前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[数据库版本不匹配 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...的Webpack 5版本中,对模块联邦(Module Federation)的支持使得跨项目共享CSS模块成为可能,极大地提升了大型项目的组件复用与协同开发效率。 同时,围绕Webpack进行优化和拓展的工具链也在持续发展。MiniCssExtractPlugin插件可以帮助开发者将CSS从JavaScript中提取出来,生成单独的CSS文件,这既有利于首屏加载性能优化,也便于服务端渲染场景下的样式应用。 另外,PostCSS作为一种强大的CSS处理器,在Webpack构建流程中扮演着重要角色,通过各种插件如Autoprefixer可以自动添加浏览器前缀,确保兼容性;而CSS Modules则能在Webpack中实现真正的CSS局部作用域,避免命名冲突问题。 此外,随着Tailwind CSS等实用工具类库的兴起,如何在Webpack配置中无缝集成这些库,实现高效的开发体验,也成为众多开发者关注的话题。Webpack不仅为CSS打包提供了解决方案,更是在推动前端工程化、模块化进程中起到了关键作用。 综上所述,Webpack对CSS的打包处理不仅是技术演进的表现,更是契合当下前端开发实践需求的重要手段。紧跟社区动态,深入了解并合理运用Webpack及相关工具链的各种功能,有助于提升项目整体质量和开发团队的工作效率。
2023-03-13 11:42:35
73
转载
HessianRPC
...。它用二进制的方式传数据,速度快得飞起,特别适合微服务里那些小家伙们互相聊天儿用!唉,说真的,再厉害的工具也有它的短板啊。就像这次我的服务莫名其妙挂掉了,想让它重新站起来吧,那过程简直跟做噩梦一样,折腾得我头都大了。 --- 2. 症状 服务异常的表象 服务崩溃的表现其实挺明显的。首先,客户端请求一直超时,没有任何响应。然后,服务器日志里开始出现各种错误信息,比如: java.net.SocketTimeoutException: Read timed out 或者更糟糕的: java.lang.NullPointerException 看到这些错误,我心里咯噔一下:“坏了,这可能是服务端出现了问题。”于是赶紧登录服务器查看情况。果然,服务进程已经停止运行了。更让我抓狂的是,重启服务后问题并没有解决,反而越搞越复杂。 --- 3. 原因分析 为什么恢复失败? 接下来,我们来聊聊为什么会发生这种状况。经过一番排查,我发现问题可能出在以下几个方面: 3.1 配置问题 第一个怀疑对象是配置文件。HessianRPC的配置其实很简单,但有时候细节决定成败。比如说啊,在配置文件里我给超时时间设成了5秒,结果一到高并发那场面,这时间简直不够塞牙缝的,分分钟就崩了。修改配置后,虽然有一定的改善,但问题依然存在。 java // 修改HessianRPC的超时时间 Properties properties = new Properties(); properties.setProperty("hessian.read.timeout", "10000"); // 设置为10秒 3.2 线程池耗尽 第二个怀疑对象是线程池。HessianRPC默认使用线程池来处理请求,但如果线程池配置不当,可能会导致线程耗尽,进而引发服务不可用。我检查了一下线程池参数,发现最大线程数设置得太低了。 java // 修改线程池配置 ExecutorService executor = Executors.newFixedThreadPool(50); // 将线程数增加到50 3.3 内存泄漏 第三个怀疑对象是内存泄漏。有时候服务崩溃并不是因为CPU或网络的问题,而是内存不足导致的。我用JProfiler这个工具去给服务做了一次内存“体检”,结果一查,嘿,还真揪出了几个“大块头”对象,愣是赖在那儿没走,该回收的内存也没释放掉。 java // 使用WeakReference避免内存泄漏 WeakReference weakRef = new WeakReference<>(new Object()); --- 4. 解决方案 一步步修复服务 好了,找到了问题所在,接下来就是动手解决问题了。这里分享一些具体的解决方案,希望能帮到大家。 4.1 优化配置 首先,优化配置是最直接的方式。我调整了HessianRPC的超时时间和线程池大小,让服务能够更好地应对高并发场景。 java // 配置HessianRPC客户端 HessianProxyFactory factory = new HessianProxyFactory(); factory.setOverloadEnabled(true); // 开启方法重载 factory.setConnectTimeout(5000); // 设置连接超时时间为5秒 factory.setReadTimeout(10000); // 设置读取超时时间为10秒 4.2 异常处理 其次,完善异常处理机制也很重要。我给这个服务加了不少“兜底”的代码,就像在每个关键步骤都放了个小垫子,这样就算某个地方突然“摔跤”了,整个服务也不至于直接“趴下”,还能继续撑着运行。 java try { // 执行业务逻辑 } catch (Exception e) { log.error("服务执行失败", e); } 4.3 日志监控 最后,加强日志监控也是必不可少的。嘿,我装了个ELK日志系统,就是那个 Elasticsearch、Logstash 和 Kibana 的组合拳,专门用来实时盯着服务的日志输出。只要一出问题,我马上就能找到是哪里卡住了,超方便! java // 使用Logback记录日志 logs/service.log %d{yyyy-MM-dd HH:mm:ss} [%thread] %-5level %logger{36} - %msg%n --- 5. 总结 从失败中成长 经过这次折腾,我对HessianRPC有了更深的理解,也明白了一个道理:技术不是一蹴而就的,需要不断学习和实践。虽然这次服务异常恢复失败的经历让我很沮丧,但也让我积累了宝贵的经验。 如果你也有类似的问题,不妨按照以下步骤去排查: 1. 检查配置文件,确保所有参数都合理。 2. 监控线程池状态,避免线程耗尽。 3. 使用工具检测内存泄漏,及时清理无用资源。 4. 完善异常处理机制,增强服务的健壮性。 希望这篇文章能对你有所帮助!如果还有其他问题,欢迎随时交流。我们一起进步,一起成长! --- PS:记住,技术之路虽难,但每一步都是值得的!
2025-05-05 15:38:48
31
风轻云淡
HessianRPC
...接给用户返回个备用的数据,省得一直傻乎乎地去重试那个挂掉的服务,多浪费时间啊! 下面是一个基于HessianRPC的熔断器实现: java public class CircuitBreaker { private final T delegate; private boolean open = false; private int failureCount = 0; public CircuitBreaker(T delegate) { this.delegate = delegate; } public T getDelegate() { if (open && failureCount > 5) { return null; // 返回null表示断路器处于打开状态 } return delegate; } public void recordFailure() { failureCount++; if (failureCount >= 5) { open = true; } } } 将熔断器集成到之前的装饰器中: java public class CircuitBreakingUserServiceDecorator implements UserService { private final CircuitBreaker circuitBreaker; public CircuitBreakingUserServiceDecorator(CircuitBreaker circuitBreaker) { this.circuitBreaker = circuitBreaker; } @Override public UserInfo getUserInfo(int userId) { UserService userService = circuitBreaker.getDelegate(); if (userService == null) { return new UserInfo(-1, "Circuit Opened", "Service Unavailable"); } try { return userService.getUserInfo(userId); } catch (Exception e) { circuitBreaker.recordFailure(); return new UserInfo(-1, "Fallback User", "Service Unavailable"); } } } 这样,我们就能够在一定程度上缓解高负载带来的压力,并且确保系统的稳定性。 5. 总结与展望 回顾这次经历,我深刻体会到服务降级并不是一件轻松的事情。这事儿吧,不光得靠技术硬功夫,还得会提前打算,脑子转得也得快,不然真容易手忙脚乱。虽然HessianRPC没有提供现成的服务降级工具,但通过灵活运用设计模式,我们完全可以打造出适合自己项目的解决方案。 未来,我希望能够在更多场景下探索HessianRPC的应用潜力,同时也期待社区能够推出更加完善的降级框架,让开发者们少走弯路。毕竟,谁不想写出既高效又优雅的代码呢?如果你也有类似的经历或想法,欢迎随时交流讨论!
