前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[最大行数限制]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Datax
...x的批量插入操作超出最大行数限制的问题?如果你的答案是肯定的,那么你来到了正确的地方。本文将帮助你理解这个错误,并提供一些解决这个问题的方法。 首先,我们需要了解什么是Datax的最大行数限制。Datax是个超级厉害的数据传输神器,不仅速度快得飞起,性能杠杠的,而且稳定性超强,尤其擅长处理那种海量级别的数据交换工作,简直无所不能!不过,这个高效的家伙Datax也带来个小插曲,就是它对每条数据的操作都有个“小脾气”——有个单次操作能处理的最大行数限制。要是你碰巧超过了这个限制,Datax可不会跟你客气,它会立马蹦出一个异常消息,明确告诉你:“喂,老兄,你的批量插入操作已经超标啦,超出了我能处理的最大行数限制!” 现在,让我们来深入了解一下这个错误的具体表现以及如何解决。 一、错误的表现形式 当你尝试插入的数据量超过了Datax的最大行数限制,你会收到一个类似的错误提示: bash ERROR: batch size (65536) is larger than the max insert row count of your destination table, you can reduce batch size or increase the max insert row count of your destination table. 二、错误的原因分析 这个错误的主要原因是你的批量插入数据量过大,超出了Datax对单次操作的最大行数限制。具体来说,这可能是由于以下原因造成的: 1. 数据量过大 如果你一次性想要插入的数据过多,那么这个错误就很容易出现。 2. Datax配置不当 如果你没有正确配置Datax,让它适应你的大数据量需求,也会导致这个错误。 3. 目标表设置不当 如果你的目标表的max insert row count设置得过低,也可能引发这个错误。 三、解决方案 针对上述错误的原因,我们可以从以下几个方面来解决问题: 1. 分批插入数据 如果是因为数据量过大导致的错误,你可以考虑分批次插入数据,每次只插入一部分数据,直到所有数据都被插入为止。这样既可以避免超过最大行数限制,也可以提高插入效率。 2. 调整Datax配置 如果你发现是Datax配置不当导致的错误,你需要检查并调整Datax的配置。例如,你可以增加Datax的并发度,或者调整Datax的内存大小等。 3. 调整目标表设置 如果你发现是目标表的max insert row count设置过低导致的错误,你需要去数据库管理后台,把目标表的max insert row count调高。 四、预防措施 为了避免这种错误的发生,我们还可以采取以下预防措施: 1. 在开始工作前,先进行一次数据分析,估算需要插入的数据量,以此作为基础来设定Datax的工作参数。 2. 对于大项目,可以采用分阶段的方式,先完成一部分,再进行下一部分。 3. 及时监控Datax的工作状态,一旦发现问题,及时进行调整。 总结 当你的Datax批量插入操作遇到最大行数限制时,不要惊慌,要冷静应对。经过以上这些分析和解决步骤,我真心相信你绝对能够挖掘出最适合你的那个解决方案,没跑儿!记住,数据分析师的使命就是让数据说话,让数据为你服务,而不是被数据所困扰。加油!
2023-08-21 19:59:32
525
青春印记-t
MySQL
...何通过定期备份快速进行数据恢复,并介绍了MySQL自带的binlog日志工具在实时数据同步及增量恢复中的应用。 此外,针对MySQL连接故障问题,InfoQ的一篇报道《优化MySQL连接池配置,提升数据库性能》指出,除了确认服务器运行状态和登录凭据外,合理配置数据库连接池参数也是防止连接故障的有效手段。文章提醒开发者关注连接超时设定、最大连接数限制等关键配置项,以应对高并发场景下的数据库连接挑战。 总之,在实际操作MySQL数据库过程中,不断学习并掌握最新最佳实践,对于解决“Table 'database_name.table_name' doesn't exist”这类常见错误,乃至提高整体数据库管理水平具有深远意义。
2023-11-28 12:42:54
55
算法侠
转载文章
...here条件表示一个限制条件,只更新那些符合条件的数据,也可以写成 update ZZ_TEST1 t1 set t1."text" = ( select T2."text1" from ZZ_TEST2 t2 where T2."pid"=t1."id" ) where t1."id" in (select "pid" from ZZ_TEST2 ) 另外还有一种merge的写法,对应的sql如下: merge into ZZ_TEST1 t1 using ZZ_TEST2 t2 on (t1."id" =t2."pid") when matched then update set t1."text"=t2."text1" 为了避免T2中有多条数据对应T1中的数据,可以把sql改成如下的方式: MERGE INTO ZZ_TEST1 t1 USING ( SELECT FROM ZZ_TEST2 X WHERE X. ROWID = (SELECT MAX(Y.ROWID) FROM ZZ_TEST2 Y WHERE X."id" = Y."id" ) ) t2 ON (t1."id" = t2."pid") WHEN MATCHED THEN UPDATE SET t1."text" = t2."text1" 还有一种update from 的语法,经过测试在oracle和mysql中不适用 总结一下,项目中尝尝需要把一张表的字段更新到另一张表中的某一个字段。可以使用update语法,并要做好限定。会使用merge的语法,另外还有一种merge的语法也可以,update from 不能再oracle和mysql中使用。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42101720/article/details/116289534。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-10 10:14:44
798
转载
PostgreSQL
...,直到达到我们预设的最大值为止。 2. 创建序列生成器 在PostgreSQL中,我们可以使用CREATE SEQUENCE语句来创建一个新的序列生成器。下面是一个简单的例子: sql CREATE SEQUENCE my_sequence; 以上代码将会创建一个新的名为my_sequence的序列生成器。默认情况下,它的初始值为1,步长为1,没有最大值限制。 3. 使用序列生成器 有了序列生成器之后,我们就可以在插入数据的时候方便地获取下一个唯一的数字了。在PostgreSQL中,我们可以使用SELECT NEXTVAL函数来获取序列生成器的下一个值。下面是一个例子: sql INSERT INTO my_table (id) VALUES (NEXTVAL('my_sequence')); 以上代码将会向my_table表中插入一行数据,并将自动生成的下一个数字赋给id列。注意,我们在括号中指定了序列生成器的名字,这样PostgreSQL就知道应该从哪个序列生成器中获取下一个值了。 4. 控制序列生成器的行为 除了基本的创建和使用操作之外,我们还可以通过ALTER TABLE语句来修改序列生成器的行为。比如,我们能够随心所欲地调整它的起步数值、每次增加的大小,还有极限值,甚至还能让它暂停工作或者重新启动序列生成器,就像控制家里的电灯开关一样轻松自如。下面是一些例子: sql -- 修改序列生成器的最大值 ALTER SEQUENCE my_sequence MAXVALUE 100; -- 启用序列生成器 ALTER SEQUENCE my_sequence START WITH 1; -- 禁用序列生成器 ALTER SEQUENCE my_sequence DISABLE; 以上代码将会分别修改my_sequence的最大值为100、将它的初始值设为1以及禁用它。敲黑板,注意啦!如果咱把序列生成器给关掉了,那可就意味着没法再用NEXTVAL函数去捞新的数字了,除非咱先把它重新打开。 5. 总结 总的来说,PostgreSQL中的序列生成器是一个非常有用的工具,可以帮助我们自动生成唯一的数字序列。通过正确的配置和使用,我们可以确保我们的应用程序始终保持数据的一致性和完整性。当然啦,这只是冰山一角的应用实例,实际上序列生成器这家伙肚子里还藏着不少酷炫好玩的功能嘞,就等着我们去一一解锁发现呢!如果你想更深入地了解PostgreSQL,不妨尝试自己动手创建一些序列生成器,看看它们能为你带来哪些惊喜吧!
2023-04-25 22:21:14
77
半夏微凉-t
Datax
...度指的是在同一时间进行数据迁移的并发通道数。合理设置并行度有助于提高数据迁移效率,但过度增加并行度可能导致资源浪费、数据不一致等问题,因此需要综合考虑数据库容量、网络带宽、CPU和内存资源等因素来优化设置。 数据迁移 , 数据迁移是将数据从一个存储位置转移到另一个存储位置的过程,通常涉及到大量数据的传输和转换。在大数据环境下,数据迁移是一个关键环节,其效率直接影响到业务系统的性能和整体运维成本。文章中的数据迁移特指使用DataX工具进行的大规模数据从源端到目标端的高效、稳定传输。 网络带宽 , 网络带宽是在特定时间内网络连接能够传输的最大数据量,通常以每秒比特(bps)为单位衡量。在网络通信和数据传输过程中,网络带宽是决定传输速度的重要因素。文中提到,在设置DataX并行度时,需要考虑网络带宽限制,因为如果并行度过高,可能会超出网络的实际承载能力,导致数据传输速度下降甚至失败。
2023-11-16 23:51:46
639
人生如戏-t
Impala
...些数据,让它们发挥出最大的价值。本文将详细介绍Impala的数据同步机制,并探讨其优缺点。 正文 一、什么是Impala? Impala是一个开源的分析工具,它可以让你以SQL查询的形式在Hadoop集群上执行分析任务。它的主要目标是提供高性能、可扩展性和易用性。与其他分析工具不同的是,Impala不依赖于复杂的MapReduce框架,而是通过多核CPU进行计算。这意味着你可以更快地获取结果,而且不会受到MapReduce框架的一些限制。 二、Impala的数据同步机制是什么? 在Impala中,数据同步是指当一个节点上的数据发生变化时,如何将其更新到其他节点上的过程。Impala使用一种称为"数据复制"的技术来实现这一功能。实际上呢,每个Impala节点都有一份数据的完整备份,这样一来,就像每人都有同样的剧本一样,保证了所有数据的一致性和同步性,一点儿都不会出岔子。当一个节点上的数据有了新动静,就像有人在广播里喊了一嗓子“注意啦,有数据更新了!”这时候,其他所有节点都像接到消息的小伙伴一样,会立刻自动把自己的数据副本刷新一下,保证和最新的信息同步。 三、Impala的数据同步机制的优点 1. 提高了数据一致性 由于每个节点都有完整的数据副本,所以即使某个节点发生故障,也不会影响整个系统的数据完整性。 2. 提升了数据读取效率 由于每个节点都有一份完整的数据副本,所以读取数据的速度会比从单个节点读取要快得多。 3. 提供了容错能力 如果一个节点发生故障,其他节点仍然可以通过其备份来提供服务,从而提高了系统的可用性。 四、Impala的数据同步机制的缺点 1. 需要大量的存储空间 由于每个节点都需要保存完整的数据副本,所以这会消耗大量的存储空间。 2. 对网络带宽的需求较高 因为数据需要被广播到所有节点,所以这会增加网络带宽的需求。 3. 增加了系统的复杂性 虽然数据复制可以提高数据的一致性和读取效率,但也增加了系统的复杂性,需要更多的管理和维护工作。 五、总结 Impala的数据同步机制是一种非常重要的技术,它确保了系统数据的一致性和可用性。不过呢,这种技术也存在一些小短板。比如,它对存储空间的需求可是相当大的,而且网络带宽的要求也不低,得要足够给力才行。所以,在考虑选用Impala的时候,咱们得把这些因素都掂量一下,根据实际情况,像挑西瓜那样,选出最对味儿的那个选择。总的来说,Impala这家伙可真是个实力派兼灵活的法宝,在大数据的世界里,它能帮我们更溜地进行数据分析,效率嗖嗖的。如果你还没有尝试过Impala,那么我强烈建议你试一试!
2023-09-29 21:29:11
499
昨夜星辰昨夜风-t
Apache Solr
...始容量;二是调高它的最大容量限制,让它能装下更多的查询内容。 2. 减少索引文件大小 如果是索引过大导致内存不足,可以考虑减少索引文件的大小。一种常见的做法是进行数据压缩,可以使用以下代码启用数据压缩: xml false 10000 32 10 true 9 true 3. 增加物理内存 如果上述策略都无法解决问题,可能需要考虑增加物理内存。虽然这个方案算不上多优秀,不过眼下实在没别的招儿了,姑且也算是个能用的选择吧。 四、总结 在使用Solr的过程中,我们经常会遇到内存不足的问题。为了有效地解决这个问题,我们需要深入了解其背后的原因,并采取合适的调试策略。如果我们巧妙地调整和优化Solr的各项设置,就能让它更乖巧地服务于我们的应用程序,这样一来不仅能大幅提升用户体验,还能顺带给咱省下一笔硬件开支呢!
2023-04-07 18:47:53
453
凌波微步-t
Datax
...作为不同数据源之间进行数据迁移、同步和转换的桥梁。在本文中,Datax就是这样一个开源的数据交换中间件,它允许用户灵活地对接多种数据库、数据仓库及文件系统,实现数据从源到目标的高效流转和格式转换。 存储极限 , 存储极限是指数据库或数据仓库能够容纳的最大数据量,这个容量受到硬件设备、存储架构以及系统设计等因素限制。当实际数据量超过这一预设阈值时,可能导致数据无法正常写入、查询效率降低等问题,需要通过扩容、优化存储结构或采用分布式存储等方案解决。 数据分区 , 数据分区是将大规模数据集按照一定规则划分为多个较小、独立且逻辑相关的部分。在处理数据量超过预设限制问题时,Datax采用了数据分区策略,即将大数据分成若干小数据集分别处理,这样可以有效避免单个存储系统的压力,提高并行处理能力,从而提升整体数据处理速度。在文章示例中,一个包含1亿条记录的大数据集被分割成1000个小数据集进行处理,即为数据分区的具体应用。
2023-07-29 13:11:36
476
初心未变-t
Greenplum
...um作为一款开源的并行数据仓库解决方案,凭借其卓越的分布式处理能力广受青睐。不过在实际用起来的时候,要是数据库连接池没配置好,我们可能会遇到些头疼的问题,比如连接资源不够用啊,或者发生泄漏的情况。这不仅会严重影响系统的性能和稳定性,还可能导致无法预测的应用程序行为。这篇文咱可是要实实在在地深挖这个问题,而且我还会手把手地带你见识一下,如何巧妙地调整和优化Greenplum数据库连接池的设置,全程配合实例代码演示,包你一看就懂! 2. 数据库连接池及其重要性 数据库连接池是一种复用数据库连接的技术,以避免频繁创建和销毁连接带来的开销。在Greenplum环境下,合理的连接池设置可以有效提高并发处理能力和系统资源利用率。但是,你晓得吧,假如配置整得不合适,比方说一开始同时能连的数太少,或者限制的最大连接数设得太低,再或者没把连接关好,就很可能出问题。可能会搞得连接资源都被耗尽了,或者悄悄泄漏掉,这就麻烦大了。 3. 连接资源不足的问题及解决办法 例子1:初始连接数设置过小 java // 一个错误的初始化连接池示例,初始连接数设置为1 HikariConfig config = new HikariConfig(); config.setJdbcUrl("jdbc:postgresql://greenplum_host:port/database"); config.setUsername("username"); config.setPassword("password"); config.setMaximumPoolSize(50); // 最大连接数为50 config.setMinimumIdle(1); // 错误配置:初始连接数仅为1 HikariDataSource ds = new HikariDataSource(config); 当并发请求量较大时,初始连接数过小会导致大量线程等待获取连接,从而引发性能瓶颈。修正方法是适当增加minimumIdle参数,使之与系统并发需求匹配: java config.setMinimumIdle(10); // 更改为适当的初始连接数 例子2:最大连接数限制过低 若最大连接数设置过低,则在高并发场景下,即使有空闲连接也无法满足新的请求,导致连接资源不足。应当根据系统负载和服务器硬件条件动态调整最大连接数。 4. 连接泄漏的问题及预防策略 例子3:未正确关闭数据库连接 java try (Connection conn = ds.getConnection()) { Statement stmt = conn.createStatement(); ResultSet rs = stmt.executeQuery("SELECT FROM large_table"); // ... 处理结果集后忘记关闭rs和stmt } catch (SQLException e) { e.printStackTrace(); } 上述代码中,查询执行完毕后并未正确关闭Statement和ResultSet,这可能会导致数据库连接无法释放回连接池,进而造成连接泄漏。正确的做法是在finally块中确保所有资源均被关闭: java try (Connection conn = ds.getConnection(); Statement stmt = conn.createStatement(); ResultSet rs = stmt.executeQuery("SELECT FROM large_table")) { // ... 处理结果集 } catch (SQLException e) { e.printStackTrace(); } finally { // 在实际使用中,Java 7+的try-with-resources已经自动处理了这些关闭操作 } 此外,定期检查和监控连接状态,利用连接超时机制以及合理配置连接生命周期也是防止连接泄漏的重要手段。 5. 结论 配置和管理好Greenplum数据库连接池是保障系统稳定高效运行的关键一环。想要真正避免那些由于配置不当引发的资源短缺或泄露问题,就得实实在在地深入理解并时刻留意资源分配与释放的操作流程。只有这样,才能确保资源管理万无一失,妥妥的!在实际操作中,咱们得不断盯着、琢磨并灵活调整连接池的各项参数,让它们更接地气地符合咱们应用程序的真实需求和环境的变动,这样一来,才能让Greenplum火力全开,发挥出最大的效能。
2023-09-27 23:43:49
445
柳暗花明又一村
HBase
...,让它物尽其用,发挥最大效益。 2. 服务器资源瓶颈识别 (1) CPU瓶颈 当系统频繁出现CPU使用率过高,或RegionServer响应延迟明显增加时,可能意味着CPU成为了限制HBase性能的关键因素。通过top命令查看服务器资源使用情况,定位到消耗CPU较高的进程或线程。 (2) 内存瓶颈 HBase大量依赖内存进行数据缓存以提高读取效率,如果内存资源紧张,会直接影响系统的整体性能。通过JVM监控工具(如VisualVM)观察堆内存使用情况,判断是否存在内存瓶颈。 (3) 磁盘I/O瓶颈 数据持久化与读取速度很大程度上受磁盘I/O影响。如果发现RegionServer写日志文件或者StoreFile的速度明显不如以前快了,又或者读取数据时感觉它变“迟钝”了,回应时间有所延长,那很可能就是磁盘I/O出状况啦。 3. 针对服务器资源不足的HBase优化策略 (1) JVM调优 java export HBASE_REGIONSERVER_OPTS="-Xms4g -Xmx4g -XX:MaxDirectMemorySize=4g" 以上代码是为RegionServer设置JVM启动参数,限制初始堆内存大小、最大堆内存大小以及直接内存大小,根据服务器实际情况调整,避免内存溢出并保证合理的内存使用。 (2) BlockCache与BloomFilter优化 在hbase-site.xml配置文件中,可以调整BlockCache大小以适应有限内存资源: xml hfile.block.cache.size 0.5 同时启用BloomFilter来减少无效IO,提升查询性能: xml hbase.bloomfilter.enabled true (3) Region划分与负载均衡 合理规划Region划分,避免单个Region过大导致的资源集中消耗。通过HBase自带的负载均衡机制,定期检查并调整Region分布,使各个RegionServer的资源利用率趋于均衡: shell hbase balancer (4) 磁盘I/O优化 选择高速稳定的SSD硬盘替代低速硬盘,并采用RAID技术提升磁盘读写性能。此外,针对HDFS层面,可以通过增大HDFS块大小、优化DataNode数量等方式减轻磁盘I/O压力。 4. 结论与思考 面对服务器资源不足的情况,我们需要像一个侦探一样细致入微地去分析问题所在,采取相应的优化策略。虽然HBase本身就挺能“长大个儿”的,可在资源有限的情况下,咱们还是可以通过一些巧妙的配置微调和优化小窍门,让它在满足业务需求的同时,也能保持高效又稳定的运行状态,就像一台永不停歇的小马达。这个过程就像是一个永不停歇的探险和实践大冒险,我们得时刻紧盯着HBase系统的“脉搏”,灵活耍弄各种优化小窍门,确保它不论在什么环境下都能像顽强的小强一样,展现出无比强大的生命力。
2023-03-02 15:10:56
473
灵动之光
PostgreSQL
...延迟:物理距离、带宽限制以及TCP/IP协议本身的特性都可能导致网络延迟。 - 数据包大小和传输效率:如批量处理能力、压缩设置等。 3. 连接池优化(示例) 为解决连接频繁创建销毁的问题,我们可以借助连接池技术,例如使用PgBouncer或pgpool-II等第三方工具。下面是一个使用PgBouncer配置连接池的例子: ini [databases] mydb = host=127.0.0.1 port=5432 dbname=mydb user=myuser password=mypassword [pgbouncer] pool_mode = transaction max_client_conn = 100 default_pool_size = 20 上述配置中,PgBouncer以事务模式运行,最大允许100个客户端连接,并为每个数据库预设了20个连接池,从而有效地复用了数据库连接,降低了开销。 4. TCP/IP参数调优 PostgreSQL可以通过调整TCP/IP相关参数来改善网络性能。比如说,为了让连接不因为长时间没动静而断开,咱们可以试着调大tcp_keepalives_idle、tcp_keepalives_interval和tcp_keepalives_count这三个参数。这就像是给你的网络连接按个“心跳检测器”,时不时地检查一下,确保连接还活着,即使在传输数据的间隙也不会轻易掉线。修改postgresql.conf文件如下: conf tcp_keepalives_idle = 60 tcp_keepalives_interval = 15 tcp_keepalives_count = 5 这里表示如果60秒内没有数据传输,PostgreSQL将开始发送心跳包,每隔15秒发送一次,最多发送5次尝试维持连接。 5. 数据传输效率提升 5.1 批量处理 尽量减少SQL查询的次数,利用PostgreSQL的批量插入功能提高效率。例如,原来逐行插入的代码: sql INSERT INTO my_table (column1, column2) VALUES ('value1', 'value2'); INSERT INTO my_table (column1, column2) VALUES ('value3', 'value4'); ... 可以改为批量插入: sql INSERT INTO my_table (column1, column2) VALUES ('value1', 'value2'), ('value3', 'value4'), ... 5.2 数据压缩 PostgreSQL支持对客户端/服务器之间的数据进行压缩传输,通过设置client_min_messages和log_statement参数开启日志记录,观察并决定是否启用压缩。若网络带宽有限且数据量较大,可考虑开启压缩: conf client_min_messages = notice log_statement = 'all' Compression = on 6. 结论与思考 优化PostgreSQL的网络连接性能是一项涉及多方面的工作,需要我们根据具体应用场景和问题特点进行细致的分析与实践。要是我们能灵活运用连接池,巧妙调整个网络参数,再把数据传输策略优化得恰到好处,就能让PostgreSQL在网络环境下的表现嗖嗖提升,效果显著得很!在这个过程中,不断尝试、犯错、反思再改进,就像一次次打怪升级,这正是我们在追求超神表现的旅程中寻觅的乐趣源泉。
2024-02-02 10:59:10
262
月影清风
MemCache
...。 (3) 网络带宽限制:数据传输过程中,若网络带宽成为瓶颈,也会使得Memcached响应变慢。 2. 影响与后果 高负载下的Memcached响应延迟不仅会影响用户体验,如页面加载速度变慢,也可能进一步拖垮整个系统的性能,甚至引发雪崩效应,让整个服务瘫痪。如同多米诺骨牌效应,一环出错,全链受阻。 3. 解决方案与优化策略 (1)扩容与分片:根据业务需求合理分配和扩展Memcached服务器数量,进行数据分片存储,分散单个节点压力。 bash 配置多个Memcached服务器地址 memcached -p 11211 -d -m 64 -u root localhost server1 memcached -p 11212 -d -m 64 -u root localhost server2 在客户端代码中配置多个服务器 mc = memcache.Client(['localhost:11211', 'localhost:11212'], debug=0) (2)调整键值过期策略:避免大量键值在同一时间点过期,采用分散式的过期策略,比如使用随机过期时间。 (3)增大内存与优化网络:提升Memcached服务器硬件配置,增加内存容量以应对更大规模的数据缓存;同时优化网络设备,提高带宽以减少数据传输延迟。 (4)监控与报警:建立完善的监控机制,对Memcached的各项指标(如命中率、内存使用率等)进行实时监控,并设置合理的阈值进行预警,确保能及时发现并解决问题。 4. 结语 面对Memcached服务器负载过高、响应延迟的情况,我们需要像侦探一样细致观察、精准定位问题所在,然后采取针对性的优化措施。每一个技术难题,对我们来说,都是在打造那个既快又稳的系统的旅程中的一次实实在在的锻炼和成长机会,就像升级打怪一样,让我们不断强大。要真正玩转这个超牛的缓存神器Memcached,让它为咱们的应用程序提供更稳、更快的服务,就得先彻底搞明白它的运行机制和可能遇到的各种潜在问题。只有这样,才能称得上是真正把Memcached给“驯服”了,让其在提升应用性能的道路上发挥出最大的能量。
2023-03-25 19:11:18
122
柳暗花明又一村
Apache Atlas
...各种分类标签,严格执行数据安全规矩,并且时刻盯着数据使用情况,这样一来,就能轻轻松松地把数据隐私和合规性管得妥妥的。 1.1 数据隐私保护 Apache Atlas通过精细的标签体系(如PII, PHI等)来标识敏感数据,并结合角色和权限控制,确保只有授权用户才能访问特定类型的数据。例如: java // 创建一个表示个人身份信息(PII)的标签定义 EntityDefinition piiTagDef = new EntityDefinition(); piiTagDef.setName("PII"); piiTagDef.setDataType(Types.STRING_TYPE); // 添加描述并保存标签定义 AtlasTypeDefStore.createOrUpdateTypeDef(piiTagDef); // 将某个表标记为包含PII Entity entity = atlasClient.getEntityByGuid(tableGuid); entity.addTrait(new Trait("PII", Collections.emptyMap())); atlasClient.updateEntity(entity); 这段代码首先创建了一个名为"PII"的标签定义,然后将此标签应用到指定表实体,表明该表存储了个人身份信息。这样,在后续的数据查询或处理过程中,可以通过标签筛选机制限制非授权用户的访问。 1.2 合规性策略执行 Apache Atlas的另一大优势在于其支持灵活的策略引擎,可根据预设规则自动执行合规性检查。例如,我们可以设置规则以防止未经授权的地理位置访问敏感数据: java // 创建一个策略定义 PolicyDefinition policyDef = new PolicyDefinition(); policyDef.setName("LocationBasedAccessPolicy"); policyDef.setDescription("Restrict access to PII data based on location"); policyDef.setModule("org.apache.atlas.example.policies.LocationPolicy"); // 设置策略条件与动作 Map config = new HashMap<>(); config.put("restrictedLocations", Arrays.asList("CountryA", "CountryB")); policyDef.setConfiguration(config); // 创建并激活策略 AtlasPolicyStore.createPolicy(policyDef); AtlasPolicyStore.activatePolicy(policyDef.getName()); 这个策略会基于用户所在的地理位置限制对带有"PII"标签数据的访问,如果用户来自"CountryA"或"CountryB",则不允许访问此类数据,从而帮助企业在数据操作层面满足特定的地域合规要求。 2. 深入理解和探索 在实际运用中,Apache Atlas不仅提供了一套强大的API供开发者进行深度集成,还提供了丰富的可视化界面以直观展示数据的流动、关联及合规状态。这种能让数据“亮晶晶”、一目了然的数据治理体系,就像给我们的数据世界装上了一扇大窗户,让我们能够更直观、更全面地掌握数据的全貌。它能帮我们在第一时间发现那些潜藏的风险点,仿佛拥有了火眼金睛。这样一来,我们就能随时根据实际情况,灵活调整并不断优化咱们的数据隐私保护措施和合规性策略,让它们始终保持在最佳状态。 总结来说,Apache Atlas凭借其强大的元数据管理能力和灵活的策略执行机制,成为了企业在大数据环境下实施数据隐私和合规性策略的理想选择。虽然机器代码乍一看冷冰冰的,感觉不带一丝情感,但实际上它背后却藏着咱们对企业和组织数据安全、合规性的一份深深的关注和浓浓的人文关怀。在这个处处都靠数据说话的时代,咱们就手拉手,带上Apache Atlas这位好伙伴,一起为数据的价值和尊严保驾护航,朝着更合规、更安全的数据新天地大步迈进吧!
