前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[React组件优化 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
MemCache
... 第四部分:优化与挑战 在实际应用中,选择何种版本控制策略取决于具体业务需求。比如说,假设你老是得翻查过去的数据版本,那用时间戳或者命名空间跟数据库的搜索功能搭伙用,可能会是你的最佳选择。就像你去图书馆找书,用书名和出版日期做检索,比乱翻一气效率高多了。这方法就像是给你的数据做了个时间轴或者标签系统,让你想看哪段历史一搜就出来,方便得很!同时,考虑到内存资源的限制,应合理规划版本的数量,避免不必要的内存占用。 结论 Memcached本身不提供内置的多版本控制功能,但通过一些简单的编程技巧,我们可以实现这一需求。无论是使用命名空间还是时间戳,关键在于根据业务逻辑选择最适合的实现方式。哎呀,你知不知道在搞版本控制的时候,咱们得好好琢磨琢磨性能优化和资源管理这两块儿?这可是关乎咱们系统稳不稳定的头等大事,还有能不能顺畅运行的关键!别小瞧了这些细节,它们能让你的程序像开了挂一样,不仅跑得快,而且用起来还特别省心呢!所以啊,做这些事儿的时候,可得细心点,别让它们成为你系统的绊脚石! 后记 在开发过程中,面对复杂的数据管理和版本控制需求,灵活运用现有工具和技术,往往能取得事半功倍的效果。嘿!小伙伴们,咱们一起聊聊天呗。这篇文章呢,就是想给那些正跟咱们遇到相似难题的编程大神们一点灵感和方向。咱们的目标啊,就是一块儿把技术这块宝地给深耕细作,让它开出更绚烂的花,结出更甜美的果子。加油,程序员朋友们,咱们一起努力,让代码更有灵魂,让技术更有温度!
2024-09-04 16:28:16
97
岁月如歌
Superset
... ) 2. 优化数据加载流程 - 对于大数据集,考虑使用分页查询或者增量更新策略,减少单次加载的数据量。 - 使用更高效的数据库查询优化技巧,比如索引、查询优化、存储优化等。 3. 调整缓存策略 - 在Superset配置文件中调整缓存相关参数,例如cache_timeout和cache_timeout_per_user,确保缓存机制能够及时响应数据更新。 python 在Superset配置文件中添加或修改如下配置项 "CACHE_CONFIG": { "CACHE_TYPE": "filesystem", "CACHE_DIR": "/path/to/cache", "CACHE_DEFAULT_TIMEOUT": 300, "CACHE_THRESHOLD": 1000, "CACHE_KEY_PREFIX": "superset_cache" } 4. 监控网络状况 - 定期检查网络连接状态,确保数据传输稳定。可以使用网络监控工具进行测试,比如ping命令检查与数据源服务器的连通性。 - 考虑使用CDN(内容分发网络)或其他加速服务来缩短数据传输时间。 5. 实施定期数据验证 - 定期验证数据源的有效性和数据更新情况,确保数据实时性。 - 使用自动化脚本或工具定期检查数据更新状态,一旦发现问题立即采取措施。 结论 数据更新延迟是数据分析过程中常见的挑战,但通过细致的配置、优化数据加载流程、合理利用缓存机制、监控网络状况以及定期验证数据源的有效性,我们可以有效地解决这一问题。Superset这个家伙,可真是个厉害的数据大厨,能做出各种各样的图表和分析,简直是五花八门,应有尽有。它就像个宝藏一样,里面藏着无数种玩法,关键就看你能不能灵活变通,找到最适合你手头活儿的那把钥匙。别看它外表冷冰冰的,其实超级接地气,等着你去挖掘它的无限可能呢!哎呀,用上这些小窍门啊,你就能像变魔法一样,让数据处理的速度嗖嗖地快起来,而且准确得跟贴纸一样!这样一来,做决定的时候,你就不用再担心数据老掉牙或者有误差了,全都是新鲜出炉的,准得很!
