前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[商业类网站 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Spark
...假如你现在正在关注你网站的访问情况,这个Processing Time功能就能马上告诉你,现在到底有多少人在逛你的网站。 以下是使用 Processing Time 处理实时数据的一个简单示例: java val dataStream = spark.readStream.format("socket").option("host", "localhost").option("port", 9999).load() .selectExpr("CAST(text AS STRING)") .withWatermark("text", "1 second") .as[(String, Long)] val query = dataStream.writeStream .format("console") .outputMode("complete") .start() query.awaitTermination() 在这个示例中,我们创建了一个 socket 数据源,然后将其转换为字符串类型,并设置 watermark 为 1 秒。这就意味着,如果我们收到的数据上面的时间戳已经超过1秒了,那这个数据就会被我们当作是迟到了的小淘气,然后选择性地忽略掉它。 三、 Event Time 的处理方式及应用场景 Event Time 是 Spark Structured Streaming 中的另一种时间概念,它是根据事件的实际发生时间来确定的。这就意味着,就算大家在同一秒咔嚓一下按下发送键,由于网络这个大迷宫里可能会有延迟、堵车等各种状况,不同信息到达目的地的顺序可能会乱套,处理起来自然也就可能前后颠倒了。 在处理延迟数据时, Event Time 可能是一个更好的选择,因为它可以根据事件的实际发生时间来确定数据的处理顺序,从而避免丢失数据。比如,你正在处理电子邮件的时候,Event Time这个功能就相当于你的超级小助手,它能确保你按照邮件发送的时间顺序,逐一、有序地处理这些邮件,就像排队一样井然有序。 以下是使用 Event Time 处理延迟数据的一个简单示例: python from pyspark.sql import SparkSession spark = SparkSession.builder.appName("Structured Streaming").getOrCreate() data_stream = spark \ .readStream \ .format("kafka") \ .option("kafka.bootstrap.servers", "localhost:9092") \ .option("subscribe", "my-topic") \ .load() \ .selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") query = data_stream \ .writeStream \ .format("console") \ .outputMode("append") \ .start() query.awaitTermination() 在这个示例中,我们从 kafka 主题读取数据,并设置 watermark 为 1 分钟。这就意味着,如果我们超过一分钟没收到任何新消息,那我们就会觉得这个topic已经没啥动静了,到那时咱就可以结束查询啦。 四、 结论 在 Spark Structured Streaming 中, Processing Time 和 Event Time 是两种不同的时间概念,它们分别适用于处理实时数据和处理延迟数据。理解这两种时间概念以及如何在实际场景中使用它们是非常重要的。希望这篇文章能够帮助你更好地理解和使用 Spark Structured Streaming。
2023-11-30 14:06:21
106
夜色朦胧-t
Superset
...个开源的数据可视化和商业智能工具,它允许用户通过简单的界面创建丰富的数据仪表板和可交互的图表。在本文中,Superset被用作主要的数据分析与可视化解決方案,用户可以通过修改其配置文件来自定义和优化服务。 SQLALCHEMY_DATABASE_URI , 这是一个环境变量或配置项,用于在SQLAlchemy(Python SQL工具包和对象关系映射器)中指定数据库连接字符串。在Superset的上下文中,SQLALCHEMY_DATABASE_URI用于设置Superset自身使用的元数据数据库的连接信息,包括数据库类型、用户名、密码、主机地址以及数据库名称。 环境变量 , 环境变量是操作系统用来存储关于系统环境信息的一种机制,这些信息可以被操作系统及运行在其上的程序访问。在本文中,提到Superset可能通过环境变量引用配置文件,因此修改环境变量的值后,需要确保系统正确识别并应用新值,以加载正确的配置文件路径。 配置缓存 , 在软件系统中,配置缓存通常是指将配置信息存储在内存中,以便快速读取和使用,从而提高性能。在Apache Superset中,部分配置可能被缓存以提升响应速度,这意味着即使配置文件已被更新,如果缓存未被清理,Superset仍可能使用旧的配置信息。解决此问题时,用户需要了解如何清理或刷新Superset的相关配置缓存,确保新的配置生效。