2023-11-04 16:16:43
453
诗和远方
MemCache
...当时,会导致其频繁进行数据操作,从而增加CPU负担。比如说,要是你给数据设置的过期时间太长了,让Memcached这个家伙没法及时把没用的数据清理掉,那可能会造成CPU这老兄压力山大,消耗过多的资源。 示例代码如下: python import memcache mc = memcache.Client(['localhost:11211']) mc.set('key', 'value', 120) 上述代码中,设置的数据过期时间为120秒,即两分钟。这就意味着,即使数据已经没啥用了,Memcached这家伙还是会死拽着这些数据不放,在接下来的两分钟里持续占据着CPU资源不肯放手。 2. Memcached与大量客户端交互 当Memcached与大量客户端频繁交互时,会加重其CPU负担。这是因为每次交互都需要进行复杂的计算和数据处理操作。比如,想象一下你运营的Web应用火爆到不行,用户请求多得不得了,每个请求都得去Memcached那儿抓取数据。这时候,Memcached这个家伙可就压力山大了,CPU资源被消耗得嗷嗷叫啊! 示例代码如下: python import requests for i in range(1000): response = requests.get('http://localhost/memcached/data') print(response.text) 上述代码中,循环执行了1000次HTTP GET请求,每次请求都会从Memcached获取数据。这会导致Memcached的CPU资源消耗过大。 三、排查Memcached进程占用CPU高的方法 1. 使用top命令查看CPU使用情况 在排查Memcached进程占用CPU过高的问题时,我们可以首先使用top命令查看系统中哪些进程正在占用大量的CPU资源。例如,以下输出表示PID为31063的Memcached进程正在占用大量的CPU资源: javascript top - 13:34:47 up 1 day, 6:13, 2 users, load average: 0.24, 0.36, 0.41 Tasks: 174 total, 1 running, 173 sleeping, 0 stopped, 0 zombie %Cpu(s): 0.2 us, 0.3 sy, 0.0 ni, 99.5 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st KiB Mem : 16378080 total, 16163528 free, 182704 used, 122848 buff/cache KiB Swap: 0 total, 0 free, 0 used. 2120360 avail Mem PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 3106 root 20 0 1058688 135484 4664 S 45.9 8.3 1:23.79 python memcached_client.py 我们可以看到,PID为31063的Python程序正在占用大量的CPU资源。接着,我们可以使用ps命令进一步了解这个进程的情况: bash ps -p 3106 2. 查看Memcached配置文件 在确认Memcached进程是否异常后,我们需要查看其配置文件,以确定是否存在配置错误导致的高CPU资源消耗。例如,以下是一个默认的Memcached配置文件(/etc/memcached.conf)的一部分: php-template Default MaxItems per key (65536). default_maxbytes 67108864 四、解决Memcached进程占用CPU高的方案 1. 调整Memcached配置 根据Memcached配置不当的原因,我们可以调整相关参数来降低CPU资源消耗。例如,可以减少过期时间、增大最大数据大小等。以下是修改过的配置文件的一部分: php-template Default MaxItems per key (131072). default_maxbytes 134217728 Increase expiration time to reduce CPU usage. default_time_to_live 14400 2. 控制与Memcached的交互频率 对于因大量客户端交互导致的高CPU资源消耗问题,我们可以采取一些措施来限制与Memcached的交互频率。例如,可以在服务器端添加限流机制,防止短时间内产生大量请求。或者,优化客户端代码,减少不必要的网络通信。 3. 提升硬件设备性能 最后,如果其他措施都无法解决问题,我们也可以考虑提升硬件设备性能,如增加CPU核心数量、扩大内存容量等。但这通常不是最佳解决方案,因为这可能会带来更高的成本。 五、结论 总的来说,Memcached进程占用CPU过高是一个常见的问题,其产生的原因是多种多样的。要真正把这个问题给揪出来,咱们得把系统工具和实际操作的经验都使上劲儿,得像钻井工人一样深入挖掘Memcached这家伙的工作内幕和使用门道。只有这样,才能真正找到问题的关键所在,并提出有效的解决方案。 感谢阅读这篇文章,希望对你有所帮助!
2024-01-19 18:02:16
95
醉卧沙场-t
转载文章
...l各占64字节,内存限制是4G,让你找出a、b文件共同的url? 分析:50亿64=320G大小空间。 算法思想1:hash 分解+ 分而治之 + 归并 遍历文件a,对每个url根据某种hash规则求取hash(url)/1024,然后根据所取得的值将url分别存储到1024个小文件(a0~a1023)中。这样每个小文件的大约为300M。如果hash结果很集中使得某个文件ai过大,可以在对ai进行二级hash(ai0~ai1024)。 这样url就被hash到1024个不同级别的目录中。然后可以分别比较文件,a0VSb0……a1023VSb1023。求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_map中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_map中,如果是,那么就是共同的url,存到文件里面就可以了。 把1024个级别目录下相同的url合并起来。 问题2 有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。 解决思想1:hash分解+ 分而治之 +归并 顺序读取10个文件a0~a9,按照hash(query)%10的结果将query写入到另外10个文件(记为 b0~b9)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。 找一台内存2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件c0~c9。 对这10个文件c0~c9进行归并排序(内排序与外排序相结合)。每次取c0~c9文件的m个数据放到内存中,进行10m个数据的归并,即使把归并好的数据存到d结果文件中。如果ci对应的m个数据全归并完了,再从ci余下的数据中取m个数据重新加载到内存中。直到所有ci文件的所有数据全部归并完成。 解决思想2: Trie树 如果query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。在这种假设前提下,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。 问题3: 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。 类似问题:怎么在海量数据中找出重复次数最多的一个? 解决思想: hash分解+ 分而治之+归并 顺序读文件中,对于每个词x,按照hash(x)/(10244)存到4096个小文件中。这样每个文件大概是250k左右。如果其中的有的文件超过了1M大小,还可以按照hash继续往下分,直到分解得到的小文件的大小都不超过1M。 对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100词及相应的频率存入文件。这样又得到了4096个文件。 下一步就是把这4096个文件进行归并的过程了。(类似与归并排序) 问题4 海量日志数据,提取出某日访问百度次数最多的那个IP 解决思想: hash分解+ 分而治之 + 归并 把这一天访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有2^32个IP。同样可以采用hash映射的方法,比如模1024,把整个大文件映射为1024个小文件。 再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。 然后再在这1024组最大的IP中,找出那个频率最大的IP,即为所求。 问题5 海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。 解决思想: 分而治之 + 归并。 注意TOP10是取最大值或最小值。如果取频率TOP10,就应该先hash分解。 在每台电脑上求出TOP10,采用包含10个元素的堆完成(TOP10小,用最大堆,TOP10大,用最小堆)。比如求TOP10大,我们首先取前10个元素调整成最小堆,如果发现,然后扫描后面的数据,并与堆顶元素比较,如果比堆顶元素大,那么用该元素替换堆顶,然后再调整为最小堆。最后堆中的元素就是TOP10大。 求出每台电脑上的TOP10后,然后把这100台电脑上的TOP10组合起来,共1000个数据,再利用上面类似的方法求出TOP10就可以了。 问题6 在2.5亿个整数中找出不重复的整数,内存不足以容纳这2.5亿个整数。 解决思路1 : hash 分解+ 分而治之 + 归并 2.5亿个int数据hash到1024个小文件中a0~a1023,如果某个小文件大小还大于内存,进行多级hash。每个小文件读进内存,找出只出现一次的数据,输出到b0~b1023。最后数据合并即可。 解决思路2 : 2-Bitmap 如果内存够1GB的话,采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存2^322bit=1GB内存。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。 注意,如果是找出重复的数据,可以用1-bitmap。第一次bit位由0变1,第二次查询到相应bit位为1说明是重复数据,输出即可。 问题7 一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数中的中数? 解决思想1 : hash分解 + 排序 按照升序顺序把这些数字,hash划分为N个范围段。假设数据范围是2^32 的unsigned int 类型。理论上第一台机器应该存的范围为0~(2^32)/N,第i台机器存的范围是(2^32)(i-1)/N~(2^32)i/N。hash过程可以扫描每个机器上的N个数,把属于第一个区段的数放到第一个机器上,属于第二个区段的数放到第二个机器上,…,属于第N个区段的数放到第N个机器上。注意这个过程每个机器上存储的数应该是O(N)的。 然后我们依次统计每个机器上数的个数,一次累加,直到找到第k个机器,在该机器上累加的数大于或等于(N^2)/2,而在第k-1个机器上的累加数小于(N^2)/2,并把这个数记为x。那么我们要找的中位数在第k个机器中,排在第(N^2)/2-x位。然后我们对第k个机器的数排序,并找出第(N^2)/2-x个数,即为所求的中位数的复杂度是O(N^2)的。 解决思想2: 分而治之 + 归并 先对每台机器上的数进行排序。排好序后,我们采用归并排序的思想,将这N个机器上的数归并起来得到最终的排序。找到第(N^2)/2个便是所求。复杂度是O(N^2 lgN^2)的。 2 Trie树+红黑树+hash_map 这里Trie树木、红黑树或者hash_map可以认为是第一部分中分而治之算法的具体实现方法之一。 问题1 上千万或上亿数据(有重复),统计其中出现次数最多的钱N个数据。 解决思路: 红黑树 + 堆排序 如果是上千万或上亿的int数据,现在的机器4G内存可以能存下。所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计重复次数。 然后取出前N个出现次数最多的数据,可以用包含N个元素的最小堆找出频率最大的N个数据。 问题2 1000万字符串,其中有些是重复的,需要把重复的全部去掉,保留没有重复的字符串。请怎么设计和实现? 解决思路:trie树。 这题用trie树比较合适,hash_map也应该能行。 问题3 一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。 解决思路: trie树 + 堆排序 这题是考虑时间效率。 1. 用trie树统计每个词出现的次数,时间复杂度是O(nlen)(len表示单词的平准长度)。 2. 然后找出出现最频繁的前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(nlg10)。 总的时间复杂度,是O(nle)与O(nlg10)中较大的哪一个。 问题4 搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录,这些查询串的重复读比较高,虽然总数是1千万,但是如果去除重复和,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就越热门。请你统计最热门的10个查询串,要求使用的内存不能超过1G。 解决思想 : trie树 + 堆排序 采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。 3 BitMap或者Bloom Filter 3.1 BitMap BitMap说白了很easy,就是通过bit位为1或0来标识某个状态存不存在。可进行数据的快速查找,判重,删除,一般来说适合的处理数据范围小于82^32。否则内存超过4G,内存资源消耗有点多。 问题1 已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。 解决思路: bitmap 8位最多99 999 999,需要100M个bit位,不到12M的内存空间。我们把0-99 999 999的每个数字映射到一个Bit位上,所以只需要99M个Bit==12MBytes,这样,就用了小小的12M左右的内存表示了所有的8位数的电话 问题2 2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。 解决思路:2bit map 或者两个bitmap。 将bit-map扩展一下,用2bit表示一个数即可,00表示未出现,01表示出现一次,10表示出现2次及以上,11可以暂时不用。 在遍历这些数的时候,如果对应位置的值是00,则将其置为01;如果是01,将其置为10;如果是10,则保持不变。需要内存大小是2^32/82=1G内存。 或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map,都是一样的道理。 3.2 Bloom filter Bloom filter可以看做是对bit-map的扩展。 参考july大神csdn文章 Bloom Filter 详解 4 Hadoop+MapReduce 参考引用july大神 csdn文章 MapReduce的初步理解 Hadoop框架与MapReduce模式 转载请注明本文地址: 大数据——海量数据处理的基本方法总结 本篇文章为转载内容。原文链接:https://blog.csdn.net/hong2511/article/details/80842704。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-01 12:40:17
541
转载
转载文章
...后面介绍的云端训练的限制,只能采用部分数据(本人采用的是1000张,大家可以自行增减数目)。 数据集为国外的数据集,很多数字写的跟我们不一样。如果想要更好的适用于我们国内的场景,可以对数据集进行手动的筛选。下面是他们写的数字2: 可以看出跟我们的不一样,不过数据集中仍然存在跟常规书写的一样的,我们需要进行人为的筛选。 2.4 优化建议(核心) 分析发现,部分数字精度不高的原因主要是国外手写很随意,我们可以通过调整网络参数(如下)、人为筛选数据(如上)、增大数据集等方式进行优化。 二、模型训练 主要参考文章:通过云端自动生成openmv的神经网络模型,进行目标检测 !!!唯一不同的点是我图像参数设置的是灰度而不是上述文章的RGB。 下面是我模型训练时的参数设置(仅供参考): 通过混淆矩阵可以看出,主要的错误在于数字2、6、8。我们可以通过查看识别错误的数字来分析可能的原因。 三、项目实现 !!!我们需要先将上述步骤中导出文件中的所有内容复制粘贴带OpenMV中自带的U盘中。然后将其中的.py文件名称改为main 1. 代码实现 本人修改后的完整代码展示如下,使用的是OpenMV IDE(官网下载): 数字识别后控制直流电机转速from pyb import Pin, Timerimport sensor, image, time, os, tf, math, random, lcd, uos, gc 根据识别的数字输出不同占比的PWM波def run(number):if inverse == True:ain1.low()ain2.high()else:ain1.high()ain2.low()ch1.pulse_width_percent(abs(number10)) 具体参数调整自行搜索sensor.reset() 初始化感光元件sensor.set_pixformat(sensor.GRAYSCALE) set_pixformat : 设置像素模式(GRAYSCALSE : 灰色; RGB565 : 彩色)sensor.set_framesize(sensor.QQVGA2) set_framesize : 设置处理图像的大小sensor.set_windowing((128, 160)) set_windowing : 设置提取区域大小sensor.skip_frames(time = 2000) skip_frames :跳过2000ms再读取图像lcd.init() 初始化lcd屏幕。inverse = False True : 电机反转 False : 电机正转ain1 = Pin('P1', Pin.OUT_PP) 引脚P1作为输出ain2 = Pin('P4', Pin.OUT_PP) 引脚P4作为输出ain1.low() P1初始化低电平ain2.low() P4初始化低电平tim = Timer(2, freq = 1000) 采用定时器2,频率为1000Hzch1 = tim.channel(4, Timer.PWM, pin = Pin('P5'), pulse_width_percent = 100) 输出通道1 配置PWM模式下的定时器(高电平有效) 端口为P5 初始占空比为100%clock = time.clock() 设置一个时钟用于追踪FPS 加载模型try:net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (641024)))except Exception as e:print(e)raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') 加载标签try:labels = [line.rstrip('\n') for line in open("labels.txt")]except Exception as e:raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') 不断的进行运行while(True):clock.tick() 更新时钟img = sensor.snapshot().binary([(0,64)]) 抓取一张图像以灰度图显示lcd.display(img) 拍照并显示图像for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5): 初始化最大值和标签max_num = -1max_index = -1print("\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())img.draw_rectangle(obj.rect()) 预测值和标签写成一个列表predictions_list = list(zip(labels, obj.output())) 输出各个标签的预测值,找到最大值进行输出for i in range(len(predictions_list)):print('%s 的概率为: %f' % (predictions_list[i][0], predictions_list[i][1]))if predictions_list[i][1] > max_num:max_num = predictions_list[i][1]max_index = int(predictions_list[i][0])run(max_index)print('该数字预测为:%d' % max_index)print('FPS为:', clock.fps())print('PWM波占空比为: %d%%' % (max_index10)) 2. 采用器件 使用的器件为OpenMV4 H7 Plus和L298N以及常用的直流电机。关键是找到器件的引脚图,再进行简单的连线即可。 参考文章:【L298N驱动模块学习笔记】–openmv驱动 参考文章:【openmv】原理图 引脚图 2. 注意事项 上述代码中我用到了lcd屏幕,主要是为了方便离机操作。使用过程中,OpenMV的lcd初始化时会重置端口,所有我们在输出PWM波的时候一定不要发生引脚冲突。我们可以在OpenMV官网查看lcd用到的端口: 可以看到上述用到的是P0、P2、P3、P6、P7和P8。所有我们输出PWM波时要避开这些端口。下面是OpenMV的PWM资源: 总结 本人第一次自己做东西也是第一次使用python,所以代码和项目写的都很粗糙,只是简单的识别数字控制直流电机。我也是四处借鉴修改后写下的大小,这篇文章主要是为了给那些像我一样的小白们提供一点帮助,减少大家查找资料的时间。模型的缺陷以及改进方法上述中已经说明,如果我有写错或者大家有更好的方法欢迎大家告诉我,大家一起进步! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_57100435/article/details/130740351。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-10 08:44:41
282
转载
转载文章
...ySQL服务器允许的最大并发会话量。这些连接中的一个将保留给具有超级特权的用户,以便允许管理员登录,即使已经达到连接限制。 max_connections=151 The number of open tables for all threads. Increasing this value increases the number of file descriptors that mysqld requires. Therefore you have to make sure to set the amount of open files allowed to at least 4096 in the variable "open-files-limit" in 为所有线程打开的表的数量。增加这个值会增加mysqld需要的文件描述符的数量。因此,您必须确保在[mysqld_safe]节中的变量“open-files-limit”中将允许打开的文件数量至少设置为4096 section [mysqld_safe] table_open_cache=2000 Maximum size for internal (in-memory) temporary tables. If a table grows larger than this value, it is automatically converted to disk based table This limitation is for a single table. There can be many of them. 内部(内存)临时表的最大大小。如果一个表比这个值大,那么它将自动转换为基于磁盘的表。可以有很多。 tmp_table_size=94M How many threads we should keep in a cache for reuse. When a client disconnects, the client's threads are put in the cache if there aren't more than thread_cache_size threads from before. This greatly reduces the amount of thread creations needed if you have a lot of new connections. (Normally this doesn't give a notable performance improvement if you have a good thread implementation.) 我们应该在缓存中保留多少线程以供重用。当客户机断开连接时,如果之前的线程数不超过thread_cache_size,则将客户机的线程放入缓存。如果您有很多新连接,这将大大减少所需的线程创建量(通常,如果您有一个良好的线程实现,这不会带来显著的性能改进)。 thread_cache_size=10 MyISAM Specific options The maximum size of the temporary file MySQL is allowed to use while recreating the index (during REPAIR, ALTER TABLE or LOAD DATA INFILE. If the file-size would be bigger than this, the index will be created through the key cache (which is slower). MySQL允许在重新创建索引时(在修复、修改表或加载数据时)使用临时文件的最大大小。如果文件大小大于这个值,那么索引将通过键缓存创建(这比较慢)。 