2024-08-21 16:16:57
110
青春印记
Redis
...中就包括对分布式锁的优化实现。它采用Redis的Lua脚本、Redis事务以及watch命令等多种机制相结合的方式,确保了在高并发场景下获取和释放锁的操作是原子性的,有效避免了本文所述的“两人同时获得锁”的诡异现象。 此外,Redisson还支持可重入锁、公平锁、读写锁等多种锁类型,满足不同业务场景下的需求。通过定期自动续期功能,可以防止因网络抖动或进程阻塞导致的锁超时失效问题,极大地提高了系统的稳定性和可靠性。 与此同时,随着云原生技术的发展,Kubernetes等容器编排工具日益普及,Redis Cluster或者Sentinel集群部署模式成为主流。Redisson对此提供了良好的支持,使得开发者能够更加便捷地在分布式环境中利用Redis构建高性能、高可用的服务。 总之,在面对复杂的分布式系统开发时,深入理解和合理运用诸如Redisson这样的工具库,不仅可以解决Redis在实现分布式锁时的并发难题,更能提升整体系统的架构水平和运维效率。对于关注此类话题的技术人员而言,不断跟进并学习这些最新实践无疑具有极高的价值。
2023-05-29 08:16:28
269
草原牧歌_t
转载文章
...,必须兼顾用户体验的优化与完善。 近年来,随着5G网络的普及以及AI技术的快速发展,声音社交产品的形态正在发生深刻变化。比如,Snapchat等社交媒体已成功引入了多种音频滤镜和变声功能,这些功能不仅能够增强用户互动性,还通过趣味化处理提升了用户分享内容的积极性。相比之下,尽管啵啵试图另辟蹊径,但在声音美化技术的应用上还需进一步探索和突破。 此外,值得注意的是,在移动互联网时代,用户的注意力日益碎片化,社交产品的黏性和活跃度愈发依赖于其独特的内容生成方式及社交机制。未来,无论是啪啪还是啵啵,乃至整个社交产品市场,都需要深入挖掘用户需求,不断迭代产品功能,并在竞争激烈的市场环境中找准自身定位,实现差异化发展。 近期,有消息称,一些社交应用正致力于研发更为智能的声音识别与编辑技术,力求将声音元素与AI算法结合,创造出更具吸引力和个性化的声音社交体验。这一发展趋势表明,对于包括人人网在内的所有社交平台而言,持续关注并投入技术研发,紧跟甚至引领行业趋势,才是保持竞争力并在市场上立足的关键所在。
2023-08-17 12:49:28
487
转载
Kylin
...际业务需求灵活选择和优化模型。哎呀,Kylin这玩意儿可真牛!它在处理大数据分析这块儿,简直就是得心应手的利器,灵活又强大,用起来那叫一个顺手,简直就是数据分析界的扛把子啊!哎呀,随着咱手里的数据越来越多,做事儿也越来越复杂了,这时候,学会在Kylin这个工具里搭建和优化各种数据分析模型,就变得超级关键啦!就像是厨房里,你会做各种菜,每道菜的配料和做法都不一样,对吧?在Kylin这里也是一样,得会根据不同的需求,灵活地组合和优化模型,让数据分析既快又准,效率爆棚!这不仅能让咱们的工作事半功倍,还能解锁更多创新的分析思路,是不是想想都觉得挺酷的呢? --- 请注意,上述代码示例为简化版本,实际应用时可能需要根据具体数据集和业务需求进行调整。
2024-10-01 16:11:58
130
星辰大海
Kafka
...afka数据复制策略优化的研究论文,提出了一种基于机器学习的智能调度算法,旨在进一步提升Kafka集群的性能和可靠性。该算法通过对历史数据的学习,能够预测未来数据流量的变化趋势,并据此动态调整各副本间的同步频率,从而在保证数据一致性的同时,最大限度地减少资源消耗。这一研究成果为Kafka的未来发展提供了新的思路和方向。 综上所述,无论是金融行业还是物联网领域,Kafka凭借其独特的技术和不断优化的性能,正逐渐成为各行业数据处理的首选平台。未来,随着更多创新技术的应用,Kafka有望在更多场景下发挥更大的作用。
2024-10-19 16:26:57
56
诗和远方
Java
...了效率,我们可以稍微优化一下。比如说啊,检查一个数是不是有因数的时候,其实没必要从头到尾都查一遍,查到这个数的平方根就够了。为啥呢?因为如果一个数能被分成两个部分,比如说是 \( n = a \times b \),那这两个部分里肯定至少有一个不会比平方根大。换句话说,你只要找到一个小于等于平方根的因数,另一个就不用再费劲去挨个找了,直接配对就行啦! 下面是Java代码实现: java public static boolean isPrime(int num) { if (num <= 1) return false; // 小于等于1的数都不是素数 for (int i = 2; i i <= num; i++) { // 只需要检查到sqrt(num) if (num % i == 0) { return false; // 如果能被i整除,则不是素数 } } return true; } 这段代码看起来简单吧?但是它的作用可不小哦!现在我们可以用它来生成一系列素数了。 --- 三、拆分数字 递归的力量 接下来,我们的目标是找到所有可能的组合方式,让这些素数组合起来等于给定的目标数字。这里我们可以用递归来解决这个问题。递归的核心思想就是把大问题分解成小问题,然后逐步解决。 假设我们要把数字10拆成素数的和,我们可以从最小的素数2开始尝试,看看能不能凑出来。如果不行,就换下一个素数继续尝试。这样一步步往下走,直到找到所有可能的组合。 