什么停止 Redis 服务的时候没有 save,重启数据还在? RDB 还有两种触发方式: b)shutdown 触发,保证服务器正常关闭。 c)flushall,RDB 文件是空的,没什么意义(删掉 dump.rdb 演示一下)。 2、手动触发 如果我们需要重启服务或者迁移数据,这个时候就需要手动触 RDB 快照保存。Redis 提供了两条命令: a)save save 在生成快照的时候会阻塞当前 Redis 服务器, Redis 不能处理其他命令。如果内存中的数据比较多,会造成 Redis 长时间的阻塞。生产环境不建议使用这个命令。 为了解决这个问题,Redis 提供了第二种方式。 执行 bgsave 时,Redis 会在后台异步进行快照操作,快照同时还可以响应客户端请求。 具体操作是 Redis 进程执行 fork 操作创建子进程(copy-on-write),RDB 持久化过程由子进程负责,完成后自动结束。它不会记录 fork 之后后续的命令。阻塞只发生在 fork 阶段,一般时间很短。 用 lastsave 命令可以查看最近一次成功生成快照的时间。 6.1.2 RDB 数据的恢复(演示) 1、shutdown 持久化添加键值 添加键值 redis> set k1 1 redis> set k2 2 redis> set k3 3 redis> set k4 4 redis> set k5 5 停服务器,触发 save redis> shutdown 备份 dump.rdb 文件 cp dump.rdb dump.rdb.bak 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 啥都没有: redis> keys 3、通过备份文件恢复数据停服务器 redis> shutdown 重命名备份文件 mv dump.rdb.bak dump.rdb 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 查看数据 redis> keys 6.1.3 RDB 文件的优势和劣势 一、优势 1.RDB 是一个非常紧凑(compact)的文件,它保存了 redis 在某个时间点上的数据集。这种文件非常适合用于进行备份和灾难恢复。 2.生成 RDB 文件的时候,redis 主进程会 fork()一个子进程来处理所有保存工作,主进程不需要进行任何磁盘 IO 操作。 3.RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。 二、劣势 1、RDB 方式数据没办法做到实时持久化/秒级持久化。因为 bgsave 每次运行都要执行 fork 操作创建子进程,频繁执行成本过高。 2、在一定间隔时间做一次备份,所以如果 redis 意外 down 掉的话,就会丢失最后一次快照之后的所有修改(数据有丢失)。 如果数据相对来说比较重要,希望将损失降到最小,则可以使用 AOF 方式进行持久化。 6.2 AOF Append Only File AOF:Redis 默认不开启。AOF 采用日志的形式来记录每个写操作,并追加到文件中。开启后,执行更改 Redis 数据的命令时,就会把命令写入到 AOF 文件中。 Redis 重启时会根据日志文件的内容把写指令从前到后执行一次以完成数据的恢复工作。 6.2.1 AOF 配置 配置文件 redis.conf 开关appendonly no 文件名appendfilename "appendonly.aof" AOF 文件的内容(vim 查看): 问题:数据都是实时持久化到磁盘吗? 由于操作系统的缓存机制,AOF 数据并没有真正地写入硬盘,而是进入了系统的硬盘缓存。什么时候把缓冲区的内容写入到 AOF 文件? 问题:文件越来越大,怎么办? 由于 AOF 持久化是 Redis 不断将写命令记录到 AOF 文件中,随着 Redis 不断的进行,AOF 的文件会越来越大,文件越大,占用服务器内存越大以及 AOF 恢复要求时间越长。 例如 set xxx 666,执行 1000 次,结果都是 xxx=666。 为了解决这个问题,Redis 新增了重写机制,当 AOF 文件的大小超过所设定的阈值时,Redis 就会启动 AOF 文件的内容压缩,只保留可以恢复数据的最小指令集。 可以使用命令 bgrewriteaof 来重写。 AOF 文件重写并不是对原文件进行重新整理,而是直接读取服务器现有的键值对,然后用一条命令去代替之前记录这个键值对的多条命令,生成一个新的文件后去替换原来的 AOF 文件。 重写触发机制 auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb 问题:重写过程中,AOF 文件被更改了怎么办? 另外有两个与 AOF 相关的参数: 6.2.2 AOF 数据恢复 重启 Redis 之后就会进行 AOF 文件的恢复。 6.2.3 AOF 优势与劣势 优点: 1、AOF 持久化的方法提供了多种的同步频率,即使使用默认的同步频率每秒同步一次,Redis 最多也就丢失 1 秒的数据而已。 缺点: 1、对于具有相同数据的的 Redis,AOF 文件通常会比 RDB 文件体积更大(RDB 存的是数据快照)。 2、虽然 AOF 提供了多种同步的频率,默认情况下,每秒同步一次的频率也具有较高的性能。在高并发的情况下,RDB 比 AOF 具好更好的性能保证。 6.3 两种方案比较 那么对于 AOF 和 RDB 两种持久化方式,我们应该如何选择呢? 如果可以忍受一小段时间内数据的丢失,毫无疑问使用 RDB 是最好的,定时生成 RDB 快照(snapshot)非常便于进行数据库备份, 并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度要快。 否则就使用 AOF 重写。但是一般情况下建议不要单独使用某一种持久化机制,而是应该两种一起用,在这种情况下,当 redis 重启的时候会优先载入 AOF 文件来恢复原始的数据,因为在通常情况下 AOF 文件保存的数据集要比 RDB 文件保存的数据集要完整。 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhoutaochun/article/details/120075092。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-18 12:25:04
541
转载
转载文章
...、用户可以选择使用双因子认证、你不必在应用程序中管理用户凭据等等。在以下小节中,我将演示如何为Google用户建立并使用第三方认证,表15-8描述了事情的情形。 Table 15-8. Putting Third-Party Authentication in Context 表15-8. 第三方认证情形 Question 问题 Answer 回答 What is it? 什么是第三方认证? Authenticating with third parties lets you take advantage of the popularity of companies such as Google and Facebook. 第三方认证使你能够利用流行公司,如Google和Facebook,的优势。 Why should I care? 为何要关心它? Users don’t like having to remember passwords for many different sites. Using a provider with large-scale adoption can make your application more appealing to users of the provider’s services. 用户不喜欢记住许多不同网站的口令。使用大范围适应的提供器可使你的应用程序更吸引有提供器服务的用户。 How is it used by the MVC framework? 如何在MVC框架中使用它? This feature isn’t used directly by the MVC framework. 