2024-01-24 16:27:57
240
冬日暖阳
SeaTunnel
...无论是在开源社区还是商业应用层面,对ExactlyOnce语义的支持将更加成熟和完善。
2023-05-22 10:28:27
113
夜色朦胧
Tesseract
...力。 除了学术研究,商业界也在积极投入资源,开发适用于模糊图像处理的软件和工具。例如,Adobe公司近期推出了一款名为“Deblur AI”的插件,专门用于提升模糊图像的质量。这款插件采用了先进的机器学习算法,能够在几秒钟内自动修复模糊图像,使得图像恢复到接近原始状态的清晰度。这对于摄影师和设计师来说,无疑是一个巨大的福音。 这些最新的研究成果和技术进展,不仅展示了模糊图像识别领域的巨大潜力,也为相关行业的应用提供了更多可能性。未来,随着技术的不断成熟,我们有理由相信模糊图像识别将变得更加精准和高效。
2024-10-23 15:44:16
137
草原牧歌
转载文章
这篇文章介绍了如何在Python中使用httplib库实现HTTP GET和POST请求,包括设置请求头信息、发送参数等操作。其中,重点展示了模拟浏览器发送请求的方式,并通过自定义RequestThread线程类进行并发性能测试,利用threading模块创建多个并发线程访问服务器,统计请求数量、成功率、响应时间和异常情况。测试过程中关注了如User-Agent在内的各种请求头信息以及GET与POST方法的运用,同时对响应时间进行了细致分析,以评估服务器在高并发场景下的性能表现。
2023-10-19 20:57:06
74
转载
Apache Atlas
Gradle
...展示了边缘计算技术在商业应用中的巨大潜力,也反映了当前技术趋势的发展方向。 与此同时,谷歌也在其最新发布的Android系统版本中加强了对边缘计算的支持。新版系统内置了一系列优化措施,旨在使手机等移动设备能够在本地进行更多复杂的数据处理任务,从而减少对云端的依赖。这一改进对于开发者来说意味着更大的灵活性和更高的性能,但也带来了版本兼容性和库选择的新挑战。 此外,开源社区也在积极推动边缘计算技术的发展。例如,Linux基金会最近发起了一项名为EdgeX Foundry的新项目,旨在建立一个开放框架,简化不同边缘设备和云平台之间的数据交换。该项目吸引了众多企业和开发者参与,有望进一步推动边缘计算生态系统的成熟。 这些进展不仅为开发者提供了更多的选择,也提出了新的挑战。在选择和使用边缘计算库时,务必注意版本兼容性、性能和稳定性等问题。同时,持续关注行业动态和技术发展趋势,将有助于更好地应对未来可能出现的技术难题。
2025-03-07 16:26:30
74
山涧溪流
Saiku
...开源的、基于Web的商业智能(BI)工具,主要用于大数据分析和多维数据可视化。在文中,Saiku与LDAP集成是为了让用户能够使用LDAP中的凭证直接登录到Saiku平台进行数据分析工作,无需在Saiku内部单独创建账户,从而提高用户体验和系统管理效率。 单点登录(Single Sign-On, SSO) , 一种网络安全认证机制,允许用户在一个系统中登录后,无需再次输入凭证即可访问其他多个相关系统或应用。在本文背景下,通过将Saiku与LDAP集成实现单点登录,用户只需在LDAP系统进行一次身份验证,即可直接进入Saiku平台进行操作,极大地简化了登录流程并提升了工作效率。 DirContext , 在Java编程环境中,DirContext是JNDI(Java Naming and Directory Interface)接口的一个实现类,用于提供对目录服务的访问,如LDAP服务器。在文章的代码示例中,DirContext对象用于连接到LDAP服务器,并执行查询和修改目录条目的操作,这对于调试和解决Saiku与LDAP集成认证失败的问题至关重要。
2023-10-31 16:17:34
134
雪落无痕
Kafka
