前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[异常堆栈跟踪分析及调试方法]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Logstash
...csearch或其他分析工具中进行有效和准确的搜索、分析与可视化,将这些多行日志合并成单个事件就显得尤为重要。在ELK这个大名鼎鼎的套装(Elasticsearch、Logstash、Kibana)里头,Logstash可是个不可或缺的重要角色。它就像个超级能干的日志小管家,专门负责把那些乱七八糟的日志信息统统收集起来,然后精心过滤、精准传输。而在这个过程中,有个相当关键的小法宝就是内置的multiline codec或者filter插件,这玩意儿就是用来解决日志多行合并问题的一把好手。 1. 多行日志问题背景 在某些情况下,比如Java异常堆栈跟踪、长格式的JSON日志等,日志信息可能被分割到连续的几行中。要是不把这些日志合并在一起瞅,那就等于把每行日志都当做一个独立的小事去处理,这样一来,信息就很可能出现断片儿的情况,就像一本残缺不全的书,没法让我们全面了解整个故事。这必然会给后续的数据分析、故障排查等工作带来麻烦,让它们变得棘手不少。 2. 使用multiline Codec实现日志合并 示例1:使用input阶段的multiline codec 从Logstash的较新版本开始,推荐的做法是在input阶段配置multiline codec来直接合并多行日志: ruby input { file { path => "/path/to/your/logs/.log" start_position => "beginning" 或者是 "end" 以追加模式读取 codec => multiline { pattern => "^%{TIMESTAMP_ISO8601}" 自定义匹配下一行开始的正则表达式 what => "previous" 表示当前行与上一行合并 negate => true 匹配失败才合并,对于堆栈跟踪等通常第一行不匹配模式的情况有用 } } } 在这个例子中,codec会根据指定的pattern识别出新的一行日志的开始,并将之前的所有行合并为一个事件。当遇到新的时间戳时,Logstash认为一个新的事件开始了,然后重新开始合并过程。 3. 使用multiline Filter的旧版方案 在Logstash的早期版本中,multiline功能是通过filter插件实现的: ruby input { file { path => "/path/to/your/logs/.log" start_position => "beginning" } } filter { multiline { pattern => "^%{TIMESTAMP_ISO8601}" what => "previous" negate => true } } 尽管在最新版本中这一做法已不再推荐,但在某些场景下,你仍可能需要参考这种旧有的配置方法。 4. 解析多行日志实战思考 在实际应用中,理解并调整multiline配置参数至关重要。比如,这个pattern呐,它就像是个超级侦探,得按照你日志的“穿衣风格”准确无误地找到每一段多行日志的开头标志。再来说说这个what字段,它就相当于我们的小助手,告诉我们哪几行该凑到一块儿去,可能是上一个兄弟,也可能是下一个邻居。最后,还有个灵活的小开关negate,你可以用它来反转匹配规则,这样就能轻松应对各种千奇百怪的日志格式啦! 当你调试多行日志合并规则时,可能会经历一些曲折,因为不同的应用程序可能有着迥异的日志格式。这就需要我们化身成侦探,用敏锐的眼光去洞察,用智慧的大脑去推理,手握正则表达式的“试验田”,不断试错、不断调整优化。直到有一天,我们手中的正则表达式如同一把无比精准的钥匙,咔嚓一声,就打开了与日志结构完美匹配的那扇大门。 总结起来,在Logstash中处理多行日志合并是一个涉及对日志结构深入理解的过程,也是利用Logstash强大灵活性的一个体现。你知道吗,如果我们灵巧地使用multiline这个codec或者filter小工具,就能把那些本来七零八落的上下文信息,像拼图一样拼接起来,对齐得整整齐齐的。这样一来,后面我们再做数据分析时,不仅效率蹭蹭往上涨,而且结果也会准得没话说,简直不要太给力!
2023-08-19 08:55:43
249
春暖花开
SeaTunnel
...实没把所有可能遇到的异常状况及其代码实例都给列出来。所以呢,我暂时没法给你整一篇专门针对“那些没在清单上的SeaTunnel异常状况”、还带有详细代码操作的技术文章,你懂的哈。但是,我可以尝试模拟咱们平时讨论问题的方式来写一篇关于如何对付SeaTunnel里那些让人头疼的未知异常以及调试的思路的文章,这样一来,我真诚地希望它能帮到你,让你更好地理解和解决这类问题。 SeaTunnel:面对未知异常时的探索与解决之道 1. 引言 在使用SeaTunnel进行大规模数据处理的过程中,我们可能会遭遇一些官方文档未曾详尽列举的异常情况。这些异常就像是海洋中的暗礁,虽然在航行图上没有明确标识,但并不意味着它们不存在。这篇文章的目标呢,就是想和大伙儿一起头脑风暴下,面对这些神出鬼没的未知状况,咱们该咋整,同时啊,我也想趁机给大家伙分享些排查问题、解决问题的小妙招。 2. 遇见未知异常,从何入手? 当SeaTunnel运行时抛出一个未在官方文档中列出的异常信息,比如UnknownError: A sudden surge of data caused pipeline instability(这是一个假设的异常),我们首先要做的是保持冷静,然后按照以下步骤进行: java // 假设SeaTunnel任务配置简化版 Pipeline pipeline = new Pipeline(); pipeline.addSource(new FlinkKafkaSource(...)); pipeline.addTransform(new SomeTransform(...)); pipeline.addSink(new HdfsSink(...)); // 运行并捕获异常 try { SeaTunnelRunner.run(pipeline); } catch (Exception e) { System.out.println("Caught an unexpected error: " + e.getMessage()); // 记录日志、堆栈跟踪等详细信息用于后续分析 } 遇到异常后,首要的是记录下详细的错误信息和堆栈跟踪,这是排查问题的重要线索。 3. 深入挖掘异常背后的原因 - 资源监控:查看SeaTunnel运行期间的系统资源消耗(如CPU、内存、磁盘IO等),确认是否因资源不足导致异常。 - 日志分析:深入研究SeaTunnel生成的日志文件,寻找可能导致异常的行为或事件。 - 数据检查:检查输入数据源是否有异常数据或突发流量,例如上述虚构异常可能是由于数据突然激增造成的数据倾斜问题。 4. 实战演练 通过代码调整解决问题 假设我们发现异常是由数据倾斜引起,可以通过修改transform阶段的代码来尝试均衡数据分布: java class BalancedTransform extends BaseTransform<...> { @Override public DataStream<...> transform(DataStream<...> input) { // 添加数据均衡策略,例如Flink的Rescale操作 return input.rescale(); } } // 更新pipeline配置 pipeline.replaceTransform(oldTransform, new BalancedTransform(...)); 5. 总结与反思 每一次面对未列明的SeaTunnel异常,都是一次深入学习和理解其内部工作原理的机会。尽管具体的代码示例在此处未能给出,但这种解决思路和调试过程本身才是最宝贵的财富。在面对那些未知的挑战时,咱们得拿出实打实的严谨劲儿,就像侦探破案那样,用科学的办法一步步来。这就好比驾驶SeaTunnel这艘大数据处理的大船,在浩瀚的数据海洋里航行,咱得结合实际情况,逐个环节、逐个场景地细细排查问题,同时灵活应变,该调整代码逻辑的时候就大胆修改,配置参数也得拿捏得恰到好处。这样,咱们才能稳稳当当地驾驭好这艘大船,一路乘风破浪前进。 请记住,每个项目都有其独特性,处理异常的关键在于理解和掌握工具的工作原理,以及灵活应用调试技巧。嗯,刚才说的那些呢,其实就是一些通用的处理办法和思考套路,不过具体问题嘛,咱们还得接地气儿,根据实际项目的个性特点和需求来量体裁衣,进行对症下药的分析和解决才行。
2023-09-12 21:14:29
254
海阔天空
转载文章
...容。 什么时候该抛出异常,抛出什么异常?什么时候该捕获异常,捕获之后怎么处理异常?你可能已经使用异常一段时间了,但对 .NET/C 的异常机制依然有一些疑惑。那么,可以阅读本文。 本文适用于已经入门 .NET/C 开发,已经开始在实践中抛出和捕获异常,但是对 .NET 异常机制的用法以及原则比较模糊的小伙伴。通过阅读本文,小伙伴们可以迅速在项目中使用比较推荐的异常处理原则来处理异常。 本文内容 快速了解 .NET 的异常机制 Exception 类 捕捉异常 引发异常 创建自定义异常 finally 异常堆栈跟踪 异常处理原则 try-catch-finally 该不该引发异常? 该不该捕获异常? 应用程序全局处理异常 抛出哪些异常? 异常的分类 其他 一些常见异常的原因和解决方法 AccessViolationException 快速了解 .NET 的异常机制 Exception 类 我们大多数小伙伴可能更多的使用 Exception 的类型、Message 属性、StackTrace 以及内部异常来定位问题,但其实 Exception 类型还有更多的信息可以用于辅助定位问题。 Message 用来描述异常原因的详细信息 如果你捕捉到了异常,一般使用这段描述能知道发生的大致原因。 如果你准备抛出异常,在这个信息里面记录能帮助调试问题的详细文字信息。 StackTrace 包含用来确定错误位置的堆栈跟踪(当有调试信息如 PDB 时,这里就会包含源代码文件名和源代码行号) InnerException 包含内部异常信息 Source 这个属性包含导致错误的应用程序或对象的名称 Data 这是一个字典,可以存放基于键值的任意数据,帮助在异常信息中获得更多可以用于调试的数据 HelpLink 这是一个 url,这个 url 里可以提供大量用于说明此异常原因的信息 如果你自己写一个自定义异常类,那么你可以在自定义的异常类中记录更多的信息。然而大多数情况下我们都考虑使用 .NET 中自带的异常类,因此可以充分利用 Exception 类中的已有属性在特殊情况下报告更详细的利于调试的异常信息。 捕捉异常 捕捉异常的基本语法是: try{// 可能引发异常的代码。}catch (FileNotFoundException ex){// 处理一种类型的异常。}catch (IOException ex){// 处理另一种类的异常。} 除此之外,还有 when 关键字用于筛选异常: try{// 可能引发异常的代码。}catch (FileNotFoundException ex) when (Path.GetExtension(ex.FileName) is ".png"){// 处理一种类型的异常,并且此文件扩展名为 .png。}catch (FileNotFoundException ex){// 处理一种类型的异常。} 无论是否有带 when 关键字,都是前面的 catch 块匹配的时候执行匹配的 catch 块而无视后面可能也匹配的 catch 块。 如果 when 块中抛出异常,那么此异常将被忽略,when 中的表达式值视为 false。有个但是,请看:.NET Framework 的 bug?try-catch-when 中如果 when 语句抛出异常,程序将彻底崩溃 - walterlv。 引发异常 引发异常使用 throw 关键字。只是注意如果要重新抛出异常,请使用 throw; 语句或者将原有异常作为内部异常。 创建自定义异常 如果你只是随便在业务上创建一个异常,那么写一个类继承自 Exception 即可: public class MyCustomException : Exception{public string MyCustomProperty { get; }public MyCustomException(string customProperty) => MyCustomProperty = customProperty;} 不过,如果你需要写一些比较通用抽象的异常(用于被继承),或者在底层组件代码中写自定义异常,那么就建议考虑写全异常的所有构造函数,并且加上可序列化: [Serializable]public class InvalidDepartmentException : Exception{public InvalidDepartmentException() : base() { }public InvalidDepartmentException(string message) : base(message) { }public InvalidDepartmentException(string message, Exception innerException) : base(message, innerException) { }// 如果异常需要跨应用程序域、跨进程或者跨计算机抛出,就需要能被序列化。protected InvalidDepartmentException(SerializationInfo info, StreamingContext context) : base(info, context) { } } 在创建自定义异常的时候,建议: 名称以 Exception 结尾 Message 属性的值是一个句子,用于描述异常发生的原因。 提供帮助诊断错误的属性。 尽量写全四个构造函数,前三个方便使用,最后一个用于序列化异常(新的异常类应可序列化)。 finally 异常堆栈跟踪 堆栈跟踪从引发异常的语句开始,到捕获异常的 catch 语句结束。 利用这一点,你可以迅速找到引发异常的那个方法,也能找到是哪个方法中的 catch 捕捉到的这个异常。 异常处理原则 try-catch-finally 我们第一个要了解的异常处理原则是——明确 try catch finally 的用途! try 块中,编写可能会发生异常的代码。 最好的情况是,你只将可能会发生异常的代码放到 try 块中,当然实际应用的时候可能会需要额外放入一些相关代码。但是如果你将多个可能发生异常的代码放到一个 try 块中,那么将来定位问题的时候你就会很抓狂(尤其是多个异常还是一个类别的时候)。 catch 块的作用是用来 “恢复错误” 的,是用来 “恢复错误” 的,是用来 “恢复错误” 的。 如果你在 try 块中先更改了类的状态,随后出了异常,那么最好能将状态改回来——这可以避免这个类型或者应用程序的其他状态出现不一致——这很容易造成应用程序“雪崩”。举一个例子:我们写一个程序有简洁模式和专业模式,在从简洁模式切换到专业模式的时候,我们设置 IsProfessionalMode 为 true,但随后出现了异常导致没有成功切换为专业模式;然而接下来所有的代码在执行时都判断 IsProfessionalMode 为 true 状态不正确,于是执行了一些非预期的操作,甚至可能用到了很多专业模式中才会初始化的类型实例(然而没有完成初始化),产生大量的额外异常;我们说程序雪崩了,多数功能再也无法正常使用了。 当然如果任务已全部完成,仅仅在对外通知的时候出现了异常,那么这个时候不需要恢复状态,因为实际上已经完成了任务。 你可能会有些担心如果我没有任何手段可以恢复错误怎么办?那这个时候就不要处理异常!——如果不知道如何恢复错误,请不要处理异常!让异常交给更上一层的模块处理,或者交给整个应用程序全局异常处理模块进行统一处理(这个后面会讲到)。 