这不是一个直接由MVC框架使用的特性。 Note The reason I have chosen to demonstrate Google authentication is that it is the only option that doesn’t require me to register my application with the authentication service. You can get details of the registration processes required at http://bit.ly/1cqLTrE. 提示:我选择演示Google认证的原因是,它是唯一不需要在其认证服务中注册我应用程序的公司。有关认证服务注册过程的细节,请参阅http://bit.ly/1cqLTrE。 15.4.1 Enabling Google Authentication 15.4.1 启用Google认证 ASP.NET Identity comes with built-in support for authenticating users through their Microsoft, Google, Facebook, and Twitter accounts as well more general support for any authentication service that supports OAuth. The first step is to add the NuGet package that includes the Google-specific additions for ASP.NET Identity. Enter the following command into the Package Manager Console: ASP.NET Identity带有通过Microsoft、Google、Facebook以及Twitter账号认证用户的内建支持,并且对于支持OAuth的认证服务具有更普遍的支持。第一个步骤是添加NuGet包,包中含有用于ASP.NET Identity的Google专用附件。请在“Package Manager Console(包管理器控制台)”中输入以下命令: Install-Package Microsoft.Owin.Security.Google -version 2.0.2 There are NuGet packages for each of the services that ASP.NET Identity supports, as described in Table 15-9. 对于ASP.NET Identity支持的每一种服务都有相应的NuGet包,如表15-9所示。 Table 15-9. The NuGet Authenticaton Packages 表15-9. NuGet认证包 Name 名称 Description 描述 Microsoft.Owin.Security.Google Authenticates users with Google accounts 用Google账号认证用户 Microsoft.Owin.Security.Facebook Authenticates users with Facebook accounts 用Facebook账号认证用户 Microsoft.Owin.Security.Twitter Authenticates users with Twitter accounts 用Twitter账号认证用户 Microsoft.Owin.Security.MicrosoftAccount Authenticates users with Microsoft accounts 用Microsoft账号认证用户 Microsoft.Owin.Security.OAuth Authenticates users against any OAuth 2.0 service 根据任一OAuth 2.0服务认证用户 Once the package is installed, I enable support for the authentication service in the OWIN startup class, which is defined in the App_Start/IdentityConfig.cs file in the example project. Listing 15-22 shows the change that I have made. 一旦安装了这个包,便可以在OWIN启动类中启用此项认证服务的支持,启动类的定义在示例项目的App_Start/IdentityConfig.cs文件中。清单15-22显示了所做的修改。 Listing 15-22. Enabling Google Authentication in the IdentityConfig.cs File 清单15-22. 在IdentityConfig.cs文件中启用Google认证 using Microsoft.AspNet.Identity;using Microsoft.Owin;using Microsoft.Owin.Security.Cookies;using Owin;using Users.Infrastructure;using Microsoft.Owin.Security.Google;namespace Users {public class IdentityConfig {public void Configuration(IAppBuilder app) {app.CreatePerOwinContext<AppIdentityDbContext>(AppIdentityDbContext.Create);app.CreatePerOwinContext<AppUserManager>(AppUserManager.Create);app.CreatePerOwinContext<AppRoleManager>(AppRoleManager.Create); app.UseCookieAuthentication(new CookieAuthenticationOptions {AuthenticationType = DefaultAuthenticationTypes.ApplicationCookie,LoginPath = new PathString("/Account/Login"),}); app.UseExternalSignInCookie(DefaultAuthenticationTypes.ExternalCookie);app.UseGoogleAuthentication();} }} Each of the packages that I listed in Table 15-9 contains an extension method that enables the corresponding service. The extension method for the Google service is called UseGoogleAuthentication, and it is called on the IAppBuilder implementation that is passed to the Configuration method. 表15-9所列的每个包都含有启用相应服务的扩展方法。用于Google服务的扩展方法名称为UseGoogleAuthentication,它通过传递给Configuration方法的IAppBuilder实现进行调用。 Next I added a button to the Views/Account/Login.cshtml file, which allows users to log in via Google. You can see the change in Listing 15-23. 