2025-05-01 15:44:28
18
半夏微凉
转载文章
...lerview并显示数据 这里我不再啰嗦,recylerview最基础的使用。 二,监听recylerview的滚动事件OnScrollListener onScrollStateChanged:监听滚动状态 onScrolled:监听滚动 我们接下来的统计工作,就是拿这两个方法做文章。 //检测recylerview的滚动事件recyclerView.addOnScrollListener(new RecyclerView.OnScrollListener() {@Overridepublic void onScrollStateChanged(RecyclerView recyclerView, int newState) {/我这里通过的是停止滚动后屏幕上可见view。如果滚动过程中的可见view也要统计,你可以根据newState去做区分SCROLL_STATE_IDLE:停止滚动SCROLL_STATE_DRAGGING: 用户慢慢拖动SCROLL_STATE_SETTLING:惯性滚动/if (newState == RecyclerView.SCROLL_STATE_IDLE) {.....} }@Overridepublic void onScrolled(RecyclerView recyclerView, int dx, int dy) {super.onScrolled(recyclerView, dx, dy);........} });复制代码 首先再次明确下,我们要统计的是用户停止滑动时,显示在屏幕的上控件。所以我们要监测到onScrollStateChanged 方法中 newState == RecyclerView.SCROLL_STATE_IDLE 时,也就是用户停止滚动。然后在这里做文章。 三,获取屏幕内可见条目的起始位置 这里的起始位置就是指我们屏幕当中最上面和最下面条目的位置。比如下图的0就是最上面的可见条目,3就是最下面的可见条目。我们次数的曝光view就是0,1,2,3 这个时候这四个条目显示在屏幕中。我们这时就要对这4个view的曝光量进行加1 那么接下来的重点就是要去获取屏幕内可见条目的起始位置。获取到起始位置后,当前屏幕里的可见条目就都能拿到了。 而recylerview的manager正好给我们提供的有对应的方法。 findFirstVisibleItemPosition()和findLastVisibleItemPosition() 看字面意思就能知道这时干嘛用的。 但是我们的manager不止LinearLayoutManager一种,所以我们要做下区分, //这里我们用一个数组来记录起始位置int[] range = new int[2];RecyclerView.LayoutManager manager = reView.getLayoutManager();if (manager instanceof LinearLayoutManager) {range = findRangeLinear((LinearLayoutManager) manager);} else if (manager instanceof GridLayoutManager) {range = findRangeGrid((GridLayoutManager) manager);} else if (manager instanceof StaggeredGridLayoutManager) {range = findRangeStaggeredGrid((StaggeredGridLayoutManager) manager);}复制代码 LinearLayoutManager和GridLayoutManager获取起始位置方法如下 private int[] findRangeLinear(LinearLayoutManager manager) {int[] range = new int[2];range[0] = manager.findFirstVisibleItemPosition();range[1] = manager.findLastVisibleItemPosition();return range;}private int[] findRangeGrid(GridLayoutManager manager) {int[] range = new int[2];range[0] = manager.findFirstVisibleItemPosition();range[1] = manager.findLastVisibleItemPosition();return range;}复制代码 StaggeredGridLayoutManager获取起始位置有点复杂,如下 private int[] findRangeStaggeredGrid(StaggeredGridLayoutManager manager) {int[] startPos = new int[manager.getSpanCount()];int[] endPos = new int[manager.getSpanCount()];manager.findFirstVisibleItemPositions(startPos);manager.findLastVisibleItemPositions(endPos);int[] range = findRange(startPos, endPos);return range;}private int[] findRange(int[] startPos, int[] endPos) {int start = startPos[0];int end = endPos[0];for (int i = 1; i < startPos.length; i++) {if (start > startPos[i]) {start = startPos[i];} }for (int i = 1; i < endPos.length; i++) {if (end < endPos[i]) {end = endPos[i];} }int[] res = new int[]{start, end};return res;}复制代码 四,获取到起始位置以后,我们就根据位置获取到view及view中的数据 上面第三步拿到屏幕内可见条目的起始位置以后,我们就用一个for循环,获取当前屏幕内可见的所有子view for (int i = range[0]; i <= range[1]; i++) {View view = manager.findViewByPosition(i);recordViewCount(view);}复制代码 recordViewCount是我自己写的用于获取子view内绑定数据的方法 //获取view绑定的数据private void recordViewCount(View view) {if (view == null || view.getVisibility() != View.VISIBLE ||!view.isShown() || !view.getGlobalVisibleRect(new Rect())) {return;}int top = view.getTop();int halfHeight = view.getHeight() / 2;int screenHeight = UiUtils.getScreenHeight((Activity) view.getContext());int statusBarHeight = UiUtils.getStatusBarHeight(view.getContext());if (top < 0 && Math.abs(top) > halfHeight) {return;}if (top > screenHeight - halfHeight - statusBarHeight) {return;}//这里获取的是我们view绑定的数据,相应的你要去在你的view里setTag,只有set了,才能getItemData tag = (ItemData) view.getTag();String key = tag.toString();if (TextUtils.isEmpty(key)) {return;}hashMap.put(key, !hashMap.containsKey(key) ? 1 : (hashMap.get(key) + 1));Log.i("qcl0402", key + "----出现次数:" + hashMap.get(key));}复制代码 这里有几点需要注意 1,这这里起始位置的view显示区域如果不超过50%,就不算这个view可见,进而也就不统计曝光。 2,我们通过view.getTag();获取view里的数据,必须在此之前setTag()数据,我这里setTag是在viewholder中把数据set进去的 到这里我们就实现了recylerview列表中view控件曝光量的统计了。下面贴出来完整的代码给大家 package com.example.qcl.demo.xuexi.baoguang;import android.app.Activity;import android.graphics.Rect;import android.support.v7.widget.GridLayoutManager;import android.support.v7.widget.LinearLayoutManager;import android.support.v7.widget.RecyclerView;import android.support.v7.widget.StaggeredGridLayoutManager;import android.text.TextUtils;import android.util.Log;import android.view.View;import com.example.qcl.demo.utils.UiUtils;import java.util.concurrent.ConcurrentHashMap;/ 2019/4/2 13:31 author: qcl desc: 安卓曝光量统计工具类 wechat:2501902696/public class ViewShowCountUtils {//刚进入列表时统计当前屏幕可见viewsprivate boolean isFirstVisible = true;//用于统计曝光量的mapprivate ConcurrentHashMap<String, Integer> hashMap = new ConcurrentHashMap<String, Integer>();/ 统计RecyclerView里当前屏幕可见子view的曝光量 /void recordViewShowCount(RecyclerView recyclerView) {hashMap.clear();if (recyclerView == null || recyclerView.getVisibility() != View.VISIBLE) {return;}//检测recylerview的滚动事件recyclerView.addOnScrollListener(new RecyclerView.OnScrollListener() {@Overridepublic void onScrollStateChanged(RecyclerView recyclerView, int newState) {/我这里通过的是停止滚动后屏幕上可见view。如果滚动过程中的可见view也要统计,你可以根据newState去做区分SCROLL_STATE_IDLE:停止滚动SCROLL_STATE_DRAGGING: 用户慢慢拖动SCROLL_STATE_SETTLING:惯性滚动/if (newState == RecyclerView.SCROLL_STATE_IDLE) {getVisibleViews(recyclerView);} }@Overridepublic void onScrolled(RecyclerView recyclerView, int dx, int dy) {super.onScrolled(recyclerView, dx, dy);//刚进入列表时统计当前屏幕可见viewsif (isFirstVisible) {getVisibleViews(recyclerView);isFirstVisible = false;} }});}/ 获取当前屏幕上可见的view /private void getVisibleViews(RecyclerView reView) {if (reView == null || reView.getVisibility() != View.VISIBLE ||!reView.isShown() || !reView.getGlobalVisibleRect(new Rect())) {return;}//保险起见,为了不让统计影响正常业务,这里做下try-catchtry {int[] range = new int[2];RecyclerView.LayoutManager manager = reView.getLayoutManager();if (manager instanceof LinearLayoutManager) {range = findRangeLinear((LinearLayoutManager) manager);} else if (manager instanceof GridLayoutManager) {range = findRangeGrid((GridLayoutManager) manager);} else if (manager instanceof StaggeredGridLayoutManager) {range = findRangeStaggeredGrid((StaggeredGridLayoutManager) manager);}if (range == null || range.length < 2) {return;}Log.i("qcl0402", "屏幕内可见条目的起始位置:" + range[0] + "---" + range[1]);for (int i = range[0]; i <= range[1]; i++) {View view = manager.findViewByPosition(i);recordViewCount(view);} } catch (Exception e) {e.printStackTrace();} }//获取view绑定的数据private void recordViewCount(View view) {if (view == null || view.getVisibility() != View.VISIBLE ||!view.isShown() || !view.getGlobalVisibleRect(new Rect())) {return;}int top = view.getTop();int halfHeight = view.getHeight() / 2;int screenHeight = UiUtils.getScreenHeight((Activity) view.getContext());int statusBarHeight = UiUtils.getStatusBarHeight(view.getContext());if (top < 0 && Math.abs(top) > halfHeight) {return;}if (top > screenHeight - halfHeight - statusBarHeight) {return;}//这里获取的是我们view绑定的数据,相应的你要去在你的view里setTag,只有set了,才能getItemData tag = (ItemData) view.getTag();String key = tag.toString();if (TextUtils.isEmpty(key)) {return;}hashMap.put(key, !hashMap.containsKey(key) ? 