另外,异常不能用于在正常执行过程中更改程序的流程。异常只能用于报告和处理错误条件。 finally 块的作用是清理资源。 虽然 .NET 的垃圾回收机制可以在回收类型实例的时候帮助我们回收托管资源(例如 FileStream 类打开的文件),但那个时机不可控。因此我们需要在 finally 块中确保资源可被回收,这样当重新使用这个文件的时候能够立刻使用而不会被占用。 一段异常处理代码中可能没有 catch 块而有 finally 块,这个时候的重点是清理资源,通常也不知道如何正确处理这个错误。 一段异常处理代码中也可能 try 块留空,而只在 finally 里面写代码,这是为了“线程终止”安全考虑。在 .NET Core 中由于不支持线程终止因此可以不用这么写。详情可以参考:.NET/C 异常处理:写一个空的 try 块代码,而把重要代码写到 finally 中(Constrained Execution Regions) - walterlv。 该不该引发异常? 什么情况下该引发异常?答案是——这真的是一个异常情况! 于是,我们可能需要知道什么是“异常情况”。 一个可以参考的判断方法是——判断这件事发生的频率: 如果这件事并不常见,当它发生时确实代表发生了一个错误,那么这件事情就可以认为是异常。 如果这件事经常发生,代码中正常情况就应该处理这件事情,那么这件事情就不应该被认为是异常(而是正常流程的一部分)。 例如这些情况都应该认为是异常: 方法中某个参数不应该传入 null 时但传入了 null 这是开发者使用这个方法时没有遵循此方法的契约导致的,让开发者改变调用此方法的代码就可以完全避免这件事情发生 而下面这些情况则不应该认为是异常: 用户输入了一串字符,你需要将这串字符转换为数字 用户输入的内容本身就千奇百怪,出现非数字的输入再正常不过了,对非数字的处理本就应该成为正常流程的一部分 对于这些不应该认为是异常的情况,编写的代码就应该尽可能避免异常。 有两种方法来避免异常: 先判断再使用。 例如读取文件之前,先判断文件是否存在;例如读取文件流时先判断是否已到达文件末尾。 如果提前判断的成本过高,可采用 TryDo 模式来完成,例如字符串转数字中的 TryParse 方法,字典中的 TryGetValue 方法。 对极为常见的错误案例返回 null(或默认值),而不是引发异常。极其常见的错误案例可被视为常规控制流。通过在这些情况下返回 NULL(或默认值),可最大程度地减小对应用的性能产生的影响。(后面会专门说 null) 而当存在下列一种或多种情况时,应引发异常: 方法无法完成其定义的功能。 根据对象的状态,对某个对象进行不适当的调用。 请勿有意从自己的源代码中引发 System.Exception、System.SystemException、System.NullReferenceException 或 System.IndexOutOfRangeException。 该不该捕获异常? 在前面 try-catch-finally 小节中,我们提到了 catch 块中应该写哪些代码,那里其实已经说明了哪些情况下应该处理异常,哪些情况下不应该处理异常。一句总结性的话是——如果知道如何从错误中恢复,那么就捕获并处理异常,否则交给更上层的业务去捕获异常;如果所有层都不知道如何处理异常,就交给全局异常处理模块进行处理。 应用程序全局处理异常 对于 .NET 程序,无论是 .NET Framework 还是 .NET Core,都有下面这三个可以全局处理的异常。这三个都是事件,可以自行监听。 AppDomain.UnhandledException 应用程序域未处理的异常,任何线程中未处理掉的异常都会进入此事件中 当这里能够收到事件,意味着应用程序现在频临崩溃的边缘(从设计上讲,都到这里了,也再没有任何代码能够使得程序从错误中恢复了) 不过也可以配置 legacyUnhandledExceptionPolicy 防止后台线程抛出的异常让程序崩溃退出 建议在这个事件中记录崩溃日志,然后对应用程序进行最后的拯救恢复操作(例如保存用户的文档数据) AppDomain.FirstChanceException 应用程序域中的第一次机会异常 我们前面说过,一个异常被捕获时,其堆栈信息将包含从 throw 块到 catch 块之间的所有帧,而在第一次机会异常事件中,只是刚刚 throw 出来,还没有被任何 catch 块捕捉,因此在这个事件中堆栈信息永远只会包含一帧(不过可以稍微变通一下在第一次机会异常 FirstChanceException 中获取比较完整的异常堆栈) 注意第一次机会异常事件即便异常会被 catch 也会引发,因为它引发在 catch 之前 不要认为异常已经被 catch 就万事大吉可以无视这个事件了。前面我们说过异常仅在真的是异常的情况才应该引发,因此如果这个事件中引发了异常,通常也真的意味着发生了错误(差别只是我们能否从错误中恢复而已)。如果你经常在正常的操作中发现可以通过此事件监听到第一次机会异常,那么一定是应用程序或框架中的异常设计出了问题(可能把正常应该处理的流程当作了异常,可能内部实现代码错误,可能出现了使用错误),这种情况一定是要改代码修 Bug 的。而一些被认为是异常的情况下收到此事件则是正常的。 TaskScheduler.UnobservedTaskException 在使用 async / await 关键字编写异步代码的时候,如果一直有 await 传递,那么异常始终可以被处理到;但中间有异步任务没有 await 导致异常没有被传递的时候,就会引发此事件。 如果在此事件中监听到异常,通常意味着代码中出现了不正确的 async / await 的使用(要么应该修改实现避免异常,要么应该正确处理异常并从中恢复错误) 对于 GUI 应用程序,还可以监听 UI 线程上专属的全局异常: WPF:Application.DispatcherUnhandledException 或者 Dispatcher.UnhandledException Windows Forms:Application.ThreadException 关于这些全局异常的处理方式和示例代码,可以参阅博客: WPF UnhandledException - Iron 的博客 - CSDN博客 抛出哪些异常? 任何情况下都不应该抛出这些异常: 过于抽象,以至于无法表明其含义 Exception 这可是顶级基类,这都抛出来了,使用者再也无法正确地处理此异常了 SystemException 这是各种异常的基类,本身并没有明确的意义 ApplicationException 这是各种异常的基类,本身并没有明确的意义 由 CLR 引发的异常 NullReferenceException 试图在空引用上执行某些方法,除了告诉实现者出现了意料之外的 null 之外,没有什么其它价值了 IndexOutOfRangeException 使用索引的时候超出了边界 InvalidCastException 表示试图对某个类型进行强转但类型不匹配 StackOverflow 表示栈溢出,这通常说明实现代码的时候写了不正确的显式或隐式的递归 OutOfMemoryException 表示托管堆中已无法分出期望的内存空间,或程序已经没有更多内存可用了 AccessViolationException 这说明使用非托管内存时发生了错误 BadImageFormatException 这说明了加载的 dll 并不是期望中的托管 dll TypeLoadException 表示类型初始化的时候发生了错误 .NET 设计失误 FormatException 因为当它抛出来时无法准确描述到底什么错了 首先是你自己不应该抛出这样的异常。其次,你如果在运行中捕获到了上面这些异常,那么代码一定是写得有问题。 如果是捕获到了上面 CLR 的异常,那么有两种可能: 你的代码编写错误(例如本该判空的代码没有判空,又如索引数组超出界限) 你使用到的别人写的代码编写错误(那你就需要找到它改正,或者如果开源就去开源社区中修复吧) 而一旦捕获到了上面其他种类的异常,那就找到抛这个异常的人,然后对它一帧狂扁即可。 其他的异常则是可以抛出的,只要你可以准确地表明错误原因。 另外,尽量不要考虑抛出聚合异常 AggregateException,而是优先使用 ExceptionDispatchInfo 抛出其内部异常。详见:使用 ExceptionDispatchInfo 捕捉并重新抛出异常 - walterlv。 异常的分类 在 该不该引发异常 小节中我们说到一个异常会被引发,是因为某个方法声称的任务没有成功完成(失败),而失败的原因有四种: 方法的使用者用错了(没有按照方法的契约使用) 方法的执行代码写错了 方法执行时所在的环境不符合预期 简单说来,就是:使用错误,实现错误、环境错误。 使用错误: ArgumentException 表示参数使用错了 ArgumentNullException 表示参数不应该传入 null ArgumentOutOfRangeException 表示参数中的序号超出了范围 InvalidEnumArgumentException 表示参数中的枚举值不正确 InvalidOperationException 表示当前状态下不允许进行此操作(也就是说存在着允许进行此操作的另一种状态) ObjectDisposedException 表示对象已经 Dispose 过了,不能再使用了 NotSupportedException 表示不支持进行此操作(这是在说不要再试图对这种类型的对象调用此方法了,不支持) PlatformNotSupportedException 表示在此平台下不支持(如果程序跨平台的话) NotImplementedException 表示此功能尚在开发中,暂时请勿使用 实现错误: 前面由 CLR 抛出的异常代码主要都是实现错误 NullReferenceException 试图在空引用上执行某些方法,除了告诉实现者出现了意料之外的 null 之外,没有什么其它价值了 IndexOutOfRangeException 使用索引的时候超出了边界 InvalidCastException 表示试图对某个类型进行强转但类型不匹配 StackOverflow 表示栈溢出,这通常说明实现代码的时候写了不正确的显式或隐式的递归 OutOfMemoryException 表示托管堆中已无法分出期望的内存空间,或程序已经没有更多内存可用了 AccessViolationException 这说明使用非托管内存时发生了错误 BadImageFormatException 这说明了加载的 dll 并不是期望中的托管 dll TypeLoadException 表示类型初始化的时候发生了错误 环境错误: IOException 下的各种子类 Win32Exception 下的各种子类 …… 另外,还剩下一些不应该抛出的异常,例如过于抽象的异常和已经过时的异常,这在前面一小结中有说明。 其他 一些常见异常的原因和解决方法 在平时的开发当中,你可能会遇到这样一些异常,它不像是自己代码中抛出的那些常见的异常,但也不包含我们自己的异常堆栈。 这里介绍一些常见这些异常的原因和解决办法。 AccessViolationException 当出现此异常时,说明非托管内存中发生了错误。如果要解决问题,需要从非托管代码中着手调查。 这个异常是访问了不允许的内存时引发的。在原因上会类似于托管中的 NullReferenceException。 参考资料 Handling and throwing exceptions in .NET - Microsoft Docs Exceptions and Exception Handling - C Programming Guide - Microsoft Docs 我的博客会首发于 https://blog.walterlv.com/,而 CSDN 会从其中精选发布,但是一旦发布了就很少更新。 如果在博客看到有任何不懂的内容,欢迎交流。我搭建了 dotnet 职业技术学院 欢迎大家加入。 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。欢迎转载、使用、重新发布,但务必保留文章署名吕毅(包含链接:https://walterlv.blog.csdn.net/),不得用于商业目的,基于本文修改后的作品务必以相同的许可发布。如有任何疑问,请与我联系。 本篇文章为转载内容。原文链接:https://blog.csdn.net/WPwalter/article/details/94610764。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-13 13:38:26
59
转载
Linux
...软件出现崩溃或者行为异常的问题。遇到这种情况,就好比是突然碰上了一场技术大考,得要求咱们眼神儿尖、基本功扎实,还得有两把刷子能实战操作。这篇东西,我打算用一种特接地气、充满生活气息和情感互动的方式,带大家伙儿一块儿琢磨这类问题的解决路径,并且会结合实际的代码例子,让大家看得见、摸得着地了解整个过程。 2. 现象观察与初步分析 首先,当发现一个程序在Linux中崩溃或行为诡异时,我们的第一反应不应是立即投身于浩瀚的代码海洋,而是先做详尽的现象记录和初步分析。 例如,假设有一个名为my_app的程序崩溃了,我们可能会看到类似这样的错误信息: bash $ ./my_app Segmentation fault (core dumped) 这就是一个典型的“段错误”,提示我们程序可能试图访问了一个非法内存地址。此刻,我们应该思考:“这个错误可能是由于什么原因导致的呢?是数组越界、空指针引用还是动态内存分配出了岔子?” 3. 使用工具收集信息 在Linux世界里,丰富的工具链是我们解决问题的强大武器。对于崩溃问题,我们可以使用gdb(GNU调试器)来进一步追踪: bash $ gdb ./my_app core. ... (gdb) bt 上述命令执行后,将输出调用堆栈信息,帮助我们定位到崩溃发生的具体位置。此外,strace命令也可以用来跟踪系统调用和信号,揭示出程序运行过程中的底层交互情况。 4. 查看日志文件及配置 很多软件会在运行过程中生成日志文件,这是另一个重要的线索来源。例如,查看/var/log/my_app.log或其他自定义日志路径,获取关于程序运行状态的详细信息。 同时,检查软件的配置文件也是必要的步骤,因为配置错误可能导致程序无法正常工作。比如说,如果一款软件像个小孩依赖某个环境设置才能正常玩耍,而这个环境变量没被大人给调整好,那这软件很可能就会闹脾气,出现各种异常表现。 bash $ cat /etc/my_app.conf 查看配置文件内容 5. 示例 实际问题排查流程 假设我们在日志中发现一条错误消息:"Failed to open database connection"。这时,我们可以查阅源码并尝试模拟重现问题: c include include // 假设这是打开数据库连接的函数,存在潜在问题 int open_db_connection() { // 省略具体实现,假设这里发生了错误,如连接参数错误或数据库服务未启动 return -1; } int main() { if(open_db_connection() == -1) { fprintf(stderr, "Failed to open database connection\n"); exit(EXIT_FAILURE); } // 省略其他代码 return 0; } 通过模拟重现,我们发现问题源于数据库连接失败,进而检查数据库服务是否正常、配置参数是否正确等,一步步缩小问题范围。 6. 结论与总结 面对Linux环境下软件崩溃或运行不正常的问题,我们需要保持冷静、耐心细致地进行排查。经过细心观察现象,借助各种实用工具的辅助,再深入解读日志信息,加上对代码进行逐行审查、抽丝剥茧,我们一步步揭开问题的神秘面纱,最终灵光一闪找到破解难题的答案。这个过程简直就像一场探险寻宝,既满载着发现新大陆般的乐趣,又能实实在在地把我们的技术水平和解决问题的能力磨得蹭亮,不断往上提升!让我们携手在Linux的世界里,以积极的心态去应对每一次挑战,享受那从困境走向光明的过程吧!