下面是一段Java代码示例: java import java.util.ArrayList; public class PrimeSum { public static void main(String[] args) { int target = 10; ArrayList primes = new ArrayList<>(); for (int i = 2; i <= target; i++) { if (isPrime(i)) { primes.add(i); } } findPrimeSums(target, primes, new ArrayList<>()); } public static boolean isPrime(int num) { if (num <= 1) return false; for (int i = 2; i i <= num; i++) { if (num % i == 0) { return false; } } return true; } public static void findPrimeSums(int remaining, ArrayList primes, ArrayList currentCombination) { if (remaining == 0) { System.out.println(currentCombination); return; } for (Integer prime : primes) { if (prime > remaining) break; currentCombination.add(prime); findPrimeSums(remaining - prime, primes, currentCombination); currentCombination.remove(currentCombination.size() - 1); } } } 这段代码里,findPrimeSums方法就是一个递归函数。这玩意儿呢,要收三个东西当输入:一个是剩下的数字,一个是所有的素数小弟们列好队等着用,还有一个是咱们现在正在拼凑的那个组合。当剩余数字为0时,我们就找到了一组有效的组合。 --- 四、结果展示 数字的无限可能性 运行上面的代码后,你会看到类似如下的输出: [2, 2, 2, 2, 2] [2, 2, 2, 3, 1] [2, 2, 3, 3] [2, 3, 5] [3, 7] 哇哦!原来10可以有这么多不同的拆分方式呢!每一组都是由素数组成的,并且它们的和正好等于10。 在这个过程中,我一直在想,为什么会有这么多种可能性呢?是不是因为素数本身就具有某种特殊的规律?还是说这只是数学世界中的一种巧合? 不管怎样,我觉得这种探索的过程真的很迷人。每一次运行程序,都像是在打开一个新的宝藏箱,里面装满了未知的答案。 --- 五、总结与展望 好了朋友们,今天的旅程到这里就要结束了。我们不仅学会了如何用Java找到素数,还掌握了如何用递归的方法拆分数字。虽然过程有点复杂,但每一步都很值得回味。 未来,如果你对这个问题感兴趣,不妨尝试优化代码,或者挑战更大的数字。也许你会发现更多有趣的规律呢! 最后,希望大家都能喜欢编程带来的乐趣。记住,学习编程就像学习一门新的语言,多实践、多思考,总有一天你会说得非常流利!再见啦,下次见!
2025-03-17 15:54:40
62
林中小径
MySQL
...的无限级分类技术,以优化用户体验和提高搜索效率。通过构建层次化的商品分类树结构,用户可以更直观、快速地定位到目标商品,同时后台算法也能根据分类结构进行智能推荐。 此外,随着大数据和人工智能的发展,无限极分类也在数据挖掘、机器学习等领域展现出强大的潜力。例如,在处理大规模的文档或知识图谱时,基于深度优先或广度优先策略的无限级分类有助于构建复杂的关系网络,进而提升语义理解和推理能力。一项发表于《ACM Transactions on Information Systems》的研究论文详细探讨了如何利用非递归算法对大规模文本数据进行高效且准确的多层次分类,从而为信息检索、个性化推荐等应用场景提供有力支持。 综上所述,无限极分类作为一种基础的数据处理手段,其重要性不仅体现在传统的数据库设计与查询优化中,而且在前沿的信息技术和人工智能研究中也发挥着不可或缺的作用。对于技术人员来说,深入理解并灵活运用无限极分类方法,无疑将有助于解决实际问题,提升系统的性能与智能化水平。
2023-08-24 16:14:06
58
星河万里_t
Saiku
...为“指标”。 2. 优化布局与导航 采用更加清晰的分层结构,将相关功能模块放置在一起,减少跳转次数。同时,增加搜索功能,让用户能够快速定位到需要的配置项。 3. 提供可视化预览 在用户进行配置时,实时展示配置结果的预览图,帮助用户直观地理解设置的效果。 4. 引入动态示例 在配置页面中嵌入动态示例,通过实际数据展示不同的配置效果,让用户在操作过程中学习和适应。 5. 增加教程与资源 开发一系列针对不同技能水平用户的教程视频、指南和在线问答社区,帮助用户更快掌握Saiku的使用技巧。 四、结语 从实践到反馈的闭环 改进Saiku配置文件编辑器的直观性是一个持续的过程,需要结合用户反馈不断迭代优化。哎呀,听我说啊,要是咱们按照这些建议去操作,嘿,那可是能大大提升大家用咱们Saiku的体验感!这样一来,不光能让更多的人知道并爱上Saiku,还能让数据分析这块儿的整体发展更上一层楼呢!你懂我的意思吧?就像是给整个行业都添了把火,让数据这事儿变得更热乎,更受欢迎!哎呀,兄弟!在咱们这项目推进的过程中,得保持跟用户之间的交流超级通畅,听听他们在使用咱们产品时遇到的具体难题,还有他们的一些建议。这样咱们才能对症下药,确保咱们改进的措施不是空洞的理论,而是真正能解决实际问题,让大家都满意的好办法。毕竟,用户的反馈可是我们优化产品的大金矿呢! --- 通过这次深入探讨,我们不仅认识到Saiku配置文件编辑器在直观性上的挑战,也找到了相应的解决路径。哎呀,希望Saiku在将来能给咱们的数据分析师们打造一个既温馨又高效的工具平台,就像家里那台超级好用的咖啡机,让人一上手就爱不释手。这样一来,大家就能专心挖出数据背后隐藏的金矿,而不是老是跟那些烦人的技术小难题过不去,对吧?