1 : (hashMap.get(key) + 1));Log.i("qcl0402", key + "----出现次数:" + hashMap.get(key));}private int[] findRangeLinear(LinearLayoutManager manager) {int[] range = new int[2];range[0] = manager.findFirstVisibleItemPosition();range[1] = manager.findLastVisibleItemPosition();return range;}private int[] findRangeGrid(GridLayoutManager manager) {int[] range = new int[2];range[0] = manager.findFirstVisibleItemPosition();range[1] = manager.findLastVisibleItemPosition();return range;}private int[] findRangeStaggeredGrid(StaggeredGridLayoutManager manager) {int[] startPos = new int[manager.getSpanCount()];int[] endPos = new int[manager.getSpanCount()];manager.findFirstVisibleItemPositions(startPos);manager.findLastVisibleItemPositions(endPos);int[] range = findRange(startPos, endPos);return range;}private int[] findRange(int[] startPos, int[] endPos) {int start = startPos[0];int end = endPos[0];for (int i = 1; i < startPos.length; i++) {if (start > startPos[i]) {start = startPos[i];} }for (int i = 1; i < endPos.length; i++) {if (end < endPos[i]) {end = endPos[i];} }int[] res = new int[]{start, end};return res;} }复制代码 使用就是在我们的recylerview设置完数据以后,把recylerview传递进去就可以了。如下图: 我们统计到曝光量,拿到曝光view绑定的数据,就可以结合后面的view点击,来看下那些商品view的曝光量高,那些商品的转化率高。当然,这都是运营小伙伴的事了,我们只需要负责把曝光量统计到即可。 如果你有任何编程方面的问题,可以加我微信交流 2501902696(备注编程) by:年糕妈妈qcl 转载于:https://juejin.im/post/5ca30ad1e51d4514c01634f1 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34150503/article/details/91475198。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-29 13:55:00
323
转载
RabbitMQ
...间,严重时甚至会导致数据丢失或服务不可用。所以啊,我们要想办法让系统变得更皮实,就算碰到那些麻烦事儿,它也能稳如老狗,继续正常运转。 3. 如何优雅地处理连接故障 3.1 使用重试机制 首先,我们可以利用重试机制来应对短暂的网络波动或临时性的服务不可用。通过设置合理的重试次数和间隔时间,可以有效地提高消息传递的成功率。以下是一个简单的Python代码示例,展示了如何使用pika库连接到RabbitMQ服务器,并在连接失败时进行重试: python import pika from time import sleep def connect_to_rabbitmq(): max_retries = 5 retry_delay = 5 seconds for i in range(max_retries): try: connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) print("成功连接到RabbitMQ") return connection except Exception as e: print(f"尝试{i+1}连接失败,将在{retry_delay}秒后重试...") sleep(retry_delay) print("多次重试后仍无法连接到RabbitMQ,程序将退出") exit(1) 调用函数尝试建立连接 connection = connect_to_rabbitmq() 3.2 实施断线重连策略 除了基本的重试机制外,我们还可以实现更复杂的断线重连策略。例如,当检测到连接异常时,立即尝试重新建立连接,并记录重连日志以便后续分析。另外,我们也可以试试用指数退避算法来调整重连的时间间隔,这样就不会在短时间内反复向服务器发起连接请求,也能让服务器稍微轻松一点。 下面展示了一个基于RabbitMQ官方客户端库pika的断线重连示例: python import pika from time import sleep class ReconnectingRabbitMQClient: def __init__(self, host='localhost'): self.host = host self.connection = None self.channel = None def connect(self): while True: try: self.connection = pika.BlockingConnection(pika.ConnectionParameters(self.host)) self.channel = self.connection.channel() print("成功连接到RabbitMQ") break except Exception as e: print(f"尝试连接失败,将在{2self.retry_count}秒后重试...") self.retry_count += 1 sleep(2self.retry_count) def close(self): if self.connection: self.connection.close() def send_message(self, message): if not self.channel: self.connect() self.channel.basic_publish(exchange='', routing_key='hello', body=message) client = ReconnectingRabbitMQClient() client.send_message('Hello World!') 在这个例子中,我们创建了一个ReconnectingRabbitMQClient类,它包含了连接、关闭连接以及发送消息的方法。特别要注意的是connect方法里的那个循环,这家伙每次连接失败后都会先歇一会儿,然后再杀回来试试看。而且这休息的时间也是越来越长,越往后重试间隔就按指数往上翻。 3.3 异步处理与心跳机制 对于那些需要长时间保持连接的应用场景,我们还可以采用异步处理方式,配合心跳机制来维持连接的有效性。心跳其实就是一种简单的保活方法,就像定时给对方发个信息或者挥挥手,确认一下对方还在不在。这样就能赶紧发现并搞定那些断掉的连接,免得因为放太长时间没动静而导致连接中断的问题。 4. 总结与展望 处理RabbitMQ中的连接故障是一项复杂但至关重要的任务。通过上面提到的几种招数——比如重试机制、断线重连和心跳监测,我们的系统会变得更强壮,也更靠谱了。当然,针对不同应用场景和需求,还需要进一步定制化和优化这些方案。比如说,对于那些对延迟特别敏感的应用,你得更仔细地调整重试策略,不然用户可能会觉得卡顿或者直接闪退。至于那些需要应对海量并发连接的场景嘛,你就得上点“硬货”了,比如用更牛的技术来搞定负载均衡和集群管理,这样才能保证系统稳如老狗。总而言之,就是咱们得不停地试啊试的,然后就能慢慢弄出个既快又稳的分布式消息传递系统。 --- 以上就是关于RabbitMQ中如何处理连接故障的一些探讨。希望这些内容能帮助你在实际工作中更好地应对挑战,打造更加可靠的应用程序。如果你有任何疑问或想要分享自己的经验,请随时留言讨论!
2024-12-02 16:11:51
95
红尘漫步
转载文章
...问题。 不能突出匹配企业职位的要求。以软件工程师为例,简历上写熟悉面向对象、精通C++,只能说出多态、继承几个名词,用过vector、string;学习C和C++除了谭老的书,就很少自己看其他的;想从事软件工程师,连“新手圣经”代码大全没有听说过。在面试的20多人中,没有一个人拿着笔记本来演示他写的程序,我们都是干说。 对比较适合的人,我都建议他们先看看代码大全、设计模式,不管是否来我们公司。其实,一个真正对某件事情感兴趣的同学,他会主动去找资源,深入理解,不会等到应聘的时候再抱佛脚,找借口。 3. 招聘是体力活 外出前就有些感冒,招聘过程中,拿带子断掉的易拉宝宣传盒子,提数斤重的简历试题,在酒店昏暗灯光中阅卷,坐在椅子中一天且不停地说话,做5小时高铁。。。最后感觉都是机械式的动作,实在是体力活,感冒在武汉有加重倾向,回到深圳后,在草窝中睡了一天,第2天就好了一半。 离开武汉5年多了,本次去武汉招聘,趁着晚上休息时刻,去拜访老师和室友。好久不去,武汉修了环城路,打车都找不到地方,只能到附近的金三利酒店,再重温上学的路。在老师家品尝了招牌的红烧武昌鱼,木耳鸡翅膀,见识老师几十年的工作成果奖励。去室友家,他家公子见到生人就不停的哭,呵呵。回到酒店想一想,时间不在了,记忆模糊了,唯有文字记录之。 节后,我们还要继续后续的校园招聘。(北京、哈尔滨校园招聘记录) 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhouyulu/article/details/8033464。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-02-02 13:16:24
525
转载
c++
...顾客满意度。这种基于数据驱动的决策方式,正是现代企业追求精细化运营的重要体现。 与此同时,开源社区也在不断壮大,许多开发者通过GitHub等平台分享自己的代码成果。这不仅促进了技术交流,也为初学者提供了宝贵的学习资源。例如,一个名为“Awesome-CPP”的项目整理了大量高质量的C++开源库,涵盖了从图形处理到网络通信等多个领域,极大地降低了开发者的学习门槛和技术壁垒。 此外,随着元宇宙概念的兴起,虚拟现实(VR)和增强现实(AR)技术正逐渐成为新的热点。一些高校和研究机构正在积极开展相关领域的研究,试图解决硬件性能瓶颈及用户体验等问题。例如,某大学实验室开发了一套基于SLAM技术的室内导航系统,能够在复杂环境中实现高精度定位,为未来的智能城市建设奠定了基础。 值得注意的是,在全球范围内,各国政府都在加大对科技创新的支持力度。美国出台了多项鼓励高科技产业发展的政策,而欧盟则推出了《数字服务法案》,旨在规范互联网平台的行为,保护用户隐私权。这些举措无疑将进一步推动全球科技生态的发展,为程序员们创造更多机会。 综上所述,无论是技术创新还是政策支持,都表明当前正处于一个充满机遇的时代。对于程序员而言,保持对新技术的关注,并不断提升自身技能,将是适应未来挑战的关键所在。
2025-03-25 15:39:59
11
幽谷听泉_
Kafka
... 一、引言 在大数据处理领域,Apache Kafka凭借其高吞吐量、低延迟、可靠的消息传递特性,成为了构建实时数据流处理系统的首选工具。Kafka中的一个关键概念是Consumer Group,它允许多个消费者同时消费来自同一主题的消息,从而实现负载均衡和容错。哎呀,你懂的,有时候在Consumer Group群里,突然有人掉线了,或者人少了点,这可就有点棘手了。毕竟,要是咱们这个小团体不稳当,效率也上不去啊。就像是打游戏,队伍一散,那可就难玩了不是?得想办法让咱们这个小组子,既能稳住阵脚,又能跑得快,对吧?本文将深入探讨这一问题,并提供解决方案。 二、问题现象与原因分析 现象描述: 在实际应用中,一旦某个Consumer Group成员(即消费者实例)发生故障或网络中断,该成员将停止接收新的消息。哎呀,你知道的,如果团队里的小伙伴们没能在第一时间察觉并接手这部分信息的处理任务,那可就麻烦了。就像你堆了一大堆未读邮件在收件箱里,久而久之,不光显得杂乱无章,还可能拖慢你整日的工作节奏,对不对?同样的道理,信息堆积多了,整个系统的运行效率就会变慢,稳定性也容易受到威胁。所以,大家得互相帮忙,及时分担任务,保持信息流通顺畅,这样才能让我们的工作更高效,系统也更稳定! 原因分析: 1. 成员间通信机制不足 Kafka默认不提供成员间的心跳检测机制,依赖于应用开发者自行实现。 2. 配置管理不当 如未能正确配置自动重平衡策略,可能导致成员在故障恢复后无法及时加入Group,或加入错误的Group。 3. 资源调度问题 在高并发场景下,资源调度不均可能导致部分成员承担过多的消费压力,而其他成员则处于空闲状态。 三、解决策略 1. 实现心跳检测机制 为了检测成员状态,可以实现一个简单的心跳检测机制,通过定期向Kafka集群发送心跳信号来检查成员的存活状态。如果长时间未收到某成员的心跳响应,则认为该成员可能已故障,并从Consumer Group中移除。以下是一个简单的Java示例: java import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; public class HeartbeatConsumer extends AbstractKafkaConsumer { private static final long HEARTBEAT_INTERVAL = 60 1000; // 心跳间隔时间,单位毫秒 @Override public void onConsume() { while (true) { try { Thread.sleep(HEARTBEAT_INTERVAL); if (!isAlive()) { System.out.println("Heartbeat failure detected."); // 可以在这里添加逻辑来处理成员故障,例如重新加入组或者通知其他成员。 } } catch (InterruptedException e) { Thread.currentThread().interrupt(); } } } private boolean isAlive() { // 实现心跳检测逻辑,例如发送心跳请求并等待响应。 return true; // 假设总是返回true,需要根据实际情况调整。 } } 2. 自动重平衡策略 合理配置Kafka的自动重平衡策略,确保在成员故障或加入时能够快速、平滑地进行组内成员的重新分配。利用Kafka的API或自定义逻辑来监控成员状态,并在需要时触发重平衡操作。例如: java KafkaConsumer consumer = new KafkaConsumer<>(config); consumer.subscribe(Arrays.asList(topic)); while (true) { ConsumerRecords records = consumer.poll(Duration.ofMillis(100)); for (ConsumerRecord record : records) { // 处理消息... } // 检查组成员状态并触发重平衡 if (needRebalance()) { consumer.leaveGroup(); consumer.close(); consumer = new KafkaConsumer<>(config); consumer.subscribe(Arrays.asList(topic)); } } private boolean needRebalance() { // 根据实际情况判断是否需要重平衡,例如检查成员状态等。 return false; } 3. 资源均衡与优化 设计合理的资源分配策略,确保所有成员在消费负载上达到均衡。可以考虑动态调整成员的消费速度、优化网络路由策略等手段,以避免资源的过度集中或浪费。 四、总结 解决Consumer Group成员失散的问题,需要从基础的通信机制、配置管理、到高级的资源调度策略等多个层面综合考虑。哎呀,咱们得好好琢磨琢磨这事儿!要是咱们能按这些策略来操作,不仅能稳稳地扛住成员出了状况的难题,还能让整个系统变得更加强韧,处理问题的能力也大大提升呢!就像是给咱们的团队加了层保护罩,还能让咱们干活儿更顺畅,效率蹭蹭往上涨!哎呀,兄弟,你得明白,在真刀真枪地用上这套系统的时候,咱们可不能死板地照着书本念。得根据你的业务需求,就像给娃挑衣服一样,挑最合适的那一件。还得看咱们的系统架构,就像是厨房里的调料,少了哪一味都不行。得灵活调整,就像变魔术一样,让性能和稳定性这俩宝贝儿,一个不落地都达到最好状态。这样,咱们的系统才能像大厨做菜一样,色香味俱全,让人爱不释口!