2023-01-30 23:07:13
127
青山绿水
Golang
...执行过程中遇到错误或异常情况时采取的一系列应对策略和方法。在Golang中,这种机制表现为函数返回一个额外的error类型值,通过检查该值是否为nil来判断函数执行是否成功,非nil表示有错误发生,需要进行相应处理。 堆栈跟踪 , 堆栈跟踪是程序运行时记录的一种详细信息,用于展示当程序发生错误或异常时,调用函数的顺序以及它们在内存中的位置(即调用栈)。在Golang中,通过将底层错误使用 %w 包裹并返回,可以保留错误发生的堆栈跟踪信息,这对于调试和定位问题源头非常有用。 panic与recover , 在Golang中,panic是一种强烈的异常处理机制,当函数遇到无法恢复的严重错误时,可触发panic以立即停止当前 goroutine 的执行,并开始执行defer语句。而recover则是用来捕获由panic引发的程序崩溃,并尝试让程序恢复正常运行状态的函数。在文章中虽然未直接提到这两个名词,但它们代表了Golang中另一种处理异常情况的方式,相比于返回错误,panic/recover更适用于处理程序运行中的严重故障场景。
2024-01-14 21:04:26
529
笑傲江湖
Gradle
...我们亲自出手,给这些异常情况定制错误处理方案,这样一来,才能让用户体验更加舒坦、贴心,仿佛是跟老朋友打交道一样。本文将探讨如何在Gradle插件中实现自定义错误处理逻辑,通过实例代码让你“身临其境”地理解和掌握这一技巧。 1. Gradle插件基础理解 首先,让我们回顾一下Gradle插件的基本概念。Gradle插件其实就像是给Gradle这位大厨添加一套新的烹饪秘籍,这些秘籍可以用Groovy或Kotlin这两种语言编写。它们就像魔法一样,能给原本的构建流程增添全新的任务菜单、个性化的调料配置,甚至是前所未有的操作手法,让构建过程变得更加丰富多彩,功能更加强大。在创建自定义插件时,我们通常会继承org.gradle.api.Plugin接口并实现其apply方法。 groovy class CustomPlugin implements Plugin { @Override void apply(Project project) { // 在这里定义你的插件逻辑 } } 2. 自定义错误处理的重要性 在构建过程中,可能会出现各种预期外的情况,比如网络请求失败、资源文件找不到、编译错误等。这些异常情况,如果我们没做妥善处理的话,Gradle这家伙通常会耍小脾气,直接撂挑子不干了,还把一串长长的堆栈跟踪信息给打印出来,这搁谁看了都可能会觉得有点闹心。所以呢,我们得在插件里头自己整一套错误处理机制,就是逮住特定的异常情况,给它掰扯清楚,然后估摸着是不是该继续下一步的操作。 3. 实现自定义错误处理逻辑 下面我们将通过一段示例代码来演示如何在Gradle插件中实现自定义错误处理: groovy class CustomPlugin implements Plugin { @Override void apply(Project project) { // 定义一个自定义任务 project.task('customTask') { doLast { try { // 模拟可能发生异常的操作 def resource = new URL("http://nonexistent-resource.com").openStream() // ...其他操作... } catch (IOException e) { // 自定义错误处理逻辑 println "发生了一个预料之外的问题: ${e.message}" // 可选择记录错误日志、发送通知或者根据条件决定是否继续执行 if (project.hasProperty('continueOnError')) { println "由于设置了'continueOnError'属性,我们将继续执行剩余任务..." } else { throw new GradleException("无法完成任务,因为遇到IO异常", e) } } } } } } 上述代码中,我们在自定义的任务customTask的doLast闭包内尝试执行可能抛出IOException的操作。当捕获到异常时,我们先输出一条易于理解的错误信息,然后检查项目是否有continueOnError属性设置。如果有,就打印一条提示并继续执行;否则,我们会抛出一个GradleException,这会导致构建停止并显示我们提供的错误消息。 4. 进一步探索与思考 尽管上面的示例展示了基本的自定义错误处理逻辑,但在实际场景中,你可能需要处理更复杂的情况,如根据不同类型的异常采取不同的策略,或者在全局范围内定义统一的错误处理器。为了让大家更自由地施展拳脚,Gradle提供了一系列超级实用的API工具箱。比如说,你可以想象一下,在你的整个项目评估完成之后,就像烘焙蛋糕出炉后撒糖霜一样,我们可以利用afterEvaluate这个神奇的生命周期回调函数,给项目挂上一个全局的异常处理器,确保任何小差错都逃不过它的“法眼”。 总的来说,在Gradle插件中定义自定义错误处理逻辑是一项重要的实践,它能帮助我们提升构建过程中的健壮性和用户体验。希望本文举的例子和讨论能实实在在帮到你,让你对这项技术有更接地气的理解和应用。这样一来,任何可能出现的异常情况,咱们都能把它变成一个展示咱优雅应对、积极改进的好机会,让问题不再是问题,而是进步的阶梯。
2023-05-21 19:08:26
427
半夏微凉
Python
...用于Web开发、数据分析、人工智能、科学计算等领域,是现代软件开发和数据科学中不可或缺的工具。 函数 , 在Python编程中,函数是一段可重复使用的代码块,用于执行特定任务并可能接受输入参数并返回结果。通过定义函数,程序员可以将复杂的问题分解为一系列逻辑更清晰、职责更单一的小功能模块,从而提高代码的复用性、可读性和组织性。 模块 , Python模块是一个包含Python定义和语句的文件,通常以.py作为扩展名。模块可以定义函数、类和变量,并且可以导入到其他模块或程序中使用。Python的标准库就由许多内置模块组成,提供了大量预定义的功能,同时开发者也可以创建自己的模块来组织和分享代码。例如,Python的os模块提供了与操作系统交互的各种功能,而math模块则包含了数学运算相关的函数。 数据类型 , 在编程语言中,数据类型是用来区分不同种类的数据的一种机制。在Python中,数据类型包括但不限于整数、浮点数、字符串、列表、元组、字典等。每种数据类型都有其特定的行为方式和操作方法。例如,字符串用于表示文本信息,列表则是有序且可变的一组元素集合。 调试器 , 调试器是一种软件开发工具,用于查找和修复代码中的错误(也称为“调试”)。在Python中,pdb是内建的调试器,它可以逐行运行代码,设置断点,在运行时查看变量值,以及跟踪程序流程。通过使用调试器,开发者能够深入理解代码执行过程,快速定位问题所在。 错误处理 , 在Python编程中,错误处理是指预见并妥善应对可能出现的程序错误的过程。Python通过异常机制实现错误处理,当程序发生错误时会抛出一个异常对象,程序员可以通过try-except语句捕获异常并对之进行适当的处理,从而避免程序因未捕获异常而崩溃。例如,当尝试打开一个不存在的文件时,Python会抛出FileNotFoundError异常,通过except FileNotFoundError: 语句可以捕获这个异常,并采取合适的恢复措施。
2023-06-06 20:35:24
123
键盘勇士
Javascript
...款强大的Web开发和调试工具集,提供了诸如元素检查、网络请求监控、源代码查看与编辑、性能分析、内存管理、Console控制台等多种功能。在解决“Script did not run”这类问题时,开发者可以利用其设置断点、单步执行以及查看和修改运行时变量值等方式,深入排查JavaScript脚本的执行逻辑和异常情况。 TypeError , TypeError是JavaScript中的一种标准错误类型,通常在试图访问或操作一个不适当类型的值(如调用null或undefined对象的方法)时抛出。在文中示例中,当尝试访问null对象的属性时,JavaScript引擎就会抛出TypeError异常,从而导致脚本无法继续执行,进而可能显示“Script did not run”的错误提示。 HTTP/3协议 , HTTP/3是超文本传输协议(HTTP)的第三个主要版本,基于QUIC传输层协议设计,相较于之前的HTTP/2协议,它引入了多路复用、前向纠错、0-RTT连接恢复等一系列优化技术,旨在进一步提升网络应用的数据传输效率和可靠性。在Web开发场景下,HTTP/3有助于减少资源加载失败的概率,比如确保JavaScript文件能够更快更稳定地从服务器端加载至客户端,降低出现“Script did not run”错误的可能性。
2023-03-26 16:40:33
374
柳暗花明又一村
Datax
...我们可以通过以下几种方法来排查oom问题: 1. 使用top命令查看内存占用情况。top命令可以实时显示系统中各个进程的CPU、内存等信息,我们可以从中发现哪些进程占用了大量的内存。 bash $ top -p $(pgrep Datax) 2. 查看堆栈信息。通过查看打印出的堆栈信息,我们就能轻松揪出是哪个捣蛋鬼函数或者代码哪一趴导致了oom这个小插曲的发生。下面是一个简单的Java代码示例: java public class Test { public static void main(String[] args) throws InterruptedException { byte[] bytes = new byte[Integer.MAX_VALUE]; while (true) { System.out.println("Hello, World!"); } } } 当我们运行这段代码时,会立即抛出oom异常,并打印出详细的堆栈信息。 3. 分析代码逻辑。根据上面的方法,我们可以找到导致oom的代码行。然后,我们需要仔细分析这段代码的逻辑,找出可能的问题。 四、解决oom问题 找到了oom问题的根源之后,我们就需要寻找解决办法了。一般来说,我们可以从以下几个方面入手: 1. 调整系统参数。如果oom是因为系统内存不够用造成的,那咱们就可以考虑给系统扩容一下内存限制,让它更能“吃得消”。具体的操作步骤可能会因为不同的操作系统而有所不同。 2. 优化代码。要是oom是由于代码逻辑设计得不够合理导致的,那我们就得动手优化一下这部分代码了,让它变得更加流畅高效。比如说,我们可以尝试用一些更节省内存的“小妙招”来存储数据,或者当某个内存区域我们不再需要时,及时地把它“归还”给系统,避免浪费。 3. 使用工具。现在有很多专门用于管理内存的工具,如VisualVM、MAT等。这些工具可以帮助我们更好地管理和监控内存,从而避免oom的发生。 五、结论 总的来说,当DataX任务运行过程中出现oom错误时,我们需要耐心地进行排查和调试,找出问题的根本原因,并采取相应的措施进行解决。只有这样,我们才能确保我们的程序能够在大数据环境下稳定地运行。
2023-09-04 19:00:43
664
素颜如水-t
Ruby
...uby中如何正确处理异常并确保资源得到恰当释放的基础概念之后,我们可以进一步探索这一主题的现代实践与发展趋势。随着Ruby 3.0及更高版本的发布,Ruby语言在错误处理和资源管理方面引入了更多优化和改进。 例如,Ruby 3.0新增了rescue in ensure语法结构,允许开发者在ensure块内部捕获并处理异常,使得资源清理逻辑与异常处理更为紧密地结合在一起。同时,社区对于更高级别的错误处理库如"Sorbet"和"Better Errors"等进行了持续优化,它们提供了丰富的错误类型提示、智能堆栈跟踪以及增强的调试体验,极大地提升了开发效率和代码质量。 此外,随着并发编程在Ruby生态中的广泛应用,如何在多线程环境中妥善处理异常并确保资源安全释放成为了新的挑战。Ruby的Concurrency框架(如GIL和Fibers)及其相关的最佳实践为解决此类问题提供了可能的方案。 实践中,遵循 SOLID 原则和面向对象设计,采用RAII(Resource Acquisition Is Initialization)模式编写代码也能有效地管理和释放资源,无论是否出现异常。这种设计模式强调资源的生命周期应与其对应的对象生命周期绑定,从而保证了资源的及时释放。 总之,在Ruby的世界里,不断跟进语言特性和社区最佳实践,结合具体的业务场景灵活运用异常处理机制,是每一位Ruby程序员持续提升代码健壮性与稳定性的必经之路。
2023-09-10 17:04:10
89
笑傲江湖
Shell
...出了一系列详尽的检测方法和优化策略。作者强调,在编写长期运行或处理大量数据的Shell脚本时,应当遵循良好的编程规范,如及时释放不再使用的变量、谨慎使用无限循环以及确保正确关闭文件描述符以释放系统资源。 此外,随着Bash 5.1版本的发布,新特性中引入了对数组元素的引用计数机制,这一改进有望更精细地控制内存分配,减少不必要的字符串复制带来的内存开销。这意味着未来的Shell脚本开发将拥有更强大的内建工具来防止所谓的“内存泄漏”。 同时,一些第三方工具如Valgrind和shellcheck等也被推荐用于检查和优化Shell脚本,它们能帮助开发者深入分析代码执行过程中的内存行为,找出并修复可能导致内存消耗异常的问题。 总之,尽管Shell脚本的内存管理通常较为隐蔽,但在现代IT基础设施中,我们应当更加重视此类脚本的性能优化,通过学习最新的技术动态、采用最佳实践及借助专业工具,确保Shell脚本在提升工作效率的同时,也能做到对系统资源的有效利用与保护。
2023-01-25 16:29:39
71
月影清风
Golang
...程序运行时遇到问题或异常情况时,系统或程序产生的提示信息。这类信息通常会说明问题的原因、位置以及可能的解决方案。在Go语言中,错误信息通过error接口返回,其中包含一个Error()方法,该方法返回一个字符串形式的错误描述。良好的错误信息能够帮助开发者快速定位问题并进行修复,同时也能在一定程度上提供给用户友好的反馈。 错误链路 , 在复杂的应用程序中,一个操作可能会引发一系列后续步骤,每个步骤都可能产生新的错误。错误链路指的是这些错误在不同函数或模块之间传递的过程。通过错误链路,可以在整个调用栈中跟踪错误的发生和传播路径。在Go语言中,可以通过返回多个值的方式实现错误链路,其中一个返回值专门用于携带错误信息。这种方式有助于在调用方集中处理所有错误,提高程序的可维护性和调试效率。 自定义错误类型 , 虽然Go语言的标准库已经提供了error接口,但有时我们需要更丰富和特定的错误信息,以适应程序的实际需求。自定义错误类型就是在标准error接口的基础上,定义一个新的结构体,并实现其Error()方法。这样可以添加更多的属性和方法,使错误信息更加具体和有用。例如,可以加入错误代码、错误级别等信息,方便进行分类和处理。自定义错误类型不仅提高了错误信息的表达能力,还增强了程序的灵活性和可读性。
2024-11-09 16:13:46
127
桃李春风一杯酒
Spark