...a环境。你可以从官方网站下载并按照官方文档进行安装。在你启动Kafka之前,得先确保Zookeeper这个家伙已经跑起来啦。要知道,Kafka这家伙可离不开Zookeeper的帮助,它依赖Zookeeper来管理那些重要的元数据信息。运行以下命令启动Zookeeper: bash bin/zookeeper-server-start.sh config/zookeeper.properties 接着,启动Kafka服务器: bash bin/kafka-server-start.sh config/server.properties 2. 创建Topic 创建Topic是使用Kafka的第一步,这可以通过命令行工具轻松完成。例如,我们创建一个名为my-topic且具有两个分区和一个副本因子的Topic: bash bin/kafka-topics.sh --create --bootstrap-server localhost:9092 --replication-factor 1 --partitions 2 --topic my-topic 上述命令会告诉Kafka在本地服务器上创建一个名为my-topic的主题,并指定其拥有两个分区和一个副本。 3. 查看Topic列表 创建了Topic之后,我们可能想要查看当前Kafka集群中存在的所有Topic。执行如下命令: bash bin/kafka-topics.sh --list --bootstrap-server localhost:9092 屏幕上将会列出所有已存在的Topic名称,其中包括我们刚才创建的my-topic。 4. 查看Topic详情 进一步地,我们可以获取某个Topic的详细信息,包括分区数量、副本分布等。比如查询my-topic的详细信息: bash bin/kafka-topics.sh --describe --bootstrap-server localhost:9092 --topic my-topic 此命令返回的结果将包含每个分区的详细信息,如分区编号、领导者(Leader)、副本集及其状态等。 5. 修改Topic配置 有时我们需要调整Topic的分区数或者副本因子,这时可以使用kafka-topics.sh的--alter选项: bash bin/kafka-topics.sh --alter --bootstrap-server localhost:9092 --topic my-topic --partitions 3 这个命令将会把my-topic的分区数量从原来的2个增加到3个。 6. 删除Topic 若某个Topic不再使用,可通过以下命令将其删除: bash bin/kafka-topics.sh --delete --bootstrap-server localhost:9092 --topic my-topic 但请注意,删除Topic是一个不可逆的操作,一旦删除,该Topic下的所有消息也将一并消失。 总结一下,Kafka提供的命令行工具极大地简化了我们在日常运维中的管理工作。无论是创建、查看、修改还是删除话题,你只需轻松输入几条命令,就像跟朋友聊天一样简单,就能搞定一切!在这个过程中,咱们不仅能实实在在地感受到Kafka那股灵活又顺手的劲儿,更能深深体验到身为开发者或是运维人员,那种对系统玩转于掌心、一切尽在掌握中的爽快与乐趣。当然啦,遇到更复杂的场合,咱们还能使上编程API这个神器,对场景进行更加精细巧妙的管理和操控。这可是我们在未来学习和实践中一个大有可为、值得好好琢磨探索的领域!
2023-11-26 15:04:54
457
青山绿水
MemCache
...,每到购物节高峰期,网站上的商品数量高达百万级别。要是每次请求都一股脑儿地把所有商品信息都拉下来,那服务器准得累趴下,用户看着也得抓狂。因此,学会如何高效地分批次读取数据,是提升系统稳定性和用户体验的关键一步。 2. 分批读取的必要性与优势 那么,为什么要采用分批读取的方式呢?这背后其实隐藏着一系列的技术考量和实际需求: - 减轻服务器压力:一次性请求大量数据对服务器资源消耗巨大,容易造成服务器过载。分批读取可以有效降低这种风险。 - 优化用户体验:用户往往不喜欢等待太久。通过分批次展示内容,可以让用户更快看到结果,提升满意度。 - 灵活应对动态变化的数据量:随着时间推移,你的数据量可能会不断增长。分批读取使得系统能够更灵活地适应不同规模的数据集。 - 提高查询效率:分批读取可以帮助我们更有效地利用索引和缓存机制,从而加快查询速度。 3. 实现数据分批读取的基本思路 了解了分批读取的重要性后,接下来我们就来看看具体怎么操作吧! 3.1 设定合理的批量大小 首先,你需要根据实际情况来设定每次读取的数据量。这个数值可别太大也别太小,一般情况下,根据你的使用场景和Memcached服务器的配置,设成几百到几千都行。 python 示例代码:设置批量大小 batch_size = 500 3.2 利用偏移量进行分批读取 在Memcached中,我们可以通过指定键值的偏移量来实现数据的分批读取。每次读完一部分数据,就更新下一次要读的位置,这样就能连续地一批一批拿到数据了。 python 示例代码:利用偏移量读取数据 def fetch_data_in_batches(key, start, end): batch_data = [] for offset in range(start, end, batch_size): 假设get_items函数用于从Memcached中获取指定范围的数据 items = get_items(key, offset, min(offset + batch_size - 1, end)) batch_data.extend(items) return batch_data 这里假设get_items函数已经实现了根据偏移量从Memcached中获取指定范围内数据的功能。