2024-08-11 16:07:45
53
醉卧沙场
Dubbo
...,比如服务名称、接口版本、错误堆栈等。不过啊,这些东西通常不会直接告诉我们哪里出了岔子,得我们自己去刨根问底才行。 比如说,你可能会看到这样的报错: Failed to invoke remote method: sayHello, on 127.0.0.1:20880 看到这个错误,你是不是会觉得很懵?其实这可能是因为你的服务端没有正确启动,或者客户端的配置不对。又或者是网络不通畅,导致客户端无法连接到服务端。 再比如,你可能会遇到这种错误: No provider available for the service com.example.UserService on the consumer 192.168.1.100 use dubbo version 2.7.8 这表明你的消费者(也就是客户端)找不到提供者(也就是服务端)。哎呀,这问题八成是服务注册中心没整利索,要不就是服务提供方压根没成功注册上。 我的建议是,遇到这种问题时,先别急着改代码,而是要冷静下来分析一下,是不是配置文件出了问题。比如说,你是不是忘记在dubbo.properties里填对了服务地址? --- 三、排查报错的具体步骤 接下来,咱们来聊聊怎么排查这些问题。首先,你需要确认服务端是否正常运行。你可以通过以下命令查看服务端的状态: bash netstat -tuln | grep 20880 如果看不到监听的端口,那肯定是服务端没启动成功。 然后,检查服务注册中心是否正常工作。Dubbo支持多种注册中心,比如Zookeeper、Nacos等。如果你用的是Zookeeper,可以试试进入Zookeeper的客户端,看看服务是否已经注册: bash zkCli.sh -server 127.0.0.1:2181 ls /dubbo/com.example.UserService 如果这里看不到服务,那就说明服务注册中心可能有问题。 最后,别忘了检查客户端的配置。客户端的配置文件通常是dubbo-consumer.xml,里面需要填写服务提供者的地址。例如: xml 如果地址写错了,当然就会报错了。 --- 四、代码示例与实际案例分析 下面我给大家举几个具体的例子,让大家更直观地了解Dubbo的报错排查过程。 示例1:服务启动失败 假设你在本地启动服务端时,发现服务一直无法启动,报错如下: Failed to bind URL: dubbo://192.168.1.100:20880/com.example.UserService?anyhost=true&application=demo-provider&dubbo=2.7.8&interface=com.example.UserService&methods=sayHello&pid=12345&side=provider×tamp=123456789 经过检查,你会发现是因为服务端的application.name配置错了。修改后,重新启动服务端,问题就解决了。 示例2:服务找不到 假设你在客户端调用服务时,发现服务找不到,报错如下: No provider available for the service com.example.UserService on the consumer 192.168.1.100 use dubbo version 2.7.8 经过排查,你发现服务注册中心的地址配置错了。正确的配置应该是: xml 示例3:网络不通 假设你在生产环境中,发现客户端和服务端之间的网络不通,报错如下: ConnectException: Connection refused 这时候,你需要检查防火墙设置,确保服务端的端口是开放的。同时,也要检查客户端的网络配置,确保能够访问服务端。 --- 五、总结与感悟 总的来说,Dubbo的报错信息确实有时候让人摸不着头脑,但它并不是不可战胜的。只要你细心排查,结合具体的环境和配置,总能找到问题的根源。 在这个过程中,我学到的东西太多了。比如说啊,别啥都相信默认设置,每一步最好自己动手试一遍,心里才踏实。再比如说,碰到问题的时候,先别忙着去找同事求助,自己多琢磨琢磨,说不定就能找到解决办法了呢!毕竟,编程的乐趣就在于不断解决问题的过程嘛! 最后,我想说的是,Dubbo虽然复杂,但它真的很棒。希望大家都能掌握它,让它成为我们技术生涯中的一把利器!
2025-03-20 16:29:46
66
雪落无痕
Spark
...发领域,尤其是大规模数据处理项目中,如使用Apache Spark构建的分布式计算框架,日志记录成为了不可或缺的一部分。哎呀,这些家伙可真是帮了大忙了!它们就像是你编程时的私人侦探,随时盯着你的代码,一有风吹草动就给你报信。特别是当你遇上疑难杂症,它们能迅速揪出问题所在,就像医生找病因一样专业。有了它们,找bug、修bug的过程变得快捷又高效,简直就像开了挂一样爽快!哎呀,咱们这篇文章啊,就是要好好聊聊在Spark这个超级棒的大数据处理工具里,咱们可能会遇到的各种小麻烦,还有呢,怎么用那些日志记录来帮咱们找到问题的根儿。你想象一下,就像你在厨房里做饭,突然发现菜炒糊了,这时候你就会看看锅底,找找是火开太大了还是调料放多了,对吧?这文章呢,就是想教你用同样的方法,在大数据的世界里,通过查看日志,找出你的Spark程序哪里出了问题,然后迅速解决它,让一切恢复正常。是不是听起来既实用又有趣?咱们这就开始吧! 二、Spark错误类型概述 Spark应用程序可能遭遇多种错误类型,从内存溢出、任务失败到网络通信异常等。这些错误通常由日志系统捕获并记录下来,为后续分析提供依据。下面,我们将通过几个具体的错误示例来了解如何阅读和解析Spark日志文件。 三、实例代码 简单的Spark Word Count应用 首先,让我们构建一个简单的Spark Word Count应用作为起点。这个应用旨在统计文本文件中单词的频率。 scala import org.apache.spark.SparkConf import org.apache.spark.SparkContext object WordCount { def main(args: Array[String]) { val conf = new SparkConf().setAppName("Word Count").setMaster("local") val sc = new SparkContext(conf) val textFile = sc.textFile("file:///path/to/your/textfile.txt") val counts = textFile.flatMap(line => line.split(" ")) .map(word => (word, 1)) .reduceByKey(_ + _) counts.saveAsTextFile("output") sc.stop() } } 四、错误日志分析 内存溢出问题 在实际运行上述应用时,如果输入文本文件过大,可能会导致内存溢出错误。日志文件中可能会出现类似以下的信息: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 37.0 failed 1 times, most recent failure: Lost task 0.3 in stage 37.0 (TID 208, localhost): java.lang.OutOfMemoryError: Java heap space 这段日志信息清晰地指出错误原因(OutOfMemoryError: Java heap space),并提供了关键细节,包括任务编号、所在节点以及错误类型。针对这一问题,可以通过增加Spark集群的内存资源或者优化数据处理逻辑来解决。 五、调试策略与最佳实践 1. 使用日志级别 调整日志级别(如INFO、DEBUG)可以帮助开发者在日志中获取更多详细信息。 2. 定期检查日志 通过自动化工具定期检查日志文件,可以及时发现潜在问题。 3. 利用Spark UI Spark自带的Web UI提供了详细的作业监控界面,直观显示任务状态和性能指标。 