...,就是想教你用同样的方法,在大数据的世界里,通过查看日志,找出你的Spark程序哪里出了问题,然后迅速解决它,让一切恢复正常。是不是听起来既实用又有趣?咱们这就开始吧! 二、Spark错误类型概述 Spark应用程序可能遭遇多种错误类型,从内存溢出、任务失败到网络通信异常等。这些错误通常由日志系统捕获并记录下来,为后续分析提供依据。下面,我们将通过几个具体的错误示例来了解如何阅读和解析Spark日志文件。 三、实例代码 简单的Spark Word Count应用 首先,让我们构建一个简单的Spark Word Count应用作为起点。这个应用旨在统计文本文件中单词的频率。 scala import org.apache.spark.SparkConf import org.apache.spark.SparkContext object WordCount { def main(args: Array[String]) { val conf = new SparkConf().setAppName("Word Count").setMaster("local") val sc = new SparkContext(conf) val textFile = sc.textFile("file:///path/to/your/textfile.txt") val counts = textFile.flatMap(line => line.split(" ")) .map(word => (word, 1)) .reduceByKey(_ + _) counts.saveAsTextFile("output") sc.stop() } } 四、错误日志分析 内存溢出问题 在实际运行上述应用时,如果输入文本文件过大,可能会导致内存溢出错误。日志文件中可能会出现类似以下的信息: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 37.0 failed 1 times, most recent failure: Lost task 0.3 in stage 37.0 (TID 208, localhost): java.lang.OutOfMemoryError: Java heap space 这段日志信息清晰地指出错误原因(OutOfMemoryError: Java heap space),并提供了关键细节,包括任务编号、所在节点以及错误类型。针对这一问题,可以通过增加Spark集群的内存资源或者优化数据处理逻辑来解决。 五、调试策略与最佳实践 1. 使用日志级别 调整日志级别(如INFO、DEBUG)可以帮助开发者在日志中获取更多详细信息。 2. 定期检查日志 通过自动化工具定期检查日志文件,可以及时发现潜在问题。 3. 利用Spark UI Spark自带的Web UI提供了详细的作业监控界面,直观显示任务状态和性能指标。 4. 错误重试机制 合理配置Spark任务的重试策略,避免因一次失败而影响整体进程。 5. 性能监控工具 集成性能监控工具(如Prometheus、Grafana)有助于实时监控系统性能,预防内存泄漏等严重问题。 六、总结与展望 日志记录是Spark应用程序开发和维护过程中的关键环节。哎呀,你知道吗?程序员们在遇到bug(小错误)的时候,那可是得使出浑身解数了!他们可不是对着电脑屏幕发呆,而是会仔细地分析问题,就像侦探破案一样。找到问题的源头后,他们就开始了他们的“调试大作战”,就像是医生给病人开药一样精准。通过这些努力,他们能优化代码,让程序跑得更顺畅,就像给汽车加了润滑剂,不仅跑得快,还稳当当的。这样,我们的应用就能更加可靠,用户用起来也更舒心啦!哎呀,你懂的,随着咱们每天产生的数据就像自来水一样哗哗流,那处理这些数据的大数据工具就得越来越厉害才行。特别是那些记录我们操作痕迹的日志管理系统,不仅要快得跟闪电一样,操作起来还得像玩手机游戏一样简单,最好还能自己动脑筋分析出点啥有价值的信息来。这样,未来日志记录这事儿就不仅仅是记录,还能帮我们找到问题、优化流程,简直就是一大神器嘛!所以,你看,这发展方向就是越来越智能、好用、高效,让科技真正服务于人,而不是让人被科技牵着鼻子走。 --- 通过本文的探讨,我们不仅学习了如何理解和利用Spark的日志信息来诊断问题,还了解了一些实用的调试技巧和最佳实践。希望这些内容能帮助你更有效地管理你的Spark应用程序,确保其在复杂的数据处理场景下稳定运行。
2024-09-07 16:03:18
141
秋水共长天一色
转载文章
... } UI绘制全路径分析: 有了前面几个概念,这里我们让SurfaceFlinger结合View的绘制流程用一张图来表达整个绘制流程: 生产者:APP方构建Surface的过程。 消费者:SurfaceFlinger UI绘制全路径分析卡顿原因: 接下来,我们逐个分析,看看都会有哪些原因可能造成卡顿: 1.渲染流程 1.Vsync 调度:这个是起始点,但是调度的过程会经过线程切换以及一些委派的逻辑,有可能造成卡顿,但是一般可能性比较小,我们也基本无法介入; 2.消息调度:主要是 doframe Message 的调度,这就是一个普通的 Handler 调度,如果这个调度被其他的 Message 阻塞产生了时延,会直接导致后续的所有流程不会被触发 3.input 处理:input 是一次 Vsync 调度最先执行的逻辑,主要处理 input 事件。如果有大量的事件堆积或者在事件分发逻辑中加入大量耗时业务逻辑,会造成当前帧的时长被拉大,造成卡顿,可以尝试通过事件采样的方案,减少 event 的处理 4.动画处理:主要是 animator 动画的更新,同理,动画数量过多,或者动画的更新中有比较耗时的逻辑,也会造成当前帧的渲染卡顿。对动画的降帧和降复杂度其实解决的就是这个问题; 5.view 处理:主要是接下来的三大流程,过度绘制、频繁刷新、复杂的视图效果都是此处造成卡顿的主要原因。比如我们平时所说的降低页面层级,主要解决的就是这个问题; 6.measure/layout/draw:view 渲染的三大流程,因为涉及到遍历和高频执行,所以这里涉及到的耗时问题均会被放大,比如我们会降不能在 draw 里面调用耗时函数,不能 new 对象等等; 7.DisplayList 的更新:这里主要是 canvas 和 displaylist 的映射,一般不会存在卡顿问题,反而可能存在映射失败导致的显示问题; 8.OpenGL 指令转换:这里主要是将 canvas 的命令转换为 OpenGL 的指令,一般不存在问题 9.buffer 交换:这里主要指 OpenGL 指令集交换给 GPU,这个一般和指令的复杂度有关 10.GPU 处理:顾名思义,这里是 GPU 对数据的处理,耗时主要和任务量和纹理复杂度有关。这也就是我们降低 GPU 负载有助于降低卡顿的原因; 11.layer 合成:Android P 修改了 Layer 的计算方法 , 把这部分放到了 SurfaceFlinger 主线程去执行, 如果后台 Layer 过多, 就会导致 SurfaceFlinger 在执行 rebuildLayerStacks 的时候耗时 , 导致 SurfaceFlinger 主线程执行时间过长。 可以选择降低Surface层级来优化卡顿。 12.光栅化/Display:这里暂时忽略,底层系统行为; Buffer 切换:主要是屏幕的显示,这里 buffer 的数量也会影响帧的整体延迟,不过是系统行为,不能干预。 2.系统负载 内存:内存的吃紧会直接导致 GC 的增加甚至 ANR,是造成卡顿的一个不可忽视的因素; CPU:CPU 对卡顿的影响主要在于线程调度慢、任务执行的慢和资源竞争,比如 1.降频会直接导致应用卡顿; 2.后台活动进程太多导致系统繁忙,cpu \ io \ memory 等资源都会被占用, 这时候很容易出现卡顿问题 ,这种情况比较常见,可以使用dumpsys cpuinfo查看当前设备的cpu使用情况: 3.主线程调度不到 , 处于 Runnable 状态,这种情况比较少见 4.System 锁:system_server 的 AMS 锁和 WMS 锁 , 在系统异常的情况下 , 会变得非常严重 , 如下图所示 , 许多系统的关键任务都被阻塞 , 等待锁的释放 , 这时候如果有 App 发来的 Binder 请求带锁 , 那么也会进入等待状态 , 这时候 App 就会产生性能问题 ; 如果此时做 Window 动画 , 那么 system_server 的这些锁也会导致窗口动画卡顿 GPU:GPU 的影响见渲染流程,但是其实还会间接影响到功耗和发热; 功耗/发热:功耗和发热一般是不分家的,高功耗会引起高发热,进而会引起系统保护,比如降频、热缓解等,间接的导致卡顿。 如何监控卡顿 线下监控: 我们知道卡顿问题的原因错综复杂,但最终都可以反馈到CPU使用率上来 1.使用dumpsys cpuinfo命令 这个命令可以获取当时设备cpu使用情况,我们可以在线下通过重度使用应用来检测可能存在的卡顿点 A8S:/ $ dumpsys cpuinfoLoad: 1.12 / 1.12 / 1.09CPU usage from 484321ms to 184247ms ago (2022-11-02 14:48:30.793 to 2022-11-02 14:53:30.866):2% 1053/scanserver: 0.2% user + 1.7% kernel0.6% 934/system_server: 0.4% user + 0.1% kernel / faults: 563 minor0.4% 564/signserver: 0% user + 0.4% kernel0.2% 256/ueventd: 0.1% user + 0% kernel / faults: 320 minor0.2% 474/surfaceflinger: 0.1% user + 0.1% kernel0.1% 576/vendor.sprd.hardware.gnss@2.0-service: 0.1% user + 0% kernel / faults: 54 minor0.1% 286/logd: 0% user + 0% kernel / faults: 10 minor0.1% 2821/com.allinpay.appstore: 0.1% user + 0% kernel / faults: 1312 minor0.1% 447/android.hardware.health@2.0-service: 0% user + 0% kernel / faults: 1175 minor0% 1855/com.smartpos.dataacqservice: 0% user + 0% kernel / faults: 755 minor0% 2875/com.allinpay.appstore:pushcore: 0% user + 0% kernel / faults: 744 minor0% 1191/com.android.systemui: 0% user + 0% kernel / faults: 70 minor0% 1774/com.android.nfc: 0% user + 0% kernel0% 172/kworker/1:2: 0% user + 0% kernel0% 145/irq/24-70900000: 0% user + 0% kernel0% 575/thermald: 0% user + 0% kernel / faults: 300 minor... 2.CPU Profiler 这个工具是AS自带的CPU性能检测工具,可以在PC上实时查看我们CPU使用情况。 AS提供了四种Profiling Model配置: 1.Sample Java Methods:在应用程序基于Java的代码执行过程中,频繁捕获应用程序的调用堆栈 获取有关应用程序基于Java的代码执行的时间和资源使用情况信息。 2.Trace java methods:在运行时对应用程序进行检测,以在每个方法调用的开始和结束时记录时间戳。收集时间戳并进行比较以生成方法跟踪数据,包括时序信息和CPU使用率。 请注意与检测每种方法相关的开销会影响运行时性能,并可能影响性能分析数据。对于生命周期相对较短的方法,这一点甚至更为明显。此外,如果您的应用在短时间内执行大量方法,则探查器可能会很快超过其文件大小限制,并且可能无法记录任何进一步的跟踪数据。 3.Sample C/C++ Functions:捕获应用程序本机线程的示例跟踪。要使用此配置,您必须将应用程序部署到运行Android 8.0(API级别26)或更高版本的设备。 4.Trace System Calls:捕获细粒度的详细信息,使您可以检查应用程序与系统资源的交互方式 您可以检查线程状态的确切时间和持续时间,可视化CPU瓶颈在所有内核中的位置,并添加自定义跟踪事件进行分析。在对性能问题进行故障排除时,此类信息可能至关重要。要使用此配置,您必须将应用程序部署到运行Android 7.0(API级别24)或更高版本的设备。 使用方式: Debug.startMethodTracing("");// 需要检测的代码片段...Debug.stopMethodTracing(); 优点:有比较全面的调用栈以及图像化方法时间显示,包含所有线程的情况 缺点:本身也会带来一点的性能开销,可能会带偏优化方向 火焰图:可以显示当前应用的方法堆栈: 3.Systrace Systrace在前面一篇分析启动优化的文章讲解过 这里我们简单来复习下: Systrace用来记录当前应用的系统以及应用(使用Trace类打点)的各阶段耗时信息包括绘制信息以及CPU信息等。 使用方式: Trace.beginSection("MyApp.onCreate_1");alt(200);Trace.endSection(); 在命令行中: python systrace.py -t 5 sched gfx view wm am app webview -a "com.chinaebipay.thirdcall" -o D:\trac1.html 记录的方法以及CPU中的耗时情况: 优点: 1.轻量级,开销小,CPU使用率可以直观反映 2.右侧的Alerts能够根据我们应用的问题给出具体的建议,比如说,它会告诉我们App界面的绘制比较慢或者GC比较频繁。 4.StrictModel StrictModel是Android提供的一种运行时检测机制,用来帮助开发者自动检测代码中不规范的地方。 主要和两部分相关: 1.线程相关 2.虚拟机相关 基础代码: private void initStrictMode() {// 1、设置Debug标志位,仅仅在线下环境才使用StrictModeif (DEV_MODE) {// 2、设置线程策略StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder().detectCustomSlowCalls() //API等级11,使用StrictMode.noteSlowCode.detectDiskReads().detectDiskWrites().detectNetwork() // or .detectAll() for all detectable problems.penaltyLog() //在Logcat 中打印违规异常信息// .penaltyDialog() //也可以直接跳出警报dialog// .penaltyDeath() //或者直接崩溃.build());// 3、设置虚拟机策略StrictMode.setVmPolicy(new StrictMode.VmPolicy.Builder().detectLeakedSqlLiteObjects()// 给NewsItem对象的实例数量限制为1.setClassInstanceLimit(NewsItem.class, 1).detectLeakedClosableObjects() //API等级11.penaltyLog().build());} } 线上监控: 线上需要自动化的卡顿检测方案来定位卡顿,它能记录卡顿发生时的场景。 自动化监控原理: 采用拦截消息调度流程,在消息执行前埋点计时,当耗时超过阈值时,则认为是一次卡顿,会进行堆栈抓取和上报工作 首先,我们看下Looper用于执行消息循环的loop()方法,关键代码如下所示: / Run the message queue in this thread. Be sure to call {@link quit()} to end the loop./public static void loop() {...for (;;) {Message msg = queue.next(); // might blockif (msg == null) {// No message indicates that the message queue is quitting.return;// This must be in a local variable, in case a UI event sets the loggerfinal Printer logging = me.mLogging;if (logging != null) {// 1logging.println(">>>>> Dispatching to " + msg.target + " " +msg.callback + ": " + msg.what);}...try {// 2 msg.target.dispatchMessage(msg);dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;} finally {if (traceTag != 0) {Trace.traceEnd(traceTag);} }...if (logging != null) {// 3logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);} 在Looper的loop()方法中,在其执行每一个消息(注释2处)的前后都由logging进行了一次打印输出。