myisam_max_sort_file_size=100G If the temporary file used for fast index creation would be bigger than using the key cache by the amount specified here, then prefer the key cache method. This is mainly used to force long character keys in large tables to use the slower key cache method to create the index. myisam_sort_buffer_size=179M Size of the Key Buffer, used to cache index blocks for MyISAM tables. Do not set it larger than 30% of your available memory, as some memory is also required by the OS to cache rows. Even if you're not using MyISAM tables, you should still set it to 8-64M as it will also be used for internal temporary disk tables. 如果用于快速创建索引的临时文件比这里指定的使用键缓存的文件大,则首选键缓存方法。这主要用于强制大型表中的长字符键使用较慢的键缓存方法来创建索引。 key_buffer_size=8M Size of the buffer used for doing full table scans of MyISAM tables. Allocated per thread, if a full scan is needed. 用于对MyISAM表执行全表扫描的缓冲区的大小。如果需要完整的扫描,则为每个线程分配。 read_buffer_size=256K read_rnd_buffer_size=512K INNODB Specific options INNODB特定选项 innodb_data_home_dir= Use this option if you have a MySQL server with InnoDB support enabled but you do not plan to use it. This will save memory and disk space and speed up some things. 如果您启用了一个支持InnoDB的MySQL服务器,但是您不打算使用它,那么可以使用这个选项。这将节省内存和磁盘空间,并加快一些事情。skip-innodb skip-innodb If set to 1, InnoDB will flush (fsync) the transaction logs to the disk at each commit, which offers full ACID behavior. If you are willing to compromise this safety, and you are running small transactions, you may set this to 0 or 2 to reduce disk I/O to the logs. Value 0 means that the log is only written to the log file and the log file flushed to disk approximately once per second. Value 2 means the log is written to the log file at each commit, but the log file is only flushed to disk approximately once per second. 如果设置为1,InnoDB将在每次提交时将事务日志刷新(fsync)到磁盘,这将提供完整的ACID行为。如果您愿意牺牲这种安全性,并且正在运行小型事务,您可以将其设置为0或2,以将磁盘I/O减少到日志。值0表示日志仅写入日志文件,日志文件大约每秒刷新一次磁盘。值2表示日志在每次提交时写入日志文件,但是日志文件大约每秒只刷新一次磁盘。 innodb_flush_log_at_trx_commit=1 The size of the buffer InnoDB uses for buffering log data. As soon as it is full, InnoDB will have to flush it to disk. As it is flushed once per second anyway, it does not make sense to have it very large (even with long transactions).InnoDB用于缓冲日志数据的缓冲区大小。一旦它满了,InnoDB就必须将它刷新到磁盘。由于它无论如何每秒刷新一次,所以将它设置为非常大的值是没有意义的(即使是长事务)。 innodb_log_buffer_size=5M InnoDB, unlike MyISAM, uses a buffer pool to cache both indexes and row data. The bigger you set this the less disk I/O is needed to access data in tables. On a dedicated database server you may set this parameter up to 80% of the machine physical memory size. Do not set it too large, though, because competition of the physical memory may cause paging in the operating system. Note that on 32bit systems you might be limited to 2-3.5G of user level memory per process, so do not set it too high. 与MyISAM不同,InnoDB使用缓冲池来缓存索引和行数据。设置的值越大,访问表中的数据所需的磁盘I/O就越少。在专用数据库服务器上,可以将该参数设置为机器物理内存大小的80%。但是,不要将它设置得太大,因为物理内存的竞争可能会导致操作系统中的分页。注意,在32位系统上,每个进程的用户级内存可能被限制在2-3.5G,所以不要设置得太高。 innodb_buffer_pool_size=20M Size of each log file in a log group. You should set the combined size of log files to about 25%-100% of your buffer pool size to avoid unneeded buffer pool flush activity on log file overwrite. However, note that a larger logfile size will increase the time needed for the recovery process. 日志组中每个日志文件的大小。您应该将日志文件的合并大小设置为缓冲池大小的25%-100%,以避免在覆盖日志文件时出现不必要的缓冲池刷新活动。但是,请注意,较大的日志文件大小将增加恢复过程所需的时间。 innodb_log_file_size=48M Number of threads allowed inside the InnoDB kernel. The optimal value depends highly on the application, hardware as well as the OS scheduler properties. A too high value may lead to thread thrashing. InnoDB内核中允许的线程数。最优值在很大程度上取决于应用程序、硬件以及OS调度程序属性。过高的值可能导致线程抖动。 innodb_thread_concurrency=9 The increment size (in MB) for extending the size of an auto-extend InnoDB system tablespace file when it becomes full. 增量大小(以MB为单位),用于在表空间满时扩展自动扩展的InnoDB系统表空间文件的大小。 innodb_autoextend_increment=128 The number of regions that the InnoDB buffer pool is divided into. For systems with buffer pools in the multi-gigabyte range, dividing the buffer pool into separate instances can improve concurrency, by reducing contention as different threads read and write to cached pages. InnoDB缓冲池划分的区域数。对于具有多gb缓冲池的系统,将缓冲池划分为单独的实例可以提高并发性,因为不同的线程对缓存页面的读写会减少争用。 innodb_buffer_pool_instances=8 Determines the number of threads that can enter InnoDB concurrently. 确定可以同时进入InnoDB的线程数 innodb_concurrency_tickets=5000 Specifies how long in milliseconds (ms) a block inserted into the old sublist must stay there after its first access before it can be moved to the new sublist. 指定插入到旧子列表中的块必须在第一次访问之后停留多长时间(毫秒),然后才能移动到新子列表。 innodb_old_blocks_time=1000 It specifies the maximum number of .ibd files that MySQL can keep open at one time. The minimum value is 10. 它指定MySQL一次可以打开的.ibd文件的最大数量。最小值是10。 innodb_open_files=300 When this variable is enabled, InnoDB updates statistics during metadata statements. 当启用此变量时,InnoDB会在元数据语句期间更新统计信息。 innodb_stats_on_metadata=0 When innodb_file_per_table is enabled (the default in 5.6.6 and higher), InnoDB stores the data and indexes for each newly created table in a separate .ibd file, rather than in the system tablespace. 当启用innodb_file_per_table(5.6.6或更高版本的默认值)时,InnoDB将每个新创建的表的数据和索引存储在单独的.ibd文件中,而不是系统表空间中。 innodb_file_per_table=1 Use the following list of values: 0 for crc32, 1 for strict_crc32, 2 for innodb, 3 for strict_innodb, 4 for none, 5 for strict_none. 使用以下值列表:0表示crc32, 1表示strict_crc32, 2表示innodb, 3表示strict_innodb, 4表示none, 5表示strict_none。 innodb_checksum_algorithm=0 The number of outstanding connection requests MySQL can have. This option is useful when the main MySQL thread gets many connection requests in a very short time. It then takes some time (although very little) for the main thread to check the connection and start a new thread. The back_log value indicates how many requests can be stacked during this short time before MySQL momentarily stops answering new requests. You need to increase this only if you expect a large number of connections in a short period of time. MySQL可以有多少未完成连接请求。当MySQL主线程在很短的时间内收到许多连接请求时,这个选项非常有用。然后,主线程需要一些时间(尽管很少)来检查连接并启动一个新线程。back_log值表示在MySQL暂时停止响应新请求之前的短时间内可以堆多少个请求。只有当您预期在短时间内会有大量连接时,才需要增加这个值。 back_log=80 If this is set to a nonzero value, all tables are closed every flush_time seconds to free up resources and synchronize unflushed data to disk. This option is best used only on systems with minimal resources. 如果将该值设置为非零值,则每隔flush_time秒关闭所有表,以释放资源并将未刷新的数据同步到磁盘。这个选项最好只在资源最少的系统上使用。 flush_time=0 The minimum size of the buffer that is used for plain index scans, range index scans, and joins that do not use 用于普通索引扫描、范围索引扫描和不使用索引执行全表扫描的连接的缓冲区的最小大小。 indexes and thus perform full table scans. join_buffer_size=200M The maximum size of one packet or any generated or intermediate string, or any parameter sent by the mysql_stmt_send_long_data() C API function. 由mysql_stmt_send_long_data() C API函数发送的一个包或任何生成的或中间字符串或任何参数的最大大小 max_allowed_packet=500M If more than this many successive connection requests from a host are interrupted without a successful connection, the server blocks that host from performing further connections. 如果在没有成功连接的情况下中断了来自主机的多个连续连接请求,则服务器将阻止主机执行进一步的连接。 max_connect_errors=100 Changes the number of file descriptors available to mysqld. You should try increasing the value of this option if mysqld gives you the error "Too many open files". 更改mysqld可用的文件描述符的数量。如果mysqld给您的错误是“打开的文件太多”,您应该尝试增加这个选项的值。 open_files_limit=4161 If you see many sort_merge_passes per second in SHOW GLOBAL STATUS output, you can consider increasing the sort_buffer_size value to speed up ORDER BY or GROUP BY operations that cannot be improved with query optimization or improved indexing. 如果在SHOW GLOBAL STATUS输出中每秒看到许多sort_merge_passes,可以考虑增加sort_buffer_size值,以加快ORDER BY或GROUP BY操作的速度,这些操作无法通过查询优化或改进索引来改进。 sort_buffer_size=1M The number of table definitions (from .frm files) that can be stored in the definition cache. If you use a large number of tables, you can create a large table definition cache to speed up opening of tables. The table definition cache takes less space and does not use file descriptors, unlike the normal table cache. The minimum and default values are both 400. 可以存储在定义缓存中的表定义的数量(来自.frm文件)。如果使用大量表,可以创建一个大型表定义缓存来加速表的打开。与普通的表缓存不同,表定义缓存占用更少的空间,并且不使用文件描述符。最小值和默认值都是400。 table_definition_cache=1400 Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped into events smaller than this size if possible. The value should be a multiple of 256. 指定基于行的二进制日志事件的最大大小,单位为字节。如果可能,将行分组为小于此大小的事件。这个值应该是256的倍数。 binlog_row_event_max_size=8K If the value of this variable is greater than 0, a replication slave synchronizes its master.info file to disk. (using fdatasync()) after every sync_master_info events. 如果该变量的值大于0,则复制奴隶将其主.info文件同步到磁盘。(在每个sync_master_info事件之后使用fdatasync())。 sync_master_info=10000 If the value of this variable is greater than 0, the MySQL server synchronizes its relay log to disk. (using fdatasync()) after every sync_relay_log writes to the relay log. 如果这个变量的值大于0,MySQL服务器将其中继日志同步到磁盘。(在每个sync_relay_log写入到中继日志之后使用fdatasync())。 sync_relay_log=10000 If the value of this variable is greater than 0, a replication slave synchronizes its relay-log.info file to disk. (using fdatasync()) after every sync_relay_log_info transactions. 如果该变量的值大于0,则复制奴隶将其中继日志.info文件同步到磁盘。(在每个sync_relay_log_info事务之后使用fdatasync())。 sync_relay_log_info=10000 Load mysql plugins at start."plugin_x ; plugin_y". 开始时加载mysql插件。“plugin_x;plugin_y” plugin_load The TCP/IP Port the MySQL Server X Protocol will listen on. MySQL服务器X协议将监听TCP/IP端口。 loose_mysqlx_port=33060 本篇文章为转载内容。原文链接:https://blog.csdn.net/mywpython/article/details/89499852。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-08 09:56:02
129
转载
转载文章
...ge: 30% 最大额外可以存在的副本数,可以为百分比,也可以为整数maxUnavailable: 30% 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建和删除Deployment 创建pc-deployment.yaml,内容如下: apiVersion: apps/v1kind: Deployment metadata:name: pc-deploymentnamespace: devspec: replicas: 3selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 创建和查看 创建deployment,--record=true 表示记录整个deployment更新过程[root@k8s-master01 ~] kubectl create -f pc-deployment.yaml --record=truedeployment.apps/pc-deployment created 查看deployment READY 可用的/总数 UP-TO-DATE 最新版本的pod的数量 AVAILABLE 当前可用的pod的数量[root@k8s-master01 ~] kubectl get deploy pc-deployment -n devNAME READY UP-TO-DATE AVAILABLE AGEpc-deployment 3/3 3 3 15s 查看rs 发现rs的名称是在原来deployment的名字后面添加了一个10位数的随机串[root@k8s-master01 ~] kubectl get rs -n devNAME DESIRED CURRENT READY AGEpc-deployment-6696798b78 3 3 3 23s 查看pod[root@k8s-master01 ~] kubectl get pods -n devNAME READY STATUS RESTARTS AGEpc-deployment-6696798b78-d2c8n 1/1 Running 0 107spc-deployment-6696798b78-smpvp 1/1 Running 0 107spc-deployment-6696798b78-wvjd8 1/1 Running 0 107s 删除deployment 删除deployment,其下的rs和pod也将被删除kubectl delete -f pc-deployment.yaml 2、扩缩容 deployment的扩缩容和 ReplicaSet 的扩缩容一样,只需要将rs或者replicaSet改为deployment即可,具体请参考上面的 ReplicaSet 扩缩容 3、镜像更新 刚刚在创建时加上了--record=true参数,所以在一旦进行了镜像更新,就会新建出一个pod出来,将老的old-pod上的容器全删除,然后在新的new-pod上在新建对应数量的容器,此时old-pod是不会删除的,因为这个old-pod是要进行回退的; 镜像更新策略有2种 滚动更新(RollingUpdate):(默认值),杀死一部分,就启动一部分,在更新过程中,存在两个版本Pod 重建更新(Recreate):在创建出新的Pod之前会先杀掉所有已存在的Pod strategy:指定新的Pod替换旧的Pod的策略, 支持两个属性:type:指定策略类型,支持两种策略Recreate:在创建出新的Pod之前会先杀掉所有已存在的PodRollingUpdate:滚动更新,就是杀死一部分,就启动一部分,在更新过程中,存在两个版本PodrollingUpdate:当type为RollingUpdate时生效,用于为RollingUpdate设置参数,支持两个属性:maxUnavailable:用来指定在升级过程中不可用Pod的最大数量,默认为25%。maxSurge: 用来指定在升级过程中可以超过期望的Pod的最大数量,默认为25%。 