当然,实际开发中可能需要根据具体的库或框架调整这部分逻辑。 3.3 考虑并发与异步处理 为了进一步提升效率,你可以考虑引入多线程或异步I/O技术来并行处理多个数据批次。这样不仅能够加快整体处理速度,还能更好地利用现代计算机的多核优势。 python import threading def async_fetch_data(key, start, end): threads = [] for offset in range(start, end, batch_size): thread = threading.Thread(target=fetch_data_in_batches, args=(key, offset, min(offset + batch_size - 1, end))) threads.append(thread) thread.start() for thread in threads: thread.join() 使用异步方法读取数据 async_fetch_data('my_key', 0, 10000) 这段代码展示了如何通过多线程方式加速数据读取过程。当然,如果你的程序用的是异步编程(比如Python里的asyncio),那就可以试试异步IO,这样处理任务时会更高效,也不会被卡住。 4. 结语 通过上述讨论,我们可以看出,在Memcached中实现客户端的数据分批读取是一项既实用又必要的技术。这东西不仅能帮我们搭建个更稳当、更快的系统,还能让咱们用户用起来特爽!希望这篇文章能为你提供一些灵感和帮助,让我们一起努力打造更好的软件产品吧! 最后,别忘了在实际项目中根据具体情况调整策略哦。技术总是在不断进步,保持学习的心态,才能跟上时代的步伐!
2024-10-25 16:27:27
122
海阔天空
Bootstrap
...便给你支几招,让你的网站布局变得超赞! 1. 什么是Bootstrap的网格系统? 首先,让我们快速回顾一下Bootstrap的网格系统是什么。简单来说,Bootstrap的网格系统是一个基于12列的响应式布局框架,它可以帮助开发者轻松创建出适应不同屏幕尺寸的布局。通过将内容放入不同的行和列中,你可以构建出各种复杂的布局设计。但是,当涉及到列间距时,事情就没那么简单了。 1.1 为什么列间距会成为问题? 在Bootstrap中,默认情况下,列之间有一定的内边距(padding),这导致列与列之间会有一定的间隔。对于一些设计师来说,这种默认设置可能不是他们想要的效果。有时候,你可能想更精细地调整列之间的间距,这样能让整个页面看起来更整齐,或者更符合你的设计想法。这就引出了我们今天的话题——如何更精准地控制列间距。 2. 列间距控制不准确的原因分析 现在,让我们来具体看看为什么说Bootstrap中的列间距控制不准确。主要有以下几点原因: 2.1 默认的列间距设置 Bootstrap为每一列都预设了一定的内边距(padding),这使得即使你在创建列的时候没有明确指定间距,它们之间也会存在一定的空间。比如,当你用.col-md-4这个类来设定一个占据容器三分之一宽度的列时,Bootstrap会自个儿给它加上左右各15像素的内边距,让你的布局看起来更舒服。 html 这是第一列 这是第二列 这是第三列 如上所示,即使你没有额外做任何调整,列与列之间也会有一段明显的间距。 2.2 响应式设计带来的挑战 另一个导致列间距难以控制的因素是响应式设计。因为Bootstrap要适应各种屏幕大小,所以它得给不同尺寸的屏幕预先设定不一样的内边距,这样看起来才舒服嘛。这就意味着,屏幕越大,列和列之间的距离也得跟着变大,这可让那些想要固定间距的设计伤透了脑筋。 3. 解决方案 既然了解了问题所在,那么接下来就是重点部分——如何解决这个问题?这里我将提供几种不同的方法,希望能帮到大家。 3.1 使用CSS覆盖默认样式 最直接的方法就是利用CSS覆盖Bootstrap的默认样式。你可以自己在CSS文件里调整特定列或者所有列的内边距,这样就能轻松控制列之间的距离了。 css / 覆盖所有列的内边距 / .row > .col { padding-left: 0; padding-right: 0; } / 或者仅覆盖特定列 / .col-md-4 { padding-left: 10px; padding-right: 10px; } 这种方法的优点是灵活且易于管理,但缺点是需要额外编写和维护CSS代码。 3.2 利用负外边距(Negative Margin) 另一种方法是利用负外边距来抵消Bootstrap默认的内边距效果。这种方法相对复杂一些,但可以实现非常精细的控制。 html 这是第一列 这是第二列 这是第三列 不过需要注意的是,这种方法可能会对其他元素造成影响,因此使用时要小心。 