下一步骤是在Views/Account/Login.cshtml文件中添加一个按钮,让用户能够通过Google进行登录。所做的修改如清单15-23所示。 Listing 15-23. Adding a Google Login Button to the Login.cshtml File 清单15-23. 在Login.cshtml文件中添加Google登录按钮 @model Users.Models.LoginModel@{ ViewBag.Title = "Login";}<h2>Log In</h2> @Html.ValidationSummary()@using (Html.BeginForm()) {@Html.AntiForgeryToken();<input type="hidden" name="returnUrl" value="@ViewBag.returnUrl" /><div class="form-group"><label>Name</label>@Html.TextBoxFor(x => x.Name, new { @class = "form-control" })</div><div class="form-group"><label>Password</label>@Html.PasswordFor(x => x.Password, new { @class = "form-control" })</div><button class="btn btn-primary" type="submit">Log In</button>}@using (Html.BeginForm("GoogleLogin", "Account")) {<input type="hidden" name="returnUrl" value="@ViewBag.returnUrl" /><button class="btn btn-primary" type="submit">Log In via Google</button>} The new button submits a form that targets the GoogleLogin action on the Account controller. You can see this method—and the other changes I made the controller—in Listing 15-24. 新按钮递交一个表单,目标是Account控制器中的GoogleLogin动作。可从清单15-24中看到该方法,以及在控制器中所做的其他修改。 Listing 15-24. Adding Support for Google Authentication to the AccountController.cs File 清单15-24. 在AccountController.cs文件中添加Google认证支持 using System.Threading.Tasks;using System.Web.Mvc;using Users.Models;using Microsoft.Owin.Security;using System.Security.Claims;using Microsoft.AspNet.Identity;using Microsoft.AspNet.Identity.Owin;using Users.Infrastructure;using System.Web; namespace Users.Controllers {[Authorize]public class AccountController : Controller {[AllowAnonymous]public ActionResult Login(string returnUrl) {if (HttpContext.User.Identity.IsAuthenticated) {return View("Error", new string[] { "Access Denied" });}ViewBag.returnUrl = returnUrl;return View();}[HttpPost][AllowAnonymous][ValidateAntiForgeryToken]public async Task<ActionResult> Login(LoginModel details, string returnUrl) {if (ModelState.IsValid) {AppUser user = await UserManager.FindAsync(details.Name,details.Password);if (user == null) {ModelState.AddModelError("", "Invalid name or password.");} else {ClaimsIdentity ident = await UserManager.CreateIdentityAsync(user,DefaultAuthenticationTypes.ApplicationCookie); ident.AddClaims(LocationClaimsProvider.GetClaims(ident));ident.AddClaims(ClaimsRoles.CreateRolesFromClaims(ident)); AuthManager.SignOut();AuthManager.SignIn(new AuthenticationProperties {IsPersistent = false}, ident);return Redirect(returnUrl);} }ViewBag.returnUrl = returnUrl;return View(details);} [HttpPost][AllowAnonymous]public ActionResult GoogleLogin(string returnUrl) {var properties = new AuthenticationProperties {RedirectUri = Url.Action("GoogleLoginCallback",new { returnUrl = returnUrl})};HttpContext.GetOwinContext().Authentication.Challenge(properties, "Google");return new HttpUnauthorizedResult();}[AllowAnonymous]public async Task<ActionResult> GoogleLoginCallback(string returnUrl) {ExternalLoginInfo loginInfo = await AuthManager.GetExternalLoginInfoAsync();AppUser user = await UserManager.FindAsync(loginInfo.Login);if (user == null) {user = new AppUser {Email = loginInfo.Email,UserName = loginInfo.DefaultUserName,City = Cities.LONDON, Country = Countries.UK};IdentityResult result = await UserManager.CreateAsync(user);if (!result.Succeeded) {return View("Error", result.Errors);} else {result = await UserManager.AddLoginAsync(user.Id, loginInfo.Login);if (!result.Succeeded) {return View("Error", result.Errors);} }}ClaimsIdentity ident = await