4. 错误重试机制 合理配置Spark任务的重试策略,避免因一次失败而影响整体进程。 5. 性能监控工具 集成性能监控工具(如Prometheus、Grafana)有助于实时监控系统性能,预防内存泄漏等严重问题。 六、总结与展望 日志记录是Spark应用程序开发和维护过程中的关键环节。哎呀,你知道吗?程序员们在遇到bug(小错误)的时候,那可是得使出浑身解数了!他们可不是对着电脑屏幕发呆,而是会仔细地分析问题,就像侦探破案一样。找到问题的源头后,他们就开始了他们的“调试大作战”,就像是医生给病人开药一样精准。通过这些努力,他们能优化代码,让程序跑得更顺畅,就像给汽车加了润滑剂,不仅跑得快,还稳当当的。这样,我们的应用就能更加可靠,用户用起来也更舒心啦!哎呀,你懂的,随着咱们每天产生的数据就像自来水一样哗哗流,那处理这些数据的大数据工具就得越来越厉害才行。特别是那些记录我们操作痕迹的日志管理系统,不仅要快得跟闪电一样,操作起来还得像玩手机游戏一样简单,最好还能自己动脑筋分析出点啥有价值的信息来。这样,未来日志记录这事儿就不仅仅是记录,还能帮我们找到问题、优化流程,简直就是一大神器嘛!所以,你看,这发展方向就是越来越智能、好用、高效,让科技真正服务于人,而不是让人被科技牵着鼻子走。 --- 通过本文的探讨,我们不仅学习了如何理解和利用Spark的日志信息来诊断问题,还了解了一些实用的调试技巧和最佳实践。希望这些内容能帮助你更有效地管理你的Spark应用程序,确保其在复杂的数据处理场景下稳定运行。
2024-09-07 16:03:18
141
秋水共长天一色
Kibana
...ibana中如何设置数据保留策略? 1. 前言 为什么我们需要数据保留策略? 嗨朋友们!今天咱们聊聊一个非常实用的话题——在Kibana中如何设置数据保留策略。先问问大家,你们有没有遇到过这样的情况?存储空间告急,系统提示“磁盘已满”;或者不小心存了太多无用的数据,导致查询速度慢得像乌龟爬……这些问题是不是让你头疼?别担心,Kibana可以帮助我们轻松管理数据,而数据保留策略就是其中的重要一环。 其实,数据保留策略的核心思想很简单:只保留必要的数据,删除那些不再需要的垃圾信息。这不仅能够节省宝贵的存储资源,还能提高系统的运行效率。所以,今天咱们就来深入探讨一下,如何在Kibana中搞定这个事儿! --- 2. 数据保留策略是什么?为什么要用它? 2.1 什么是数据保留策略? 简单来说,数据保留策略就是定义数据的生命周期。比如说,“只留最近30天的记录”,或者是“超过一年的就自动清掉”。你可以根据业务需求灵活设置这些规则。 2.2 为什么我们需要它? 想象一下,如果你是一家电商平台的数据分析师,每天都会生成大量的日志文件。这些日志里可能包含了用户的购买记录、浏览行为等重要信息。不过呢,日子一长啊,那些早期的日志就变得没啥分析的意义了,反而是白白占着磁盘空间,挺浪费的。这时候,数据保留策略就能帮你解决这个问题。 再比如,如果你是一家医院的IT管理员,医疗设备产生的监控数据可能每秒都在增加。要是不赶紧把那些旧数据清理掉,系统非但会变得越来越卡,还可能出大问题,甚至直接“翻车”!所以,合理规划数据的生命周期是非常必要的。 --- 3. 如何在Kibana中设置数据保留策略? 接下来,咱们进入正题——具体操作步骤。相信我,这并不复杂,只要跟着我的节奏走,你一定能学会! 3.1 第一步:创建索引模式 首先,我们需要确保你的数据已经被正确地存储到Elasticsearch中,并且可以通过Kibana访问。如果还没有创建索引模式,可以按照以下步骤操作: bash 登录Kibana界面 1. 点击左侧菜单栏中的“Management”。 2. 找到“Stack Management”部分,点击“Index Patterns”。 3. 点击“Create index pattern”按钮。 4. 输入你的索引名称(例如 "logstash-"),然后点击“Next step”。 5. 选择时间字段(通常是@timestamp),点击“Create index pattern”完成配置。 > 思考点:这里的关键在于选择合适的索引名称和时间字段。如果你的时间字段命名不规范,后续可能会导致数据无法正确筛选哦! 3.2 第二步:设置索引生命周期策略 接下来,我们要为索引创建生命周期策略。这是Kibana中最核心的部分,直接决定了数据的保留方式。 示例代码: javascript PUT _ilm/policy/my_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "50gb", "max_age": "30d" } } }, "delete": { "min_age": "1y", "actions": { "delete": {} } } } } } 这段代码的意思是: - 热阶段(Hot Phase):当索引大小达到50GB或者超过30天时,触发滚动操作。 - 删除阶段(Delete Phase):超过1年后,自动删除该索引。 > 小贴士:这里的max_size和max_age可以根据你的实际需求调整。比如,如果你的服务器内存较小,可以将max_size调低一点。 3.3 第三步:将策略应用到索引 设置好生命周期策略后,我们需要将其绑定到具体的索引上。具体步骤如下: bash POST /my-index/_settings { "index.lifecycle.name": "my_policy", "index.lifecycle.rollover_alias": "my_index" } 这段代码的作用是将之前创建的my_policy策略应用到名为my-index的索引上。同时,通过rollover_alias指定滚动索引的别名。 --- 4. 实战案例 数据保留策略的实际效果 为了让大家更直观地理解数据保留策略的效果,我特意准备了一个小案例。假设你是一名电商公司的运维工程师,每天都会收到大量的订单日志,格式如下: json { "order_id": "123456789", "status": "success", "timestamp": "2023-09-01T10:00:00Z" } 现在,你想对这些日志进行生命周期管理,具体要求如下: - 最近3个月的数据需要保留。 - 超过3个月的数据自动归档到冷存储。 - 超过1年的数据完全删除。 实现方案: 1. 创建索引模式,命名为orders-。 2. 定义生命周期策略 javascript PUT _ilm/policy/orders_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "10gb", "max_age": "3m" } } }, "warm": { "actions": { "freeze": {} } }, "delete": { "min_age": "1y", "actions": { "delete": {} } } } } } 3. 将策略绑定到索引 bash POST /orders-/_settings { "index.lifecycle.name": "orders_policy", "index.lifecycle.rollover_alias": "orders" } 运行以上代码后,你会发现: - 每隔3个月,新的订单日志会被滚动到一个新的索引中。 - 超过3个月的旧数据会被冻结,存入冷存储。 - 超过1年的数据会被彻底删除,释放存储空间。 --- 5. 总结与展望 通过今天的分享,相信大家对如何在Kibana中设置数据保留策略有了更深的理解。虽然设置过程看似繁琐,但实际上只需要几步就能搞定。而且啊,要是咱们好好用数据保留这招,不仅能让系统跑得更快、更顺畅,还能帮咱们把那些藏在数据里的宝贝疙瘩给挖出来,多好呀! 最后,我想说的是,技术学习是一个不断探索的过程。如果你在实践中遇到问题,不妨多查阅官方文档或者向社区求助。毕竟,我们每个人都是技术路上的探索者,一起努力才能走得更远! 好了,今天的分享就到这里啦!如果你觉得这篇文章有用,记得点赞支持哦~咱们下次再见!