可以看到,在执行消息前是输出的">>>>> Dispatching to “,在执行消息后是输出的”<<<<< Finished to ",它们打印的日志是不一样的,我们就可以由此来判断消息执行的前后时间点。 具体的实现可以归纳为如下步骤: 1、首先,我们需要使用Looper.getMainLooper().setMessageLogging()去设置我们自己的Printer实现类去打印输出logging。这样,在每个message执行的之前和之后都会调用我们设置的这个Printer实现类。 2、如果我们匹配到">>>>> Dispatching to "之后,我们就可以执行一行代码:也就是在指定的时间阈值之后,我们在子线程去执行一个任务,这个任务就是去获取当前主线程的堆栈信息以及当前的一些场景信息,比如:内存大小、电脑、网络状态等。 3、如果在指定的阈值之内匹配到了"<<<<< Finished to ",那么说明message就被执行完成了,则表明此时没有产生我们认为的卡顿效果,那我们就可以将这个子线程任务取消掉。 这里我们使用blockcanary来做测试: BlockCanary APM是一个非侵入式的性能监控组件,可以通过通知的形式弹出卡顿信息。它的原理就是我们刚刚讲述到的卡顿监控的实现原理。 使用方式: 1.导入依赖 implementation 'com.github.markzhai:blockcanary-android:1.5.0' Application的onCreate方法中开启卡顿监控 // 注意在主进程初始化调用BlockCanary.install(this, new AppBlockCanaryContext()).start(); 3.继承BlockCanaryContext类去实现自己的监控配置上下文类 public class AppBlockCanaryContext extends BlockCanaryContext {....../ 指定判定为卡顿的阈值threshold (in millis), 你可以根据不同设备的性能去指定不同的阈值 @return threshold in mills/public int provideBlockThreshold() {return 1000;}....} 4.在Activity的onCreate方法中执行一个耗时操作 try {Thread.sleep(4000);} catch (InterruptedException e) {e.printStackTrace();} 5.结果: 可以看到一个和LeakCanary一样效果的阻塞可视化堆栈图 那有了BlockCanary的方法耗时监控方式是不是就可以解百愁了呢,呵呵。有那么容易就好了 根据原理:我们拿到的是msg执行前后的时间和堆栈信息,如果msg中有几百上千个方法,就无法确认到底是哪个方法导致的耗时,也有可能是多个方法堆积导致。 这就导致我们无法准确定位哪个方法是最耗时的。如图中:堆栈信息是T2的,而发生耗时的方法可能是T1到T2中任何一个方法甚至是堆积导致。 那如何优化这块? 这里我们采用字节跳动给我们提供的一个方案:基于 Sliver trace 的卡顿监控体系 Sliver trace 整体流程图: 主要包含两个方面: 检测方案: 在监控卡顿时,首先需要打开 Sliver 的 trace 记录能力,Sliver 采样记录 trace 执行信息,对抓取到的堆栈进行 diff 聚合和缓存。 同时基于我们的需要设置相应的卡顿阈值,以 Message 的执行耗时为衡量。对主线程消息调度流程进行拦截,在消息开始分发执行时埋点,在消息执行结束时计算消息执行耗时,当消息执行耗时超过阈值,则认为产生了一次卡顿。 堆栈聚合策略: 当卡顿发生时,我们需要为此次卡顿准备数据,这部分工作是在端上子线程中完成的,主要是 dump trace 到文件以及过滤聚合要上报的堆栈。分为以下几步: 1.拿到缓存的主线程 trace 信息并 dump 到文件中。 2.然后从文件中读取 trace 信息,按照数据格式,从最近的方法栈向上追溯,找到当前 Message 包含的全部 trace 信息,并将当前 Message 的完整 trace 写入到待上传的 trace 文件中,删除其余 trace 信息。 3.遍历当前 Message trace,按照(Method 执行耗时 > Method 耗时阈值 & Method 耗时为该层堆栈中最耗时)为条件过滤出每一层函数调用堆栈的最长耗时函数,构成最后要上报的堆栈链路,这样特征堆栈中的每一步都是最耗时的,且最底层 Method 为最后的耗时大于阈值的 Method。 之后,将 trace 文件和堆栈一同上报,这样的特征堆栈提取策略保证了堆栈聚合的可靠性和准确性,保证了上报到平台后堆栈的正确合理聚合,同时提供了进一步分析问题的 trace 文件。 可以看到字节给的是一整套监控方案,和前面BlockCanary不同之处就在于,其是定时存储堆栈,缓存,然后使用diff去重的方式,并上传到服务器,可以最大限度的监控到可能发生比较耗时的方法。 开发中哪些习惯会影响卡顿的发生 1.布局太乱,层级太深。 1.1:通过减少冗余或者嵌套布局来降低视图层次结构。比如使用约束布局代替线性布局和相对布局。 1.2:用 ViewStub 替代在启动过程中不需要显示的 UI 控件。 1.3:使用自定义 View 替代复杂的 View 叠加。 2.主线程耗时操作 2.1:主线程中不要直接操作数据库,数据库的操作应该放在数据库线程中完成。 2.2:sharepreference尽量使用apply,少使用commit,可以使用MMKV框架来代替sharepreference。 2.3:网络请求回来的数据解析尽量放在子线程中,不要在主线程中进行复制的数据解析操作。 2.4:不要在activity的onResume和onCreate中进行耗时操作,比如大量的计算等。 2.5:不要在 draw 里面调用耗时函数,不能 new 对象 3.过度绘制 过度绘制是同一个像素点上被多次绘制,减少过度绘制一般减少布局背景叠加等方式,如下图所示右边是过度绘制的图片。 4.列表 RecyclerView使用优化,使用DiffUtil和notifyItemDataSetChanged进行局部更新等。 5.对象分配和回收优化 自从Android引入 ART 并且在Android 5.0上成为默认的运行时之后,对象分配和垃圾回收(GC)造成的卡顿已经显著降低了,但是由于对象分配和GC有额外的开销,它依然又可能使线程负载过重。 在一个调用不频繁的地方(比如按钮点击)分配对象是没有问题的,但如果在在一个被频繁调用的紧密的循环里,就需要避免对象分配来降低GC的压力。 减少小对象的频繁分配和回收操作。 好了,关于卡顿优化的问题就讲到这里,下篇文章会对卡顿中的ANR情况的处理,这里做个铺垫。 如果喜欢我的文章,欢迎关注我的公众号。 点击这看原文链接: 参考 Android卡顿检测及优化 一文读懂直播卡顿优化那些事儿 “终于懂了” 系列:Android屏幕刷新机制—VSync、Choreographer 全面理解! 深入探索Android卡顿优化(上) 西瓜卡顿 & ANR 优化治理及监控体系建设 5376)] 参考 Android卡顿检测及优化 一文读懂直播卡顿优化那些事儿 “终于懂了” 系列:Android屏幕刷新机制—VSync、Choreographer 全面理解! 深入探索Android卡顿优化(上) 西瓜卡顿 & ANR 优化治理及监控体系建设 本篇文章为转载内容。原文链接:https://blog.csdn.net/yuhaibing111/article/details/127682399。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-26 08:05:57
214
转载
转载文章
...随笔的方式对它们做了分析和记录,以下与大家分享。 Ⅰ. 从感染到遗传:LibVNC与TightVNC系列漏洞 2018年12月10日晚9:03,OSS漏洞预警平台弹出的一封漏洞披露邮件,引起了我的注意。披露者是卡巴斯基工控系统漏洞研究组的Pavel Cheremushkin。 一些必要背景 VNC是一套屏幕图像分享和远程操作软件,底层通信为RFB协议,由剑桥某实验室开发,后1999年并入AT&T,2002年关停实验室与项目,VNC开源发布。 VNC本被设计用在局域网环境,且诞生背景决定其更倾向研究性质,商用级安全的缺失始终是个问题。后续有若干新的实现软件,如TightVNC、RealVNC,在公众认知中,AT&T版本已死,后起之秀一定程度上修正了问题。 目前各种更优秀的远程控制和分享协议取代了VNC的位置,尽管例如苹果仍然系统內建VNC作为远程方式。但在非桌面领域,VNC还有我们想不到的重要性,比如工控领域需要远程屏幕传输的场景,这也是为什么这系列漏洞作者会关注这一块。 漏洞技术概况 Pavel总结到,在阶段漏洞挖掘中共上报11个漏洞。在披露邮件中描述了其中4个的技术细节,均在协议数据包处理代码中,漏洞类型古典,分别是全局缓冲区溢出、堆溢出和空指针解引用。其中缓冲区溢出类型漏洞可方便构造PoC,实现远程任意代码执行的漏洞利用。 漏洞本身原理简单,也并不是关键。以其中一个为例,Pavel在发现时负责任地向LibVNC作者提交了issue,并跟进漏洞修复过程;在第一次修复之后,复核并指出修复代码无效,给出了有效patch。这个过程是常规操作。 漏洞疑点 有意思的是,在漏洞披露邮件中,Pavel重点谈了自己对这系列漏洞的一些周边发现,也是这里提到的原因。其中,关于存在漏洞的代码,作者表述: 我最初认为,这些问题是libvnc开发者自己代码中的错误,但看起来并非如此。其中有一些(如CoRRE数据处理函数中的堆缓冲区溢出),出现在AT&T实验室1999年的代码中,而后被很多软件开发者原样复制(在Github上搜索一下HandleCoRREBPP函数,你就知道),LibVNC和TightVNC也是如此。 为了证实,翻阅了这部分代码,确实在其中数据处理相关代码文件看到了剑桥和AT&T实验室的文件头GPL声明注释,中国菜刀 这证实这些文件是直接从最初剑桥实验室版本VNC移植过来的,且使用方式是 直接代码包含,而非独立库引用方式。在官方开源发布并停止更新后,LibVNC使用的这部分代码基本没有改动——除了少数变量命名方式的统一,以及本次漏洞修复。通过搜索,我找到了2000年发布的相关代码文件,确认这些文件与LibVNC中引入的原始版本一致。 另外,Pavel同时反馈了TightVNC中相同的问题。TightVNC与LibVNC没有继承和直接引用关系,但上述VNC代码同样被TightVNC使用,问题的模式不约而同。Pavel测试发现在Ubuntu最新版本TightVNC套件(1.3.10版本)中同样存在该问题,上报给当前软件所有者GlavSoft公司,但对方声称目前精力放在不受GPL限制的TightVNC 2.x版本开发中,对开源的1.x版本漏洞代码“可能会进行修复”。看起来,这个问题被踢给了各大Linux发行版社区来焦虑了——如果他们愿意接锅。 问题思考 在披露邮件中,Pavel认为,这些代码bug“如此明显,让人无法相信之前没被人发现过……也许是因为某些特殊理由才始终没得到修复”。 事实上,我们都知道目前存在一些对开源基础软件进行安全扫描的大型项目,例如Google的OSS;同时,仍然存活的开源项目也越来越注重自身代码发布前的安全扫描,Fortify、Coverity的扫描也成为很多项目和平台的标配。在这样一些眼睛注视下,为什么还有这样的问题?我认为就这个具体事例来说,可能有如下两个因素: ·上游已死。仍然在被维护的代码,存在版本更迭,也存在外界的持续关注、漏洞报告和修复、开发的迭代,对于负责人的开发者,持续跟进、评估、同步代码的改动是可能的。但是一旦一份代码走完了生命周期,就像一段史实一样会很少再被改动。 ·对第三方上游代码的无条件信任。我们很多人都有过基础组件、中间件的开发经历,不乏有人使用Coverity开启全部规则进行代码扫描、严格修复所有提示的问题甚至编程规范warning;报告往往很长,其中也包括有源码形式包含的第三方代码中的问题。但是,我们一方面倾向于认为这些被广泛使用的代码不应存在问题(不然早就被人挖过了),一方面考虑这些引用的代码往往是组件或库的形式被使用,应该有其上下文才能认定是否确实有可被利用的漏洞条件,现在单独扫描这部分代码一般出来的都是误报。所以这些代码的问题都容易被忽视。 但是透过这个具体例子,再延伸思考相关的实践,这里最根本的问题可以总结为一个模式: 复制粘贴风险。复制粘贴并不简单意味着剽窃,实际是当前软件领域、互联网行业发展的基础模式,但其中有一些没人能尝试解决的问题: ·在传统代码领域,如C代码中,对第三方代码功能的复用依赖,往往通过直接进行库的引入实现,第三方代码独立而完整,也较容易进行整体更新;这是最简单的情况,只需要所有下游使用者保证仅使用官方版本,跟进官方更新即可;但在实践中很难如此贯彻,这是下节讨论的问题。 ·有些第三方发布的代码,模式就是需要被源码形式包含到其他项目中进行统一编译使用(例如腾讯的开源Json解析库RapidJSON,就是纯C++头文件形式)。在开源领域有如GPL等规约对此进行规范,下游开发者遵循协议,引用代码,强制或可选地显式保留其GPL声明,可以进行使用和更改。这样的源码依赖关系,结合规范化的changelog声明代码改动,侧面也是为开发过程中跟进考虑。但是一个成型的产品,比如企业自有的服务端底层产品、中间件,新版本的发版更新是复杂的过程,开发者在旧版本仍然“功能正常”的情况下往往倾向于不跟进新版本;而上游代码如果进行安全漏洞修复,通常也都只在其最新版本代码中改动,安全修复与功能迭代并存,如果没有类似Linux发行版社区的努力,旧版本代码完全没有干净的安全更新patch可用。 ·在特定场景下,有些开发实践可能不严格遵循开源代码协议限定,引入了GPL等协议保护的代码而不做声明(以规避相关责任),丢失了引入和版本的信息跟踪;在另一些场景下,可能存在对开源代码进行大刀阔斧的修改、剪裁、定制,以符合自身业务的极端需求,但是过多的修改、人员的迭代造成与官方代码严重的失同步,丧失可维护性。 ·更一般的情况是,在开发中,开发者个体往往心照不宣的存在对网上代码文件、代码片段的复制-粘贴操作。被参考的代码,可能有上述的开源代码,也可能有各种Github作者练手项目、技术博客分享的代码片段、正式开源项目仅用来说明用法的不完备示例代码。这些代码的引入完全无迹可寻,即便是作者自己也很难解释用了什么。这种情况下,上面两条认定的那些与官方安全更新失同步的问题同样存在,且引入了独特的风险:被借鉴的代码可能只是原作者随手写的、仅仅是功能成立的片段,甚至可能是恶意作者随意散布的有安全问题的代码。由此,问题进入了最大的发散空间。 在Synopsys下BLACKDUCK软件之前发布的《2018 Open Source Security and Risk Analysis Report》中分析,96%的应用中包含有开源组件和代码,开源代码在应用全部代码中的占比约为57%,78%的应用中在引用的三方开源代码中存在历史漏洞。也就是说,现在互联网上所有厂商开发的软件、应用,其开发人员自己写的代码都是一少部分,多数都是借鉴来的。而这还只是可统计、可追溯的;至于上面提到的非规范的代码引用,如果也纳入进来考虑,三方代码占应用中的比例会上升到多少?曾经有分析认为至少占80%,我们只期望不会更高。 Ⅱ. 从碎片到乱刃:OpenSSH在野后门一览 在进行基础软件梳理时,回忆到反病毒安全软件提供商ESET在2018年十月发布的一份白皮书《THE DARK SIDE OF THE FORSSHE: A landscape of OpenSSH backdoors》。其站在一个具有广泛用户基础的软件提供商角度,给出了一份分析报告,数据和结论超出我们对于当前基础软件使用全景的估量。以下以我的角度对其中一方面进行解读。 一些必要背景 SSH的作用和重要性无需赘言;虽然我们站在传统互联网公司角度,可以认为SSH是通往生产服务器的生命通道,但当前多样化的产业环境已经不止于此(如之前libssh事件中,不幸被我言中的,SSH在网络设备、IoT设备上(如f5)的广泛使用)。 