2024-10-12 16:22:48
73
春暖花开
c++
...ost或Pika)来优化并行计算任务,同时有效地处理资源限制和错误情况。 结语:持续学习与实践的重要性 C++的复杂性和深度意味着,无论在学术研究还是工业实践中,都需要不断地探索和学习。std::length_error仅仅是众多C++特性之一,但它展示了异常处理在现代软件开发中的核心价值。通过实践和深入理解这些概念,开发人员不仅能构建更高质量的软件,还能为未来的挑战做好准备。 总之,随着技术的不断进步,对std::length_error的理解和应用不仅关乎当前项目的成功,更是对未来技术发展趋势的洞察。在这个快速变化的领域,持续学习和实践是实现个人和团队成长的关键。
2024-10-03 15:50:22
51
春暖花开
转载文章
...外,谷歌公司也在不断优化其Play Store的政策,加强对开发者提交的应用程序进行严格的权限审查。据《TechCrunch》报道,谷歌正计划实施更为细化的权限分类管理,以便用户能更清晰地了解应用所需权限的真实用途,并做出明智的决定。 与此同时,专家建议用户及时更新操作系统以获取最新的安全补丁,同时采用可靠的安全软件监测应用行为,防止滥用权限的行为发生。在未来,随着GDPR(欧盟一般数据保护条例)等法规在全球范围内的影响扩大,如何平衡便利性与隐私保护,将成为Android生态系统持续关注并解决的关键课题。 总之,在这个数字化时代,掌握并有效管理Android应用权限不仅关乎个人隐私,也是维护整个移动网络生态安全的重要环节。用户应不断提升信息安全意识,合理授予应用权限,而开发者则需遵循透明、合法、必要的原则来设计和请求权限,共同构建一个更加安全、可信的移动应用环境。
2023-10-10 14:42:10
104
转载
ActiveMQ
...的需求。 4. 性能优化 针对不同语言环境的特点进行性能调优,例如,对于并发处理需求较高的语言(如Java),可能需要更精细地调整ActiveMQ的参数。 示例代码(Python): 利用Apache Paho库来接收刚刚发送的消息: python import paho.mqtt.client as mqtt import json def on_connect(client, userdata, flags, rc): print("Connected with result code "+str(rc)) client.subscribe("myQueue") def on_message(client, userdata, msg): message = json.loads(msg.payload.decode()) print("Received message:", message) client = mqtt.Client() client.on_connect = on_connect client.on_message = on_message client.connect("localhost", 1883, 60) client.loop_forever() 三、实践案例 多语言环境下的一体化消息系统 在一家电商公司中,我们面临了构建一个支持多语言环境的实时消息系统的需求。哎呀,这个系统啊,得有点儿本事才行!首先,它得能给咱们的商品更新发个通知,就像是快递到了,你得知道一样。还有,用户那边的活动提醒也不能少,就像朋友生日快到了,你得记得送礼物那种感觉。最后,后台的任务调度嘛,那就像是家里的电器都自动工作,你不用操心一样。这整个系统要能搞定Java、Python和Node.js这些编程语言,得是个多才多艺的家伙呢! 实现细节: - 消息格式:采用JSON格式,便于解析和处理。 - 消息队列:使用ActiveMQ作为消息中间件,确保消息的可靠传递。 - 语言间通信:通过统一的消息API接口,确保不同语言环境的客户端能够一致地发送和接收消息。 - 负载均衡:通过配置多个ActiveMQ实例,实现消息系统的高可用性和负载均衡。 四、结论与展望 ActiveMQ在多语言环境下的部署不仅提升了开发效率,也增强了系统的灵活性和可扩展性。哎呀,你知道的,编程这事儿,就像是个拼图游戏,每个程序员手里的拼图都代表一种编程语言。每种语言都有自己的长处,比如有的擅长处理并发任务,有的则在数据处理上特别牛。所以,聪明的开发者会好好规划,把最适合的拼图放在最合适的位置上。这样一来,咱们就能打造出既快又稳的分布式系统了。就像是在厨房里,有的人负责洗菜切菜,有的人专门炒菜,分工合作,效率噌噌往上涨!哎呀,你懂的,现在微服务这东西越来越火,加上云原生应用也搞得风生水起的,这不,多语言环境下的应用啊,那可真是遍地开花。你看,ActiveMQ这个家伙,它就像个大忙人似的,天天在多语言环境中跑来跑去,传递消息,可不就是缺不了它嘛!这货一出场,就给多语言环境下的消息通信添上了不少色彩,推动它往更高级的方向发展,你说它是不是有两把刷子? --- 通过上述内容的探讨,我们不仅了解了如何在多语言环境下部署和使用ActiveMQ,还看到了其实现复杂业务逻辑的强大潜力。无论是对于企业级应用还是新兴的微服务架构,ActiveMQ都是一个值得信赖的选择。哎呀,随着科技这玩意儿天天在变新,我们能期待的可是超棒的创新点子和解决办法!这些新鲜玩意儿能让我们在不同语言的世界里写程序时更爽快,系统的运行也更顺溜,就像喝了一大杯冰凉透心的柠檬水一样,那叫一个舒坦!