重建更新 编辑pc-deployment.yaml,在spec节点下添加更新策略 spec:strategy: 策略type: Recreate 重建更新 创建deploy进行验证 变更镜像[root@k8s-master01 ~] kubectl set image deployment pc-deployment nginx=nginx:1.17.2 -n devdeployment.apps/pc-deployment image updated 观察升级过程[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-deployment-5d89bdfbf9-65qcw 1/1 Running 0 31spc-deployment-5d89bdfbf9-w5nzv 1/1 Running 0 31spc-deployment-5d89bdfbf9-xpt7w 1/1 Running 0 31spc-deployment-5d89bdfbf9-xpt7w 1/1 Terminating 0 41spc-deployment-5d89bdfbf9-65qcw 1/1 Terminating 0 41spc-deployment-5d89bdfbf9-w5nzv 1/1 Terminating 0 41spc-deployment-675d469f8b-grn8z 0/1 Pending 0 0spc-deployment-675d469f8b-hbl4v 0/1 Pending 0 0spc-deployment-675d469f8b-67nz2 0/1 Pending 0 0spc-deployment-675d469f8b-grn8z 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-hbl4v 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-67nz2 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-grn8z 1/1 Running 0 1spc-deployment-675d469f8b-67nz2 1/1 Running 0 1spc-deployment-675d469f8b-hbl4v 1/1 Running 0 2s 滚动更新 编辑pc-deployment.yaml,在spec节点下添加更新策略 spec:strategy: 策略type: RollingUpdate 滚动更新策略rollingUpdate:maxSurge: 25% maxUnavailable: 25% 创建deploy进行验证 变更镜像[root@k8s-master01 ~] kubectl set image deployment pc-deployment nginx=nginx:1.17.3 -n dev deployment.apps/pc-deployment image updated 观察升级过程[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-deployment-c848d767-8rbzt 1/1 Running 0 31mpc-deployment-c848d767-h4p68 1/1 Running 0 31mpc-deployment-c848d767-hlmz4 1/1 Running 0 31mpc-deployment-c848d767-rrqcn 1/1 Running 0 31mpc-deployment-966bf7f44-226rx 0/1 Pending 0 0spc-deployment-966bf7f44-226rx 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-226rx 1/1 Running 0 1spc-deployment-c848d767-h4p68 0/1 Terminating 0 34mpc-deployment-966bf7f44-cnd44 0/1 Pending 0 0spc-deployment-966bf7f44-cnd44 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-cnd44 1/1 Running 0 2spc-deployment-c848d767-hlmz4 0/1 Terminating 0 34mpc-deployment-966bf7f44-px48p 0/1 Pending 0 0spc-deployment-966bf7f44-px48p 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-px48p 1/1 Running 0 0spc-deployment-c848d767-8rbzt 0/1 Terminating 0 34mpc-deployment-966bf7f44-dkmqp 0/1 Pending 0 0spc-deployment-966bf7f44-dkmqp 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-dkmqp 1/1 Running 0 2spc-deployment-c848d767-rrqcn 0/1 Terminating 0 34m 至此,新版本的pod创建完毕,就版本的pod销毁完毕 中间过程是滚动进行的,也就是边销毁边创建 4、版本回退 更新 刚刚在创建时加上了--record=true参数,所以在一旦进行了镜像更新,就会新建出一个pod出来,将老的old-pod上的容器全删除,然后在新的new-pod上在新建对应数量的容器,此时old-pod是不会删除的,因为这个old-pod是要进行回退的; 回退 在回退时会将new-pod上的容器全部删除,在将old-pod上恢复原来的容器; 回退命令 kubectl rollout: 版本升级相关功能,支持下面的选项: status 显示当前升级状态 history 显示 升级历史记录 pause 暂停版本升级过程 resume 继续已经暂停的版本升级过程 restart 重启版本升级过程 undo 回滚到上一级版本(可以使用–to-revision回滚到指定版本) 用法 查看当前升级版本的状态kubectl rollout status deploy pc-deployment -n dev 查看升级历史记录kubectl rollout history deploy pc-deployment -n dev 版本回滚 这里直接使用--to-revision=1回滚到了1版本, 如果省略这个选项,就是回退到上个版本kubectl rollout undo deployment pc-deployment --to-revision=1 -n dev 金丝雀发布 Deployment控制器支持控制更新过程中的控制,如“暂停(pause)”或“继续(resume)”更新操作。 比如有一批新的Pod资源创建完成后立即暂停更新过程,此时,仅存在一部分新版本的应用,主体部分还是旧的版本。然后,再筛选一小部分的用户请求路由到新版本的Pod应用,继续观察能否稳定地按期望的方式运行。确定没问题之后再继续完成余下的Pod资源滚动更新,否则立即回滚更新操作。这就是所谓的金丝雀发布。 金丝雀发布不是自动完成的,需要人为手动去操作,才能达到金丝雀发布的标准; 更新deployment的版本,并配置暂停deploymentkubectl set image deploy pc-deployment nginx=nginx:1.17.4 -n dev && kubectl rollout pause deployment pc-deployment -n dev 观察更新状态kubectl rollout status deploy pc-deployment -n dev 监控更新的过程kubectl get rs -n dev -o wide 确保更新的pod没问题了,继续更新kubectl rollout resume deploy pc-deployment -n dev 如果有问题,就回退到上个版本回退到上个版本kubectl rollout undo deployment pc-deployment -n dev Horizontal Pod Autoscaler 简称HPA,使用deployment可以手动调整pod的数量来实现扩容和缩容;但是这显然不符合k8s的自动化的定位,k8s期望可以通过检测pod的使用情况,实现pod数量自动调整,于是就有了HPA控制器; HPA可以获取每个Pod利用率,然后和HPA中定义的指标进行对比,同时计算出需要伸缩的具体值,最后实现Pod的数量的调整。比如说我指定了一个规则:当我的cpu利用率达到90%或者内存使用率到达80%的时候,就需要进行调整pod的副本数量,每次添加n个pod副本; 其实HPA与之前的Deployment一样,也属于一种Kubernetes资源对象,它通过追踪分析ReplicaSet控制器的所有目标Pod的负载变化情况,来确定是否需要针对性地调整目标Pod的副本数,也就是HPA管理Deployment,Deployment管理ReplicaSet,ReplicaSet管理pod,这是HPA的实现原理。 1、安装metrics-server metrics-server可以用来收集集群中的资源使用情况 安装git[root@k8s-master01 ~] yum install git -y 获取metrics-server, 注意使用的版本[root@k8s-master01 ~] git clone -b v0.3.6 https://github.com/kubernetes-incubator/metrics-server 修改deployment, 注意修改的是镜像和初始化参数[root@k8s-master01 ~] cd /root/metrics-server/deploy/1.8+/[root@k8s-master01 1.8+] vim metrics-server-deployment.yaml按图中添加下面选项hostNetwork: trueimage: registry.cn-hangzhou.aliyuncs.com/google_containers/metrics-server-amd64:v0.3.6args:- --kubelet-insecure-tls- --kubelet-preferred-address-types=InternalIP,Hostname,InternalDNS,ExternalDNS,ExternalIP 2、安装metrics-server [root@k8s-master01 1.8+] kubectl apply -f ./ 3、查看pod运行情况 [root@k8s-master01 1.8+] kubectl get pod -n kube-systemmetrics-server-6b976979db-2xwbj 1/1 Running 0 90s 4、使用kubectl top node 查看资源使用情况 [root@k8s-master01 1.8+] kubectl top nodeNAME CPU(cores) CPU% MEMORY(bytes) MEMORY%k8s-master01 289m 14% 1582Mi 54% k8s-node01 81m 4% 1195Mi 40% k8s-node02 72m 3% 1211Mi 41% [root@k8s-master01 1.8+] kubectl top pod -n kube-systemNAME CPU(cores) MEMORY(bytes)coredns-6955765f44-7ptsb 3m 9Micoredns-6955765f44-vcwr5 3m 8Mietcd-master 14m 145Mi... 至此,metrics-server安装完成 5、 准备deployment和servie 创建pc-hpa-pod.yaml文件,内容如下: apiVersion: apps/v1kind: Deploymentmetadata:name: nginxnamespace: devspec:strategy: 策略type: RollingUpdate 滚动更新策略replicas: 1selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1resources: 资源配额limits: 限制资源(上限)cpu: "1" CPU限制,单位是core数requests: 请求资源(下限)cpu: "100m" CPU限制,单位是core数 创建deployment [root@k8s-master01 1.8+] kubectl run nginx --image=nginx:1.17.1 --requests=cpu=100m -n dev 6、创建service [root@k8s-master01 1.8+] kubectl expose deployment nginx --type=NodePort --port=80 -n dev 7、查看 [root@k8s-master01 1.8+] kubectl get deployment,pod,svc -n devNAME READY UP-TO-DATE AVAILABLE AGEdeployment.apps/nginx 1/1 1 1 47sNAME READY STATUS RESTARTS AGEpod/nginx-7df9756ccc-bh8dr 1/1 Running 0 47sNAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGEservice/nginx NodePort 10.101.18.29 <none> 80:31830/TCP 35s 8、 部署HPA 创建pc-hpa.yaml文件,内容如下: apiVersion: autoscaling/v1kind: HorizontalPodAutoscalermetadata:name: pc-hpanamespace: devspec:minReplicas: 1 最小pod数量maxReplicas: 10 最大pod数量 ,pod数量会在1~10之间自动伸缩targetCPUUtilizationPercentage: 3 CPU使用率指标,如果cpu使用率达到3%就会进行扩容;为了测试方便,将这个数值调小一些scaleTargetRef: 指定要控制的nginx信息apiVersion: /v1kind: Deploymentname: nginx 创建hpa [root@k8s-master01 1.8+] kubectl create -f pc-hpa.yamlhorizontalpodautoscaler.autoscaling/pc-hpa created 查看hpa [root@k8s-master01 1.8+] kubectl get hpa -n devNAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGEpc-hpa Deployment/nginx 0%/3% 1 10 1 62s 9、 测试 使用压测工具对service地址192.168.5.4:31830进行压测,然后通过控制台查看hpa和pod的变化 hpa变化 [root@k8s-master01 ~] kubectl get hpa -n dev -wNAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGEpc-hpa Deployment/nginx 0%/3% 1 10 1 4m11spc-hpa Deployment/nginx 0%/3% 1 10 1 5m19spc-hpa Deployment/nginx 22%/3% 1 10 1 6m50spc-hpa Deployment/nginx 22%/3% 1 10 4 7m5spc-hpa Deployment/nginx 22%/3% 1 10 8 7m21spc-hpa Deployment/nginx 6%/3% 1 10 8 7m51spc-hpa Deployment/nginx 0%/3% 1 10 8 9m6spc-hpa Deployment/nginx 0%/3% 1 10 8 13mpc-hpa Deployment/nginx 0%/3% 1 10 1 14m deployment变化 [root@k8s-master01 ~] kubectl get deployment -n dev -wNAME READY UP-TO-DATE AVAILABLE AGEnginx 1/1 1 1 11mnginx 1/4 1 1 13mnginx 1/4 1 1 13mnginx 1/4 1 1 13mnginx 1/4 4 1 13mnginx 1/8 4 1 14mnginx 1/8 4 1 14mnginx 1/8 4 1 14mnginx 1/8 8 1 14mnginx 2/8 8 2 14mnginx 3/8 8 3 14mnginx 4/8 8 4 14mnginx 5/8 8 5 14mnginx 6/8 8 6 14mnginx 7/8 8 7 14mnginx 8/8 8 8 15mnginx 8/1 8 8 20mnginx 8/1 8 8 20mnginx 1/1 1 1 20m pod变化 [root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEnginx-7df9756ccc-bh8dr 1/1 Running 0 11mnginx-7df9756ccc-cpgrv 0/1 Pending 0 0snginx-7df9756ccc-8zhwk 0/1 Pending 0 0snginx-7df9756ccc-rr9bn 0/1 Pending 0 0snginx-7df9756ccc-cpgrv 0/1 ContainerCreating 0 0snginx-7df9756ccc-8zhwk 0/1 ContainerCreating 0 0snginx-7df9756ccc-rr9bn 0/1 ContainerCreating 0 0snginx-7df9756ccc-m9gsj 0/1 Pending 0 0snginx-7df9756ccc-g56qb 0/1 Pending 0 0snginx-7df9756ccc-sl9c6 0/1 Pending 0 0snginx-7df9756ccc-fgst7 0/1 Pending 0 0snginx-7df9756ccc-g56qb 0/1 ContainerCreating 0 0snginx-7df9756ccc-m9gsj 0/1 ContainerCreating 0 0snginx-7df9756ccc-sl9c6 0/1 ContainerCreating 0 0snginx-7df9756ccc-fgst7 0/1 ContainerCreating 0 0snginx-7df9756ccc-8zhwk 1/1 Running 0 19snginx-7df9756ccc-rr9bn 1/1 Running 0 30snginx-7df9756ccc-m9gsj 1/1 Running 0 21snginx-7df9756ccc-cpgrv 1/1 Running 0 47snginx-7df9756ccc-sl9c6 1/1 Running 0 33snginx-7df9756ccc-g56qb 1/1 Running 0 48snginx-7df9756ccc-fgst7 1/1 Running 0 66snginx-7df9756ccc-fgst7 1/1 Terminating 0 6m50snginx-7df9756ccc-8zhwk 1/1 Terminating 0 7m5snginx-7df9756ccc-cpgrv 1/1 Terminating 0 7m5snginx-7df9756ccc-g56qb 1/1 Terminating 0 6m50snginx-7df9756ccc-rr9bn 1/1 Terminating 0 7m5snginx-7df9756ccc-m9gsj 1/1 Terminating 0 6m50snginx-7df9756ccc-sl9c6 1/1 Terminating 0 6m50s DaemonSet 简称DS,ds可以保证在集群中的每一台节点(或指定节点)上都运行一个副本,一般适用于日志收集、节点监控等场景;也就是说,如果一个Pod提供的功能是节点级别的(每个节点都需要且只需要一个),那么这类Pod就适合使用DaemonSet类型的控制器创建。 DaemonSet控制器的特点: 每当向集群中添加一个节点时,指定的 Pod 副本也将添加到该节点上 当节点从集群中移除时,Pod 也就被垃圾回收了 配置模板 apiVersion: apps/v1 版本号kind: DaemonSet 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: daemonsetspec: 详情描述revisionHistoryLimit: 3 保留历史版本updateStrategy: 更新策略type: RollingUpdate 滚动更新策略rollingUpdate: 滚动更新maxUnavailable: 1 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建ds 创建pc-daemonset.yaml,内容如下: apiVersion: apps/v1kind: DaemonSet metadata:name: pc-daemonsetnamespace: devspec: selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 运行 创建daemonset[root@k8s-master01 ~] kubectl create -f pc-daemonset.yamldaemonset.apps/pc-daemonset created 查看daemonset[root@k8s-master01 ~] kubectl get ds -n dev -o wideNAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES pc-daemonset 2 2 2 2 2 24s nginx nginx:1.17.1 查看pod,发现在每个Node上都运行一个pod[root@k8s-master01 ~] kubectl get pods -n dev -o wideNAME READY STATUS RESTARTS AGE IP NODE pc-daemonset-9bck8 1/1 Running 0 37s 10.244.1.43 node1 pc-daemonset-k224w 1/1 Running 0 37s 10.244.2.74 node2 2、删除daemonset [root@k8s-master01 ~] kubectl delete -f pc-daemonset.yamldaemonset.apps "pc-daemonset" deleted Job 主要用于负责批量处理一次性(每个任务仅运行一次就结束)任务。当然,你也可以运行多次,配置好即可,Job特点如下: 当Job创建的pod执行成功结束时,Job将记录成功结束的pod数量 当成功结束的pod达到指定的数量时,Job将完成执行 配置模板 apiVersion: batch/v1 版本号kind: Job 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: jobspec: 详情描述completions: 1 指定job需要成功运行Pods的次数。默认值: 1parallelism: 1 指定job在任一时刻应该并发运行Pods的数量。默认值: 1activeDeadlineSeconds: 30 指定job可运行的时间期限,超过时间还未结束,系统将会尝试进行终止。backoffLimit: 6 指定job失败后进行重试的次数。默认是6manualSelector: true 是否可以使用selector选择器选择pod,默认是falseselector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: counter-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [counter-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: counter-podspec:restartPolicy: Never 重启策略只能设置为Never或者OnFailurecontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 2;done"] 关于重启策略设置的说明:(这里只能设置为Never或者OnFailure) 如果指定为OnFailure,则job会在pod出现故障时重启容器,而不是创建pod,failed次数不变 如果指定为Never,则job会在pod出现故障时创建新的pod,并且故障pod不会消失,也不会重启,failed次数加1 如果指定为Always的话,就意味着一直重启,意味着job任务会重复去执行了,当然不对,所以不能设置为Always 1、创建一个job 创建pc-job.yaml,内容如下: apiVersion: batch/v1kind: Job metadata:name: pc-jobnamespace: devspec:manualSelector: trueselector:matchLabels:app: counter-podtemplate:metadata:labels:app: counter-podspec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 创建 创建job[root@k8s-master01 ~] kubectl create -f pc-job.yamljob.batch/pc-job created 查看job[root@k8s-master01 ~] kubectl get job -n dev -o wide -wNAME COMPLETIONS DURATION AGE CONTAINERS IMAGES SELECTORpc-job 0/1 21s 21s counter busybox:1.30 app=counter-podpc-job 1/1 31s 79s counter busybox:1.30 app=counter-pod 通过观察pod状态可以看到,pod在运行完毕任务后,就会变成Completed状态[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-rxg96 1/1 Running 0 29spc-job-rxg96 0/1 Completed 0 33s 接下来,调整下pod运行的总数量和并行数量 即:在spec下设置下面两个选项 completions: 6 指定job需要成功运行Pods的次数为6 parallelism: 3 指定job并发运行Pods的数量为3 然后重新运行job,观察效果,此时会发现,job会每次运行3个pod,总共执行了6个pod[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-684ft 1/1 Running 0 5spc-job-jhj49 1/1 Running 0 5spc-job-pfcvh 1/1 Running 0 5spc-job-684ft 0/1 Completed 0 11spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 ContainerCreating 0 0spc-job-jhj49 0/1 Completed 0 11spc-job-fhwf7 0/1 Pending 0 0spc-job-fhwf7 0/1 Pending 0 0spc-job-pfcvh 0/1 Completed 0 11spc-job-5vg2j 0/1 Pending 0 0spc-job-fhwf7 0/1 ContainerCreating 0 0spc-job-5vg2j 0/1 Pending 0 0spc-job-5vg2j 0/1 ContainerCreating 0 0spc-job-fhwf7 1/1 Running 0 2spc-job-v7rhr 1/1 Running 0 2spc-job-5vg2j 1/1 Running 0 3spc-job-fhwf7 0/1 Completed 0 12spc-job-v7rhr 0/1 Completed 0 12spc-job-5vg2j 0/1 Completed 0 12s 2、删除 删除jobkubectl delete -f pc-job.yaml CronJob 简称为CJ,CronJob控制器以 Job控制器资源为其管控对象,并借助它管理pod资源对象,Job控制器定义的作业任务在其控制器资源创建之后便会立即执行,但CronJob可以以类似于Linux操作系统的周期性任务作业计划的方式控制其运行时间点及重复运行的方式。