OpenSSH是目前绝大多数SSH服务端的基础软件,有完备的开发团队、发布规范、维护机制,本身是靠谱的。如同绝大多数基础软件开源项目的做法,OpenSSH对漏洞有及时的响应,针对最新版本代码发出安全补丁,但是各大Linux发行版使用的有各种版本的OpenSSH,这些社区自行负责将官方开发者的安全补丁移植到自己系统搭载的低版本代码上。天空彩 白皮书披露的现状 如果你是一个企业的运维管理人员,需要向企业生产服务器安装OpenSSH或者其它基础软件,最简单的方式当然是使用系统的软件管理安装即可。但是有时候,出于迁移成本考虑,可能企业需要在一个旧版本系统上,使用较新版本的OpenSSL、OpenSSH等基础软件,这些系统不提供,需要自行安装;或者需要一个某有种特殊特性的定制版本。这时,可能会选择从某些rpm包集中站下载某些不具名第三方提供的现成的安装包,或者下载非官方的定制化源码本地编译后安装,总之从这里引入了不确定性。 这种不确定性有多大?我们粗估一下,似乎不应成为问题。但这份白皮书给我们看到了鲜活的数据。 ESET研究人员从OpenSSH的一次历史大规模Linux服务端恶意软件Windigo中获得启示,采用某种巧妙的方式,面向在野的服务器进行数据采集,主要是系统与版本、安装的OpenSSH版本信息以及服务端程序文件的一个特殊签名。整理一个签名白名单,包含有所有能搜索到的官方发布二进制版本、各大Linux发行版本各个版本所带的程序文件版本,将这些标定为正常样本进行去除。最终结论是: ·共发现了几百个非白名单版本的OpenSSH服务端程序文件ssh和sshd; ·分析这些样本,将代码部分完全相同,仅仅是数据和配置不同的合并为一类,且分析判定确认有恶意代码的,共归纳为 21个各异的恶意OpenSSH家族; ·在21个恶意家族中,有12个家族在10月份时完全没有被公开发现分析过;而剩余的有一部分使用了历史上披露的恶意代码样本,甚至有源代码; ·所有恶意样本的实现,从实现复杂度、代码混淆和自我保护程度到代码特征有很大跨度的不同,但整体看,目的以偷取用户凭证等敏感信息、回连外传到攻击者为主,其中有的攻击者回连地址已经存在并活跃数年之久; ·这些后门的操控者,既有传统恶意软件黑产人员,也有APT组织; ·所有恶意软件或多或少都在被害主机上有未抹除的痕迹。ESET研究者尝试使用蜜罐引诱出攻击者,但仍有许多未解之谜。这场对抗,仍未取胜。 白皮书用了大篇幅做技术分析报告,此处供细节分析,不展开分析,以下为根据恶意程序复杂度描绘的21个家族图谱: 问题思考 问题引入的可能渠道,我在开头进行了一点推测,主要是由人的原因切入的,除此以外,最可能的是恶意攻击者在利用各种方法入侵目标主机后,主动替换了目标OpenSSH为恶意版本,从而达成攻击持久化操作。但是这些都是止血的安全运维人员该考虑的事情;关键问题是,透过表象,这显露了什么威胁形式? 这个问题很好回答,之前也曾经反复说过:基础软件碎片化。 如上一章节简单提到,在开发过程中有各种可能的渠道引入开发者不完全了解和信任的代码;在运维过程中也是如此。二者互相作用,造成了软件碎片化的庞杂现状。在企业内部,同一份基础软件库,可能不同的业务线各自定制一份,放到企业私有软件仓库源中,有些会有人持续更新供自己产品使用,有些由系统软件基础设施维护人员单独维护,有些则可能是开发人员临时想起来上传的,他们自己都不记得;后续用到的这个基础软件的开发和团队,在这个源上搜索到已有的库,很大概率会倾向于直接使用,不管来源、是否有质量背书等。长此以往问题会持续发酵。而我们开最坏的脑洞,是否可能有黑产人员入职到内部,提交个恶意基础库之后就走人的可能?现行企业安全开发流程中审核机制的普遍缺失给这留下了空位。 将源码来源碎片化与二进制使用碎片化并起来考虑,我们不难看到一个远远超过OpenSSH事件威胁程度的图景。但这个问题不是仅仅靠开发阶段规约、运维阶段规范、企业内部管控、行业自查、政府监管就可以根除的,最大的问题归根结底两句话: 不可能用一场战役对抗持续威胁;不可能用有限分析对抗无限未知。 Ⅲ. 从自信到自省:RHEL、CentOS backport版本BIND漏洞 2018年12月20日凌晨,在备战冬至的软件供应链安全大赛决赛时,我注意到漏洞预警平台捕获的一封邮件。但这不是一个漏洞初始披露邮件,而是对一个稍早已披露的BIND在RedHat、CentOS发行版上特定版本的1day漏洞CVE-2018-5742,由BIND的官方开发者进行额外信息澄(shuǎi)清(guō)的邮件。 一些必要背景 关于BIND 互联网的一个古老而基础的设施是DNS,这个概念在读者不应陌生。而BIND“是现今互联网上最常使用的DNS软件,使用BIND作为服务器软件的DNS服务器约占所有DNS服务器的九成。BIND现在由互联网系统协会负责开发与维护参考。”所以BIND的基础地位即是如此,因此也一向被大量白帽黑帽反复测试、挖掘漏洞,其开发者大概也一直处在紧绷着应对的处境。 关于ISC和RedHat 说到开发者,上面提到BIND的官方开发者是互联网系统协会(ISC)。ISC是一个老牌非营利组织,目前主要就是BIND和DHCP基础设施的维护者。而BIND本身如同大多数历史悠久的互联网基础开源软件,是4个UCB在校生在DARPA资助下于1984年的实验室产物,直到2012年由ISC接管。 那么RedHat在此中是什么角色呢?这又要提到我之前提到的Linux发行版和自带软件维护策略。Red Hat Enterprise Linux(RHEL)及其社区版CentOS秉持着稳健的软件策略,每个大的发行版本的软件仓库,都只选用最必要且质量久经时间考验的软件版本,哪怕那些版本实在是老掉牙。这不是一种过分的保守,事实证明这种策略往往给RedHat用户在最新漏洞面前提供了保障——代码总是跑得越少,潜在漏洞越多。 但是这有两个关键问题。一方面,如果开源基础软件被发现一例有历史沿革的代码漏洞,那么官方开发者基本都只为其最新代码负责,在当前代码上推出修复补丁。另一方面,互联网基础设施虽然不像其上的应用那样爆发性迭代,但依然持续有一些新特性涌现,其中一些是必不可少的,但同样只在最新代码中提供。两个刚需推动下,各Linux发行版对长期支持版本系统的软件都采用一致的策略,即保持其基础软件在一个固定的版本,但对于这些版本软件的最新漏洞、必要的最新软件特性,由发行版维护者将官方开发者最新代码改动“向后移植”到旧版本代码中,即backport。这就是基础软件的“官宣”碎片化的源头。 讲道理,Linux发行版维护者与社区具有比较靠谱的开发能力和监督机制,backport又基本就是一些复制粘贴工作,应当是很稳当的……但真是如此吗? CVE-2018-5742漏洞概况 CVE-2018-5742是一个简单的缓冲区溢出类型漏洞,官方评定其漏洞等级moderate,认为危害不大,漏洞修复不积极,披露信息不多,也没有积极给出代码修复patch和新版本rpm包。因为该漏洞仅在设置DEBUG_LEVEL为10以上才会触发,由远程攻击者构造畸形请求造成BIND服务崩溃,在正常的生产环境几乎不可能具有危害,RedHat官方也只是给出了用户自查建议。 这个漏洞只出现在RHEL和CentOS版本7中搭载的BIND 9.9.4-65及之后版本。RedHat同ISC的声明中都证实,这个漏洞的引入原因,是RedHat在尝试将BIND 9.11版本2016年新增的NTA机制向后移植到RedHat 7系中固定搭载的BIND 9.9版本代码时,偶然的代码错误。NTA是DNS安全扩展(DNSSEC)中,用于在特定域关闭DNSSEC校验以避免不必要的校验失败的机制;但这个漏洞不需要对NTA本身有进一步了解。 漏洞具体分析 官方没有给出具体分析,但根据CentOS社区里先前有用户反馈的bug,我得以很容易还原漏洞链路并定位到根本原因。 若干用户共同反馈,其使用的BIND 9.9.4-RedHat-9.9.4-72.el7发生崩溃(coredump),并给出如下的崩溃时调用栈backtrace: 这个调用过程的逻辑为,在9 dns_message_logfmtpacket函数判断当前软件设置是否DEBUG_LEVEL大于10,若是,对用户请求数据包做日志记录,先后调用8 dns_message_totext、7 dns_message_sectiontotext、6 dns_master_rdatasettotext、5 rdataset_totext将请求进行按协议分解分段后写出。 由以上关键调用环节,联动RedHat在9.9.4版本BIND源码包中关于引入NTA特性的源码patch,进行代码分析,很快定位到问题产生的位置,在上述backtrace中的5,masterdump.c文件rdataset_totext函数。漏洞相关代码片段中,RedHat进行backport后,这里引入的代码为: 这里判断对于请求中的注释类型数据,直接通过isc_buffer_putstr宏对缓存进行操作,在BIND工程中自定义维护的缓冲区结构对象target上,附加一字节字符串(一个分号)。而漏洞就是由此产生:isc_buffer_putstr中不做缓冲区边界检查保证,这里在缓冲区已满情况下将造成off-by-one溢出,并触发了缓冲区实现代码中的assertion。 而ISC上游官方版本的代码在这里是怎么写的呢?找到ISC版本BIND 9.11代码,这里是这样的: 这里可以看到,官方代码在做同样的“附加一个分号”这个操作时,审慎的使用了做缓冲区剩余空间校验的str_totext函数,并额外做返回值成功校验。而上述提到的str_totext函数与RETERR宏,在移植版本的masterdump.c中,RedHat开发者也都做了保留。但是,查看代码上下文发现,在RedHat开发者进行代码移植过程中,对官方代码进行了功能上的若干剪裁,包括一些细分数据类型记录的支持;而这里对缓冲区写入一字节,也许开发者完全没想到溢出的可能,所以自作主张地简化了代码调用过程。 问题思考 这个漏洞本身几乎没什么危害,但是背后足以引起思考。 没有人在“借”别人代码时能不出错 不同于之前章节提到的那种场景——将代码文件或片段复制到自己类似的代码上下文借用——backport作为一种官方且成熟的做法,借用的代码来源、粘贴到的代码上下文,是具有同源属性的,而且开发者一般是追求稳定性优先的社区开发人员,似乎质量应该有足够保障。但是这里的关键问题是:代码总要有一手、充分的语义理解,才能有可信的使用保障;因此,只要是处理他人的代码,因为不够理解而错误使用的风险,只可能减小,没办法消除。 如上分析,本次漏洞的产生看似只是做代码移植的开发者“自作主张”之下“改错了”。但是更广泛且可能的情况是,原始开发者在版本迭代中引入或更新大量基础数据结构、API的定义,并用在新的特性实现代码中;而后向移植开发人员仅需要最小规模的功能代码,所以会对增量代码进行一定规模的修改、剪裁、还原,以此适应旧版本基本代码。这些过程同样伴随着第三方开发人员不可避免的“望文生义”,以及随之而来的风险。后向移植操作也同样助长了软件碎片化过程,其中每一个碎片都存在这样的问题;每一个碎片在自身生命周期也将有持续性影响。 多级复制粘贴无异于雪上加霜 这里简单探讨的是企业通行的系统和基础软件建设实践。一些国内外厂商和社区发布的定制化Linux发行版,本身是有其它发行版,如CentOS特定版本渊源的,在基础软件上即便同其上游发行版最新版本间也存在断层滞后。RedHat相对于基础软件开发者之间已经隔了一层backport,而我们则人为制造了二级风险。 在很多基础而关键的软件上,企业系统基础设施的维护者出于与RedHat类似的初衷,往往会决定自行backport一份拷贝;通过早年心脏滴血事件的洗礼,即暴露出来OpenSSL一个例子。无论是需要RHEL还没来得及移植的新版本功能特性,还是出于对特殊使用上下文场景中更高执行效率的追求,企业都可能自行对RHEL上基础软件源码包进行修改定制重打包。这个过程除了将风险幂次放大外,也进一步加深了代码的不可解释性(包括基础软件开发人员流动性带来的不可解释)。 Ⅳ. 从武功到死穴:从systemd-journald信息泄露一窥API误用 1月10日凌晨两点,漏洞预警平台爬收取一封漏洞披露邮件。披露者是Qualys,那就铁定是重型发布了。最后看披露漏洞的目标,systemd?这就非常有意思了。 一些必要背景 systemd是什么,不好简单回答。Linux上面软件命名,习惯以某软件名后带个‘d’表示后台守护管理程序;所以systemd就可以说是整个系统的看守吧。而即便现在描述了systemd是什么,可能也很快会落伍,因为其初始及核心开发者Lennart Poettering(供职于Red Hat)描述它是“永无开发完结完整、始终跟进技术进展的、统一所有发行版无止境的差异”的一种底层软件。笼统讲有三个作用:中央化系统及设置管理;其它软件开发的基础框架;应用程序和系统内核之间的胶水。如今几乎所有Linux发行版已经默认提供systemd,包括RHEL/CentOS 7及后续版本。总之很基础、很底层、很重要就对了。systemd本体是个主要实现init系统的框架,但还有若干关键组件完成其它工作;这次被爆漏洞的是其journald组件,是负责系统事件日志记录的看守程序。 额外地还想简单提一句Qualys这个公司。该公司创立于1999年,官方介绍为信息安全与云安全解决方案企业,to B的安全业务非常全面,有些也是国内企业很少有布局的方面;例如上面提到的涉及碎片化和代码移植过程的历史漏洞移动,也在其漏洞管理解决方案中有所体现。但是我们对这家公司粗浅的了解来源于其安全研究团队近几年的发声,这两年间发布过的,包括有『stack clash』、『sudo get_tty_name提权』、『OpenSSH信息泄露与堆溢出』、『GHOST:glibc gethostbyname缓冲区溢出』等大新闻(仅截至2017年年中)。从中可见,这个研究团队专门啃硬骨头,而且还总能开拓出来新的啃食方式,往往爆出来一些别人没想到的新漏洞类型。从这个角度,再联想之前刷爆朋友圈的《安全研究者的自我修养》所倡导的“通过看历史漏洞、看别人的最新成果去举一反三”的理念,可见差距。 CVE-2018-16866漏洞详情 这次漏洞披露,打包了三个漏洞: ·16864和16865是内存破坏类型 ·16866是信息泄露 ·而16865和16866两个漏洞组和利用可以拿到root shell。 漏洞分析已经在披露中写的很详细了,这里不复述;而针对16866的漏洞成因来龙去脉,Qualys跟踪的结果留下了一点想象和反思空间,我们来看一下。 漏洞相关代码片段是这样的(漏洞修复前): 读者可以先肉眼过一遍这段代码有什么问题。实际上我一开始也没看出来,向下读才恍然大悟。 这段代码中,外部信息输入通过buf传入做记录处理。输入数据一般包含有空白字符间隔,需要分隔开逐个记录,有效的分隔符包括空格、制表符、回车、换行,代码中将其写入常量字符串;在逐字符扫描输入数据字符串时,将当前字符使用strchr在上述间隔符字符串中检索是否匹配,以此判断是否为间隔符;在240行,通过这样的判断,跳过记录单元字符串的头部连续空白字符。 但是问题在于,strchr这个极其基础的字符串处理函数,对于C字符串终止字符'\0'的处理上有个坑:'\0'也被认为是被检索字符串当中的一个有效字符。所以在240行,当当前扫描到的字符为字符串末尾的NULL时,strchr返回的是WHITESPACE常量字符串的终止位置而非NULL,这导致了越界。 看起来,这是一个典型的问题:API误用(API mis-use),只不过这个被误用的库函数有点太基础,让我忍不住想是不是还会有大量的类似漏洞……当然也反思我自己写的代码是不是也有同样情况,然而略一思考就释然了——我那么笨的代码都用for循环加if判断了:) 漏洞引入和消除历史 有意思的是,Qualys研究人员很贴心地替我做了一步漏洞成因溯源,这才是单独提这个漏洞的原因。漏洞的引入是在2015年的一个commit中: 在GitHub中,定位到上述2015年的commit信息,这里commit的备注信息为: journald: do not strip leading whitespace from messages. Keep leading whitespace for compatibility with older syslog implementations. Also useful when piping formatted output to the logger command. Keep removing trailing whitespace. OK,看起来是一个兼容性调整,对记录信息不再跳过开头所有连续空白字符,只不过用strchr的简洁写法比较突出开发者精炼的开发风格(并不),说得过去。 