2024-10-09 16:20:47
65
素颜如水
ZooKeeper
...用ZooKeeper优化分布式架构》——该篇文章通过实际案例剖析了某知名互联网公司在面临大规模分布式环境下的数据一致性挑战时,如何巧妙运用ZooKeeper设计原则进行优化,并取得显著效果。 3. 技术深度解读:《ZooKeeper 4.x版本新特性解析及实战指南》——随着ZooKeeper版本的迭代更新,新特性如增强的性能、改进的一致性保障机制以及更加灵活的API都为开发者提供了更多选择。本文将深入解读这些新特性的实现原理及其在实际项目中的最佳实践。 4. 行业动态观察:《云原生时代下,ZooKeeper面临的挑战与机遇》——随着云计算和容器化技术的发展,ZooKeeper作为传统的分布式协调服务,在云原生环境下面临着新的挑战和机遇。该篇报道分析了ZooKeeper如何适应快速变化的技术趋势,并与其他新兴的分布式协调工具进行比较,展望未来发展趋势。 5. 开源社区热点:《Apache Curator库在ZooKeeper使用中的重要角色》——Curator是专为ZooKeeper设计的开源Java客户端库,它简化了ZooKeeper的复杂操作,提供了一套高级API以更好地遵循ZooKeeper的设计原则。了解Curator的应用可以加深对ZooKeeper在实际开发中高效利用的理解。 以上延伸阅读内容旨在帮助读者紧跟分布式系统领域的发展步伐,从理论到实践全方位拓展对ZooKeeper设计原则的认知和应用能力。
2024-02-15 10:59:33
32
人生如戏-t
转载文章
...序本身的程序特性进行优化, 比如使用引用计数std::shared_ptr,内存池方式等等。 1. 用户空间内存管理 目前大部分用户控件程序使用glibc提供的malloc/free系列函数,而glibc使用的ptmalloc2在性能上远远弱后于google的tcmalloc和facebook的jemalloc。 而且后两者只需要使用LD_PRELOAD环境变量启动程序即可,甚至并不需要重新编译。 1.1 ptmalloc2 malloc是一个C库中的函数,malloc向glibc请求内存空间。glibc初始分配或者通过brk和sbrk或者mmap向内核批发内存,然后“卖”给我们malloc使用。 既然brk、mmap提供了内存分配的功能,直接使用brk、mmap进行内存管理不是更简单吗,为什么需要glibc呢? 因为系统调用,导致程序从用户态陷入内核态,比较消耗资源。为了减少系统调用带来的性能损耗,glibc采用了内存池的设计,增加了一个代理层,每次内存分配,都优先从内存池中寻找,如果内存池中无法提供,再向操作系统申请。 1.2 tcmalloc tcmalloc 是google开发的内存分配算法库,用来替代传统的malloc内存分配函数,它有减少内存碎片,适用于多核,更好的并行性支持等特性。 要使用tcmalloc,只要将tcmalloc通过-ltcmalloc连接到应用程序即可。 也可以使用LD_PRELOAD在不是你自己编译的应用程序中使用:$ LD_PRELOAD="/usr/lib/libtcmalloc.so" 2. 内核空间内存管理 linux操作系统内核,将内存分为一个个页去管理。 2.1 页面管理算法–伙伴系统 在实际应用中,而频繁地申请和释放不同大小的连续页框,必然导致在已分配页框的内存块中分散了许多小块的空闲页框。这样,即使这些页框是空闲的,其他需要分配连续页框的应用也很难得到满足。 为了避免出现这种内存碎片,Linux内核中引入了伙伴系统算法(buddy system)。 2.1.1 Buddy(伙伴的定义) 满足以下三个条件的称为伙伴: 1)两个块大小相同; 2)两个块地址连续; 3)两个块必须是同一个大块中分离出来的; 2.1.2 Buddy算法的分配 假设要申请一个256个页框的块,先从256个页框的链表中查找空闲块,如果没有,就去512个页框的链表中找,找到了则将页框块分为2个256个页框的块,一个分配给应用,另外一个移到256个页框的链表中。如果512个页框的链表中仍没有空闲块,继续向1024个页框的链表查找,如果仍然没有,则返回错误。 2.1.3 Buddy算法的释放 内存的释放是分配的逆过程,也可以看作是伙伴的合并过程。页框块在释放时,会主动将两个连续的页框块合并为一个较大的页框块。 2.2 Slab机制 slab是Linux操作系统的一种内存分配机制。其工作是针对一些经常分配并释放的对象,如进程描述符等,这些对象的大小一般比较小,如果直接采用伙伴系统来进行分配和释放,不仅会造成大量的内碎片,而且处理速度也太慢。 而slab分配器是基于对象进行管理的,相同类型的对象归为一类(如进程描述符就是一类),每当要申请这样一个对象,slab分配器就从一个slab列表中分配一个这样大小的单元出去,而当要释放时,将其重新保存在该列表中,而不是直接返回给伙伴系统,从而避免这些内碎片。