也就是说,CronJob可以在特定的时间点(反复的)去运行job任务。可以理解为定时任务 配置模板 apiVersion: batch/v1beta1 版本号kind: CronJob 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: cronjobspec: 详情描述schedule: cron格式的作业调度运行时间点,用于控制任务在什么时间执行concurrencyPolicy: 并发执行策略,用于定义前一次作业运行尚未完成时是否以及如何运行后一次的作业failedJobHistoryLimit: 为失败的任务执行保留的历史记录数,默认为1successfulJobHistoryLimit: 为成功的任务执行保留的历史记录数,默认为3startingDeadlineSeconds: 启动作业错误的超时时长jobTemplate: job控制器模板,用于为cronjob控制器生成job对象;下面其实就是job的定义metadata:spec:completions: 1parallelism: 1activeDeadlineSeconds: 30backoffLimit: 6manualSelector: trueselector:matchLabels:app: counter-podmatchExpressions: 规则- {key: app, operator: In, values: [counter-pod]}template:metadata:labels:app: counter-podspec:restartPolicy: Never containers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 20;done"] cron表达式写法 需要重点解释的几个选项:schedule: cron表达式,用于指定任务的执行时间/1 <分钟> <小时> <日> <月份> <星期>分钟 值从 0 到 59.小时 值从 0 到 23.日 值从 1 到 31.月 值从 1 到 12.星期 值从 0 到 6, 0 代表星期日多个时间可以用逗号隔开; 范围可以用连字符给出;可以作为通配符; /表示每... 例如1 // 每个小时的第一分钟执行/1 // 每分钟都执行concurrencyPolicy:Allow: 允许Jobs并发运行(默认)Forbid: 禁止并发运行,如果上一次运行尚未完成,则跳过下一次运行Replace: 替换,取消当前正在运行的作业并用新作业替换它 1、创建cronJob 创建pc-cronjob.yaml,内容如下: apiVersion: batch/v1beta1kind: CronJobmetadata:name: pc-cronjobnamespace: devlabels:controller: cronjobspec:schedule: "/1 " 每分钟执行一次jobTemplate:metadata:spec:template:spec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 运行 创建cronjob[root@k8s-master01 ~] kubectl create -f pc-cronjob.yamlcronjob.batch/pc-cronjob created 查看cronjob[root@k8s-master01 ~] kubectl get cronjobs -n devNAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGEpc-cronjob /1 False 0 <none> 6s 查看job[root@k8s-master01 ~] kubectl get jobs -n devNAME COMPLETIONS DURATION AGEpc-cronjob-1592587800 1/1 28s 3m26spc-cronjob-1592587860 1/1 28s 2m26spc-cronjob-1592587920 1/1 28s 86s 查看pod[root@k8s-master01 ~] kubectl get pods -n devpc-cronjob-1592587800-x4tsm 0/1 Completed 0 2m24spc-cronjob-1592587860-r5gv4 0/1 Completed 0 84spc-cronjob-1592587920-9dxxq 1/1 Running 0 24s 2、删除cronjob kubectl delete -f pc-cronjob.yaml pod调度 什么是调度 默认情况下,一个pod在哪个node节点上运行,是通过scheduler组件采用相应的算法计算出来的,这个过程是不受人工控制的; 调度规则 但是在实际使用中,我们想控制某些pod定向到达某个节点上,应该怎么做呢?其实k8s提供了四类调度规则 调度方式 描述 自动调度 通过scheduler组件采用相应的算法计算得出运行在哪个节点上 定向调度 运行到指定的node节点上,通过NodeName、NodeSelector实现 亲和性调度 跟谁关系好就调度到哪个节点上 1、nodeAffinity :节点亲和性,调度到关系好的节点上 2、podAffinity:pod亲和性,调度到关系好的pod所在的节点上 3、PodAntAffinity:pod反清河行,调度到关系差的那个pod所在的节点上 污点(容忍)调度 污点是站在node的角度上的,比如果nodeA有一个污点,大家都别来,此时nodeA会拒绝master调度过来的pod 定向调度 指的是利用在pod上声明nodeName或nodeSelector的方式将pod调度到指定的pod节点上,因为这种定向调度是强制性的,所以如果node节点不存在的话,也会向上面进行调度,只不过pod会运行失败; 1、定向调度-> nodeName nodeName 是将pod强制调度到指定名称的node节点上,这种方式跳过了scheduler的调度逻辑,直接将pod调度到指定名称的节点上,配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeName: node1 调度到node1节点上 2、定向调度 -> NodeSelector NodeSelector是将pod调度到添加了指定label标签的node节点上,它是通过k8s的label-selector机制实现的,也就是说,在创建pod之前,会由scheduler用matchNodeSelecto调度策略进行label标签的匹配,找出目标node,然后在将pod调度到目标node; 要实验NodeSelector,首先得给node节点加上label标签 kubectl label nodes node1 nodetag=node1 配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeSelector: nodetag: node1 调度到具有nodetag=node1标签的节点上 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_27184497/article/details/121765387。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-29 09:08:28
422
转载
转载文章
...页,所以,每行记录的最大数据量只能为8K。这就是char和varchar这两种字符串类型容量要限制在8K以内的原因,存储超过8K的数据应使用text类型,实际上,text类型的字段值不能直接录入和保存,它只是存储一个指针,指向由若干8K的文本数据页所组成的扩展区,真正的数据正是放在这些数据页中。 页面有空间页面和数据页面之分。 当一个扩展区的8个数据页中既包含了空间页面又包括了数据或索引页面时,称为混合扩展(Mixed Extent),每张表都以混合扩展开始;反之,称为一致扩展(Uniform Extent),专门保存数据及索引信息。 表被创建之时,SQLS在混合扩展中为其分配至少一个数据页面,随着数据量的增长,SQLS可即时在混合扩展中分配出7个页面,当数据超过8个页面时,则从一致扩展中分配数据页面。 空间页面专门负责数据空间的分配和管理,包括:PFS页面(Page free space):记录一个页面是否已分配、位于混合扩展还是一致扩展以及页面上还有多少可用空间等信息;GAM页面(Global allocation map)和SGAM页面(Secodary global allocation map):用来记录空闲的扩展或含有空闲页面的混合扩展的位置。SQLS综合利用这三种类型的页面文件在必要时为数据表创建新空间; 数据页或索引页则专门保存数据及索引信息,SQLS使用4种类型的数据页面来管理表或索引:它们是IAM页、数据页、文本/图像页和索引页。 在WINDOWS中,我们对文件执行的每一步操作,在磁盘上的物理位置只有系统(system)才知道;SQL SERVER沿袭了这种工作方式,在插入数据的过程中,不但每个字段值在数据页面中的保存位置是随机的,而且每个数据页面在“堆”中的排列位置也只有系统(system)才知道。 这是为什么呢?众所周知,OS之所以能管理DISK,是因为在系统启动时首先加载了文件分配表:FAT(File Allocation Table),正是由它管理文件系统并记录对文件的一切操作,系统才得以正常运行;同理,作为管理系统级的SQL SERVER,也有这样一张类似FAT的表存在,它就是索引分布映像页:IAM(Index Allocation Map)。 IAM的存在,使SQLS对数据表的物理管理有了可能。 IAM页从混合扩展中分配,记录了8个初始页面的位置和该扩展区的位置,每个IAM页面能管理512,000个数据页面,如果数据量太大,SQLS也可以增加更多的IAM页,可以位于文件的任何位置。第一个IAM页被称为FirstIAM,其中记录了以后的IAM页的位置。 数据页和文本/图像页互反,前者保存非文本/图像类型的数据,因为它们都不超过8K的容量,后者则只保存超过8K容量的文本或图像类型数据。而索引页顾名思义,保存的是与索引结构相关的数据信息。了解页面的问题有助我们下一步准确理解SQLS维护索引的方式,如页拆分、填充因子等。 二、索引的基本概念 索引是一种特殊类型的数据库对象,它与表有着密切的联系。 索引是为检索而存在的。如一些书籍的末尾就专门附有索引,指明了某个关键字在正文中的出现的页码位置,方便我们查找,但大多数的书籍只有目录,目录不是索引,只是书中内容的排序,并不提供真正的检索功能。可见建立索引要单独占用空间;索引也并不是必须要建立的,它们只是为更好、更快的检索和定位关键字而存在。 再进一步说,我们要在图书馆中查阅图书,该怎么办呢?图书馆的前台有很多叫做索引卡片柜的小柜子,里面分了若干的类别供我们检索图书,比如你可以用书名的笔画顺序或者拼音顺序作为查找的依据,你还可以从作者名的笔画顺序或拼音顺序去查询想要的图书,反正有许多检索方式,但有一点很明白,书库中的书并没有按照这些卡片柜中的顺序排列——虽然理论上可以这样做,事实上,所有图书的脊背上都人工的粘贴了一个特定的编号①,它们是以这个顺序在排列。索引卡片中并没有指明这本书摆放在书库中的第几个书架的第几本,仅仅指明了这个特定的编号。管理员则根据这一编号将请求的图书返回到读者手中。这是很形象的例子,以下的讲解将会反复用到它。 SQLS在安装完成之后,安装程序会自动创建master、model、tempdb等几个特殊的系统数据库,其中master是SQLS的主数据库,用于保存和管理其它系统数据库、用户数据库以及SQLS的系统信息,它在SQLS中的地位与WINDOWS下的注册表相当。 master中有一个名为sysindexes的系统表,专门管理索引。SQLS查询数据表的操作都必须用到它,毫无疑义,它是本文主角之一。 查看一张表的索引属性,可以在查询分析器中使用以下命令:select from sysindexes where id=object_id(‘tablename’) ;而要查看表的索引所占空间的大小,可以使用系统存储过程命令:sp_spaceused tablename,其中参数tablename为被索引的表名。 三、平衡树 如果你通过书后的索引知道了一个关键字所在的页码,你有可能通过随机的翻寻,最终到达正确的页码。但更科学更快捷的方法是:首先把书翻到大概二分之一的位置,如果要找的页码比该页的页码小,就把书向前翻到四分之一处,否则,就把书向后翻到四分之三的地方,依此类推,把书页续分成更小的部分,直至正确的页码。这叫“两分法”,微软在官方教程MOC里另有一种说法:叫B树(B-Tree,Balance Tree),即平衡树。 一个表索引由若干页面组成,这些页面构成了一个树形结构。B树由“根”(root)开始,称为根级节点,它通过指向另外两个页,把一个表的记录从逻辑上分成两个部分:“枝”—--非叶级节点(Non-Leaf Level);而非叶级节点又分别指向更小的部分:“叶”——叶级节点(Leaf Level)。根节点、非叶级节点和叶级节点都位于索引页中,统称为索引节点,属于索引页的范筹。这些“枝”、“叶”最终指向了具体的数据页(Page)。在根级节点和叶级节点之间的叶又叫数据中间页。 “根”(root)对应了sysindexes表的Root字段,其中记载了非叶级节点的物理位置(即指针);非叶级节点位于根节点和叶节点之间,记载了指向叶级节点的指针;而叶级节点则最终指向数据页。这就是“平衡树”。 四、聚集索引和非聚集索引 从形式上而言,索引分为聚集索引(Clustered Indexes)和非聚集索引(NonClustered Indexes)。 聚集索引相当于书籍脊背上那个特定的编号。如果对一张表建立了聚集索引,其索引页中就包含着建立索引的列的值(下称索引键值),那么表中的记录将按照该索引键值进行排序。比如,我们如果在“姓名”这一字段上建立了聚集索引,则表中的记录将按照姓名进行排列;如果建立了聚集索引的列是数值类型的,那么记录将按照该键值的数值大小来进行排列。 非聚集索引用于指定数据的逻辑顺序,也就是说,表中的数据并没有按照索引键值指定的顺序排列,而仍然按照插入记录时的顺序存放。其索引页中包含着索引键值和它所指向该行记录在数据页中的物理位置,叫做行定位符(RID:Row ID)。好似书后面的的索引表,索引表中的顺序与实际的页码顺序也是不一致的。而且一本书也许有多个索引。比如主题索引和作者索引。 SQL Server在默认的情况下建立的索引是非聚集索引,由于非聚集索引不对表中的数据进行重组,而只是存储索引键值并用一个指针指向数据所在的页面。一个表如果没有聚集索引时,理论上可以建立249个非聚集索引。每个非聚集索引提供访问数据的不同排序顺序。 五、数据是怎样被访问的 若能真正理解了以上索引的基础知识,那么再回头来看索引的工作原理就简单和轻松多了。 (一)SQLS怎样访问没有建立任何索引数据表: Heap译成汉语叫做“堆”,其本义暗含杂乱无章、无序的意思,前面提到数据值被写进数据页时,由于每一行记录之间并没地有特定的排列顺序,所以行与行的顺序就是随机无序的,当然表中的数据页也就是无序的了,而表中所有数据页就形成了“堆”,可以说,一张没有索引的数据表,就像一个只有书柜而没有索引卡片柜的图书馆,书库里面塞满了一堆乱七八糟的图书。当读者对管理员提交查询请求后,管理员就一头钻进书库,对照查找内容从头开始一架一柜的逐本查找,运气好的话,在第一个书架的第一本书就找到了,运气不好的话,要到最后一个书架的最后一本书才找到。 SQLS在接到查询请求的时候,首先会分析sysindexes表中一个叫做索引标志符(INDID: Index ID)的字段的值,如果该值为0,表示这是一张数据表而不是索引表,SQLS就会使用sysindexes表的另一个字段——也就是在前面提到过的FirstIAM值中找到该表的IAM页链——也就是所有数据页集合。 这就是对一个没有建立索引的数据表进行数据查找的方式,是不是很没效率?对于没有索引的表,对于一“堆”这样的记录,SQLS也只能这样做,而且更没劲的是,即使在第一行就找到了被查询的记录,SQLS仍然要从头到尾的将表扫描一次。这种查询称为“遍历”,又叫“表扫描”。 可见没有建立索引的数据表照样可以运行,不过这种方法对于小规模的表来说没有什么太大的问题,但要查询海量的数据效率就太低了。 (二)SQLS怎样访问建立了非聚集索引的数据表: 如前所述,非聚集索引可以建多个,具有B树结构,其叶级节点不包含数据页,只包含索引行。假定一个表中只有非聚集索引,则每个索引行包含了非聚集索引键值以及行定位符(ROW ID,RID),他们指向具有该键值的数据行。每一个RID由文件ID、页编号和在页中行的编号组成。 当INDID的值在2-250之间时,意味着表中存在非聚集索引页。此时,SQLS调用ROOT字段的值指向非聚集索引B树的ROOT,在其中查找与被查询最相近的值,根据这个值找到在非叶级节点中的页号,然后顺藤摸瓜,在叶级节点相应的页面中找到该值的RID,最后根据这个RID在Heap中定位所在的页和行并返回到查询端。 例如:假定在Lastname上建立了非聚集索引,则执行Select From Member Where Lastname=’Ota’时,查询过程是:①SQLS查询INDID值为2;②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第61页;③仅在叶级页面的第61页的Martin下搜寻Ota的RID,其RID显示为N∶706∶4,表示Lastname字段中名为Ota的记录位于堆的第707页的第4行,N表示文件的ID值,与数据无关;④根据上述信息,SQLS立马在堆的第 707页第4行将该记录“揪”出来并显示于前台(客户端)。视表的数据量大小,整个查询过程费时从百分之几毫秒到数毫秒不等。 在谈到索引基本概念的时候,我们就提到了这种方式: 图书馆的前台有很多索引卡片柜,里面分了若干的类别,诸如按照书名笔画或拼音顺序、作者笔画或拼音顺序等等,但不同之处有二:① 索引卡片上记录了每本书摆放的具体位置——位于某柜某架的第几本——而不是“特殊编号”;② 书脊上并没有那个“特殊编号”。管理员在索引柜中查到所需图书的具体位置(RID)后,根据RID直接在书库中的具体位置将书提出来。 显然,这种查询方式效率很高,但资源占用极大,因为书库中书的位置随时在发生变化,必然要求管理员花费额外的精力和时间随时做好索引更新。 (三)SQLS怎样访问建立了聚集索引的数据表: 在聚集索引中,数据所在的数据页是叶级,索引数据所在的索引页是非叶级。 查询原理和上述对非聚集索引的查询相似,但由于记录是按照聚集索引中索引键值进行排序,换句话说,聚集索引的索引键值也就是具体的数据页。 这就好比书库中的书就是按照书名的拼音在排序,而且也只按照这一种排序方式建立相应的索引卡片,于是查询起来要比上述只建立非聚集索引的方式要简单得多。仍以上面的查询为例: 假定在Lastname字段上建立了聚集索引,则执行Select From Member Where Lastname=’Ota’时,查询过程是:①SQLS查询INDID值为1,这是在系统中只建立了聚集索引的标志;②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第120页;③在位于叶级页面第120页的Martin下搜寻到Ota条目,而这一条目已是数据记录本身;④将该记录返回客户端。 这一次的效率比第二种方法更高,以致于看起来更美,然而它最大的优点也恰好是它最大的缺点——由于同一张表中同时只能按照一种顺序排列,所以在任何一种数据表中的聚集索引只能建立一个;并且建立聚集索引需要至少相当于源表120%的附加空间,以存放源表的副本和索引中间页! 难道鱼和熊掌就不能兼顾了吗?办法是有的。 (四)SQLS怎样访问既有聚集索引、又有非聚集索引的数据表: 如果我们在建立非聚集索引之前先建立了聚集索引的话,那么非聚集索引就可以使用聚集索引的关键字进行检索,就像在图书馆中,前台卡片柜中的可以有不同类别的图书索引卡,然而每张卡片上都载明了那个特殊编号——并不是书籍存放的具体位置。这样在最大程度上既照顾了数据检索的快捷性,又使索引的日常维护变得更加可行,这是最为科学的检索方法。 也就是说,在只建立了非聚集索引的情况下,每个叶级节点指明了记录的行定位符(RID);而在既有聚集索引又有非聚集索引的情况下,每个叶级节点所指向的是该聚集索引的索引键值,即数据记录本身。 假设聚集索引建立在Lastname上,而非聚集索引建立在Firstname上,当执行Select From Member Where Firstname=’Mike’时,查询过程是:①SQLS查询INDID值为2;②立即从根出发,在Firstname的非聚集索引的非叶级节点中定位最接近Mike的值“Jose”条目;③从Jose条目下的叶级页面中查到Mike逻辑位置——不是RID而是聚集索引的指针;④根据这一指针所指示位置,直接进入位于Lastname的聚集索引中的叶级页面中到达Mike数据记录本身;⑤将该记录返回客户端。 这就完全和我们在“索引的基本概念”中讲到的现实场景完全一样了,当数据发生更新的时候,SQLS只负责对聚集索引的健值驾以维护,而不必考虑非聚集索引,只要我们在ID类的字段上建立聚集索引,而在其它经常需要查询的字段上建立非聚集索引,通过这种科学的、有针对性的在一张表上分别建立聚集索引和非聚集索引的方法,我们既享受了索引带来的灵活与快捷,又相对规避了维护索引所导致的大量的额外资源消耗。 六、索引的优点和不足 索引有一些先天不足:1:建立索引,系统要占用大约为表的1.2倍的硬盘和内存空间来保存索引。2:更新数据的时候,系统必须要有额外的时间来同时对索引进行更新,以维持数据和索引的一致性——这就如同图书馆要有专门的位置来摆放索引柜,并且每当库存图书发生变化时都需要有人将索引卡片重整以保持索引与库存的一致。 当然建立索引的优点也是显而易见的:在海量数据的情况下,如果合理的建立了索引,则会大大加强SQLS执行查询、对结果进行排序、分组的操作效率。 实践表明,不恰当的索引不但于事无补,反而会降低系统性能。因为大量的索引在进行插入、修改和删除操作时比没有索引花费更多的系统时间。比如在如下字段建立索引应该是不恰当的:1、很少或从不引用的字段;2、逻辑型的字段,如男或女(是或否)等。 综上所述,提高查询效率是以消耗一定的系统资源为代价的,索引不能盲目的建立,必须要有统筹的规划,一定要在“加快查询速度”与“降低修改速度”之间做好平衡,有得必有失,此消则彼长。这是考验一个DBA是否优秀的很重要的指标。 至此,我们一直在说SQLS在维护索引时要消耗系统资源,那么SQLS维护索引时究竟消耗了什么资源?会产生哪些问题?究竟应该才能优化字段的索引? 在上篇中,我们就索引的基本概念和数据查询原理作了详细阐述,知道了建立索引时一定要在“加快查询速度”与“降低修改速度”之间做好平衡,有得必有失,此消则彼长。那么,SQLS维护索引时究竟怎样消耗资源?应该从哪些方面对索引进行管理与优化?以下就从七个方面来回答这些问题。 一、页分裂 微软MOC教导我们:当一个数据页达到了8K容量,如果此时发生插入或更新数据的操作,将导致页的分裂(又名页拆分): 1、有聚集索引的情况下:聚集索引将被插入和更新的行指向特定的页,该页由聚集索引关键字决定; 2、只有堆的情况下:只要有空间就可以插入新的行,但是如果我们对行数据的更新需要更多的空间,以致大于了当前页的可用空间,行就被移到新的页中,并且在原位置留下一个转发指针,指向被移动的新行,如果具有转发指针的行又被移动了,那么原来的指针将重新指向新的位置; 3、如果堆中有非聚集索引,那么尽管插入和更新操作在堆中不会发生页分裂,但是在非聚集索引上仍然产生页分裂。 无论有无索引,大约一半的数据将保留在老页面,而另一半将放入新页面,并且新页面可能被分配到任何可用的页。所以,频繁页分裂,后果很严重,将使物理表产生大量数据碎片,导致直接造成I/O效率的急剧下降,最后,停止SQLS的运行并重建索引将是我们的唯一选择! 二、填充因子 然而在“混沌之初”,就可以在一定程度上避免不愉快出现:在创建索引时,可以为这个索引指定一个填充因子,以便在索引的每个叶级页面上保留一定百分比的空间,将来数据可以进行扩充和减少页分裂。填充因子是从0到100的百分比数值,设为100时表示将数据页填满。只有当不会对数据进行更改时(例如只读表中)才用此设置。值越小则数据页上的空闲空间越大,这样可以减少在索引增长过程中进行页分裂的需要,但这一操作需要占用更多的硬盘空间。 填充因子只在创建索引时执行,索引创建以后,当表中进行数据的添加、删除或更新时,是不会保持填充因子的,如果想在数据页上保持额外的空间,则有悖于使用填充因子的本意,因为随着数据的输入,SQLS必须在每个页上进行页拆分,以保持填充因子指定的空闲空间。因此,只有在表中的数据进行了较大的变动,才可以填充数据页的空闲空间。这时,可以从容的重建索引,重新指定填充因子,重新分布数据。 反之,填充因子指定不当,就会降低数据库的读取性能,其降低量与填充因子设置值成反比。例如,当填充因子的值为50时,数据库的读取性能会降低两倍!所以,只有在表中根据现有数据创建新索引,并且可以预见将来会对这些数据进行哪些更改时,设置填充因子才有意义。 三、两道数学题 假定数据库设计没有问题,那么是否象上篇中分析的那样,当你建立了众多的索引,在查询工作中SQLS就只能按照“最高指示”用索引处理每一个提交的查询呢?答案是否定的! 上篇“数据是怎样被访问的”章节中提到的四种索引方案只是一种静态的、标准的和理论上的分析比较,实际上,将在外,军令有所不从,SQLS几乎完全是“自主”的决定是否使用索引或使用哪一个索引! 这是怎么回事呢? 让我们先来算一道题:如果某表的一条记录在磁盘上占用1000字节(1K)的话,我们对其中10字节的一个字段建立索引,那么该记录对应的索引大小只有10字节(0.01K)。上篇说过,SQLS的最小空间分配单元是“页(Page)”,一个页面在磁盘上占用8K空间,所以一页只能存储8条“记录”,但可以存储800条“索引”。现在我们要从一个有8000条记录的表中检索符合某个条件的记录(有Where子句),如果没有索引的话,我们需要遍历8000条×1000字节/8K字节=1000个页面才能够找到结果。如果在检索字段上有上述索引的话,那么我们可以在8000条×10字节/8K字节=10个页面中就检索到满足条件的索引块,然后根据索引块上的指针逐一找到结果数据块,这样I/O访问量肯定要少得多。 然而有时用索引还不如不用索引快! 同上,如果要无条件检索全部记录(不用Where子句),不用索引的话,需要访问8000条×1000字节/8K字节=1000个页面;而使用索引的话,首先检索索引,访问8000条×10字节/8K字节=10个页面得到索引检索结果,再根据索引检索结果去对应数据页面,由于是检索全部数据,所以需要再访问8000条×1000字节/8K字节=1000个页面将全部数据读取出来,一共访问了1010个页面,这显然不如不用索引快。 