3.3 自定义栅格系统 如果你对Bootstrap的默认栅格系统不满意,还可以考虑使用自定义栅格系统。这通常涉及到修改Bootstrap的源代码或者使用第三方库来替代原生的栅格系统。虽然这种方法比较极端,但对于追求极致定制化体验的项目来说可能是最好的选择。 4. 总结与反思 通过今天的讨论,我们可以看到,尽管Bootstrap的网格系统提供了强大的布局能力,但在处理某些细节问题时仍需额外努力。不管是用CSS盖掉默认样式,还是玩儿负外边距,或者是搞个自定义栅格系统,最重要的是找到最适合你项目的办法。希望这篇文章能帮助大家更好地理解和解决Bootstrap中遇到的列间距问题,让我们的网页设计更加完美! 最后,如果你在实际操作过程中遇到了其他问题或有更多见解,欢迎留言交流。前端的世界永远充满可能性,让我们一起探索吧!
2024-11-08 15:35:49
46
星辰大海
转载文章
...市场必然竞争激烈,使网站对对网站的浏览速度和效果愈加重视,CDN作为网站加速的工具,得以得到更广泛的应用和发展。 CDN的全称Content Delivery Network,即内容分发网络,我们将从CDN的中文表义去理解,也就是内容,分发和网络分析起: 1.内容 是指储存在CDN节点上的动静态资源的分发和访问的数据内容,比如JS、CSS、图片和静态页面等,用户一般从主站获取动态内容后,再从CDN下载相应的静态数据。 2.分发 就是如何让刚才提到的数据内容,快速的部署在这个网络中,从而快速为用户服务。 3.网络 是部署于全国或者全球的一大堆服务器,这些服务器基于当前互联网的基础架构在其上层再构成一个网络,这个网络专为资源分发而生。 CDN是一个经策略性部署的整体系统,从技术上全面解决由于网络带宽小、用户访问量大、网点分布不均而产生的用户访问网站响应速度慢的根本原因。 因此CDN主要作用是通过内容和资源就近分发,保证用户快速访问,提升用户体验的一个内容网络。 CDN是一种组合技术,它的重要组成部分包括源站、缓存服务器、智能DNS、客户端等。 1.折叠源站 源站指发布内容的原始站点。添加、删除和更改网站的文件,都是在源站上进行的;另外缓存服务器所抓取的对象也全部来自于源站。 2.缓存服务器 缓存服务器是直接提供给用户访问的站点资源,由一台或数台服务器组成;当用户发起访问时,他的访问请求被智能DNS定位到离他较近的缓存服务器。如果用户所请求的内容刚好在缓存里面,则直接把内容返还给用户;如果访问所需的内容没有被缓存,则缓存服务器向邻近的缓存服务器或直接向源站抓取内容,然后再返还给用户。 3.智能DNS CDN整个技术核心是智能DNS,它主要根据用户的来源,将其访问请求指向离用户比较近的缓存服务器,如把深圳电信的用户请求指向到深圳电信IDC机房中的缓存服务器。通过智能DNS解析,让用户访问同服务商下的服务器,消除国内南北网络互相访问慢的问题,达到加速作用。 4.客户端 客户端或称用户端即发起访问的普通用户,一般的访问方式是浏览器。 云漫网络自成立以来,旗下的TTCDN颠覆了以往传统CDN技术加速,又增添防御功能,让用户更加便捷安全的去访问网站,被攻击时也感受不到 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37928917/article/details/88640408。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-22 12:25:22
567
转载
SpringCloud
...1] Nacos官方网站 [2] Spring Cloud官方文档 [3] 阿里云开发者社区
2023-10-25 17:55:17
123
红尘漫步_t
Tomcat
...et、过滤器或者整个网站应用用,比如在启动的时候需要用到的一些设置啥的。比如说,你可以把数据库连接字符串和API密钥这些敏感信息放到初始化参数里。这样一来,不仅管理起来更方便,还能提高安全性,简直是一举两得!示例如下: xml dbUrl jdbc:mysql://localhost:3306/mydb 在这个例子中,我们定义了一个名为dbUrl的上下文参数,其值为MySQL数据库的连接字符串。在Servlet或过滤器中可以通过getServletContext().getInitParameter("dbUrl")来获取该值。 三、总结 让Tomcat更懂你的需求 好了,朋友们,今天我们一起探索了web.xml文件的重要性及其在Tomcat中的作用。通过调整Servlet映射、设置过滤器和初始化参数,我们可以让Tomcat更懂我们的应用逻辑,更好地帮我们跑起来。记住,就像盖房子一样,提前做好规划和设计能让结果既高效又好看!希望这篇文章能帮助你在构建Web应用的过程中更加得心应手! --- 希望这篇技术文章能够让你感受到编写Web应用的乐趣,并且对你理解Tomcat及web.xml文件有所帮助。如果有任何问题或想要进一步探讨的内容,请随时留言交流!