slab分配器并不丢弃已分配的对象,而是释放并把它们保存在内存中。当以后又要请求新的对象时,就可以从内存直接获取而不用重复初始化。 2.3 内核中申请内存的函数 2.3.1 __get_free_pages __get_free_pages函数是最原始的内存分配方式,直接从伙伴系统中获取原始页框,返回值为第一个页框的起始地址. 2.3.2 kmem_cache_alloc kmem_cache_create/ kmem_cache_alloc是基于slab分配器的一种内存分配方式,适用于反复分配释放同一大小内存块的场合。首先用kmem_cache_create创建一个高速缓存区域,然后用kmem_cache_alloc从 该高速缓存区域中获取新的内存块。 2.3.3 kmalloc kmalloc是内核中最常用的一种内存分配方式,它通过调用kmem_cache_alloc函数来实现。 kmalloc() 申请的内存位于物理内存映射区域,而且在物理上也是连续的,它们与真实的物理地址只有一个固定的偏移,因为存在较简单的转换关系,所以对申请的内存大小有限制,不能超过128KB。 较常用的flags()有: GFP_ATOMIC —— 不能睡眠; GFP_KERNEL —— 可以睡眠; GFP_DMA —— 给 DMA 控制器分配内存,需要使用该标志。 2.3.4 vmalloc vmalloc() 函数则会在虚拟内存空间给出一块连续的内存区,但这片连续的虚拟内存在物理内存中并不一定连续。由于 vmalloc() 没有保证申请到的是连续的物理内存,因此对申请的内存大小没有限制,如果需要申请较大的内存空间就需要用此函数了。 注意vmalloc和vfree时可以睡眠的,因此不能从中断上下问调用。 一般情况下,内存只有在要被 DMA 访问的时候才需要物理上连续,但为了性能上的考虑,内核中一般使用 kmalloc(),而只有在需要获得大块内存时才使用 vmalloc()。例如,当模块被动态加载到内核当中时,就把模块装载到由 vmalloc() 分配的内存上。 本篇文章为转载内容。原文链接:https://secdev.blog.csdn.net/article/details/109731954。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-26 20:46:17
231
转载
转载文章
...一个针对图像去噪任务优化的模块,其中包含了对UNet模型以及多种噪声模型(如高斯噪声、泊松噪声)的支持,开发者可以直接利用这些资源快速构建并训练自己的自监督去噪模型,大大降低了研究门槛和开发成本。 综上所述, Neighbor2Neighbor算法作为自监督图像去噪的典型代表,正随着深度学习和计算机视觉技术的发展不断得到丰富和完善,未来有望在医疗影像、遥感图像、艺术修复等多个领域发挥更大作用。而持续跟进最新的研究成果和技术动态,将有助于我们更好地掌握这一前沿技术,推动其实现更广泛的实际应用价值。
2023-06-13 14:44:26
128
转载
Lua
...大规模的分布式计算,优化游戏性能和用户体验。 Lua社区与生态系统的成长 Lua社区的活跃和生态系统的不断完善,为开发者提供了丰富的资源和工具。从开源库到专业服务,开发者可以根据项目需求快速找到合适的解决方案,加速项目进展。此外,社区活动、教程和文档的丰富也为新加入的开发者提供了友好的入门路径。 总的来说,Lua在游戏开发领域的应用正呈现出多元化、高效化和智能化的趋势。随着技术的进一步发展,Lua有望在游戏开发中发挥更加重要的作用,推动游戏产业向更高水平迈进。
2024-08-12 16:24:19
167
夜色朦胧
Apache Solr
... 2.1 索引优化 首先,我想到的是索引是否进行了优化。Solr的索引优化对于查询性能至关重要。如果索引过大且碎片较多,那么查询速度自然会受到影响。我查看了Solr的日志文件,发现确实存在一些索引碎片。为了优化索引,我执行了以下命令: bash curl http://localhost:8983/solr/mycollection/update?optimize=true&maxSegments=1 这个命令会将所有索引合并成一个段,并释放未使用的空间。运行后,查询速度确实有所提升,但这只是暂时的解决方案。 2.2 缓存设置 接着,我又检查了Solr的缓存设置。Solr提供了多种缓存机制,如Query Result Cache、Document Cache等,这些缓存可以显著提高查询性能。我调整了配置文件solrconfig.xml中的相关参数: xml size="512" initialSize="128" autowarmCount="64" eternal="true" ttiMillis="0" ttlMillis="0"/> 通过调整缓存大小和预热数量,我发现查询响应时间有所改善,但还是不够稳定。 