2025-04-30 16:26:33
19
风轻云淡
转载文章
...界面层、系统交互层,数据管理层。达成高扩展,高可用,高性能,高安全,易运维,易部署,易接入等能力。 3、功能设计与实现:对架构设计的底层代码级别实现。如公共核心类,接口实现,应用发现规则、接口变更等。 技术经理 人生就是不断上升的过程,你已经到达经理的层次了。如今的你,需要不断提高领导力,需要定期召开团队会议讨论问题。 首先我们要更加自信,在工作中显示自己的功力,给讲话增添力量。如:“本次项目虽然有很大的困难,我们也需苦战到底。当然示先垂范,身先士卒,方能成功!” 技术经理有时候也可能叫系统分析员,一些小公司可能会整个公司或者部门有一个技术经理。技术经理承担的角色主要是系统分析、架构搭建、系统构建、代 码走查等工作,如果说项目经理是总统,那么技术经理就是总理。当然不是所有公司都是这样的,有些公司项目经理是不管技术团队的,只做需求、进度和同客户沟 通,那么这个时候的项目经理就好像工厂里的跟单人员了,这种情况在外包公司比较多。对于技术经理来说,着重于技术方面,你需要知道某种功能用哪些技术合 适,需要知道某项功能需要多长的开发时间等。同时,技术经理也应该承担提高团队整体技术水平的工作。 你需要和大家站在一起,因为人们也都有解决问题的能力,更需要有以下的能力与责任: 1、任务管理:开发工作量评估、定立开发流程、分配和追踪开发任务 2、质量管理:代码review、开发风险判断/报告/协调解决 3、效率提升:代码底层研发和培训、最佳代码实践规范总结与推广、自动化生产工具、自动化部署工具 4、技术能力提升:招聘面试、试题主拟、新人指导、项目复盘与改进 技术总监 如果一个研发团队超过20人,有多条产品线或业务量很大,这时已经有多个技术经理在负责每个业务,这时需要一位技术总监。 主要职责: 1、组建平台研发部,与架构师共建软件公共平台,方便各条产品业务线研发。 2、通过技术平台、通过高一层的职权,管理和协调公司各个部门与本部门各条线。现在每个产品线都应该有合格的技术经理和高级程序员。 结语:我们相信,每个人都能成为IT大神。现在开始,找个师兄带你入门,让你的学习之路不再迷茫。 这里推荐我们的前端学习交流圈:784783012,里面都是学习前端的从最基础的HTML+CSS+JS【炫酷特效,游戏,插件封装,设计模式】到移动端HTML5的项目实战的学习资料都有整理,送给每一位前端小伙伴。 最新技术,与企业需求同步。好友都在里面学习交流,每天都会有大牛定时讲解前端技术! 点击:前端技术分享 本篇文章为转载内容。原文链接:https://blog.csdn.net/webDk/article/details/88917912。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-05-10 13:13:48
756
转载
转载文章
... 与之前的 LTS 版本有很大的不同。它旨在给你一个更完善的体验,而不仅仅是关注旧电脑。请关于 Lubuntu 20.04 的内容。https://linux.cn/article-12242-1.html作者:Dimitrios Savvopoulos译者:qfzy1233 Lubuntu 20.04 点评:第一个基于 LXQt 的长期支持版 我在 Lubuntu 20.04 发行前几天就已经开始使用它了。我通常使用 Arch 阵营中 Manjaro 和 Cinnamon 桌面,所以使用 Lubuntu 对我来说是一个愉快的改变。 以下是我在使用 Lubuntu 20.04.时的一些感受和注记。 再见 LXDE,你好 LXQt! 长期以来,Lubuntu 都依靠 LXDE 来提供轻量级的 Linux 体验。但现在,它使用的是 LXQt 桌面环境。 LXDE 是基于 GTK(GNOME 所使用的库),更具体地说是基于 2020 年的 GTK+ 2。由于对 GTK+ 3 不满意,LXDE 开发人员 Hong Jen Yee 决定将整个桌面移植到 Qt(KDE 所使用的库)。LXDE 的 Qt 移植版本和 Razor-qt 项目合并形成 LXQt。所以现在,LXDE 和 LXQt 作为单独的项目而共存。 既然 LXDE 开发者本身专注于 LXQt,那么 Lubuntu 坚持使用三年多前上一次稳定发布版的桌面环境 LXDE 是没有意义的。 因此,Lubuntu 18.04 是使用 LXDE 的最后一个版本。幸运的是,这是一个长期支持版本。Lubuntu 团队将提供支持直到 2021 年。 不仅适于老机器 随着在 2020 年“老机器”的定义发生了变化,Lubuntu 18.04 成为了最后一个 32 位版本。现在,即使是一台 10 年前的老机器也至少有 2G 的内存和一个双核 64 位处理器。 因此,Lubuntu 团队将不再设置最低的系统需求,也不再主要关注旧硬件。尽管 LXQt 仍然是一个轻量级的、经典而不失精致的、功能丰富的桌面环境。 在 Lubuntu 20.04 LTS 发布之前,Lubuntu 的第一个 LXQt 发行版是 18.10,开发人员经历了三个标准发行版来完善 LXQt 桌面,这是一个很好的开发策略。 不用常规的 Ubiquity,Lubuntu 20.04 使用的是 Calamares 安装程序 在新版本中使用了全新的 Calamares 安装程序,取代了其它 Ubuntu 官方版本使用的 Ubiquity 安装程序。 整个安装过程在大约能在 10 分钟内完成,比之前 Lubuntu 的版本稍微快一些。 由于镜像文件附带了预先安装的基本应用程序,所以你可以很快就可以完成系统的完全配置。 不要直接从 Lubuntu 18.04 升级到 Lubuntu 20.04 通常,你可以将 Ubuntu 从一个 LTS 版本升级到另一个 LTS 版本。但是 Lubuntu 团队建议不要从 Lubuntu 18.04 升级到 20.04。他们建议重新安装,这才是正确的。 Lubuntu 18.04 使用 LXDE 桌面,20.04 使用 LXQt。由于桌面环境的巨大变化,从 18.04 升级到 20.04 将导致系统崩溃。 更多的 KDE 和 Qt 应用程序 下面是在这个新版本中默认提供的一些应用程序,正如我们所看到的,并非所有应用程序都是轻量级的,而且大多数应用程序都是基于 Qt 的。 甚至使用的软件中心也是 KDE 的 Discover,而不是 Ubuntu 的 GNOME 软件中心。 ◈ Ark – 归档文件管理器◈ Bluedevil – 蓝牙连接管理◈ Discover 软件中心 – 包管理系统◈ FeatherPad – 文本编辑器◈ FireFox – 浏览器◈ K3b – CD/DVD 刻录器◈ Kcalc – 计算器◈ KDE 分区管理器 – 分区管理工具◈ LibreOffice – 办公套件(Qt 界面版本)◈ LXimage-Qt – 图片查看器及截图制作◈ Muon – 包管理器◈ Noblenote – 笔记工具◈ PCManFM-Qt – 文件管理器◈ Qlipper – 剪贴板管理工具◈ qPDFview – PDF 阅读器◈ PulseAudio – 音频控制器◈ Qtransmission – BT 下载工具(Qt 界面版本)◈ Quassel – IRC 客户端◈ ScreenGrab – 截屏制作工具◈ Skanlite – 扫描工具◈ 启动盘创建工具 – USB 启动盘制作工具◈ Trojita – 邮件客户端◈ VLC – 媒体播放器◈ MPV 视频播放器 测试 Lubuntu 20.04 LTS LXQt 版 Lubuntu 的启动时间不到一分钟,虽然是从 SSD 启动的。 LXQt 目前需要的内存比基于 Gtk+ 2 的 LXDE 稍微多一点,但是另一种 Gtk+ 3 工具包也需要更多的内存。 在重新启动之后,系统以非常低的内存占用情况运行,大约只有 340 MB(按照现代标准),比 LXDE 多 100 MB。 LXQt 不仅适用于硬件较旧的用户,也适用于那些希望在新机器上获得简约经典体验的用户。 桌面布局看起来类似于 KDE 的 Plasma 桌面,你觉得呢? 在左下角有一个应用程序菜单,一个用于显示固定和活动的应用程序的任务栏,右下角有一个系统托盘。 Lubuntu 的 LXQt 版本可以很容易的定制,所有的东西都在菜单的首选项下,大部分的关键项目都在 LXQt “设置”中。 值得一提的是,LXQt 在默认情况下使用流行的 Openbox 窗口管理器。 与前三个发行版一样,20.04 LTS 附带了一个默认的黑暗主题 Lubuntu Arc,但是如果不适合你的口味,可以快速更换,也很方便。 就日常使用而言,事实证明,Lubuntu 20.04 向我证明,其实每一个 Ubuntu 的分支版本都完全没有问题。 结论 Lubuntu 团队已经成功地过渡到一个现代的、依然轻量级的、极简的桌面环境。LXDE 看起来被遗弃了,迁移到一个活跃的项目也是一件好事。 我希望 Lubuntu 20.04 能够让你和我一样热爱,如果是这样,请在下面的评论中告诉我。请继续关注! via: https://itsfoss.com/lubuntu-20-04-review/ 作者:Dimitrios Savvopoulos 选题:lujun9972 译者:qfzy1233 校对:wxy 本文由 LCTT 原创编译,Linux中国 荣誉推出 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39539807/article/details/111619265。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-17 18:52:15
319
转载
转载文章
...SM) USM语法 数据依赖 wait() depends_on in_order queue property 练习1:事件依赖 练习2:事件依赖 UMS实验 oneAPI编程模型 oneAPI编程模型提供了一个全面、统一的开发人员工具组合,可用于各种硬件设备,其中包括跨多个工作负载领域的一系列性能库。这些库包括面向各目标架构而定制化代码的函数,因此相同的函数调用可为各种支持的架构提供优化的性能。DPC++基于行业标准和开放规范,旨在鼓励生态系统的协作和创新。 多架构编程面临的挑战 在以数据为中心的环境中,专用工作负载的数量不断增长。专用负载通常因为没有通用的编程语言或API而需要使用不同的语言和库进行编程,这就需要维护各自独立的代码库。 由于跨平台的工具支持不一致,因此开发人员必须学习和使用一整套不同的工具。单独投入精力给每种硬件平台开发软件。 oneAPI则可以利用一种统一的编程模型以及支持并行性的库,支持包括CPU、GPU、FPGA等硬件等同于原生高级语言的开发性能,并且可以与现有的HPC编程模型交互。 SYCL SYCL支持C++数据并行编程,SYCL和OpenCL一样都是由Khronos Group管理的,SYCL是建立在OpenCL之上的跨平台抽象层,支持用C++用单源语言方式编写用于异构处理器的与设备无关的代码。 DPC++ DPC++(Data Parallel C++)是一种单源语言,可以将主机代码和异构加速器内核写在同一个文件当中,在主机中调用DPC++程序,计算由加速器执行。DPC++代码简洁且效率高,并且是开源的。现有的CUDA应用、Fortran应用、OpenCL应用都可以用不同方式很方便地迁移到DPC++当中。 下图显示了原来使用不同架构的HPC开发人员的一些推荐的转换方法。 编译和运行DPC++程序 编译和运行DPC++程序主要包括三步: 初始化环境变量 编译DPC++源代码 运行程序 例如本地运行,在本地系统上安装英特尔基础工具套件,使用以下命令编译和运行DPC++程序。 source /opt/intel/inteloneapi/setvars.shdpcpp simple.cpp -o simple./simple 编程实例 实现矢量加法 以下实例描述了使用DPC++实现矢量加法的过程和源代码。 queue类 queue类用来提交给SYCL执行的命令组,是将作业提交到运算设备的一种机制,多个queue可以映射到同一个设备。 Parallel kernel Parallel kernel允许代码并行执行,对于一个不具有相关性的循环数据操作,可以用Parallel kernel并行实现 在C++代码中的循环实现 for(int i=0; i < 1024; i++){a[i] = b[i] + c[i];}); 在Parallel kernel中的并行实现 h.parallel_for(range<1>(1024), [=](id<1> i){A[i] = B[i] + C[i];}); 通用的并行编程模板 h.parallel_for(range<1>(1024), [=](id<1> i){// CODE THAT RUNS ON DEVICE }); range用来生成一个迭代序列,1为步长,在循环体中,i表示索引。 