2024-11-23 16:20:14
22
山涧溪流
Logstash
...fka还与多种开源和商业数据处理工具无缝集成,如Apache Spark、Flink和Logstash,为用户提供了一站式的数据处理解决方案。 深入解读这一技术趋势,我们可以看到,数据处理技术正朝着更加分布式、高可用和低延迟的方向发展。这意味着,未来的数据处理系统不仅要具备强大的数据处理能力,还要能够适应云环境下的动态扩展需求,以及在复杂网络环境下保证数据传输的安全性和完整性。 另一方面,随着人工智能和机器学习技术的快速发展,数据处理不仅仅是关于速度和规模,更重要的是如何从海量数据中挖掘出有价值的信息,构建预测模型和智能决策系统。因此,数据处理技术未来的发展方向之一是与AI的深度融合,通过自动化数据预处理、特征工程、模型训练和部署,实现端到端的数据驱动决策流程。 总之,Logstash管道执行顺序问题的讨论不仅是对现有技术的反思,更是对数据处理领域未来发展趋势的前瞻。随着技术的不断演进,我们需要持续关注新兴技术和实践,以便更好地应对大数据时代下日益增长的数据处理挑战。
2024-09-26 15:39:34
70
冬日暖阳
Mahout
...在一个大型的电子商务网站中,每个用户仅对少量商品进行过评价,那么构建出的用户-商品评分矩阵就会表现为高度稀疏。这种特性可能导致协同过滤等推荐算法效果下降,因为算法难以找到足够的信息来进行准确的相似度计算和推荐预测。 Pearson相关系数(Pearson Correlation Coefficient) , Pearson相关系数是一种衡量两个变量间线性相关程度的统计指标,在Mahout推荐系统中的协同过滤场景中被用作一种用户相似度计算方法。在处理稀疏矩阵时,它根据用户对物品的评分记录,计算两个用户评分向量之间的相似度。然而,在面对稀疏矩阵异常时,该方法可能无法有效捕捉到用户间的真正偏好关系,从而影响最终推荐结果的质量。
2023-01-23 11:24:41
144
青春印记
Shell
...的开发者技术问答社区网站,用户可以在该平台上提出关于编程问题的疑问,或者回答他人的问题。涵盖包括Shell编程在内的多种编程语言和技术领域。在Shell学习过程中,Stack Overflow是一个宝贵的资源库,用户可以查找已有的解决方案,也可以发布自己的问题寻求帮助,从而不断磨练和提升Shell技能。 Ansible , Ansible是一款开源的IT自动化工具,用于自动执行系统配置管理、应用部署、任务执行等工作。在结合Shell使用的语境下,Ansible能够进一步简化运维工作,通过编写Playbook(剧本),可以将一系列Shell命令组织起来,实现跨多台服务器的批量执行和配置同步,极大提高了运维效率和准确性。 Puppet , Puppet也是一种流行的IT自动化配置管理工具,它可以用来自动管理和部署大量机器上的软件配置。在与Shell结合使用时,Puppet可以通过声明式语法定义系统配置状态,然后与Shell脚本结合,实现在大规模集群环境下的灵活、高效运维管理。
2023-09-20 15:01:23
54
笑傲江湖_
Kylin
Element-UI
...,在构建多语言支持的网站时,可以利用i18n插件和国际化组件库,确保不同地区的用户都能获得一致且友好的使用体验。 总之,选择合适的组件库只是第一步,更重要的是如何结合自身项目的需求,灵活运用这些工具,从而提升开发效率和产品质量。未来,随着前端技术的不断发展,相信会有更多优秀的组件库涌现出来,为开发者提供更多选择和便利。同时,开发者也需要不断学习和探索,才能跟上时代的步伐,打造出更加优秀的产品。
2024-10-29 15:57:21
76
心灵驿站
Greenplum