UserManager.CreateIdentityAsync(user,DefaultAuthenticationTypes.ApplicationCookie);ident.AddClaims(loginInfo.ExternalIdentity.Claims);AuthManager.SignIn(new AuthenticationProperties {IsPersistent = false }, ident);return Redirect(returnUrl ?? "/");}[Authorize]public ActionResult Logout() {AuthManager.SignOut();return RedirectToAction("Index", "Home");}private IAuthenticationManager AuthManager {get {return HttpContext.GetOwinContext().Authentication;} }private AppUserManager UserManager {get {return HttpContext.GetOwinContext().GetUserManager<AppUserManager>();} }} } The GoogleLogin method creates an instance of the AuthenticationProperties class and sets the RedirectUri property to a URL that targets the GoogleLoginCallback action in the same controller. The next part is a magic phrase that causes ASP.NET Identity to respond to an unauthorized error by redirecting the user to the Google authentication page, rather than the one defined by the application: GoogleLogin方法创建了AuthenticationProperties类的一个实例,并为RedirectUri属性设置了一个URL,其目标为同一控制器中的GoogleLoginCallback动作。下一个部分是一个神奇阶段,通过将用户重定向到Google认证页面,而不是应用程序所定义的认证页面,让ASP.NET Identity对未授权的错误进行响应: ...HttpContext.GetOwinContext().Authentication.Challenge(properties, "Google");return new HttpUnauthorizedResult();... This means that when the user clicks the Log In via Google button, their browser is redirected to the Google authentication service and then redirected back to the GoogleLoginCallback action method once they are authenticated. 这意味着,当用户通过点击Google按钮进行登录时,浏览器被重定向到Google的认证服务,一旦在那里认证之后,便被重定向回GoogleLoginCallback动作方法。 I get details of the external login by calling the GetExternalLoginInfoAsync of the IAuthenticationManager implementation, like this: 我通过调用IAuthenticationManager实现的GetExternalLoginInfoAsync方法,我获得了外部登录的细节,如下所示: ...ExternalLoginInfo loginInfo = await AuthManager.GetExternalLoginInfoAsync();... The ExternalLoginInfo class defines the properties shown in Table 15-10. ExternalLoginInfo类定义的属性如表15-10所示: Table 15-10. The Properties Defined by the ExternalLoginInfo Class 表15-10. ExternalLoginInfo类所定义的属性 Name 名称 Description 描述 DefaultUserName Returns the username 返回用户名 Email Returns the e-mail address 返回E-mail地址 ExternalIdentity Returns a ClaimsIdentity that identities the user 返回标识该用户的ClaimsIdentity Login Returns a UserLoginInfo that describes the external login 返回描述外部登录的UserLoginInfo I use the FindAsync method defined by the user manager class to locate the user based on the value of the ExternalLoginInfo.Login property, which returns an AppUser object if the user has been authenticated with the application before: 我使用了由用户管理器类所定义的FindAsync方法,以便根据ExternalLoginInfo.Login属性的值对用户进行定位,如果用户之前在应用程序中已经认证,该属性会返回一个AppUser对象: ...AppUser user = await UserManager.FindAsync(loginInfo.Login);... If the FindAsync method doesn’t return an AppUser object, then I know that this is the first time that this user has logged into the application, so I create a new AppUser object, populate it with values, and save it to the database. I also save details of how the user logged in so that I can find them next time: 如果FindAsync方法返回的不是AppUser对象,那么我便知道这是用户首次登录应用程序,于是便创建了一个新的AppUser对象,填充该对象的值,并将其保存到数据库。我还保存了用户如何登录的细节,以便下次能够找到他们: ...result = await UserManager.AddLoginAsync(user.Id, loginInfo.Login);... All that remains is to generate an identity the user, copy the claims provided by Google, and create an authentication cookie so that the application knows the user has been authenticated: 剩下的事情只是生成该用户的标识了,拷贝Google提供的声明(Claims),并创建一个认证Cookie,以使应用程序知道此用户已认证: ...ClaimsIdentity ident = await UserManager.CreateIdentityAsync(user,DefaultAuthenticationTypes.ApplicationCookie);ident.AddClaims(loginInfo.ExternalIdentity.Claims);AuthManager.SignIn(new AuthenticationProperties { IsPersistent = false }, ident);... 