3. 深入分析 外部依赖的影响 3.1 网络延迟 在排除了内部配置问题后,我开始怀疑是否有外部因素在作祟。经过一番排查,我发现网络延迟可能是罪魁祸首之一。Solr在处理查询时,得从好几个地方找信息,如果网速慢得像乌龟爬,那查询速度肯定也会变慢。我用ping命令测了一下和数据库服务器的连接,发现确实有点儿延时,挺磨人的。为了解决这个问题,我在想是不是可以在Solr服务器和数据库服务器中间加一台缓存服务器。这样就能少直接去查数据库了,效率应该能提高不少。 3.2 第三方API调用 除了网络延迟外,第三方API调用也可能是导致性能不稳定的另一个原因。Solr在处理某些查询时,可能需要调用外部服务来获取额外的数据。如果这些服务响应缓慢,整个查询过程也会变慢。我翻了一下Solr的日志,发现有些查询卡在那儿等外部服务回应,结果等超时了。为了搞定这个问题,我在Solr里加了个异步召唤的功能,这样Solr就能一边等着外部服务响应,一边还能接着处理别的查询请求了。具体代码如下: java public void handleExternalRequest() { CompletableFuture.supplyAsync(() -> { // 调用外部服务获取数据 return fetchDataFromExternalService(); }).thenAccept(result -> { // 处理返回的数据 processResult(result); }); } 4. 实践经验分享 配置波动与性能优化 4.1 动态配置管理 在实践中,我发现Solr的配置文件经常需要根据实际需求进行调整。然而,频繁地修改配置文件可能导致系统性能不稳定。为了更好地管理配置文件的变化,我建议使用动态配置管理工具,如Zookeeper。Zookeeper可帮我们在不耽误Solr正常运转的前提下更新配置,这样就不用担心因为调整设置而影响性能了。 4.2 监控与报警 最后,我强烈建议建立一套完善的监控和报警机制。通过实时盯着Solr的各种表现(比如查询速度咋样、CPU用得多不多等),我们就能赶紧发现状况,然后迅速出手解决。另外,咱们得设定好警报线,就像给系统设个底线。一旦性能掉到这线下,它就会自动给我们发警告。这样我们就能赶紧找出毛病,及时修好,不让小问题拖成大麻烦。例如,可以使用Prometheus和Grafana来搭建监控系统,代码示例如下: yaml Prometheus配置 global: scrape_interval: 15s scrape_configs: - job_name: 'solr' static_configs: - targets: ['localhost:8983'] json // Grafana仪表盘JSON配置 { "dashboard": { "panels": [ { "type": "graph", "title": "Solr查询响应时间", "targets": [ { "expr": "solr_query_response_time_seconds", "legendFormat": "{ {instance} }" } ] } ] } } 5. 结语 共勉与展望 总的来说,Solr查询性能不稳定是一个复杂的问题,可能涉及多方面的因素。咱们得从内部设置、外部依赖还有监控报警这些方面一起考虑,才能找出个靠谱的解决办法。在这个过程中,我也学到了很多,希望大家能够从中受益。未来,我将继续探索更多关于Solr优化的方法,希望能与大家共同进步! 希望这篇文章对你有所帮助,如果你有任何疑问或想法,欢迎随时交流讨论。
2025-02-08 16:04:27
36
蝶舞花间
Apache Solr
...展,Solr的运维与优化工作显得愈发重要。近期,Apache Solr社区发布了8.11版本,针对索引性能、资源利用率以及安全性等方面做出了显著改进。例如,新版本增强了对并发导入任务的支持,通过更精细化的内存管理机制有效提升了大数据量下的全文检索效率。 同时,鉴于数据安全日益受到重视,Apache Solr 8.11加强了权限控制和审计功能,支持更为细致的用户角色管理和操作记录追踪,这有助于企业更好地遵守GDPR等数据保护法规要求。此外,官方文档也提供了关于如何进一步增强Solr部署安全性的最新指导,包括但不限于SSL加密通信、防火墙规则设定以及内建的安全插件使用方法。 对于那些致力于构建高可用性搜索服务的开发者来说,不妨关注一些行业内的最佳实践案例,了解他们是如何利用Zookeeper进行Solr集群状态管理,或者结合Kubernetes实现Solr云原生部署,从而提升系统的稳定性和扩展性。 总之,持续跟进Apache Solr的最新发展动态和技术实践,不仅有助于解决实际运维中的痛点问题,更能确保搜索服务始终处于行业领先水平,满足业务高速发展的需求。
2023-05-31 15:50:32