之后在2018年八月的一个当时尚未推正式版的另一次commit中被修复了,先是还原成了ec5ff4那次commit之前的写法,然后改成了加校验的方式: 虽然Qualys研究者认为上述的修改是“无心插柳”的改动,但是在GitHub可以看到,a6aadf这次commit是因为有外部用户反馈了输入数据为单个冒号情况下journald堆溢出崩溃的issue,才由开发者有目的性地修复的;而之后在859510这个commit再次改动回来,理由是待记录的消息都是使用单个空格作为间隔符的,而上一个commit粗暴地去掉了这种协议兼容性特性。 如果没有以上纠结的修改和改回历史,也许我会倾向于怀疑,在最开始漏洞引入的那个commit,既然改动代码没有新增功能特性、没有解决什么问题(毕竟其后三年,这个改动的代码也没有被反映issue),也并非出于代码规范等考虑,那么这么轻描淡写的一次提交,难免有人为蓄意引入漏洞的嫌疑。当然,看到几次修复的原因,这种可能性就不大了,虽然大家仍可以保留意见。但是抛开是否人为这个因素,单纯从代码的漏洞成因看,一个传统但躲不开的问题仍值得探讨:API误用。 API误用:程序员何苦为难程序员 如果之前的章节给读者留下了我反对代码模块化和复用的印象,那么这里需要正名一下,我们认可这是当下开发实践不可避免的趋势,也增进了社会开发速度。而API的设计决定了写代码和用代码的双方“舒适度”的问题,由此而来的API误用问题,也是一直被当做单纯的软件工程课题讨论。在此方面个人并没有什么研究,自然也没办法系统地给出分类和学术方案,只是谈一下自己的经验和想法。 一篇比较新的学术文章总结了API误用的研究,其中一个独立章节专门分析Java密码学组件API误用的实际,当中引述之前论文认为,密码学API是非常容易被误用的,比如对期望输入数据(数据类型,数据来源,编码形式)要求的混淆,API的必需调用次序和依赖缺失(比如缺少或冗余多次调用了初始化函数、主动资源回收函数)等。凑巧在此方面我有一点体会:曾经因为业务方需要,需要使用C++对一个Java的密码基础中间件做移植。Java对密码学组件支持,有原生的JDK模块和权威的BouncyCastle包可用;而C/C++只能使用第三方库,考虑到系统平台最大兼容和最小代码量,使用Linux平台默认自带的OpenSSL的密码套件。但在开发过程中感受到了OpenSSL满满的恶意:其中的API设计不可谓不反人类,很多参数没有明确的说明(比如同样是表示长度的函数参数,可能在不同地方分别以字节/比特/分组数为计数单位);函数的线程安全没有任何解释标注,需要自行试验;不清楚函数执行之后,是其自行做了资源释放还是需要有另外API做gc,不知道资源释放操作时是否规规矩矩地先擦除后释放……此类问题不一而足,导致经过了漫长的测试之后,这份中间件才提供出来供使用。而在业务场景中,还会存在比如其它语言调用的情形,这些又暴露出来OpenSSL API误用的一些完全无从参考的问题。这一切都成为了噩梦;当然这无法为我自己开解是个不称职开发的指责,但仅就OpenSSL而言其API设计之恶劣也是始终被人诟病的问题,也是之后其他替代者宣称改进的地方。 当然,问题是上下游都脱不了干系的。我们自己作为高速迭代中的开发人员,对于二方、三方提供的中间件、API,又有多少人能自信地说自己仔细、认真地阅读过开发指南和API、规范说明呢?做过通用产品技术运营的朋友可能很容易理解,自己产品的直接用户日常抛出不看文档的愚蠢问题带来的困扰。对于密码学套件,这个问题还好办一些,毕竟如果在没有背景知识的情况下对API望文生义地一通调用,绝大多数情况下都会以抛异常形式告终;但还是有很多情况,API误用埋下的是长期隐患。 不是所有API误用情形最终都有机会发展成为可利用的安全漏洞,但作为一个由人的因素引入的风险,这将长期存在并困扰软件供应链(虽然对安全研究者、黑客与白帽子是很欣慰的事情)。可惜,传统的白盒代码扫描能力,基于对代码语义的理解和构建,但是涉及到API则需要预先的抽象,这一点目前似乎仍然是需要人工干预的事情;或者轻量级一点的方案,可以case by case地分析,为所有可能被误用的API建模并单独扫描,这自然也有很强局限性。在一个很底层可信的开发者还对C标准库API存在误用的现实内,我们需要更多的思考才能说接下来的解法。 Ⅴ. 从规则到陷阱:NASA JIRA误配置致信息泄露血案 软件的定义包括了代码组成的程序,以及相关的配置、文档等。当我们说软件的漏洞、风险时,往往只聚焦在其中的代码中;关于软件供应链安全风险,我们的比赛、前面分析的例子也都聚焦在了代码的问题;但是真正的威胁都来源于不可思议之处,那么代码之外有没有可能存在来源于上游的威胁呢?这里就借助实例来探讨一下,在“配置”当中可能栽倒的坑。 引子:发不到500英里以外的邮件? 让我们先从一个轻松愉快的小例子引入。这个例子初见于Linux中国的一篇译文。 简单说,作者描述了这么一个让人啼笑皆非的问题:单位的邮件服务器发送邮件,发送目标距离本地500英里范围之外的一律失败,邮件就像悠悠球一样只能飞出一定距离。这个问题本身让描述者感到尴尬,就像一个技术人员被老板问到“为什么从家里笔记本上Ctrl-C后不能在公司台式机上Ctrl-V”一样。 经过令人窒息的分析操作后,笔者定位到了问题原因:笔者作为负责的系统管理员,把SunOS默认安装的Senmail从老旧的版本5升级到了成熟的版本8,且对应于新版本诸多的新特性进行了对应配置,写入配置文件sendmail.cf;但第三方服务顾问在对单位系统进行打补丁升级维护时,将系统软件“升级”到了系统提供的最新版本,因此将Sendmail实际回退到了版本5,却为了软件行为一致性,原样保留了高版本使用的配置文件。但Sendmail并没有在大版本间保证配置文件兼容性,这导致很多版本5所需的配置项不存在于保留下来的sendmail.cf文件中,程序按默认值0处理;最终引起问题的就是,邮件服务器与接收端通信的超时时间配置项,当取默认配置值0时,邮件服务器在1个单位时间(约3毫秒)内没有收到网络回包即认为超时,而这3毫秒仅够电信号打来回飞出500英里。 这个“故事”可能会给技术人员一点警醒,错误的配置会导致预期之外的软件行为,但是配置如何会引入软件供应链方向的安全风险呢?这就引出了下一个重磅实例。 JIRA配置错误致NASA敏感信息泄露案例 我们都听过一个事情,马云在带队考察美国公司期间问Google CEO Larry Page自视谁为竞争对手,Larry的回答是NASA,因为最优秀的工程师都被NASA的梦想吸引过去了。由此我们显然能窥见NASA的技术水位之高,这样的人才团队大概至少是不会犯什么低级错误的。 但也许需要重新定义“低级错误”……1月11日一篇技术文章披露,NASA某官网部署使用的缺陷跟踪管理系统JIRA存在错误的配置,可分别泄漏内部员工(JIRA系统用户)的全部用户名和邮件地址,以及内部项目和团队名称到公众,如下: 问题的原因解释起来也非常简单:JIRA系统的过滤器和配置面板中,对于数据可见性的配置选项分别选定为All users和Everyone时,系统管理人员想当然地认为这意味着将数据对所有“系统用户”开放查看,但是JIRA的这两个选项的真实效果逆天,是面向“任意人”开放,即不限于系统登录用户,而是任何查看页面的人员。看到这里,我不厚道地笑了……“All users”并不意味着“All ‘users’”,意不意外,惊不惊喜? 但是这种字面上把戏,为什么没有引起NASA工程师的注意呢,难道这样逆天的配置项没有在产品手册文档中加粗标红提示吗?本着为JIRA产品设计找回尊严的态度,我深入挖掘了一下官方说明,果然在Atlassian官方的一份confluence文档(看起来更像是一份增补的FAQ)中找到了相关说明: 所有未登录访客访问时,系统默认认定他们是匿名anonymous用户,所以各种权限配置中的all users或anyone显然应该将匿名用户包括在内。在7.2及之后版本中,则提供了“所有登录用户”的选项。 可以说是非常严谨且贴心了。比较讽刺的是,在我们的软件供应链安全大赛·C源代码赛季期间,我们设计圈定的恶意代码攻击目标还包括JIRA相关的敏感信息的窃取,但是却想不到有这么简单方便的方式,不动一行代码就可以从JIRA中偷走数据。 软件的使用,你“配”吗? 无论是开放的代码还是成型的产品,我们在使用外部软件的时候,都是处于软件供应链下游的消费者角色,为了要充分理解上游开发和产品的真实细节意图,需要我们付出多大的努力才够“资格”? 上一章节我们讨论过源码使用中必要细节信息缺失造成的“API误用”问题,而软件配置上的“误用”问题则复杂多样得多。从可控程度上讨论,至少有这几种因素定义了这个问题: ·软件用户对必要配置的现有文档缺少了解。这是最简单的场景,但又是完全不可避免的,这一点上我们所有有开发、产品或运营角色经验的应该都曾经体会过向不管不顾用户答疑的痛苦,而所有软件使用者也可以反省一下对所有软件的使用是否都以完整细致的文档阅读作为上手的准备工作,所以不必多说。 ·软件拥有者对配置条目缺少必要明确说明文档。就JIRA的例子而言,将NASA工程师归为上一条错误有些冤枉,而将JIRA归为这条更加合适。在边角但重要问题上的说明通过社区而非官方文档形式发布是一种不负责任的做法,但未引发安全事件的情况下还有多少这样的问题被默默隐藏呢?我们没办法要求在使用软件之前所有用户将软件相关所有文档、社区问答实现全部覆盖。这个问题范围内一个代表性例子是对配置项的默认值以及对应效果的说明缺失。 ·配置文件版本兼容性带来的误配置和安全问题。实际上,上面的SunOS Sendmail案例足以点出这个问题的存在性,但是在真实场景下,很可能不会以这么戏剧性形式出现。在企业的系统运维中,系统的版本迭代常见,但为软件行为一致性,配置的跨版本迁移是不可避免的操作;而且软件的更新迭代也不只会由系统更新推动,还有大量出于业务性能要求而主动进行的定制化升级,对于中小企业基础设施建设似乎是一个没怎么被提及过的问题。 ·配置项组合冲突问题。尽管对于单个配置项可能明确行为与影响,但是特定的配置项搭配可能造成不可预知的效果。这完全有可能是由于开发者与用户在信息不对等的情况下产生:开发者认为用户应该具有必需的背景知识,做了用户应当具备规避配置冲突能力的假设。一个例子是,对称密码算法在使用ECB、CBC分组工作模式时,从密码算法上要求输入数据长度必须是分组大小的整倍数,但如果用户搭配配置了秘钥对数据不做补齐(nopadding),则引入了非确定性行为:如果密码算法库对这种组合配置按某种默认补齐方式操作数据则会引起歧义,但如果在算法库代码层面对这种组合抛出错误则直接影响业务。 ·程序对配置项处理过程的潜在暗箱操作。这区别于简单的未文档化配置项行为,仅特指可能存在的蓄意、恶意行为。从某种意义上,上述“All users”也可以认为是这样的一种陷阱,通过浅层次暗示,引导用户做出错误且可能引起问题的配置。另一种情况是特定配置组合情况下触发恶意代码的行为,这种触发条件将使恶意代码具有规避检测的能力,且在用户基数上具有一定概率的用户命中率。当然这种情况由官方开发者直接引入的可能性很低,但是在众包开发的情况下如果存在,那么扫描方案是很难检测的。 Ⅵ. 从逆流到暗流:恶意代码溯源后的挑战 如果说前面所说的种种威胁都是面向关键目标和核心系统应该思考的问题,那么最后要抛出一个会把所有人拉进赛场的理由。除了前面所有那些在软件供应链下游被动污染受害的情况,还有一种情形:你有迹可循的代码,也许在不经意间会“反哺”到黑色产业链甚至特殊武器中;而现在研究用于对程序进行分析和溯源的技术,则会让你陷入百口莫辩的境地。 案例:黑产代码模块溯源疑云 1月29日,猎豹安全团队发布技术分析通报文章《电信、百度客户端源码疑遭泄漏,驱魔家族窃取隐私再起波澜》,矛头直指黑产上游的恶意信息窃取代码模块,认定其代码与两方产品存在微妙的关联:中国电信旗下“桌面3D动态天气”等多款软件,以及百度旗下“百度杀毒”等软件(已不可访问)。 文章中举证有三个关键点。 首先最直观的,是三者使用了相同的特征字符串、私有文件路径、自定义内部数据字段格式; 其次,在关键代码位置,三者在二进制程序汇编代码层面具有高度相似性; 最终,在一定范围的非通用程序逻辑上,三者在经过反汇编后的代码语义上显示出明显的雷同,并提供了如下两图佐证(图片来源): 文章指出的涉事相关软件已经下线,对于上述样本文件的相似度试验暂不做复现,且无法求证存在相似、疑似同源的代码在三者中占比数据。对于上述指出的代码雷同现象,猎豹安全团队认为: 我们怀疑该病毒模块的作者通过某种渠道(比如“曾经就职”),掌握有中国电信旗下部分客户端/服务端源码,并加以改造用于制作窃取用户隐私的病毒,另外在该病毒模块的代码中,我们还发现“百度”旗下部分客户端的基础调试日志函数库代码痕迹,整个“驱魔”病毒家族疑点重重,其制作传播背景愈发扑朔迷离。 这样的推断,固然有过于直接的依据(例如三款代码中均使用含有“baidu”字样的特征注册表项);但更进一步地,需要注意到,三个样本在所指出的代码位置,具有直观可见的二进制汇编代码结构的相同,考虑到如果仅仅是恶意代码开发者先逆向另外两份代码后借鉴了代码逻辑,那么在面临反编译、代码上下文适配重构、跨编译器和选项的编译结果差异等诸多不确定环节,仍能保持二进制代码的雷同,似乎确实是只有从根本上的源代码泄漏(抄袭)且保持相同的开发编译环境才能成立。 但是我们却又无法做出更明确的推断。这一方面当然是出于严谨避免过度解读;而从另一方面考虑,黑产代码的一个关键出发点就是“隐藏自己”,而这里居然如此堂而皇之地照搬了代码,不但没有进行任何代码混淆、变形,甚至没有抹除疑似来源的关键字符串,如果将黑产视为智商在线的对手,那这里背后是否有其它考量,就值得琢磨了。 代码的比对、分析、溯源技术水准 上文中的安全团队基于大量样本和粗粒度比对方法,给出了一个初步的判断和疑点。那么是否有可能获得更确凿的分析结果,来证实或证伪同源猜想呢? 无论是源代码还是二进制,代码比对技术作为一种基础手段,在软件供应链安全分析上都注定仍然有效。在我们的软件供应链安全大赛期间,针对PE二进制程序类型的题目,参赛队伍就纷纷采用了相关技术手段用于目标分析,包括:同源性分析,用于判定与目标软件相似度最高的同软件官方版本;细粒度的差异分析,用于尝试在忽略编译差异和特意引入的混淆之外,定位特意引入的恶意代码位置。当然,作为比赛中针对性的应对方案,受目标和环境引导约束,这些方法证明了可行性,却难以保证集成有最新技术方案。那么做一下预言,在不计入情报辅助条件下,下一代的代码比对将能够到达什么水准? 这里结合近一年和今年内,已发表和未发表的学术领域顶级会议的相关文章来简单展望: ·针对海量甚至全量已知源码,将可以实现准确精细化的“作者归属”判定。在ACM CCS‘18会议上曾发表的一篇文章《Large-Scale and Language-Oblivious Code Authorship Identification》,描述了使用RNN进行大规模代码识别的方案,在圈定目标开发者,并预先提供每个开发者的5-7份已知的代码文件后,该技术方案可以很有效地识别大规模匿名代码仓库中隶属于每个开发者的代码:针对1600个Google Code Jam开发者8年间的所有代码可以实现96%的成功识别率,而针对745个C代码开发者于1987年之后在GitHub上面的全部公开代码仓库,识别率也高达94.38%。这样的结果在当下的场景中,已经足以实现对特定人的代码识别和跟踪(例如,考虑到特定开发人员可能由于编码习惯和规范意识,在时间和项目跨度上犯同样的错误);可以预见,在该技术方向上,完全可以期望摆脱特定已知目标人的现有数据集学习的过程,并实现更细粒度的归属分析,例如代码段、代码行、提交历史。 ·针对二进制代码,更准确、更大规模、更快速的代码主程序分析和同源性匹配。近年来作为一项程序分析基础技术研究,二进制代码相似性分析又重新获得了学术界和工业界的关注。在2018年和2019(已录用)的安全领域四大顶级会议上,每次都会有该方向最新成果的展示,如S&P‘2019上录用的《Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search against Code Obfuscation and Compiler Optimization》,实现无先验知识的条件下的最优汇编代码级别克隆检测,针对漏洞库的漏洞代码检测可实现0误报、100%召回。