SQLS内部有一套完整的数据索引优化技术,在上述情况下,SQLS会自动使用表扫描的方式检索数据而不会使用任何索引。那么SQLS是怎么知道什么时候用索引,什么时候不用索引的呢?因为SQLS除了维护数据信息外,还维护着数据统计信息! 四、统计信息 打开企业管理器,单击“Database”节点,右击Northwind数据库→单击“属性”→选择“Options”选项卡,观察“Settings”下的各项复选项,你发现了什么? 从Settings中我们可以看到,在数据库中,SQLS将默认的自动创建和更新统计信息,这些统计信息包括数据密度和分布信息,正是它们帮助SQLS确定最佳的查询策略:建立查询计划和是否使用索引以及使用什么样的索引。 在创建索引时,SQLS会创建分布数据页来存放有关索引的两种统计信息:分布表和密度表。查询优化器使用这些统计信息估算使用该索引进行查询的成本(Cost),并在此基础上判断该索引对某个特定查询是否有用。 随着表中的数据发生变化,SQLS自动定期更新这些统计信息。采样是在各个数据页上随机进行。从磁盘读取一个数据页后,该数据页上的所有行都被用来更新统计信息。统计信息更新的频率取决于字段或索引中的数据量以及数据更改量。比如,对于有一万条记录的表,当1000个索引键值发生改变时,该表的统计信息便可能需要更新,因为1000 个值在该表中占了10%,这是一个很大的比例。而对于有1千万条记录的表来说,1000个索引值发生更改的意义则可以忽略不计,因此统计信息就不会自动更新。 至于它们帮助SQLS建立查询计划的具体过程,限于篇幅,这里就省略了,请有兴趣的朋友们自己研究。 顺便多说一句,SQLS除了能自动记录统计信息之外,还可以记录服务器中所发生的其它活动的详细信息,包括I/O 统计信息、CPU 统计信息、锁定请求、T-SQL 和 RPC 统计信息、索引和表扫描、警告和引发的错误、数据库对象的创建/除去、连接/断开、存储过程操作、游标操作等等。这些信息的读取、设置请朋友们在SQLS联机帮助文档(SQL Server Books Online)中搜索字符串“Profiler”查找。 五、索引的人工维护 上面讲到,某些不合适的索引将影响到SQLS的性能,随着应用系统的运行,数据不断地发生变化,当数据变化达到某一个程度时将会影响到索引的使用。这时需要用户自己来维护索引。 随着数据行的插入、删除和数据页的分裂,有些索引页可能只包含几页数据,另外应用在执行大量I/O的时候,重建非聚聚集索引可以维护I/O的效率。重建索引实质上是重新组织B树。需要重建索引的情况有: 1) 数据和使用模式大幅度变化; 2)排序的顺序发生改变; 3)要进行大量插入操作或已经完成; 4)使用I/O查询的磁盘读次数比预料的要多; 5)由于大量数据修改,使得数据页和索引页没有充分使用而导致空间的使用超出估算; 6)dbcc检查出索引有问题。 六、索引的使用原则 接近尾声的时候,让我们再从另一个角度认识索引的两个重要属性----唯一性索引和复合性索引。 在设计表的时候,可以对字段值进行某些限制,比如可以对字段进行主键约束或唯一性约束。 主键约束是指定某个或多个字段不允许重复,用于防止表中出现两条完全相同的记录,这样的字段称为主键,每张表都可以建立并且只能建立一个主键,构成主键的字段不允许空值。例如职员表中“身份证号”字段或成绩表中“学号、课程编号”字段组合。 而唯一性约束与主键约束类似,区别只在于构成唯一性约束的字段允许出现空值。 建立在主键约束和唯一性约束上的索引,由于其字段值具有唯一性,于是我们将这种索引叫做“唯一性索引”,如果这个唯一性索引是由两个以上字段的组合建立的,那么它又叫“复合性索引”。 注意,唯一索引不是聚集索引,如果对一个字段建立了唯一索引,你仅仅不能向这个字段输入重复的值。并不妨碍你可以对其它类型的字段也建立一个唯一性索引,它们可以是聚集的,也可以是非聚集的。 唯一性索引保证在索引列中的全部数据是唯一的,不会包含冗余数据。如果表中已经有一个主键约束或者唯一性约束,那么当创建表或者修改表时,SQLS自动创建一个唯一性索引。但出于必须保证唯一性,那么应该创建主键约束或者唯一性键约束,而不是创建一个唯一性索引。当创建唯一性索引时,应该认真考虑这些规则:当在表中创建主键约束或者唯一性键约束时, SQLS钭自动创建一个唯一性索引;如果表中已经包含有数据,那么当创建索引时,SQLS检查表中已有数据的冗余性,如果发现冗余值,那么SQLS就取消该语句的执行,并且返回一个错误消息,确保表中的每一行数据都有一个唯一值。 复合索引就是一个索引创建在两个列或者多个列上。在搜索时,当两个或者多个列作为一个关键值时,最好在这些列上创建复合索引。当创建复合索引时,应该考虑这些规则:最多可以把16个列合并成一个单独的复合索引,构成复合索引的列的总长度不能超过900字节,也就是说复合列的长度不能太长;在复合索引中,所有的列必须来自同一个表中,不能跨表建立复合列;在复合索引中,列的排列顺序是非常重要的,原则上,应该首先定义最唯一的列,例如在(COL1,COL2)上的索引与在(COL2,COL1)上的索引是不相同的,因为两个索引的列的顺序不同;为了使查询优化器使用复合索引,查询语句中的WHERE子句必须参考复合索引中第一个列;当表中有多个关键列时,复合索引是非常有用的;使用复合索引可以提高查询性能,减少在一个表中所创建的索引数量。 综上所述,我们总结了如下索引使用原则: 1)逻辑主键使用唯一的成组索引,对系统键(作为存储过程)采用唯一的非成组索引,对任何外键列采用非成组索引。考虑数据库的空间有多大,表如何进行访问,还有这些访问是否主要用作读写。 2)不要索引memo/note 字段,不要索引大型字段(有很多字符),这样作会让索引占用太多的存储空间。 3)不要索引常用的小型表 4)一般不要为小型数据表设置过多的索引,假如它们经常有插入和删除操作就更别这样作了,SQLS对这些插入和删除操作提供的索引维护可能比扫描表空间消耗更多的时间。 七、大结局 查询是一个物理过程,表面上是SQLS在东跑西跑,其实真正大部分压马路的工作是由磁盘输入输出系统(I/O)完成,全表扫描需要从磁盘上读表的每一个数据页,如果有索引指向数据值,则I/O读几次磁盘就可以了。但是,在随时发生的增、删、改操作中,索引的存在会大大增加工作量,因此,合理的索引设计是建立在对各种查询的分析和预测上的,只有正确地使索引与程序结合起来,才能产生最佳的优化方案。 一般来说建立索引的思路是: (1)主键时常作为where子句的条件,应在表的主键列上建立聚聚集索引,尤其当经常用它作为连接的时候。 (2)有大量重复值且经常有范围查询和排序、分组发生的列,或者非常频繁地被访问的列,可考虑建立聚聚集索引。 (3)经常同时存取多列,且每列都含有重复值可考虑建立复合索引来覆盖一个或一组查询,并把查询引用最频繁的列作为前导列,如果可能尽量使关键查询形成覆盖查询。 (4)如果知道索引键的所有值都是唯一的,那么确保把索引定义成唯一索引。 (5)在一个经常做插入操作的表上建索引时,使用fillfactor(填充因子)来减少页分裂,同时提高并发度降低死锁的发生。如果在只读表上建索引,则可以把fillfactor置为100。 (6)在选择索引字段时,尽量选择那些小数据类型的字段作为索引键,以使每个索引页能够容纳尽可能多的索引键和指针,通过这种方式,可使一个查询必须遍历的索引页面降到最小。此外,尽可能地使用整数为键值,因为它能够提供比任何数据类型都快的访问速度。 SQLS是一个很复杂的系统,让索引以及查询背后的东西真相大白,可以帮助我们更为深刻的了解我们的系统。一句话,索引就象盐,少则无味多则咸。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_28052907/article/details/75194926。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-30 23:10:07
97
转载
转载文章
...X,ARGV[2]是限制访问的次数 Y。 -- ip_limit.lua-- IP 限流,对某个 IP 频率进行限制 ,6 秒钟访问 10 次 local num=redis.call('incr',KEYS[1])if tonumber(num)==1 thenredis.call('expire',KEYS[1],ARGV[1])return 1elseif tonumber(num)>tonumber(ARGV[2]) thenreturn 0 elsereturn 1 end 6 秒钟内限制访问 10 次,调用测试(连续调用 10 次): ./redis-cli --eval "ip_limit.lua" app:ip:limit:192.168.8.111 , 6 10 app:ip:limit:192.168.8.111 是 key 值 ,后面是参数值,中间要加上一个空格和一个逗号,再加上一个空格 。 即:./redis-cli –eval [lua 脚本] [key…]空格,空格[args…] 多个参数之间用一个空格分割 。 代码:LuaTest.java 3.2.4 缓存 Lua 脚本 为什么要缓存 在脚本比较长的情况下,如果每次调用脚本都需要把整个脚本传给 Redis 服务端, 会产生比较大的网络开销。为了解决这个问题,Redis 提供了 EVALSHA 命令,允许开发者通过脚本内容的 SHA1 摘要来执行脚本。 如何缓存 Redis 在执行 script load 命令时会计算脚本的 SHA1 摘要并记录在脚本缓存中,执行 EVALSHA 命令时 Redis 会根据提供的摘要从脚本缓存中查找对应的脚本内容,如果找到了则执行脚本,否则会返回错误:“NOSCRIPT No matching script. Please use EVAL.” 127.0.0.1:6379> script load "return 'Hello World'" "470877a599ac74fbfda41caa908de682c5fc7d4b"127.0.0.1:6379> evalsha "470877a599ac74fbfda41caa908de682c5fc7d4b" 0 "Hello World" 3.2.5 自乘案例 Redis 有 incrby 这样的自增命令,但是没有自乘,比如乘以 3,乘以 5。我们可以写一个自乘的运算,让它乘以后面的参数: local curVal = redis.call("get", KEYS[1]) if curVal == false thencurVal = 0 elsecurVal = tonumber(curVal)endcurVal = curVal tonumber(ARGV[1]) redis.call("set", KEYS[1], curVal) return curVal 把这个脚本变成单行,语句之间使用分号隔开 local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal script load ‘命令’ 127.0.0.1:6379> script load 'local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal' "be4f93d8a5379e5e5b768a74e77c8a4eb0434441" 调用: 127.0.0.1:6379> set num 2OK127.0.0.1:6379> evalsha be4f93d8a5379e5e5b768a74e77c8a4eb0434441 1 num 6 (integer) 12 3.2.6 脚本超时 Redis 的指令执行本身是单线程的,这个线程还要执行客户端的 Lua 脚本,如果 Lua 脚本执行超时或者陷入了死循环,是不是没有办法为客户端提供服务了呢? eval 'while(true) do end' 0 为了防止某个脚本执行时间过长导致 Redis 无法提供服务,Redis 提供了 lua-time-limit 参数限制脚本的最长运行时间,默认为 5 秒钟。 lua-time-limit 5000(redis.conf 配置文件中) 当脚本运行时间超过这一限制后,Redis 将开始接受其他命令但不会执行(以确保脚本的原子性,因为此时脚本并没有被终止),而是会返回“BUSY”错误。 Redis 提供了一个 script kill 的命令来中止脚本的执行。新开一个客户端: script kill 如果当前执行的 Lua 脚本对 Redis 的数据进行了修改(SET、DEL 等),那么通过 script kill 命令是不能终止脚本运行的。 127.0.0.1:6379> eval "redis.call('set','gupao','666') while true do end" 0 因为要保证脚本运行的原子性,如果脚本执行了一部分终止,那就违背了脚本原子性的要求。最终要保证脚本要么都执行,要么都不执行。 127.0.0.1:6379> script kill(error) UNKILLABLE Sorry the script already executed write commands against the dataset. You can either wait the scripttermination or kill the server in a hard way using the SHUTDOWN NOSAVE command. 遇到这种情况,只能通过 shutdown nosave 命令来强行终止 redis。 shutdown nosave 和 shutdown 的区别在于 shutdown nosave 不会进行持久化操作,意味着发生在上一次快照后的数据库修改都会丢失。 4、Redis 为什么这么快? 4.1 Redis到底有多快? 根据官方的数据,Redis 的 QPS 可以达到 10 万左右(每秒请求数)。 4.2 Redis为什么这么快? 总结:1)纯内存结构、2)单线程、3)多路复用 4.2.1 内存 KV 结构的内存数据库,时间复杂度 O(1)。 第二个,要实现这么高的并发性能,是不是要创建非常多的线程? 恰恰相反,Redis 是单线程的。 4.2.2 单线程 单线程有什么好处呢? 1、没有创建线程、销毁线程带来的消耗 2、避免了上线文切换导致的 CPU 消耗 3、避免了线程之间带来的竞争问题,例如加锁释放锁死锁等等 4.2.3 异步非阻塞 异步非阻塞 I/O,多路复用处理并发连接。 4.3 Redis为什么是单线程的? 不是白白浪费了 CPU 的资源吗? 因为单线程已经够用了,CPU 不是 redis 的瓶颈。Redis 的瓶颈最有可能是机器内存或者网络带宽。既然单线程容易实现,而且 CPU 不会成为瓶颈,那就顺理成章地采用单线程的方案了。 4.4 单线程为什么这么快? 因为 Redis 是基于内存的操作,我们先从内存开始说起。 4.4.1 虚拟存储器(虚拟内存 Vitual Memory) 名词解释:主存:内存;辅存:磁盘(硬盘) 计算机主存(内存)可看作一个由 M 个连续的字节大小的单元组成的数组,每个字节有一个唯一的地址,这个地址叫做物理地址(PA)。早期的计算机中,如果 CPU 需要内存,使用物理寻址,直接访问主存储器。 这种方式有几个弊端: 1、在多用户多任务操作系统中,所有的进程共享主存,如果每个进程都独占一块物理地址空间,主存很快就会被用完。我们希望在不同的时刻,不同的进程可以共用同一块物理地址空间。 2、如果所有进程都是直接访问物理内存,那么一个进程就可以修改其他进程的内存数据,导致物理地址空间被破坏,程序运行就会出现异常。 为了解决这些问题,我们就想了一个办法,在 CPU 和主存之间增加一个中间层。CPU 不再使用物理地址访问,而是访问一个虚拟地址,由这个中间层把地址转换成物理地址,最终获得数据。这个中间层就叫做虚拟存储器(Virtual Memory)。 具体的操作如下所示: 在每一个进程开始创建的时候,都会分配一段虚拟地址,然后通过虚拟地址和物理地址的映射来获取真实数据,这样进程就不会直接接触到物理地址,甚至不知道自己调用的哪块物理地址的数据。 目前,大多数操作系统都使用了虚拟内存,如 Windows 系统的虚拟内存、Linux 系统的交换空间等等。Windows 的虚拟内存(pagefile.sys)是磁盘空间的一部分。 在 32 位的系统上,虚拟地址空间大小是 2^32bit=4G。在 64 位系统上,最大虚拟地址空间大小是多少? 是不是 2^64bit=10241014TB=1024PB=16EB?实际上没有用到 64 位,因为用不到这么大的空间,而且会造成很大的系统开销。Linux 一般用低 48 位来表示虚拟地址空间,也就是 2^48bit=256T。 cat /proc/cpuinfo address sizes : 40 bits physical, 48 bits virtual 实际的物理内存可能远远小于虚拟内存的大小。 总结:引入虚拟内存,可以提供更大的地址空间,并且地址空间是连续的,使得程序编写、链接更加简单。并且可以对物理内存进行隔离,不同的进程操作互不影响。还可以通过把同一块物理内存映射到不同的虚拟地址空间实现内存共享。 4.4.2 用户空间和内核空间 为了避免用户进程直接操作内核,保证内核安全,操作系统将虚拟内存划分为两部分,一部分是内核空间(Kernel-space)/ˈkɜːnl /,一部分是用户空间(User-space)。 内核是操作系统的核心,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的权限。 内核空间中存放的是内核代码和数据,而进程的用户空间中存放的是用户程序的代码和数据。不管是内核空间还是用户空间,它们都处于虚拟空间中,都是对物理地址的映射。 在 Linux 系统中, 内核进程和用户进程所占的虚拟内存比例是 1:3。 当进程运行在内核空间时就处于内核态,而进程运行在用户空间时则处于用户态。 进程在内核空间以执行任意命令,调用系统的一切资源;在用户空间只能执行简单的运算,不能直接调用系统资源,必须通过系统接口(又称 system call),才能向内核发出指令。 top 命令: us 代表 CPU 消耗在 User space 的时间百分比; sy 代表 CPU 消耗在 Kernel space 的时间百分比。 4.4.3 进程切换(上下文切换) 多任务操作系统是怎么实现运行远大于 CPU 数量的任务个数的? 当然,这些任务实际上并不是真的在同时运行,而是因为系统通过时间片分片算法,在很短的时间内,将 CPU 轮流分配给它们,造成多任务同时运行的错觉。 为了控制进程的执行,内核必须有能力挂起正在 CPU 上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。 什么叫上下文? 在每个任务运行前,CPU 都需要知道任务从哪里加载、又从哪里开始运行,也就是说,需要系统事先帮它设置好 CPU 寄存器和程序计数器(ProgramCounter),这个叫做 CPU 的上下文。 而这些保存下来的上下文,会存储在系统内核中,并在任务重新调度执行时再次加载进来。这样就能保证任务原来的状态不受影响,让任务看起来还是连续运行。 在切换上下文的时候,需要完成一系列的工作,这是一个很消耗资源的操作。 4.4.4 进程的阻塞 正在运行的进程由于提出系统服务请求(如 I/O 操作),但因为某种原因未得到操作系统的立即响应,该进程只能把自己变成阻塞状态,等待相应的事件出现后才被唤醒。 进程在阻塞状态不占用 CPU 资源。 4.4.5 文件描述符 FD Linux 系统将所有设备都当作文件来处理,而 Linux 用文件描述符来标识每个文件对象。 文件描述符(File Descriptor)是内核为了高效管理已被打开的文件所创建的索引,用于指向被打开的文件,所有执行 I/O 操作的系统调用都通过文件描述符;文件描述符是一个简单的非负整数,用以表明每个被进程打开的文件。 Linux 系统里面有三个标准文件描述符。 0:标准输入(键盘); 1:标准输出(显示器); 2:标准错误输出(显示器)。 4.4.6 传统 I/O 数据拷贝 以读操作为例: 当应用程序执行 read 系统调用读取文件描述符(FD)的时候,如果这块数据已经存在于用户进程的页内存中,就直接从内存中读取数据。如果数据不存在,则先将数据从磁盘加载数据到内核缓冲区中,再从内核缓冲区拷贝到用户进程的页内存中。(两次拷贝,两次 user 和 kernel 的上下文切换)。 I/O 的阻塞到底阻塞在哪里? 4.4.7 Blocking I/O 当使用 read 或 write 对某个文件描述符进行过读写时,如果当前 FD 不可读,系统就不会对其他的操作做出响应。从设备复制数据到内核缓冲区是阻塞的,从内核缓冲区拷贝到用户空间,也是阻塞的,直到 copy complete,内核返回结果,用户进程才解除 block 的状态。 为了解决阻塞的问题,我们有几个思路。 1、在服务端创建多个线程或者使用线程池,但是在高并发的情况下需要的线程会很多,系统无法承受,而且创建和释放线程都需要消耗资源。 2、由请求方定期轮询,在数据准备完毕后再从内核缓存缓冲区复制数据到用户空间 (非阻塞式 I/O),这种方式会存在一定的延迟。 能不能用一个线程处理多个客户端请求? 4.4.8 I/O 多路复用(I/O Multiplexing) I/O 指的是网络 I/O。 多路指的是多个 TCP 连接(Socket 或 Channel)。 复用指的是复用一个或多个线程。它的基本原理就是不再由应用程序自己监视连接,而是由内核替应用程序监视文件描述符。 客户端在操作的时候,会产生具有不同事件类型的 socket。在服务端,I/O 多路复用程序(I/O Multiplexing Module)会把消息放入队列中,然后通过文件事件分派器(File event Dispatcher),转发到不同的事件处理器中。 多路复用有很多的实现,以 select 为例,当用户进程调用了多路复用器,进程会被阻塞。内核会监视多路复用器负责的所有 socket,当任何一个 socket 的数据准备好了,多路复用器就会返回。这时候用户进程再调用 read 操作,把数据从内核缓冲区拷贝到用户空间。 所以,I/O 多路复用的特点是通过一种机制一个进程能同时等待多个文件描述符,而这些文件描述符(套接字描述符)其中的任意一个进入读就绪(readable)状态,select() 函数就可以返回。 Redis 的多路复用, 提供了 select, epoll, evport, kqueue 几种选择,在编译的时 候来选择一种。 evport 是 Solaris 系统内核提供支持的; epoll 是 LINUX 系统内核提供支持的; kqueue 是 Mac 系统提供支持的; select 是 POSIX 提供的,一般的操作系统都有支撑(保底方案); 源码 ae_epoll.c、ae_select.c、ae_kqueue.c、ae_evport.c 5、内存回收 Reids 所有的数据都是存储在内存中的,在某些情况下需要对占用的内存空间进行回 收。内存回收主要分为两类,一类是 key 过期,一类是内存使用达到上限(max_memory) 触发内存淘汰。 5.1 过期策略 要实现 key 过期,我们有几种思路。 5.1.1 定时过期(主动淘汰) 每个设置过期时间的 key 都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的 CPU 资源去处理过期的 数据,从而影响缓存的响应时间和吞吐量。 5.1.2 惰性过期(被动淘汰) 只有当访问一个 key 时,才会判断该 key 是否已过期,过期则清除。该策略可以最大化地节省 CPU 资源,却对内存非常不友好。极端情况可能出现大量的过期 key 没有再次被访问,从而不会被清除,占用大量内存。 例如 String,在 getCommand 里面会调用 expireIfNeeded server.c expireIfNeeded(redisDb db, robj key) 第二种情况,每次写入 key 时,发现内存不够,调用 activeExpireCycle 释放一部分内存。 expire.c activeExpireCycle(int type) 5.1.3 定期过期 源码:server.h typedef struct redisDb { dict dict; / 所有的键值对 /dict expires; / 设置了过期时间的键值对 /dict blocking_keys; dict ready_keys; dict watched_keys; int id;long long avg_ttl;list defrag_later; } redisDb; 每隔一定的时间,会扫描一定数量的数据库的 expires 字典中一定数量的 key,并清除其中已过期的 key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得 CPU 和内存资源达到最优的平衡效果。 Redis 中同时使用了惰性过期和定期过期两种过期策略。 5.2 淘汰策略 Redis 的内存淘汰策略,是指当内存使用达到最大内存极限时,需要使用淘汰算法来决定清理掉哪些数据,以保证新数据的存入。 5.2.1 最大内存设置 redis.conf 参数配置: maxmemory <bytes> 如果不设置 maxmemory 或者设置为 0,64 位系统不限制内存,32 位系统最多使用 3GB 内存。 动态修改: redis> config set maxmemory 2GB 到达最大内存以后怎么办? 5.2.2 淘汰策略 https://redis.io/topics/lru-cache redis.conf maxmemory-policy noeviction 先从算法来看: LRU,Least Recently Used:最近最少使用。判断最近被使用的时间,目前最远的数据优先被淘汰。 LFU,Least Frequently Used,最不常用,4.0 版本新增。 random,随机删除。 如果没有符合前提条件的 key 被淘汰,那么 volatile-lru、volatile-random、 volatile-ttl 相当于 noeviction(不做内存回收)。 动态修改淘汰策略: redis> config set maxmemory-policy volatile-lru 建议使用 volatile-lru,在保证正常服务的情况下,优先删除最近最少使用的 key。 5.2.3 LRU 淘汰原理 问题:如果基于传统 LRU 算法实现 Redis LRU 会有什么问题? 需要额外的数据结构存储,消耗内存。 Redis LRU 对传统的 LRU 算法进行了改良,通过随机采样来调整算法的精度。如果淘汰策略是 LRU,则根据配置的采样值 maxmemory_samples(默认是 5 个), 随机从数据库中选择 m 个 key, 淘汰其中热度最低的 key 对应的缓存数据。所以采样参数m配置的数值越大, 就越能精确的查找到待淘汰的缓存数据,但是也消耗更多的CPU计算,执行效率降低。 问题:如何找出热度最低的数据? Redis 中所有对象结构都有一个 lru 字段, 且使用了 unsigned 的低 24 位,这个字段用来记录对象的热度。对象被创建时会记录 lru 值。在被访问的时候也会更新 lru 的值。 但是不是获取系统当前的时间戳,而是设置为全局变量 server.lruclock 的值。 