Host Accessor Host Accessor是使用主机缓冲区访问目标的访问器,它使访问的数据可以在主机上使用。通过构建Host Accessor可以将数据同步回主机,除此之外还可以通过销毁缓冲区将数据同步回主机。 buf是存储数据的缓冲区。 host_accessor b(buf,read_only); 除此之外还可以将buf设置为局部变量,当系统超出buf生存期,buf被销毁,数据也将转移到主机中。 矢量相加源代码 根据上面的知识,这里展示了利用DPC++实现矢量相加的代码。 //第一行在jupyter中指明了该cpp文件的保存位置%%writefile lab/vector_add.cppinclude <CL/sycl.hpp>using namespace sycl;int main() {const int N = 256;// 初始化两个队列并打印std::vector<int> vector1(N, 10);std::cout<<"\nInput Vector1: "; for (int i = 0; i < N; i++) std::cout << vector1[i] << " ";std::vector<int> vector2(N, 20);std::cout<<"\nInput Vector2: "; for (int i = 0; i < N; i++) std::cout << vector2[i] << " ";// 创建缓存区buffer vector1_buffer(vector1);buffer vector2_buffer(vector2);// 提交矢量相加任务queue q;q.submit([&](handler &h) {// 为缓存区创建访问器accessor vector1_accessor (vector1_buffer,h);accessor vector2_accessor (vector2_buffer,h);h.parallel_for(range<1>(N), [=](id<1> index) {vector1_accessor[index] += vector2_accessor[index];});});// 创建主机访问器将设备中数据拷贝到主机当中host_accessor h_a(vector1_buffer,read_only);std::cout<<"\nOutput Values: ";for (int i = 0; i < N; i++) std::cout<< vector1[i] << " ";std::cout<<"\n";return 0;} 运行结果 统一共享内存 (Unified Shared Memory USM) 统一共享内存是一种基于指针的方法,是将CPU内存和GPU内存进行统一的虚拟化方法,对于C++来说,指针操作内存是很常规的方式,USM也可以最大限度的减少C++移植到DPC++的代价。 下图显示了非USM(左)和USM(右)的程序员开发视角。 类型 函数调用 说明 在主机上可访问 在设备上可访问 设备 malloc_device 在设备上分配(显式) 否 是 主机 malloc_host 在主机上分配(隐式) 是 是 共享 malloc_shared 分配可以在主机和设备之间迁移(隐式) 是 是 USM语法 初始化: int data = malloc_shared<int>(N, q); int data = static_cast<int >(malloc_shared(N sizeof(int), q)); 释放 free(data,q); 使用共享内存之后,程序将自动在主机和运算设备之间隐式移动数据。 数据依赖 使用USM时,要注意数据之间的依赖关系以及事件之间的依赖关系,如果两个线程同时修改同一个内存区,将产生不可预测的结果。 我们可以使用不同的选项管理数据依赖关系: 内核任务中的 wait() 使用 depends_on 方法 使用 in_queue 队列属性 wait() q.submit([&](handler &h) {h.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });}).wait(); // <--- wait() will make sure that task is complete before continuingq.submit([&](handler &h) {h.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });}); depends_on auto e = q.submit([&](handler &h) { // <--- e is event for kernel taskh.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });});q.submit([&](handler &h) {h.depends_on(e); // <--- waits until event e is completeh.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });}); in_order queue property queue q(property_list{property::queue::in_order()}); // <--- this will make sure all the task with q are executed sequentially 练习1:事件依赖 以下代码使用 USM,并有三个提交到设备的内核。每个内核修改相同的数据阵列。三个队列之间没有数据依赖关系 为每个队列提交添加 wait() 在第二个和第三个内核任务中实施 depends_on() 方法 使用 in_order 队列属性,而非常规队列: queue q{property::queue::in_order()}; %%writefile lab/usm_data.cppinclude <CL/sycl.hpp>using namespace sycl;static const int N = 256;int main() {queue q{property::queue::in_order()};//用队列限制执行顺序std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";int data = static_cast<int >(malloc_shared(N sizeof(int), q));for (int i = 0; i < N; i++) data[i] = 10;q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 5; });q.wait();//wait阻塞进程for (int i = 0; i < N; i++) std::cout << data[i] << " ";std::cout << "\n";free(data, q);return 0;} 执行结果 练习2:事件依赖 以下代码使用 USM,并有三个提交到设备的内核。前两个内核修改了两个不同的内存对象,第三个内核对前两个内核具有依赖性。三个队列之间没有数据依赖关系 %%writefile lab/usm_data2.cppinclude <CL/sycl.hpp>using namespace sycl;static const int N = 1024;int main() {queue q;std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";//设备选择int data1 = malloc_shared<int>(N, q);int data2 = malloc_shared<int>(N, q);for (int i = 0; i < N; i++) {data1[i] = 10;data2[i] = 10;}auto e1 = q.parallel_for(range<1>(N), [=](id<1> i) { data1[i] += 2; });auto e2 = q.parallel_for(range<1>(N), [=](id<1> i) { data2[i] += 3; });//e1,e2指向两个事件内核q.parallel_for(range<1>(N),{e1,e2}, [=](id<1> i) { data1[i] += data2[i]; }).wait();//depend on e1,e2for (int i = 0; i < N; i++) std::cout << data1[i] << " ";std::cout << "\n";free(data1, q);free(data2, q);return 0;} 运行结果 UMS实验 在主机中初始化两个vector,初始数据为25和49,在设备中初始化两个vector,将主机中的数据拷贝到设备当中,在设备当中并行计算原始数据的根号值,然后将data1_device和data2_device的数值相加,最后将数据拷贝回主机当中,检验最后相加的和是否是12,程序结束前将内存释放。 %%writefile lab/usm_lab.cppinclude <CL/sycl.hpp>include <cmath>using namespace sycl;static const int N = 1024;int main() {queue q;std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";//intialize 2 arrays on hostint data1 = static_cast<int >(malloc(N sizeof(int)));int data2 = static_cast<int >(malloc(N sizeof(int)));for (int i = 0; i < N; i++) {data1[i] = 25;data2[i] = 49;}// STEP 1 : Create USM device allocation for data1 and data2int data1_device = static_cast<int >(malloc_device(N sizeof(int),q));int data2_device = static_cast<int >(malloc_device(N sizeof(int),q));// STEP 2 : Copy data1 and data2 to USM device allocationq.memcpy(data1_device, data1, sizeof(int) N).wait();q.memcpy(data2_device, data2, sizeof(int) N).wait();// STEP 3 : Write kernel code to update data1 on device with sqrt of valueauto e1 = q.parallel_for(range<1>(N), [=](id<1> i) { data1_device[i] = std::sqrt(25); });auto e2 = q.parallel_for(range<1>(N), [=](id<1> i) { data2_device[i] = std::sqrt(49); });// STEP 5 : Write kernel code to add data2 on device to data1q.parallel_for(range<1>(N),{e1,e2}, [=](id<1> i) { data1_device[i] += data2_device[i]; }).wait();// STEP 6 : Copy data1 on device to hostq.memcpy(data1, data1_device, sizeof(int) N).wait();q.memcpy(data2, data2_device, sizeof(int) N).wait();// verify resultsint fail = 0;for (int i = 0; i < N; i++) if(data1[i] != 12) {fail = 1; break;}if(fail == 1) std::cout << " FAIL"; else std::cout << " PASS";std::cout << "\n";// STEP 7 : Free USM device allocationsfree(data1_device, q);free(data1);free(data2_device, q);free(data2);// STEP 8 : Add event based kernel dependency for the Steps 2 - 6return 0;} 运行结果 本篇文章为转载内容。原文链接:https://blog.csdn.net/MCKZX/article/details/127630566。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-22 10:28:50