497
山涧溪流-t
ClickHouse
...示例二:使用物化视图优化查询 继续上面的例子,如果我们发现SalesByCustomer视图被频繁访问,那么就可以进一步优化,将其转换为物化视图: sql -- 创建物化视图 CREATE MATERIALIZED VIEW SalesSummary ENGINE = MergeTree() ORDER BY customer_id AS SELECT customer_id, name, SUM(amount) AS total_sales FROM Sales JOIN Customers USING (customer_id) GROUP BY customer_id, name; -- 查询物化视图 SELECT FROM SalesSummary WHERE total_sales > 1000; 可以看到,相比之前的视图方式,物化视图不仅减少了重复计算,还提供了更好的性能表现。 --- 5. 总结与展望 总之,尽管ClickHouse在处理跨数据库或表的复杂查询方面存在一定的限制,但这并不意味着它无法胜任大型项目的需求。其实啊,只要咱们好好琢磨一下怎么安排和设计,这些问题根本就不用担心啦,还能把ClickHouse的好处发挥得足足的! 最后,我想说的是,技术本身并没有绝对的好坏之分,关键在于我们如何运用它。希望今天的分享能帮助你在使用ClickHouse的过程中更加得心应手。如果还有任何疑问或者想法,欢迎随时交流讨论哦! 加油,我们一起探索更多可能性吧!
2025-04-24 16:01:03
23
秋水共长天一色
Kibana
... 三、实战应用与优化 在实际项目中,自定义聚合函数可以极大地增强数据分析的能力。例如,你可能需要根据业务需求调整map_script中的条件,或者优化init_script和combine_script以提高性能。 实践建议: - 测试与调试:在部署到生产环境前,务必充分测试自定义聚合函数,确保其逻辑正确且性能良好。 - 性能考虑:自定义聚合函数可能会增加查询的复杂度和执行时间,特别是在处理大量数据时。合理设计脚本,避免不必要的计算,以提升效率。 - 可读性:保持代码简洁、注释清晰,方便团队成员理解和维护。 四、结语 自定义数据聚合函数是Kibana强大的功能之一,它赋予了用户无限的创造空间,能够针对特定业务需求进行精细的数据分析。通过本文的探索,相信你已经掌握了基本的实现方法。嘿,兄弟!你得记住,实践就是那最棒的导师。别老是坐在那里空想,多动手做做看,不断试验,然后调整改进。这样啊,你的数据洞察力,那可是能突飞猛进的。就像种花一样,你得浇水、施肥、修剪,它才会开花结果。所以,赶紧去实践吧,让自己的技能开枝散叶!在数据的海洋中航行,自定义聚合函数就是你手中的指南针,引领你发现更多宝藏。
2024-09-16 16:01:07
167
心灵驿站
Kotlin
...的潜力: 1. 性能优化:随着 Kotlin 与 JVM 的进一步优化,其性能有望与原生 Java 相媲美,甚至在某些场景下超越 Java。 2. 多平台支持:Kotlin 的跨平台能力将进一步加强,不仅限于 Android,还将扩展至 Web、服务器端等更多领域。 3. 社区驱动的发展:Kotlin 社区将继续推动语言的演进,通过收集开发者反馈、引入新特性和改进现有机制,保持其在编程语言市场中的领先地位。 4. 教育与培训:随着 Kotlin 在企业中的普及,针对 Kotlin 的在线课程、书籍和教程将更加丰富,有助于更多开发者快速掌握这门语言。 总之,Kotlin 作为一门高效、安全且功能丰富的编程语言,已经在开源社区和现代应用开发中占据了重要地位。随着技术的不断进步和社区的持续发展,Kotlin 有望在未来继续引领编程语言的趋势,为开发者提供更强大、更便捷的工具,促进软件开发的创新与发展。
2024-07-25 00:16:35
266
风轻云淡
转载文章
...arType字体渲染优化问题,微软等公司也在不断探索改进方案,力求在保证验证码安全性的前提下提升显示效果,减少毛边现象,提供更为平滑清晰的文字显示。而在实际应用中,如银行、社交平台等高安全需求场景,则纷纷开始采用多模态验证码,结合图形、语音等多种方式,构建更为立体全面的安全防护体系。 总之,验证码技术的演进充分体现了AI与安全领域的交叉融合,未来将进一步发展为智能、高效且人性化的身份验证机制,持续抵御自动化攻击,保障用户的网络安全。
2023-05-27 09:38:56
249
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
curl --compressed http://example.com
- 使用压缩方式获取网页内容。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"