而2018年北京HITB会议上,Google Project Zero成员、二进制比对工具BinDiff原始作者Thomas Dullien,探讨了他借用改造Google自家SimHash算法思想,用于针对二进制代码控制流图做相似性检测的尝试和阶段结果;这种引入规模数据处理的思路,也可期望能够在目前其他技术方案大多精细化而低效的情况下,为高效、快速、大规模甚至全量代码克隆检测勾出未来方案。 ·代码比对方案对编辑、优化、变形、混淆的对抗。近年所有技术方案都以对代码“变种”的检测有效性作为关键衡量标准,并一定程度上予以保证。上文CCS‘18论文工作,针对典型源代码混淆(如Tigress)处理后的代码,大规模数据集上可有93.42%的准确识别率;S&P‘19论文针对跨编译器和编译选项、业界常用的OLLVM编译时混淆方案进行试验,在全部可用的混淆方案保护之下的代码仍然可以完成81%以上的克隆检测。值得注意的是以上方案都并非针对特定混淆方案单独优化的,方法具有通用价值;而除此以外还有很多针对性的的反混淆研究成果可用;因此,可以认为在采用常规商用代码混淆方案下,即便存在隐藏内部业务逻辑不被逆向的能力,但仍然可以被有效定位代码复用和开发者自然人。 代码溯源技术面前的“挑战” 作为软件供应链安全的独立分析方,健壮的代码比对技术是决定性的基石;而当脑洞大开,考虑到行业的发展,也许以下两种假设的情景,将把每一个“正当”的产品、开发者置于尴尬的境地。 代码仿制 在本章节引述的“驱魔家族”代码疑云案例中,黑产方面通过某种方式获得了正常代码中,功能逻辑可以被自身复用的片段,并以某种方法将其在保持原样的情况下拼接形成了恶意程序。即便在此例中并非如此,但这却暴露了隐忧:将来是不是有这种可能,我的正常代码被泄漏或逆向后出现在恶意软件中,被溯源后扣上黑锅? 这种担忧可能以多种渠道和形式成为现实。 从上游看,内部源码被人为泄漏是最简单的形式(实际上,考虑到代码的完整生命周期似乎并没有作为企业核心数据资产得到保护,目前实质上有没有这样的代码在野泄漏还是个未知数),而通过程序逆向还原代码逻辑也在一定程度上可获取原始代码关键特征。 从下游看,则可能有多种方式将恶意代码伪造得像正常代码并实现“碰瓷”。最简单地,可以大量复用关键代码特征(如字符串,自定义数据结构,关键分支条件,数据记录和交换私有格式等)。考虑到在进行溯源时,分析者实际上不需要100%的匹配度才会怀疑,因此仅仅是仿造原始程序对于第三方公开库代码的特殊定制改动,也足以将公众的疑点转移。而近年来类似自动补丁代码搜索生成的方案也可能被用来在一份最终代码中包含有二方甚至多方原始代码的特征和片段。 基于开发者溯源的定点渗透 既然在未来可能存在准确将代码与自然人对应的技术,那么这种技术也完全可能被黑色产业利用。可能的忧患包括强针对性的社会工程,结合特定开发者历史代码缺陷的漏洞挖掘利用,联动第三方泄漏人员信息的深层渗透,等等。这方面暂不做联想展开。 〇. 没有总结 作为一场旨在定义“软件供应链安全”威胁的宣言,阿里安全“功守道”大赛将在后续给出详细的分解和总结,其意义价值也许会在一段时间之后才能被挖掘。 但是威胁的现状不容乐观,威胁的发展不会静待;这一篇随笔仅仅挑选六个侧面做摘录分析,可即将到来的趋势一定只会进入更加发散的境地,因此这里,没有总结。 本篇文章为转载内容。原文链接:https://blog.csdn.net/systemino/article/details/90114743。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-05 13:33:43
300
转载
Java
...是一种Java源文件调试工具,它可以对Java程序进行静态审查,找出隐藏的代码错误。 public class MyTest { public static void main(String[] args) { int x = 1; int y = 0; int z = x / y; System.out.println(z); } } 以上代码中,除数为0是一个明显的错误,如果不用调试工具发现这个错误将会非常困难。JSD提供了许多特性,通过对源文件的静态审查,可以很容易地找出程序中的错误,包括代码破绽、安全破绽、性能错误等。 CGB(Code Generation and Bytecode Instrumentation) CGB是一种Java字节码分析器,它可以对Java程序进行动态检测,从而获取更加详细的程序运行详情。 public class MyTest { public static void main(String[] args) { int sum = 0; for (int i = 0; i< 10; i++) { sum += i; } System.out.println("The sum is " + sum); } } 以上代码中,程序执行完毕后,我们只能获取sum的值,但是无法得知在执行期间每个循环的执行次数。CGB提供了字节码分析特性,可以即时监测程序执行情况,包括方法调用次数、变量读写情况、异常抛出信息等。 总结 JSD和CGB是Java中非常重要的观念,它们分别提供了静态审查和动态检测的特性。在Java编程期间,可以利用JSD找出代码中的错误,提升代码的质量和可靠性;同时利用CGB获取程序执行的详细信息,进行改进和调试。它们是Java开发期间的必备工具。
2023-11-03 10:10:03
295
程序媛
转载文章
...运行中的程序进行动态分析和调试。在文中提到,通过jadx可以方便地复制类名,并在Frida中使用Java.use方法加载该类,实现对目标应用的运行时监控和控制。例如,var RpcSignUtil = Java.use(com.xxxxx.xxxxx.common.transport.utils.RpcSignUtil); 这段代码就是在Frida环境中利用jadx获取的类名动态挂钩并操作目标应用的方法。通过这样的方式,安全研究人员和开发者能够在无需源代码的情况下深入研究应用程序的行为和功能实现。
2023-01-20 16:12:18
465
转载
Docker
...以将容器的常规输出和异常输出作为记录输出。默认情况下,记录输出相当于使用stderr和stdout常规输出,如果希望验证输出的记录个体,可以使用以下选项: $ docker logs --tail [num] CONTAINER 此命令将仅输出num条最近的记录。此命令不仅可以查看正在运行的容器的记录,也可以查看已停止容器的记录。 2. Docker API: https://docs.docker.com/engine/api/v1.40/operation/ContainerLogs 通过Docker API,可以接收容器的记录流。可以使用以下请求方法: GET /containers/{id}/logs 使用此方式,可以通过curl来接收所有容器的记录,例如: $ curl -i \ -H 'Content-Type: application/json' \ -H 'Authorization: Bearer [token]' \ -H 'Accept: application/vnd.docker.raw-stream' \ "http://localhost:2375/containers/63b5470f6a15/logs?stream=1" 3. 在Docker Compose中: $ docker-compose logs 如果使用Docker Compose来控制应用程序(例如通过docker-compose.yml来定义应用程序),则可以使用以下命令来接收应用程序的所有容器的记录: $ docker-compose logs [SERVICE] 通过以上方式,我们可以获得容器的所有输出记录。通过查看容器的记录,我们可以做到快速排除错误或识别容器中的性能问题。
2023-09-05 21:33:01
333
代码侠
SpringCloud
...导致启动失败或者运行异常。 3.2 错误:配置文件中的语法错误、键值对不匹配等问题,同样会导致应用无法正常运行,甚至引发难以追踪的运行时错误。 四、如何识别和解决配置问题 4.1 使用Spring Cloud Config客户端检查 Spring Cloud Config客户端提供了命令行工具,如spring-cloud-config-client,可以帮助我们查看当前应用正在尝试使用的配置。 bash $ curl http://localhost:8888/master/configprops 4.2 日志分析 查看应用日志是发现配置错误的重要手段。SpringCloud会记录关于配置加载的详细信息,包括错误堆栈和尝试过的配置项。 4.3 使用IDEA或IntelliJ的Spring Boot插件 这些集成开发环境的插件能实时检查配置文件,帮助我们快速定位问题。 五、配置错误的修复策略 5.1 重新创建或恢复配置文件 确保配置文件存在且内容正确。如果是初次配置,参考官方文档或项目文档创建。 5.2 修正配置语法 检查配置文件的格式,确保所有键值对都是正确的,没有遗漏或多余的部分。 5.3 更新配置属性 如果配置项更改,需要更新到应用的配置服务器,然后重启应用以应用新的配置。 六、预防措施与最佳实践 6.1 版本控制 将配置文件纳入版本控制系统,确保每次代码提交都有相应的配置备份。 6.2 使用环境变量 对于敏感信息,可以考虑使用环境变量替代配置文件,提高安全性。 7. 结语 面对SpringCloud配置文件的丢失或错误,我们需要保持冷静,运用合适的工具和方法,一步步找出问题并修复。记住,无论何时,良好的配置管理都是微服务架构稳定运行的关键。希望这篇文章能帮你解决遇到的问题,让你在SpringCloud的世界里更加游刃有余。
2024-06-05 11:05:36
106
冬日暖阳
c#
...见的错误。 二、错误分析与解决 首先我们要知道的是,任何错误都是可以通过分析找到解决办法的。所以,当我们遇到错误时,首先要做的就是找出错误的原因。而这就需要我们对代码有深入的理解和掌握。 三、常见错误类型及解决方案 1. 异常错误 这是最常见的错误类型,通常是由于代码中的逻辑错误或者数据异常引起的。例如: csharp int i = 10; int j = "hello"; int result = i + j; // 这里就会抛出一个异常,因为不能将字符串和整数相加 为了解决这种类型的错误,我们需要仔细检查代码,确保所有的数据类型都正确无误。如果需要的话,我们还能给程序加个异常处理机制,这样一来,就算遇到点儿小差错,程序也能稳稳当当地运行下去,不至于突然崩掉。 2. 资源泄露错误 这种错误通常发生在我们使用了某个资源(如文件、网络连接等)后忘记关闭的情况下。例如: csharp FileStream fs = new FileStream("test.txt", FileMode.Open); // ... 程序在这里做了一些操作 ... fs.Close(); // 忘记关闭流 为了解决这个问题,我们需要养成良好的编程习惯,在使用完资源后立即关闭。同时,我们也可以使用using语句块来自动管理资源,如下所示: csharp using (FileStream fs = new FileStream("test.txt", FileMode.Open)) { // ... 程序在这里做了一些操作 ... } 3. 编译错误 这种错误通常是由于语法错误或者编译器无法识别的语句引起的。例如: csharp public class MyClass { public void MyMethod() { System.out.println("Hello, World!"); // 这里就有一个编译错误,因为System.out.println是Java语言的语句,而不是C } } 为了解决这个问题,我们需要仔细检查我们的代码,并确保使用的语句是正确的。同时,我们还需要注意不同编程语言之间的差异。 四、总结 总的来说,解决编程错误并不是一件难事,只要我们有足够的耐心和细心,就一定能找到解决问题的方法。同时,我们也应该养成良好的编程习惯,避免出现不必要的错误。 最后,我希望这篇文章能够帮助你解决你在使用C编程时遇到的问题。如果你有任何疑问,欢迎留言讨论,我会尽力为你解答。 希望这篇文章对你有所帮助,也希望大家多多支持我!
2023-11-12 22:43:56
549
林中小径_t
Go Gin
...经常会遇到各种各样的异常情况,而其中最常见的一种就是数据库插入异常。这种异常情况,可能是因为数据有重复啦、字段类型对不上茬儿,或者干脆就是网络连接闹了小脾气,这些原因都有可能导致这个问题出现。在这篇文章里,咱们打算手把手带你通过一个实际的场景案例,来摸清楚怎么用Go Gin框架巧妙地应对这种类型的异常情况,让你学得轻松又有趣。 二、案例分析 假设我们正在开发一个在线商店系统,用户可以在这个系统中注册账户并进行购物。在这个过程中,我们需要将用户的信息插入到数据库中。如果用户输入的数据有偏差,或者数据库连接闹起了小情绪,我们得赶紧把这些意外状况给捉住,然后给用户回个既友好又贴心的错误提示。 三、代码示例 首先,我们需要引入必要的包: go import ( "fmt" "github.com/gin-gonic/gin" ) 然后,我们可以定义一个路由来处理用户的注册请求: go func register(c gin.Context) { var user User if err := c.ShouldBindJSON(&user); err != nil { c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()}) return } // 这里省略了数据库操作的具体代码 } 在这个函数中,我们首先使用ShouldBindJSON方法解析用户提交的JSON数据。这个方法会检查数据是否符合我们的结构体,并且可以自动处理一些常见的错误,比如字段不存在、字段类型不匹配等。 如果解析成功,那么我们就可以继续执行数据库操作。否则,我们就直接返回一个HTTP 400响应,告诉用户数据无效。 四、结论 通过以上的内容,我们已经了解了如何使用Go Gin框架来处理数据库插入异常。虽然这只是个小小例子,不过它可真能帮咱摸透异常处理那些最基本的道理和关键技术点。 在实际开发中,我们可能还需要处理更多复杂的异常情况,比如并发冲突、事务回滚等。为了更好地对付这些难题,我们得时刻保持学习新技能、掌握新工具的热情,而且啊,咱还得持续地给我们的代码“动手术”,让它更加精炼高效。只有这样,我们才能写出高质量、高效率的程序,为用户提供更好的服务。
2023-05-17 12:57:54
470
人生如戏-t
NodeJS
...会在控制台打印出错误堆栈,并返回一个状态码为500的错误响应。 四、如何使用自定义错误处理中间件 要使用自定义错误处理中间件,我们需要在我们的应用中注册它。这通常是在应用程序初始化的时候完成的。以下是一个例子: javascript const express = require('express'); const app = express(); // 使用自定义错误处理中间件 app.use(errorHandler); // 其他中间件和路由... app.listen(3000, () => { console.log('Server started on port 3000'); }); 在这个例子中,我们首先导入了Express库,并创建了一个新的Express应用。然后,我们使用app.use()方法将我们的错误处理中间件添加到应用中。最后,我们启动了服务器。 五、总结 在Node.js中,中间件是处理错误的强大工具。你知道吗,我们可以通过设计一个定制化的错误处理小工具,来更灵活、精准地把控程序出错时的应对方式。这样一来,无论遇到啥样的错误状况,咱们的应用程序都能够稳稳当当地给出正确的反馈,妥妥地解决问题。当然啦,这只是错误处理小小的一部分而已,真实的错误处理可能需要更费心思的步骤,比如记下错误日记啊,给相关人员发送错误消息提醒什么的。不管咋说,要成为一个真正牛掰的Node.js开发者,领悟和掌握错误处理的核心原理可是必不可少的关键一步。
2023-12-03 08:58:21
90
繁华落尽-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tar -xvzf archive.tar.gz
- 解压gzip压缩的tar归档包。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"