...分。无论是你在逛电商网站时看到的各种商品推荐,还是在音乐视频平台刷到的个性化内容推送,甚至是社交媒体上为你精心匹配的好友建议,可以说它们简直就是无处不在,充斥着我们的日常生活。然而,现如今啊,随着数据量蹭蹭地往上涨,怎么才能把这些海量数据吃得透透的,并且精准地给用户推送他们想要的东西,这可真成了我们眼前一道躲不过去的大难题了。 这就是我们要讨论的主题——使用Greenplum进行实时推荐系统开发。Greenplum这个家伙,是Pivotal公司家的明星产品,一款超级给力的分布式数据库系统。它特擅长对付那种海量数据,而且还能做到实时分析,就像个数据处理的超能勇士一样。 二、绿萍普的基本概念与特性 首先,我们需要了解什么是Greenplum。简单来说,Greenplum是一种基于PostgreSQL的关系型数据库管理系统。它具有以下特点: 1. 分布式架构 Greenplum采用了MPP(Massively Parallel Processing)架构,可以将数据分布在多个节点上进行处理,大大提高了处理速度。 2. 实时查询 Greenplum支持实时查询,可以在海量数据中快速找到需要的信息。 3. 高可用性 Greenplum采用了冗余设计,任何一个节点出现问题,都不会影响整个系统的运行。 三、Greenplum在实时推荐系统中的应用 接下来,我们将详细介绍如何使用Greenplum来构建一个实时推荐系统。 首先,我们需要收集用户的行为数据,如用户的浏览记录、购买记录等。这些数据可以通过日志文件、API接口等方式获取。 然后,我们可以使用Greenplum来存储和管理这些数据。比如说,我们可以动手建立一个用户行为记录表,就像个小本本一样,把用户的ID号码、干了啥类型的行为、啥时候干的这些小细节,都一五一十地记在这个表格里。 接着,我们需要计算用户的历史行为模式,以便于对用户进行个性化推荐。这可以通过一些机器学习算法来完成,如协同过滤、矩阵分解等。 最后,我们可以使用Greenplum来进行实时推荐。当有新的用户行为数据蹦出来的时候,我们能立马给用户行为表来个实时更新。接着,咱们通过一套算法“火速”算出用户的最新行为习惯,最后就能生成专属于他们的个性化推荐啦! 四、代码示例 下面是一段使用Greenplum进行实时推荐的代码示例: sql CREATE TABLE user_behavior ( user_id INT, behavior_type TEXT, behavior_time TIMESTAMP ); INSERT INTO user_behavior VALUES (1, 'view', '2021-01-01 00:00:00'); INSERT INTO user_behavior VALUES (1, 'buy', '2021-01-02 00:00:00'); INSERT INTO user_behavior VALUES (2, 'view', '2021-01-01 00:00:00'); -- 计算用户行为模式 SELECT user_id, behavior_type, COUNT() as frequency FROM user_behavior GROUP BY user_id, behavior_type; -- 实时推荐 INSERT INTO user_behavior VALUES (3, 'view', '2021-01-01 00:00:00'); SELECT u.user_id, m.product_id, m.rating FROM user_behavior u JOIN product_behavior b ON u.user_id = b.user_id AND u.behavior_type = b.behavior_type JOIN matrix m ON u.user_id = m.user_id AND b.product_id = m.product_id WHERE u.user_id = 3; 以上代码首先创建了一个用户行为表,然后插入了一些样本数据。然后,我们统计了大家的使用习惯频率,最后,根据每个人独特的行为模式,实时地给出了个性化的推荐内容~ 五、结论 总的来说,使用Greenplum进行实时推荐系统开发是一个既有趣又有挑战的任务。通过巧妙地搭建架构和精挑细选高效的算法,我们能够轻松应对海量数据的挑战,进而为用户提供贴心又个性化的推荐服务。就像是给每一片浩瀚的数据海洋架起一座智慧桥梁,让每位用户都能接收到量身定制的好内容推荐。 当然,这只是冰山一角。在未来,随着科技的进步和大家需求的不断变化,咱们的推荐系统肯定还会碰上更多意想不到的挑战,当然啦,机遇也是接踵而至、满满当当的。但是,只要我们敢于尝试,勇于创新,就一定能创造出更好的推荐系统。