源码:server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; server.lruclock 的值怎么来的? Redis 中有个定时处理的函数 serverCron,默认每 100 毫秒调用函数 updateCachedTime 更新一次全局变量的 server.lruclock 的值,它记录的是当前 unix 时间戳。 源码:server.c void updateCachedTime(void) { time_t unixtime = time(NULL); atomicSet(server.unixtime,unixtime); server.mstime = mstime();struct tm tm; localtime_r(&server.unixtime,&tm);server.daylight_active = tm.tm_isdst; } 问题:为什么不获取精确的时间而是放在全局变量中?不会有延迟的问题吗? 这样函数 lookupKey 中更新数据的 lru 热度值时,就不用每次调用系统函数 time,可以提高执行效率。 OK,当对象里面已经有了 LRU 字段的值,就可以评估对象的热度了。 函数 estimateObjectIdleTime 评估指定对象的 lru 热度,思想就是对象的 lru 值和全局的 server.lruclock 的差值越大(越久没有得到更新),该对象热度越低。 源码 evict.c / Given an object returns the min number of milliseconds the object was never requested, using an approximated LRU algorithm. /unsigned long long estimateObjectIdleTime(robj o) {unsigned long long lruclock = LRU_CLOCK(); if (lruclock >= o->lru) {return (lruclock - o->lru) LRU_CLOCK_RESOLUTION; } else {return (lruclock + (LRU_CLOCK_MAX - o->lru)) LRU_CLOCK_RESOLUTION;} } server.lruclock 只有 24 位,按秒为单位来表示才能存储 194 天。当超过 24bit 能表 示的最大时间的时候,它会从头开始计算。 server.h define LRU_CLOCK_MAX ((1<<LRU_BITS)-1) / Max value of obj->lru / 在这种情况下,可能会出现对象的 lru 大于 server.lruclock 的情况,如果这种情况 出现那么就两个相加而不是相减来求最久的 key。 为什么不用常规的哈希表+双向链表的方式实现?需要额外的数据结构,消耗资源。而 Redis LRU 算法在 sample 为 10 的情况下,已经能接近传统 LRU 算法了。 问题:除了消耗资源之外,传统 LRU 还有什么问题? 如图,假设 A 在 10 秒内被访问了 5 次,而 B 在 10 秒内被访问了 3 次。因为 B 最后一次被访问的时间比 A 要晚,在同等的情况下,A 反而先被回收。 问题:要实现基于访问频率的淘汰机制,怎么做? 5.2.4 LFU server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; 当这 24 bits 用作 LFU 时,其被分为两部分: 高 16 位用来记录访问时间(单位为分钟,ldt,last decrement time) 低 8 位用来记录访问频率,简称 counter(logc,logistic counter) counter 是用基于概率的对数计数器实现的,8 位可以表示百万次的访问频率。 对象被读写的时候,lfu 的值会被更新。 db.c——lookupKey void updateLFU(robj val) {unsigned long counter = LFUDecrAndReturn(val); counter = LFULogIncr(counter);val->lru = (LFUGetTimeInMinutes()<<8) | counter;} 增长的速率由,lfu-log-factor 越大,counter 增长的越慢 redis.conf 配置文件。 lfu-log-factor 10 如果计数器只会递增不会递减,也不能体现对象的热度。没有被访问的时候,计数器怎么递减呢? 减少的值由衰减因子 lfu-decay-time(分钟)来控制,如果值是 1 的话,N 分钟没有访问就要减少 N。 redis.conf 配置文件 lfu-decay-time 1 6、持久化机制 https://redis.io/topics/persistence Redis 速度快,很大一部分原因是因为它所有的数据都存储在内存中。如果断电或者宕机,都会导致内存中的数据丢失。为了实现重启后数据不丢失,Redis 提供了两种持久化的方案,一种是 RDB 快照(Redis DataBase),一种是 AOF(Append Only File)。 6.1 RDB RDB 是 Redis 默认的持久化方案。当满足一定条件的时候,会把当前内存中的数据写入磁盘,生成一个快照文件 dump.rdb。Redis 重启会通过加载 dump.rdb 文件恢复数据。 什么时候写入 rdb 文件? 6.1.1 RDB 触发 1、自动触发 a)配置规则触发。 redis.conf, SNAPSHOTTING,其中定义了触发把数据保存到磁盘的触发频率。 如果不需要 RDB 方案,注释 save 或者配置成空字符串""。 save 900 1 900 秒内至少有一个 key 被修改(包括添加) save 300 10 400 秒内至少有 10 个 key 被修改save 60 10000 60 秒内至少有 10000 个 key 被修改 注意上面的配置是不冲突的,只要满足任意一个都会触发。 RDB 文件位置和目录: 文件路径,dir ./ 文件名称dbfilename dump.rdb 是否是LZF压缩rdb文件 rdbcompression yes 开启数据校验 rdbchecksum yes 问题:为什么停止 Redis 服务的时候没有 save,重启数据还在? RDB 还有两种触发方式: b)shutdown 触发,保证服务器正常关闭。 c)flushall,RDB 文件是空的,没什么意义(删掉 dump.rdb 演示一下)。 2、手动触发 如果我们需要重启服务或者迁移数据,这个时候就需要手动触 RDB 快照保存。Redis 提供了两条命令: a)save save 在生成快照的时候会阻塞当前 Redis 服务器, Redis 不能处理其他命令。如果内存中的数据比较多,会造成 Redis 长时间的阻塞。生产环境不建议使用这个命令。 为了解决这个问题,Redis 提供了第二种方式。 执行 bgsave 时,Redis 会在后台异步进行快照操作,快照同时还可以响应客户端请求。 具体操作是 Redis 进程执行 fork 操作创建子进程(copy-on-write),RDB 持久化过程由子进程负责,完成后自动结束。它不会记录 fork 之后后续的命令。阻塞只发生在 fork 阶段,一般时间很短。 用 lastsave 命令可以查看最近一次成功生成快照的时间。 6.1.2 RDB 数据的恢复(演示) 1、shutdown 持久化添加键值 添加键值 redis> set k1 1 redis> set k2 2 redis> set k3 3 redis> set k4 4 redis> set k5 5 停服务器,触发 save redis> shutdown 备份 dump.rdb 文件 cp dump.rdb dump.rdb.bak 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 啥都没有: redis> keys 3、通过备份文件恢复数据停服务器 redis> shutdown 重命名备份文件 mv dump.rdb.bak dump.rdb 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 查看数据 redis> keys 6.1.3 RDB 文件的优势和劣势 一、优势 1.RDB 是一个非常紧凑(compact)的文件,它保存了 redis 在某个时间点上的数据集。这种文件非常适合用于进行备份和灾难恢复。 2.生成 RDB 文件的时候,redis 主进程会 fork()一个子进程来处理所有保存工作,主进程不需要进行任何磁盘 IO 操作。 3.RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。 二、劣势 1、RDB 方式数据没办法做到实时持久化/秒级持久化。因为 bgsave 每次运行都要执行 fork 操作创建子进程,频繁执行成本过高。 2、在一定间隔时间做一次备份,所以如果 redis 意外 down 掉的话,就会丢失最后一次快照之后的所有修改(数据有丢失)。 如果数据相对来说比较重要,希望将损失降到最小,则可以使用 AOF 方式进行持久化。 6.2 AOF Append Only File AOF:Redis 默认不开启。AOF 采用日志的形式来记录每个写操作,并追加到文件中。开启后,执行更改 Redis 数据的命令时,就会把命令写入到 AOF 文件中。 Redis 重启时会根据日志文件的内容把写指令从前到后执行一次以完成数据的恢复工作。 6.2.1 AOF 配置 配置文件 redis.conf 开关appendonly no 文件名appendfilename "appendonly.aof" AOF 文件的内容(vim 查看): 问题:数据都是实时持久化到磁盘吗? 由于操作系统的缓存机制,AOF 数据并没有真正地写入硬盘,而是进入了系统的硬盘缓存。什么时候把缓冲区的内容写入到 AOF 文件? 问题:文件越来越大,怎么办? 由于 AOF 持久化是 Redis 不断将写命令记录到 AOF 文件中,随着 Redis 不断的进行,AOF 的文件会越来越大,文件越大,占用服务器内存越大以及 AOF 恢复要求时间越长。 例如 set xxx 666,执行 1000 次,结果都是 xxx=666。 为了解决这个问题,Redis 新增了重写机制,当 AOF 文件的大小超过所设定的阈值时,Redis 就会启动 AOF 文件的内容压缩,只保留可以恢复数据的最小指令集。 可以使用命令 bgrewriteaof 来重写。 AOF 文件重写并不是对原文件进行重新整理,而是直接读取服务器现有的键值对,然后用一条命令去代替之前记录这个键值对的多条命令,生成一个新的文件后去替换原来的 AOF 文件。 重写触发机制 auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb 问题:重写过程中,AOF 文件被更改了怎么办? 另外有两个与 AOF 相关的参数: 6.2.2 AOF 数据恢复 重启 Redis 之后就会进行 AOF 文件的恢复。 6.2.3 AOF 优势与劣势 优点: 1、AOF 持久化的方法提供了多种的同步频率,即使使用默认的同步频率每秒同步一次,Redis 最多也就丢失 1 秒的数据而已。 缺点: 1、对于具有相同数据的的 Redis,AOF 文件通常会比 RDB 文件体积更大(RDB 存的是数据快照)。 2、虽然 AOF 提供了多种同步的频率,默认情况下,每秒同步一次的频率也具有较高的性能。在高并发的情况下,RDB 比 AOF 具好更好的性能保证。 6.3 两种方案比较 那么对于 AOF 和 RDB 两种持久化方式,我们应该如何选择呢? 如果可以忍受一小段时间内数据的丢失,毫无疑问使用 RDB 是最好的,定时生成 RDB 快照(snapshot)非常便于进行数据库备份, 并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度要快。 否则就使用 AOF 重写。但是一般情况下建议不要单独使用某一种持久化机制,而是应该两种一起用,在这种情况下,当 redis 重启的时候会优先载入 AOF 文件来恢复原始的数据,因为在通常情况下 AOF 文件保存的数据集要比 RDB 文件保存的数据集要完整。 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhoutaochun/article/details/120075092。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-18 12:25:04
541
转载
转载文章
...前精力放在不受GPL限制的TightVNC 2.x版本开发中,对开源的1.x版本漏洞代码“可能会进行修复”。看起来,这个问题被踢给了各大Linux发行版社区来焦虑了——如果他们愿意接锅。 问题思考 在披露邮件中,Pavel认为,这些代码bug“如此明显,让人无法相信之前没被人发现过……也许是因为某些特殊理由才始终没得到修复”。 事实上,我们都知道目前存在一些对开源基础软件进行安全扫描的大型项目,例如Google的OSS;同时,仍然存活的开源项目也越来越注重自身代码发布前的安全扫描,Fortify、Coverity的扫描也成为很多项目和平台的标配。在这样一些眼睛注视下,为什么还有这样的问题?我认为就这个具体事例来说,可能有如下两个因素: ·上游已死。仍然在被维护的代码,存在版本更迭,也存在外界的持续关注、漏洞报告和修复、开发的迭代,对于负责人的开发者,持续跟进、评估、同步代码的改动是可能的。但是一旦一份代码走完了生命周期,就像一段史实一样会很少再被改动。 ·对第三方上游代码的无条件信任。我们很多人都有过基础组件、中间件的开发经历,不乏有人使用Coverity开启全部规则进行代码扫描、严格修复所有提示的问题甚至编程规范warning;报告往往很长,其中也包括有源码形式包含的第三方代码中的问题。但是,我们一方面倾向于认为这些被广泛使用的代码不应存在问题(不然早就被人挖过了),一方面考虑这些引用的代码往往是组件或库的形式被使用,应该有其上下文才能认定是否确实有可被利用的漏洞条件,现在单独扫描这部分代码一般出来的都是误报。所以这些代码的问题都容易被忽视。 但是透过这个具体例子,再延伸思考相关的实践,这里最根本的问题可以总结为一个模式: 复制粘贴风险。复制粘贴并不简单意味着剽窃,实际是当前软件领域、互联网行业发展的基础模式,但其中有一些没人能尝试解决的问题: ·在传统代码领域,如C代码中,对第三方代码功能的复用依赖,往往通过直接进行库的引入实现,第三方代码独立而完整,也较容易进行整体更新;这是最简单的情况,只需要所有下游使用者保证仅使用官方版本,跟进官方更新即可;但在实践中很难如此贯彻,这是下节讨论的问题。 ·有些第三方发布的代码,模式就是需要被源码形式包含到其他项目中进行统一编译使用(例如腾讯的开源Json解析库RapidJSON,就是纯C++头文件形式)。在开源领域有如GPL等规约对此进行规范,下游开发者遵循协议,引用代码,强制或可选地显式保留其GPL声明,可以进行使用和更改。这样的源码依赖关系,结合规范化的changelog声明代码改动,侧面也是为开发过程中跟进考虑。但是一个成型的产品,比如企业自有的服务端底层产品、中间件,新版本的发版更新是复杂的过程,开发者在旧版本仍然“功能正常”的情况下往往倾向于不跟进新版本;而上游代码如果进行安全漏洞修复,通常也都只在其最新版本代码中改动,安全修复与功能迭代并存,如果没有类似Linux发行版社区的努力,旧版本代码完全没有干净的安全更新patch可用。 ·在特定场景下,有些开发实践可能不严格遵循开源代码协议限定,引入了GPL等协议保护的代码而不做声明(以规避相关责任),丢失了引入和版本的信息跟踪;在另一些场景下,可能存在对开源代码进行大刀阔斧的修改、剪裁、定制,以符合自身业务的极端需求,但是过多的修改、人员的迭代造成与官方代码严重的失同步,丧失可维护性。 ·更一般的情况是,在开发中,开发者个体往往心照不宣的存在对网上代码文件、代码片段的复制-粘贴操作。被参考的代码,可能有上述的开源代码,也可能有各种Github作者练手项目、技术博客分享的代码片段、正式开源项目仅用来说明用法的不完备示例代码。这些代码的引入完全无迹可寻,即便是作者自己也很难解释用了什么。这种情况下,上面两条认定的那些与官方安全更新失同步的问题同样存在,且引入了独特的风险:被借鉴的代码可能只是原作者随手写的、仅仅是功能成立的片段,甚至可能是恶意作者随意散布的有安全问题的代码。由此,问题进入了最大的发散空间。 在Synopsys下BLACKDUCK软件之前发布的《2018 Open Source Security and Risk Analysis Report》中分析,96%的应用中包含有开源组件和代码,开源代码在应用全部代码中的占比约为57%,78%的应用中在引用的三方开源代码中存在历史漏洞。也就是说,现在互联网上所有厂商开发的软件、应用,其开发人员自己写的代码都是一少部分,多数都是借鉴来的。而这还只是可统计、可追溯的;至于上面提到的非规范的代码引用,如果也纳入进来考虑,三方代码占应用中的比例会上升到多少?曾经有分析认为至少占80%,我们只期望不会更高。 Ⅱ. 从碎片到乱刃:OpenSSH在野后门一览 在进行基础软件梳理时,回忆到反病毒安全软件提供商ESET在2018年十月发布的一份白皮书《THE DARK SIDE OF THE FORSSHE: A landscape of OpenSSH backdoors》。其站在一个具有广泛用户基础的软件提供商角度,给出了一份分析报告,数据和结论超出我们对于当前基础软件使用全景的估量。以下以我的角度对其中一方面进行解读。 一些必要背景 SSH的作用和重要性无需赘言;虽然我们站在传统互联网公司角度,可以认为SSH是通往生产服务器的生命通道,但当前多样化的产业环境已经不止于此(如之前libssh事件中,不幸被我言中的,SSH在网络设备、IoT设备上(如f5)的广泛使用)。 OpenSSH是目前绝大多数SSH服务端的基础软件,有完备的开发团队、发布规范、维护机制,本身是靠谱的。如同绝大多数基础软件开源项目的做法,OpenSSH对漏洞有及时的响应,针对最新版本代码发出安全补丁,但是各大Linux发行版使用的有各种版本的OpenSSH,这些社区自行负责将官方开发者的安全补丁移植到自己系统搭载的低版本代码上。天空彩 白皮书披露的现状 如果你是一个企业的运维管理人员,需要向企业生产服务器安装OpenSSH或者其它基础软件,最简单的方式当然是使用系统的软件管理安装即可。但是有时候,出于迁移成本考虑,可能企业需要在一个旧版本系统上,使用较新版本的OpenSSL、OpenSSH等基础软件,这些系统不提供,需要自行安装;或者需要一个某有种特殊特性的定制版本。这时,可能会选择从某些rpm包集中站下载某些不具名第三方提供的现成的安装包,或者下载非官方的定制化源码本地编译后安装,总之从这里引入了不确定性。 这种不确定性有多大?我们粗估一下,似乎不应成为问题。但这份白皮书给我们看到了鲜活的数据。 ESET研究人员从OpenSSH的一次历史大规模Linux服务端恶意软件Windigo中获得启示,采用某种巧妙的方式,面向在野的服务器进行数据采集,主要是系统与版本、安装的OpenSSH版本信息以及服务端程序文件的一个特殊签名。整理一个签名白名单,包含有所有能搜索到的官方发布二进制版本、各大Linux发行版本各个版本所带的程序文件版本,将这些标定为正常样本进行去除。最终结论是: ·共发现了几百个非白名单版本的OpenSSH服务端程序文件ssh和sshd; ·分析这些样本,将代码部分完全相同,仅仅是数据和配置不同的合并为一类,且分析判定确认有恶意代码的,共归纳为 21个各异的恶意OpenSSH家族; ·在21个恶意家族中,有12个家族在10月份时完全没有被公开发现分析过;而剩余的有一部分使用了历史上披露的恶意代码样本,甚至有源代码; ·所有恶意样本的实现,从实现复杂度、代码混淆和自我保护程度到代码特征有很大跨度的不同,但整体看,目的以偷取用户凭证等敏感信息、回连外传到攻击者为主,其中有的攻击者回连地址已经存在并活跃数年之久; ·这些后门的操控者,既有传统恶意软件黑产人员,也有APT组织; ·所有恶意软件或多或少都在被害主机上有未抹除的痕迹。ESET研究者尝试使用蜜罐引诱出攻击者,但仍有许多未解之谜。这场对抗,仍未取胜。 白皮书用了大篇幅做技术分析报告,此处供细节分析,不展开分析,以下为根据恶意程序复杂度描绘的21个家族图谱: 问题思考 问题引入的可能渠道,我在开头进行了一点推测,主要是由人的原因切入的,除此以外,最可能的是恶意攻击者在利用各种方法入侵目标主机后,主动替换了目标OpenSSH为恶意版本,从而达成攻击持久化操作。但是这些都是止血的安全运维人员该考虑的事情;关键问题是,透过表象,这显露了什么威胁形式? 这个问题很好回答,之前也曾经反复说过:基础软件碎片化。 如上一章节简单提到,在开发过程中有各种可能的渠道引入开发者不完全了解和信任的代码;在运维过程中也是如此。二者互相作用,造成了软件碎片化的庞杂现状。在企业内部,同一份基础软件库,可能不同的业务线各自定制一份,放到企业私有软件仓库源中,有些会有人持续更新供自己产品使用,有些由系统软件基础设施维护人员单独维护,有些则可能是开发人员临时想起来上传的,他们自己都不记得;后续用到的这个基础软件的开发和团队,在这个源上搜索到已有的库,很大概率会倾向于直接使用,不管来源、是否有质量背书等。长此以往问题会持续发酵。而我们开最坏的脑洞,是否可能有黑产人员入职到内部,提交个恶意基础库之后就走人的可能?现行企业安全开发流程中审核机制的普遍缺失给这留下了空位。 将源码来源碎片化与二进制使用碎片化并起来考虑,我们不难看到一个远远超过OpenSSH事件威胁程度的图景。但这个问题不是仅仅靠开发阶段规约、运维阶段规范、企业内部管控、行业自查、政府监管就可以根除的,最大的问题归根结底两句话: 不可能用一场战役对抗持续威胁;不可能用有限分析对抗无限未知。 Ⅲ. 从自信到自省:RHEL、CentOS backport版本BIND漏洞 2018年12月20日凌晨,在备战冬至的软件供应链安全大赛决赛时,我注意到漏洞预警平台捕获的一封邮件。但这不是一个漏洞初始披露邮件,而是对一个稍早已披露的BIND在RedHat、CentOS发行版上特定版本的1day漏洞CVE-2018-5742,由BIND的官方开发者进行额外信息澄(shuǎi)清(guō)的邮件。 一些必要背景 关于BIND 互联网的一个古老而基础的设施是DNS,这个概念在读者不应陌生。而BIND“是现今互联网上最常使用的DNS软件,使用BIND作为服务器软件的DNS服务器约占所有DNS服务器的九成。BIND现在由互联网系统协会负责开发与维护参考。”所以BIND的基础地位即是如此,因此也一向被大量白帽黑帽反复测试、挖掘漏洞,其开发者大概也一直处在紧绷着应对的处境。 关于ISC和RedHat 说到开发者,上面提到BIND的官方开发者是互联网系统协会(ISC)。ISC是一个老牌非营利组织,目前主要就是BIND和DHCP基础设施的维护者。而BIND本身如同大多数历史悠久的互联网基础开源软件,是4个UCB在校生在DARPA资助下于1984年的实验室产物,直到2012年由ISC接管。 那么RedHat在此中是什么角色呢?这又要提到我之前提到的Linux发行版和自带软件维护策略。Red Hat Enterprise Linux(RHEL)及其社区版CentOS秉持着稳健的软件策略,每个大的发行版本的软件仓库,都只选用最必要且质量久经时间考验的软件版本,哪怕那些版本实在是老掉牙。这不是一种过分的保守,事实证明这种策略往往给RedHat用户在最新漏洞面前提供了保障——代码总是跑得越少,潜在漏洞越多。 但是这有两个关键问题。一方面,如果开源基础软件被发现一例有历史沿革的代码漏洞,那么官方开发者基本都只为其最新代码负责,在当前代码上推出修复补丁。另一方面,互联网基础设施虽然不像其上的应用那样爆发性迭代,但依然持续有一些新特性涌现,其中一些是必不可少的,但同样只在最新代码中提供。两个刚需推动下,各Linux发行版对长期支持版本系统的软件都采用一致的策略,即保持其基础软件在一个固定的版本,但对于这些版本软件的最新漏洞、必要的最新软件特性,由发行版维护者将官方开发者最新代码改动“向后移植”到旧版本代码中,即backport。这就是基础软件的“官宣”碎片化的源头。 讲道理,Linux发行版维护者与社区具有比较靠谱的开发能力和监督机制,backport又基本就是一些复制粘贴工作,应当是很稳当的……但真是如此吗? CVE-2018-5742漏洞概况 CVE-2018-5742是一个简单的缓冲区溢出类型漏洞,官方评定其漏洞等级moderate,认为危害不大,漏洞修复不积极,披露信息不多,也没有积极给出代码修复patch和新版本rpm包。因为该漏洞仅在设置DEBUG_LEVEL为10以上才会触发,由远程攻击者构造畸形请求造成BIND服务崩溃,在正常的生产环境几乎不可能具有危害,RedHat官方也只是给出了用户自查建议。 这个漏洞只出现在RHEL和CentOS版本7中搭载的BIND 9.9.4-65及之后版本。RedHat同ISC的声明中都证实,这个漏洞的引入原因,是RedHat在尝试将BIND 9.11版本2016年新增的NTA机制向后移植到RedHat 7系中固定搭载的BIND 9.9版本代码时,偶然的代码错误。NTA是DNS安全扩展(DNSSEC)中,用于在特定域关闭DNSSEC校验以避免不必要的校验失败的机制;但这个漏洞不需要对NTA本身有进一步了解。 漏洞具体分析 官方没有给出具体分析,但根据CentOS社区里先前有用户反馈的bug,我得以很容易还原漏洞链路并定位到根本原因。 若干用户共同反馈,其使用的BIND 9.9.4-RedHat-9.9.4-72.el7发生崩溃(coredump),并给出如下的崩溃时调用栈backtrace: 这个调用过程的逻辑为,在9 dns_message_logfmtpacket函数判断当前软件设置是否DEBUG_LEVEL大于10,若是,对用户请求数据包做日志记录,先后调用8 dns_message_totext、7 dns_message_sectiontotext、6 dns_master_rdatasettotext、5 rdataset_totext将请求进行按协议分解分段后写出。 由以上关键调用环节,联动RedHat在9.9.4版本BIND源码包中关于引入NTA特性的源码patch,进行代码分析,很快定位到问题产生的位置,在上述backtrace中的5,masterdump.c文件rdataset_totext函数。漏洞相关代码片段中,RedHat进行backport后,这里引入的代码为: 这里判断对于请求中的注释类型数据,直接通过isc_buffer_putstr宏对缓存进行操作,在BIND工程中自定义维护的缓冲区结构对象target上,附加一字节字符串(一个分号)。而漏洞就是由此产生:isc_buffer_putstr中不做缓冲区边界检查保证,这里在缓冲区已满情况下将造成off-by-one溢出,并触发了缓冲区实现代码中的assertion。 而ISC上游官方版本的代码在这里是怎么写的呢?找到ISC版本BIND 9.11代码,这里是这样的: 这里可以看到,官方代码在做同样的“附加一个分号”这个操作时,审慎的使用了做缓冲区剩余空间校验的str_totext函数,并额外做返回值成功校验。而上述提到的str_totext函数与RETERR宏,在移植版本的masterdump.c中,RedHat开发者也都做了保留。但是,查看代码上下文发现,在RedHat开发者进行代码移植过程中,对官方代码进行了功能上的若干剪裁,包括一些细分数据类型记录的支持;而这里对缓冲区写入一字节,也许开发者完全没想到溢出的可能,所以自作主张地简化了代码调用过程。 