15.4.2 Testing Google Authentication 15.4.2 测试Google认证 There is one further change that I need to make before I can test Google authentication: I need to change the account verification I set up in Chapter 13 because it prevents accounts from being created with e-mail addresses that are not within the example.com domain. Listing 15-25 shows how I removed the verification from the AppUserManager class. 在测试Google认证之前还需要一处修改:需要修改第13章所建立的账号验证,因为它不允许example.com域之外的E-mail地址创建账号。清单15-25显示了如何在AppUserManager类中删除这种验证。 Listing 15-25. Disabling Account Validation in the AppUserManager.cs File 清单15-25. 在AppUserManager.cs文件中取消账号验证 using Microsoft.AspNet.Identity;using Microsoft.AspNet.Identity.EntityFramework;using Microsoft.AspNet.Identity.Owin;using Microsoft.Owin;using Users.Models; namespace Users.Infrastructure {public class AppUserManager : UserManager<AppUser> {public AppUserManager(IUserStore<AppUser> store): base(store) {}public static AppUserManager Create(IdentityFactoryOptions<AppUserManager> options,IOwinContext context) {AppIdentityDbContext db = context.Get<AppIdentityDbContext>();AppUserManager manager = new AppUserManager(new UserStore<AppUser>(db)); manager.PasswordValidator = new CustomPasswordValidator {RequiredLength = 6,RequireNonLetterOrDigit = false,RequireDigit = false,RequireLowercase = true,RequireUppercase = true}; //manager.UserValidator = new CustomUserValidator(manager) {// AllowOnlyAlphanumericUserNames = true,// RequireUniqueEmail = true//};return manager;} }} Tip you can use validation for externally authenticated accounts, but I am just going to disable the feature for simplicity. 提示:也可以使用外部已认证账号的验证,但这里出于简化,取消了这一特性。 To test authentication, start the application, click the Log In via Google button, and provide the credentials for a valid Google account. When you have completed the authentication process, your browser will be redirected back to the application. If you navigate to the /Claims/Index URL, you will be able to see how claims from the Google system have been added to the user’s identity, as shown in Figure 15-7. 为了测试认证,启动应用程序,通过点击“Log In via Google(通过Google登录)”按钮,并提供有效的Google账号凭据。当你完成了认证过程时,浏览器将被重定向回应用程序。如果导航到/Claims/Index URL,便能够看到来自Google系统的声明(Claims),已被添加到用户的标识中了,如图15-7所示。 Figure 15-7. Claims from Google 图15-7. 来自Google的声明(Claims) 15.5 Summary 15.5 小结 In this chapter, I showed you some of the advanced features that ASP.NET Identity supports. I demonstrated the use of custom user properties and how to use database migrations to preserve data when you upgrade the schema to support them. I explained how claims work and how they can be used to create more flexible ways of authorizing users. I finished the chapter by showing you how to authenticate users via Google, which builds on the ideas behind the use of claims. 本章向你演示了ASP.NET Identity所支持的一些高级特性。演示了自定义用户属性的使用,还演示了在升级数据架构时,如何使用数据库迁移保护数据。我解释了声明(Claims)的工作机制,以及如何将它们用于创建更灵活的用户授权方式。最后演示了如何通过Google进行认证结束了本章,这是建立在使用声明(Claims)的思想基础之上的。 本篇文章为转载内容。原文链接:https://blog.csdn.net/gz19871113/article/details/108591802。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-28 08:49:21
283
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
zip -r archive.zip dir
- 将目录压缩为ZIP格式。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"