2023-07-17 15:19:10
745
晚秋落叶-t
转载文章
...ght; 8、涉及到网站的抓取和索引的时候,对于SEO很友好; 9、被大量应用于移动应用程序和游戏。 缺点 a)、安全:像之前Firefox4的web socket和透明代理的实现存在严重的安全问题,同时web storage、web socket 这样的功能很容易被黑客利用,来盗取用户的信息和资料。 b)、完善性:许多特性各浏览器的支持程度也不一样。 c)、技术门槛:HTML5简化开发者工作的同时代表了有许多新的属性和API需要开发者学习,像web worker、web socket、web storage 等新特性,后台甚至浏览器原理的知识,机遇的同时也是巨大的挑战 d)、性能:某些平台上的引擎问题导致HTML5性能低下。 e)、浏览器兼容性:最大缺点,IE9以下浏览器几乎全军覆没。 详细了解HTML5概要与新增标签地址(大神果哥):https://www.cnblogs.com/best/p/6096476.html posted @ 2018-08-12 12:45 韦邦杠 阅读(...) 评论(...) 编辑 收藏 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42981419/article/details/86162058。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-14 16:22:34
272
转载
转载文章
...好的免费版,随便一个网站防火墙,一年就要几百元,其他就不说了。 2、WDCP 国内的老牌子linux面板,这几年后劲不足已经停止更新,很可惜。我最早用的就是这款面板,现在已经不再做更新维护。 网址:www.wdlinux.cn/wdcp 缺点:软件已经不再更新,我遇到最大的问题就是数据库方面不够完善,经常数据库出问题,逼迫我不得不长手动备份还原数据库,它和宝塔面板一样都采用单机安装,缺点不少。 价格方面基本专业版,个人用不起,小企业还得考虑合适不。 3、APPNODE 获过大奖的linux面板,时间比较长,很多人没听过这个牌子,其实正常,因为这个面板面向专业运维人员,面板布局和设计很多人看后晕乎乎的,我使用过一次,看着很专业,但是实在玩不了,不得不删除。 网址:www.appnode.com 价格虽然便宜一些,但对于个人还是高。提倡的也是集群管理概念,但是必须通过一个服务器去管理另外的,还是不够云端化。 4、旗鱼云梯 旗鱼云梯属于新的概念,不同于国内其他厂商linux面板,它把运维管理服务器,在云端完成,服务器只需要安装加密探针,不需要安装其他页面多余端口页面,耗费服务器资源的东西,通过云端运维服务器,属于最新的解决办法。 网址:www.marlinos.com 价格实惠,是国内最便宜的面板,购买主机令牌添加服务器管理,首月使用优惠劵后只需1元,一年只需要60元,国内其他linux面板厂商收费的插件工具,旗鱼云梯自带免费,可以无限制添加自己的服务器,没有数量限制,集群化做的非常好,推荐使用,对于SEO网站有大量的优化工具可以使用。 缺点:刚发布时间不长,急需不断升级添加新功能。 网站管理功能简单实用,比较适合小白站长,一目了然。 总结:国内的linux面板即将迎来变革,云端化管理服务器将是趋势,现在百度、阿里、腾讯都在推动云端管理服务器,但是很多工具都是企业级,针对个人和小企业云端管理服务器,旗鱼云梯走出了关键的一步,推荐站长和企业运维人员使用。 本篇文章为转载内容。原文链接:https://blog.csdn.net/leo12036okokok/article/details/88531285。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-25 12:23:09
517
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
pkill process_name
- 结束与指定名称匹配的进程。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"