问题思考 这个漏洞本身几乎没什么危害,但是背后足以引起思考。 没有人在“借”别人代码时能不出错 不同于之前章节提到的那种场景——将代码文件或片段复制到自己类似的代码上下文借用——backport作为一种官方且成熟的做法,借用的代码来源、粘贴到的代码上下文,是具有同源属性的,而且开发者一般是追求稳定性优先的社区开发人员,似乎质量应该有足够保障。但是这里的关键问题是:代码总要有一手、充分的语义理解,才能有可信的使用保障;因此,只要是处理他人的代码,因为不够理解而错误使用的风险,只可能减小,没办法消除。 如上分析,本次漏洞的产生看似只是做代码移植的开发者“自作主张”之下“改错了”。但是更广泛且可能的情况是,原始开发者在版本迭代中引入或更新大量基础数据结构、API的定义,并用在新的特性实现代码中;而后向移植开发人员仅需要最小规模的功能代码,所以会对增量代码进行一定规模的修改、剪裁、还原,以此适应旧版本基本代码。这些过程同样伴随着第三方开发人员不可避免的“望文生义”,以及随之而来的风险。后向移植操作也同样助长了软件碎片化过程,其中每一个碎片都存在这样的问题;每一个碎片在自身生命周期也将有持续性影响。 多级复制粘贴无异于雪上加霜 这里简单探讨的是企业通行的系统和基础软件建设实践。一些国内外厂商和社区发布的定制化Linux发行版,本身是有其它发行版,如CentOS特定版本渊源的,在基础软件上即便同其上游发行版最新版本间也存在断层滞后。RedHat相对于基础软件开发者之间已经隔了一层backport,而我们则人为制造了二级风险。 在很多基础而关键的软件上,企业系统基础设施的维护者出于与RedHat类似的初衷,往往会决定自行backport一份拷贝;通过早年心脏滴血事件的洗礼,即暴露出来OpenSSL一个例子。无论是需要RHEL还没来得及移植的新版本功能特性,还是出于对特殊使用上下文场景中更高执行效率的追求,企业都可能自行对RHEL上基础软件源码包进行修改定制重打包。这个过程除了将风险幂次放大外,也进一步加深了代码的不可解释性(包括基础软件开发人员流动性带来的不可解释)。 Ⅳ. 从武功到死穴:从systemd-journald信息泄露一窥API误用 1月10日凌晨两点,漏洞预警平台爬收取一封漏洞披露邮件。披露者是Qualys,那就铁定是重型发布了。最后看披露漏洞的目标,systemd?这就非常有意思了。 一些必要背景 systemd是什么,不好简单回答。Linux上面软件命名,习惯以某软件名后带个‘d’表示后台守护管理程序;所以systemd就可以说是整个系统的看守吧。而即便现在描述了systemd是什么,可能也很快会落伍,因为其初始及核心开发者Lennart Poettering(供职于Red Hat)描述它是“永无开发完结完整、始终跟进技术进展的、统一所有发行版无止境的差异”的一种底层软件。笼统讲有三个作用:中央化系统及设置管理;其它软件开发的基础框架;应用程序和系统内核之间的胶水。如今几乎所有Linux发行版已经默认提供systemd,包括RHEL/CentOS 7及后续版本。总之很基础、很底层、很重要就对了。systemd本体是个主要实现init系统的框架,但还有若干关键组件完成其它工作;这次被爆漏洞的是其journald组件,是负责系统事件日志记录的看守程序。 额外地还想简单提一句Qualys这个公司。该公司创立于1999年,官方介绍为信息安全与云安全解决方案企业,to B的安全业务非常全面,有些也是国内企业很少有布局的方面;例如上面提到的涉及碎片化和代码移植过程的历史漏洞移动,也在其漏洞管理解决方案中有所体现。但是我们对这家公司粗浅的了解来源于其安全研究团队近几年的发声,这两年间发布过的,包括有『stack clash』、『sudo get_tty_name提权』、『OpenSSH信息泄露与堆溢出』、『GHOST:glibc gethostbyname缓冲区溢出』等大新闻(仅截至2017年年中)。从中可见,这个研究团队专门啃硬骨头,而且还总能开拓出来新的啃食方式,往往爆出来一些别人没想到的新漏洞类型。从这个角度,再联想之前刷爆朋友圈的《安全研究者的自我修养》所倡导的“通过看历史漏洞、看别人的最新成果去举一反三”的理念,可见差距。 CVE-2018-16866漏洞详情 这次漏洞披露,打包了三个漏洞: ·16864和16865是内存破坏类型 ·16866是信息泄露 ·而16865和16866两个漏洞组和利用可以拿到root shell。 漏洞分析已经在披露中写的很详细了,这里不复述;而针对16866的漏洞成因来龙去脉,Qualys跟踪的结果留下了一点想象和反思空间,我们来看一下。 漏洞相关代码片段是这样的(漏洞修复前): 读者可以先肉眼过一遍这段代码有什么问题。实际上我一开始也没看出来,向下读才恍然大悟。 这段代码中,外部信息输入通过buf传入做记录处理。输入数据一般包含有空白字符间隔,需要分隔开逐个记录,有效的分隔符包括空格、制表符、回车、换行,代码中将其写入常量字符串;在逐字符扫描输入数据字符串时,将当前字符使用strchr在上述间隔符字符串中检索是否匹配,以此判断是否为间隔符;在240行,通过这样的判断,跳过记录单元字符串的头部连续空白字符。 但是问题在于,strchr这个极其基础的字符串处理函数,对于C字符串终止字符'\0'的处理上有个坑:'\0'也被认为是被检索字符串当中的一个有效字符。所以在240行,当当前扫描到的字符为字符串末尾的NULL时,strchr返回的是WHITESPACE常量字符串的终止位置而非NULL,这导致了越界。 看起来,这是一个典型的问题:API误用(API mis-use),只不过这个被误用的库函数有点太基础,让我忍不住想是不是还会有大量的类似漏洞……当然也反思我自己写的代码是不是也有同样情况,然而略一思考就释然了——我那么笨的代码都用for循环加if判断了:) 漏洞引入和消除历史 有意思的是,Qualys研究人员很贴心地替我做了一步漏洞成因溯源,这才是单独提这个漏洞的原因。漏洞的引入是在2015年的一个commit中: 在GitHub中,定位到上述2015年的commit信息,这里commit的备注信息为: journald: do not strip leading whitespace from messages. Keep leading whitespace for compatibility with older syslog implementations. Also useful when piping formatted output to the logger command. Keep removing trailing whitespace. OK,看起来是一个兼容性调整,对记录信息不再跳过开头所有连续空白字符,只不过用strchr的简洁写法比较突出开发者精炼的开发风格(并不),说得过去。 之后在2018年八月的一个当时尚未推正式版的另一次commit中被修复了,先是还原成了ec5ff4那次commit之前的写法,然后改成了加校验的方式: 虽然Qualys研究者认为上述的修改是“无心插柳”的改动,但是在GitHub可以看到,a6aadf这次commit是因为有外部用户反馈了输入数据为单个冒号情况下journald堆溢出崩溃的issue,才由开发者有目的性地修复的;而之后在859510这个commit再次改动回来,理由是待记录的消息都是使用单个空格作为间隔符的,而上一个commit粗暴地去掉了这种协议兼容性特性。 如果没有以上纠结的修改和改回历史,也许我会倾向于怀疑,在最开始漏洞引入的那个commit,既然改动代码没有新增功能特性、没有解决什么问题(毕竟其后三年,这个改动的代码也没有被反映issue),也并非出于代码规范等考虑,那么这么轻描淡写的一次提交,难免有人为蓄意引入漏洞的嫌疑。当然,看到几次修复的原因,这种可能性就不大了,虽然大家仍可以保留意见。但是抛开是否人为这个因素,单纯从代码的漏洞成因看,一个传统但躲不开的问题仍值得探讨:API误用。 API误用:程序员何苦为难程序员 如果之前的章节给读者留下了我反对代码模块化和复用的印象,那么这里需要正名一下,我们认可这是当下开发实践不可避免的趋势,也增进了社会开发速度。而API的设计决定了写代码和用代码的双方“舒适度”的问题,由此而来的API误用问题,也是一直被当做单纯的软件工程课题讨论。在此方面个人并没有什么研究,自然也没办法系统地给出分类和学术方案,只是谈一下自己的经验和想法。 一篇比较新的学术文章总结了API误用的研究,其中一个独立章节专门分析Java密码学组件API误用的实际,当中引述之前论文认为,密码学API是非常容易被误用的,比如对期望输入数据(数据类型,数据来源,编码形式)要求的混淆,API的必需调用次序和依赖缺失(比如缺少或冗余多次调用了初始化函数、主动资源回收函数)等。凑巧在此方面我有一点体会:曾经因为业务方需要,需要使用C++对一个Java的密码基础中间件做移植。Java对密码学组件支持,有原生的JDK模块和权威的BouncyCastle包可用;而C/C++只能使用第三方库,考虑到系统平台最大兼容和最小代码量,使用Linux平台默认自带的OpenSSL的密码套件。但在开发过程中感受到了OpenSSL满满的恶意:其中的API设计不可谓不反人类,很多参数没有明确的说明(比如同样是表示长度的函数参数,可能在不同地方分别以字节/比特/分组数为计数单位);函数的线程安全没有任何解释标注,需要自行试验;不清楚函数执行之后,是其自行做了资源释放还是需要有另外API做gc,不知道资源释放操作时是否规规矩矩地先擦除后释放……此类问题不一而足,导致经过了漫长的测试之后,这份中间件才提供出来供使用。而在业务场景中,还会存在比如其它语言调用的情形,这些又暴露出来OpenSSL API误用的一些完全无从参考的问题。这一切都成为了噩梦;当然这无法为我自己开解是个不称职开发的指责,但仅就OpenSSL而言其API设计之恶劣也是始终被人诟病的问题,也是之后其他替代者宣称改进的地方。 当然,问题是上下游都脱不了干系的。我们自己作为高速迭代中的开发人员,对于二方、三方提供的中间件、API,又有多少人能自信地说自己仔细、认真地阅读过开发指南和API、规范说明呢?做过通用产品技术运营的朋友可能很容易理解,自己产品的直接用户日常抛出不看文档的愚蠢问题带来的困扰。对于密码学套件,这个问题还好办一些,毕竟如果在没有背景知识的情况下对API望文生义地一通调用,绝大多数情况下都会以抛异常形式告终;但还是有很多情况,API误用埋下的是长期隐患。 不是所有API误用情形最终都有机会发展成为可利用的安全漏洞,但作为一个由人的因素引入的风险,这将长期存在并困扰软件供应链(虽然对安全研究者、黑客与白帽子是很欣慰的事情)。可惜,传统的白盒代码扫描能力,基于对代码语义的理解和构建,但是涉及到API则需要预先的抽象,这一点目前似乎仍然是需要人工干预的事情;或者轻量级一点的方案,可以case by case地分析,为所有可能被误用的API建模并单独扫描,这自然也有很强局限性。在一个很底层可信的开发者还对C标准库API存在误用的现实内,我们需要更多的思考才能说接下来的解法。 Ⅴ. 从规则到陷阱:NASA JIRA误配置致信息泄露血案 软件的定义包括了代码组成的程序,以及相关的配置、文档等。当我们说软件的漏洞、风险时,往往只聚焦在其中的代码中;关于软件供应链安全风险,我们的比赛、前面分析的例子也都聚焦在了代码的问题;但是真正的威胁都来源于不可思议之处,那么代码之外有没有可能存在来源于上游的威胁呢?这里就借助实例来探讨一下,在“配置”当中可能栽倒的坑。 引子:发不到500英里以外的邮件? 让我们先从一个轻松愉快的小例子引入。这个例子初见于Linux中国的一篇译文。 简单说,作者描述了这么一个让人啼笑皆非的问题:单位的邮件服务器发送邮件,发送目标距离本地500英里范围之外的一律失败,邮件就像悠悠球一样只能飞出一定距离。这个问题本身让描述者感到尴尬,就像一个技术人员被老板问到“为什么从家里笔记本上Ctrl-C后不能在公司台式机上Ctrl-V”一样。 经过令人窒息的分析操作后,笔者定位到了问题原因:笔者作为负责的系统管理员,把SunOS默认安装的Senmail从老旧的版本5升级到了成熟的版本8,且对应于新版本诸多的新特性进行了对应配置,写入配置文件sendmail.cf;但第三方服务顾问在对单位系统进行打补丁升级维护时,将系统软件“升级”到了系统提供的最新版本,因此将Sendmail实际回退到了版本5,却为了软件行为一致性,原样保留了高版本使用的配置文件。但Sendmail并没有在大版本间保证配置文件兼容性,这导致很多版本5所需的配置项不存在于保留下来的sendmail.cf文件中,程序按默认值0处理;最终引起问题的就是,邮件服务器与接收端通信的超时时间配置项,当取默认配置值0时,邮件服务器在1个单位时间(约3毫秒)内没有收到网络回包即认为超时,而这3毫秒仅够电信号打来回飞出500英里。 这个“故事”可能会给技术人员一点警醒,错误的配置会导致预期之外的软件行为,但是配置如何会引入软件供应链方向的安全风险呢?这就引出了下一个重磅实例。 JIRA配置错误致NASA敏感信息泄露案例 我们都听过一个事情,马云在带队考察美国公司期间问Google CEO Larry Page自视谁为竞争对手,Larry的回答是NASA,因为最优秀的工程师都被NASA的梦想吸引过去了。由此我们显然能窥见NASA的技术水位之高,这样的人才团队大概至少是不会犯什么低级错误的。 但也许需要重新定义“低级错误”……1月11日一篇技术文章披露,NASA某官网部署使用的缺陷跟踪管理系统JIRA存在错误的配置,可分别泄漏内部员工(JIRA系统用户)的全部用户名和邮件地址,以及内部项目和团队名称到公众,如下: 问题的原因解释起来也非常简单:JIRA系统的过滤器和配置面板中,对于数据可见性的配置选项分别选定为All users和Everyone时,系统管理人员想当然地认为这意味着将数据对所有“系统用户”开放查看,但是JIRA的这两个选项的真实效果逆天,是面向“任意人”开放,即不限于系统登录用户,而是任何查看页面的人员。看到这里,我不厚道地笑了……“All users”并不意味着“All ‘users’”,意不意外,惊不惊喜? 但是这种字面上把戏,为什么没有引起NASA工程师的注意呢,难道这样逆天的配置项没有在产品手册文档中加粗标红提示吗?本着为JIRA产品设计找回尊严的态度,我深入挖掘了一下官方说明,果然在Atlassian官方的一份confluence文档(看起来更像是一份增补的FAQ)中找到了相关说明: 所有未登录访客访问时,系统默认认定他们是匿名anonymous用户,所以各种权限配置中的all users或anyone显然应该将匿名用户包括在内。在7.2及之后版本中,则提供了“所有登录用户”的选项。 可以说是非常严谨且贴心了。比较讽刺的是,在我们的软件供应链安全大赛·C源代码赛季期间,我们设计圈定的恶意代码攻击目标还包括JIRA相关的敏感信息的窃取,但是却想不到有这么简单方便的方式,不动一行代码就可以从JIRA中偷走数据。 软件的使用,你“配”吗? 无论是开放的代码还是成型的产品,我们在使用外部软件的时候,都是处于软件供应链下游的消费者角色,为了要充分理解上游开发和产品的真实细节意图,需要我们付出多大的努力才够“资格”? 上一章节我们讨论过源码使用中必要细节信息缺失造成的“API误用”问题,而软件配置上的“误用”问题则复杂多样得多。从可控程度上讨论,至少有这几种因素定义了这个问题: ·软件用户对必要配置的现有文档缺少了解。这是最简单的场景,但又是完全不可避免的,这一点上我们所有有开发、产品或运营角色经验的应该都曾经体会过向不管不顾用户答疑的痛苦,而所有软件使用者也可以反省一下对所有软件的使用是否都以完整细致的文档阅读作为上手的准备工作,所以不必多说。 ·软件拥有者对配置条目缺少必要明确说明文档。就JIRA的例子而言,将NASA工程师归为上一条错误有些冤枉,而将JIRA归为这条更加合适。在边角但重要问题上的说明通过社区而非官方文档形式发布是一种不负责任的做法,但未引发安全事件的情况下还有多少这样的问题被默默隐藏呢?我们没办法要求在使用软件之前所有用户将软件相关所有文档、社区问答实现全部覆盖。这个问题范围内一个代表性例子是对配置项的默认值以及对应效果的说明缺失。 ·配置文件版本兼容性带来的误配置和安全问题。实际上,上面的SunOS Sendmail案例足以点出这个问题的存在性,但是在真实场景下,很可能不会以这么戏剧性形式出现。在企业的系统运维中,系统的版本迭代常见,但为软件行为一致性,配置的跨版本迁移是不可避免的操作;而且软件的更新迭代也不只会由系统更新推动,还有大量出于业务性能要求而主动进行的定制化升级,对于中小企业基础设施建设似乎是一个没怎么被提及过的问题。 ·配置项组合冲突问题。尽管对于单个配置项可能明确行为与影响,但是特定的配置项搭配可能造成不可预知的效果。这完全有可能是由于开发者与用户在信息不对等的情况下产生:开发者认为用户应该具有必需的背景知识,做了用户应当具备规避配置冲突能力的假设。一个例子是,对称密码算法在使用ECB、CBC分组工作模式时,从密码算法上要求输入数据长度必须是分组大小的整倍数,但如果用户搭配配置了秘钥对数据不做补齐(nopadding),则引入了非确定性行为:如果密码算法库对这种组合配置按某种默认补齐方式操作数据则会引起歧义,但如果在算法库代码层面对这种组合抛出错误则直接影响业务。 ·程序对配置项处理过程的潜在暗箱操作。这区别于简单的未文档化配置项行为,仅特指可能存在的蓄意、恶意行为。从某种意义上,上述“All users”也可以认为是这样的一种陷阱,通过浅层次暗示,引导用户做出错误且可能引起问题的配置。另一种情况是特定配置组合情况下触发恶意代码的行为,这种触发条件将使恶意代码具有规避检测的能力,且在用户基数上具有一定概率的用户命中率。当然这种情况由官方开发者直接引入的可能性很低,但是在众包开发的情况下如果存在,那么扫描方案是很难检测的。 Ⅵ. 从逆流到暗流:恶意代码溯源后的挑战 如果说前面所说的种种威胁都是面向关键目标和核心系统应该思考的问题,那么最后要抛出一个会把所有人拉进赛场的理由。除了前面所有那些在软件供应链下游被动污染受害的情况,还有一种情形:你有迹可循的代码,也许在不经意间会“反哺”到黑色产业链甚至特殊武器中;而现在研究用于对程序进行分析和溯源的技术,则会让你陷入百口莫辩的境地。 案例:黑产代码模块溯源疑云 1月29日,猎豹安全团队发布技术分析通报文章《电信、百度客户端源码疑遭泄漏,驱魔家族窃取隐私再起波澜》,矛头直指黑产上游的恶意信息窃取代码模块,认定其代码与两方产品存在微妙的关联:中国电信旗下“桌面3D动态天气”等多款软件,以及百度旗下“百度杀毒”等软件(已不可访问)。 文章中举证有三个关键点。 首先最直观的,是三者使用了相同的特征字符串、私有文件路径、自定义内部数据字段格式; 其次,在关键代码位置,三者在二进制程序汇编代码层面具有高度相似性; 最终,在一定范围的非通用程序逻辑上,三者在经过反汇编后的代码语义上显示出明显的雷同,并提供了如下两图佐证(图片来源): 文章指出的涉事相关软件已经下线,对于上述样本文件的相似度试验暂不做复现,且无法求证存在相似、疑似同源的代码在三者中占比数据。对于上述指出的代码雷同现象,猎豹安全团队认为: 我们怀疑该病毒模块的作者通过某种渠道(比如“曾经就职”),掌握有中国电信旗下部分客户端/服务端源码,并加以改造用于制作窃取用户隐私的病毒,另外在该病毒模块的代码中,我们还发现“百度”旗下部分客户端的基础调试日志函数库代码痕迹,整个“驱魔”病毒家族疑点重重,其制作传播背景愈发扑朔迷离。 这样的推断,固然有过于直接的依据(例如三款代码中均使用含有“baidu”字样的特征注册表项);但更进一步地,需要注意到,三个样本在所指出的代码位置,具有直观可见的二进制汇编代码结构的相同,考虑到如果仅仅是恶意代码开发者先逆向另外两份代码后借鉴了代码逻辑,那么在面临反编译、代码上下文适配重构、跨编译器和选项的编译结果差异等诸多不确定环节,仍能保持二进制代码的雷同,似乎确实是只有从根本上的源代码泄漏(抄袭)且保持相同的开发编译环境才能成立。 但是我们却又无法做出更明确的推断。这一方面当然是出于严谨避免过度解读;而从另一方面考虑,黑产代码的一个关键出发点就是“隐藏自己”,而这里居然如此堂而皇之地照搬了代码,不但没有进行任何代码混淆、变形,甚至没有抹除疑似来源的关键字符串,如果将黑产视为智商在线的对手,那这里背后是否有其它考量,就值得琢磨了。 代码的比对、分析、溯源技术水准 上文中的安全团队基于大量样本和粗粒度比对方法,给出了一个初步的判断和疑点。那么是否有可能获得更确凿的分析结果,来证实或证伪同源猜想呢? 无论是源代码还是二进制,代码比对技术作为一种基础手段,在软件供应链安全分析上都注定仍然有效。在我们的软件供应链安全大赛期间,针对PE二进制程序类型的题目,参赛队伍就纷纷采用了相关技术手段用于目标分析,包括:同源性分析,用于判定与目标软件相似度最高的同软件官方版本;细粒度的差异分析,用于尝试在忽略编译差异和特意引入的混淆之外,定位特意引入的恶意代码位置。当然,作为比赛中针对性的应对方案,受目标和环境引导约束,这些方法证明了可行性,却难以保证集成有最新技术方案。那么做一下预言,在不计入情报辅助条件下,下一代的代码比对将能够到达什么水准? 这里结合近一年和今年内,已发表和未发表的学术领域顶级会议的相关文章来简单展望: ·针对海量甚至全量已知源码,将可以实现准确精细化的“作者归属”判定。在ACM CCS‘18会议上曾发表的一篇文章《Large-Scale and Language-Oblivious Code Authorship Identification》,描述了使用RNN进行大规模代码识别的方案,在圈定目标开发者,并预先提供每个开发者的5-7份已知的代码文件后,该技术方案可以很有效地识别大规模匿名代码仓库中隶属于每个开发者的代码:针对1600个Google Code Jam开发者8年间的所有代码可以实现96%的成功识别率,而针对745个C代码开发者于1987年之后在GitHub上面的全部公开代码仓库,识别率也高达94.38%。这样的结果在当下的场景中,已经足以实现对特定人的代码识别和跟踪(例如,考虑到特定开发人员可能由于编码习惯和规范意识,在时间和项目跨度上犯同样的错误);可以预见,在该技术方向上,完全可以期望摆脱特定已知目标人的现有数据集学习的过程,并实现更细粒度的归属分析,例如代码段、代码行、提交历史。 ·针对二进制代码,更准确、更大规模、更快速的代码主程序分析和同源性匹配。近年来作为一项程序分析基础技术研究,二进制代码相似性分析又重新获得了学术界和工业界的关注。在2018年和2019(已录用)的安全领域四大顶级会议上,每次都会有该方向最新成果的展示,如S&P‘2019上录用的《Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search against Code Obfuscation and Compiler Optimization》,实现无先验知识的条件下的最优汇编代码级别克隆检测,针对漏洞库的漏洞代码检测可实现0误报、100%召回。而2018年北京HITB会议上,Google Project Zero成员、二进制比对工具BinDiff原始作者Thomas Dullien,探讨了他借用改造Google自家SimHash算法思想,用于针对二进制代码控制流图做相似性检测的尝试和阶段结果;这种引入规模数据处理的思路,也可期望能够在目前其他技术方案大多精细化而低效的情况下,为高效、快速、大规模甚至全量代码克隆检测勾出未来方案。 ·代码比对方案对编辑、优化、变形、混淆的对抗。近年所有技术方案都以对代码“变种”的检测有效性作为关键衡量标准,并一定程度上予以保证。上文CCS‘18论文工作,针对典型源代码混淆(如Tigress)处理后的代码,大规模数据集上可有93.42%的准确识别率;S&P‘19论文针对跨编译器和编译选项、业界常用的OLLVM编译时混淆方案进行试验,在全部可用的混淆方案保护之下的代码仍然可以完成81%以上的克隆检测。值得注意的是以上方案都并非针对特定混淆方案单独优化的,方法具有通用价值;而除此以外还有很多针对性的的反混淆研究成果可用;因此,可以认为在采用常规商用代码混淆方案下,即便存在隐藏内部业务逻辑不被逆向的能力,但仍然可以被有效定位代码复用和开发者自然人。 代码溯源技术面前的“挑战” 作为软件供应链安全的独立分析方,健壮的代码比对技术是决定性的基石;而当脑洞大开,考虑到行业的发展,也许以下两种假设的情景,将把每一个“正当”的产品、开发者置于尴尬的境地。 代码仿制 在本章节引述的“驱魔家族”代码疑云案例中,黑产方面通过某种方式获得了正常代码中,功能逻辑可以被自身复用的片段,并以某种方法将其在保持原样的情况下拼接形成了恶意程序。即便在此例中并非如此,但这却暴露了隐忧:将来是不是有这种可能,我的正常代码被泄漏或逆向后出现在恶意软件中,被溯源后扣上黑锅? 这种担忧可能以多种渠道和形式成为现实。 从上游看,内部源码被人为泄漏是最简单的形式(实际上,考虑到代码的完整生命周期似乎并没有作为企业核心数据资产得到保护,目前实质上有没有这样的代码在野泄漏还是个未知数),而通过程序逆向还原代码逻辑也在一定程度上可获取原始代码关键特征。 从下游看,则可能有多种方式将恶意代码伪造得像正常代码并实现“碰瓷”。最简单地,可以大量复用关键代码特征(如字符串,自定义数据结构,关键分支条件,数据记录和交换私有格式等)。考虑到在进行溯源时,分析者实际上不需要100%的匹配度才会怀疑,因此仅仅是仿造原始程序对于第三方公开库代码的特殊定制改动,也足以将公众的疑点转移。而近年来类似自动补丁代码搜索生成的方案也可能被用来在一份最终代码中包含有二方甚至多方原始代码的特征和片段。 基于开发者溯源的定点渗透 既然在未来可能存在准确将代码与自然人对应的技术,那么这种技术也完全可能被黑色产业利用。可能的忧患包括强针对性的社会工程,结合特定开发者历史代码缺陷的漏洞挖掘利用,联动第三方泄漏人员信息的深层渗透,等等。这方面暂不做联想展开。 〇. 没有总结 作为一场旨在定义“软件供应链安全”威胁的宣言,阿里安全“功守道”大赛将在后续给出详细的分解和总结,其意义价值也许会在一段时间之后才能被挖掘。 但是威胁的现状不容乐观,威胁的发展不会静待;这一篇随笔仅仅挑选六个侧面做摘录分析,可即将到来的趋势一定只会进入更加发散的境地,因此这里,没有总结。 本篇文章为转载内容。原文链接:https://blog.csdn.net/systemino/article/details/90114743。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-05 13:33:43
300
转载
JQuery插件下载
...需求。同时,通过设置最大和最小日期范围,可以有效限制用户的日期选择范围,确保日历的实用性与易用性。无论你是个人用户还是企业开发者,bootstrap-year-calendar都能为你提供便捷的日历解决方案,帮助你更好地规划时间,提高工作效率。它适用于各种需要日期管理和事件记录的场景,如个人日程管理、项目进度跟踪、活动安排等。总之,这是一款集美观与实用于一体的日历插件,值得你在项目中尝试使用。_ 点我下载 文件大小:333.03 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2025-02-16 20:32:00
61
本站
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
hostnamectl set-hostname new_hostname
- 更改系统的主机名。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"