322
转载
Go Gin
...会返回JSON格式的数据{"message": "pong"}。 个人感悟 刚接触这段代码的时候,我有点被惊到了——这么少的代码竟然能完成如此多的功能!当然,这也得益于Gin的设计理念:尽可能简化开发流程,让程序员专注于业务逻辑而不是框架细节。 --- 三、实时处理的核心 WebSocket支持 既然我们要讨论实时处理,那么就不得不提WebSocket。WebSocket就像是一个永不掉线的“聊天热线”,能让浏览器和服务器一直保持着畅通的联系。跟传统的请求-响应模式不一样,它可以让双方随时自由地“唠嗑”,想发啥就发啥,特别适合那些需要实时互动的应用,比如聊天室里你一言我一语,或者股票行情那种分分钟都在变化的东西,用它简直太合适了! Gin内置了对WebSocket的支持,我们可以直接通过中间件来实现这一功能。下面是一个完整的WebSocket示例: go package main import ( "log" "net/http" "github.com/gin-gonic/gin" "github.com/gorilla/websocket" ) var upgrader = websocket.Upgrader{ ReadBufferSize: 1024, WriteBufferSize: 1024, CheckOrigin: func(r http.Request) bool { return true // 允许跨域 }, } func handleWebSocket(c gin.Context) { ws, err := upgrader.Upgrade(c.Writer, c.Request, nil) if err != nil { log.Println("Failed to upgrade:", err) return } defer ws.Close() for { messageType, msg, err := ws.ReadMessage() if err != nil { log.Println("Error reading message:", err) break } log.Printf("Received: %s\n", string(msg)) err = ws.WriteMessage(messageType, msg) if err != nil { log.Println("Error writing message:", err) break } } } func main() { r := gin.Default() r.GET("/ws", handleWebSocket) r.Run(":8080") } 在这段代码中,我们利用gorilla/websocket包实现了WebSocket升级,并在handleWebSocket函数中处理了消息的读取与发送。你可以试着在浏览器里输入这个地址:ws://localhost:8080/ws,然后用JavaScript发个消息试试,看能不能马上收到服务器的回应。 深入探讨 说实话,刚开始写这部分代码的时候,我还担心WebSocket的兼容性问题。后来发现,只要正确设置了CheckOrigin方法,大多数现代浏览器都能正常工作。这让我更加坚定了对Gin的信心——它虽然简单,但足够强大! --- 四、进阶技巧 并发与性能优化 在实际项目中,我们可能会遇到高并发的情况。为了保证系统的稳定性,我们需要合理地管理线程池和内存分配。Gin提供了一些工具可以帮助我们做到这一点。 例如,我们可以使用sync.Pool来复用对象,减少垃圾回收的压力。下面是一个示例: go package main import ( "sync" "time" "github.com/gin-gonic/gin" ) var pool sync.Pool func init() { pool = &sync.Pool{ New: func() interface{} { return make([]byte, 1024) }, } } func handler(c gin.Context) { data := pool.Get().([]byte) defer pool.Put(data) copy(data, []byte("Hello World!")) time.Sleep(100 time.Millisecond) // 模拟耗时操作 c.String(http.StatusOK, string(data)) } func main() { r := gin.Default() r.GET("/", handler) r.Run(":8080") } 在这个例子中,我们定义了一个sync.Pool来存储临时数据。每次处理请求时,从池中获取缓冲区,处理完毕后再放回池中。这样可以避免频繁的内存分配和释放,从而提升性能。 反思与总结 其实,刚开始学习这段代码的时候,我对sync.Pool的理解还停留在表面。直到后来真正用它解决了性能瓶颈,我才意识到它的价值所在。这也让我明白,优秀的框架只是起点,关键还是要结合实际需求去探索和实践。 --- 五、未来展望 Gin与实时处理的无限可能 Gin的强大之处不仅仅在于它的易用性和灵活性,更在于它为开发者提供了广阔的想象空间。无论是构建大型分布式系统,还是打造小型实验项目,Gin都能胜任。 如果你也想尝试用Gin构建实时处理系统,不妨从一个小目标开始——比如做一个简单的在线聊天室。相信我,当你第一次看到用户实时交流的画面时,那种成就感绝对会让你欲罢不能! 最后的话 写这篇文章的过程,其实也是我自己重新审视Gin的过程。其实这个东西吧,说白了挺简单的,但让我学到了一个本事——用最利索的办法搞定事情。希望能这篇文章也能点醒你,让你在今后的开发路上,慢慢琢磨出属于自己的那套玩法!加油吧,程序员们!
2025-04-07 16:03:11
66
时光倒流
转载文章
...果不仅对于文本处理、数据压缩等领域具有重要价值,也对解决类似的编程挑战提供了新的思路。 此外,在ACM国际大学生程序设计竞赛(ACM-ICPC)和谷歌代码 Jam 等全球顶级编程赛事中,频繁出现与回文串相关的题目,参赛者需灵活运用算法知识来解决实际问题。比如,有题目要求选手在最短时间内编写程序,找出将一个字符串转换为非回文串的最小操作次数,这与我们讨论的文章主题不谋而合,展现了理论与实践相结合的重要性。 同时,回文串在密码学、遗传学以及文学创作等多个领域均有应用。例如,在DNA序列分析中,回文结构往往关联着基因调控的重要区域;在密码学中,特定类型的回文串可用于构建加密算法的关键部分。深入理解并熟练掌握回文串的相关性质及处理方法,无疑有助于我们在这些领域取得更多的技术突破。 总之,从基础的编程题出发,我们可以洞察到字符串处理与算法优化在前沿科研和实际应用中的深远影响。通过持续关注和学习此类问题的最新研究成果与应用案例,我们能够不断提升自身的算法设计和问题解决能力。
2023-10-05 13:54:12
229
转载
转载文章
...涵盖必备基础、爬虫和数据分析 ③ 100多个Python实战案例,含50个超大型项目详解,学习不再是只会理论 ④ 20款主流手游迫解 爬虫手游逆行迫解教程包 ⑤ 爬虫与反爬虫攻防教程包,含15个大型网站迫解 ⑥ 爬虫APP逆向实战教程包,含45项绝密技术详解 ⑦ 超300本Python电子好书,从入门到高阶应有尽有 ⑧ 华为出品独家Python漫画教程,手机也能学习 ⑨ 历年互联网企业Python面试真题,复习时非常方便 👉Python学习视频600合集👈 观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 👉实战案例👈 光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。 👉100道Python练习题👈 检查学习结果。 👉面试刷题👈 资料领取 上述这份完整版的Python全套学习资料已经上传CSDN官方,朋友们如果需要可以微信扫描下方CSDN官方认证二维码输入“领取资料” 即可领取 好文推荐 了解python的前景:https://blog.csdn.net/weixin_49891576/article/details/127187029 了解python的兼职:https://blog.csdn.net/weixin_49891576/article/details/127125308 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_49891576/article/details/130861900。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-04 23:38:21
106
转载
转载文章
...的,比如JAVA、大数据、算法等,下图从BOSS上截取的: 蚂蚁金服不在望京,在环球金融中心。 美团 美团是望京第二大互联网公司,技术氛围浓厚。事业部很多,包括酒店事业部、闪购、美团金融、优选事业部、美团买菜等。 美团的福利常常被叫做白开水福利,不过比普通公司还是要好一些,六险一金、15薪、餐补、下午茶等。 面试比阿里容易一些,不过算法和八股文也是必须要准备的。 常年招聘,岗位很多,下面岗位来自BOSS: Lazada 东南亚头部电商,而且业务还囊括了娱乐、金融和物流,业务主要服务于东南亚。工作地点在朝阳区阿里中心。 福利待遇包括六险一金、年终奖、股权、餐补交通补等。 主要招聘岗位包括java开发、游戏开发、前端、UI等。 bilibili bilibili也是非常不错的一家互联网公司,总部在上海,北京的工作地点在朝阳区东煌大厦10层。截至2021年第一季度,B站月活用户达2.23亿 福利待遇比较完备,包括六险一金、餐补、全勤奖、下午茶、股权等。 招聘岗位包括游戏服务端开发、java开发、C++开发、TA、linux内核开发等。从招聘岗位来看,java 开发并不是bilibili的热门岗位。 每日优鲜 每日优鲜近几年的发展是非常快速的,也是一家非常值得加入的公司。工作地点在万科时代中心。 工作强度比较大,工作内容也比较有挑战,晋升也比较快。建议想在技术上成长的朋友们加入。 福利待遇包括六险一金,股票期权。 招聘岗位以java为主,架构、资深、中高级都有。 BIGO BIGO主要业务在音视频领域,主要产品有Bigo Live、Likee、Hello,目前全球月活用户近4亿,产品和服务覆盖超过150个国家和地区。 福利待遇也是非常不错的,六险一金、年终奖、住房补贴、股票期权等。 主要招聘岗位包括JAVA、音视频领域后端开发。 coupang 韩国电商平台,总部在首尔,成立于2010年,是一家成熟的老牌公司,在2021年3月上市。目前国内研发团队主要在上海,在北京也有研发团队。工作地点在颐堤港。 coupang工作强度不大,不加班不内卷。福利待遇也是很不错的,包括六险一金、餐补、补充公积金、节日福利等。 招聘岗位主要包括JAVA、IOS、搜索工程师、全栈工程师等。 面试难度比较大,前后包括五轮以上面试,第一轮是电话面试,后面线程面试会有手写代码环节。 水滴公司 水滴这两年发展很快,工作地点在望京科技园。 福利待遇方面,属于互联公司中等偏上的水平,包括六险一金、补充公积金、免费健身房等。 招聘岗位JAVA居多,各种级别的都有,还有一些中间件的岗位。 据面试过水滴的求职者反馈,面试很难,对基础要求高,可能会问一些平时不太关注的非常细的问题。 keep 爱运动的小伙伴相信都熟悉keep这款软件,目前keep的用户量已经破3亿。工作地点在万科时代中心。 薪资待遇行业中等,不过该有的服务也基本都有,包括六险一金、年终奖、股权等。 招聘岗位以java为主,各种级别都有。 雪球 国内知名的投资交流平台,2020年底完成1.2亿美元 E 轮融资,发展潜力巨大。工作地点在融新科技中心。 福利待遇在行业内属于中等水平,包括六险一金、年终奖、餐补、零食下午茶等。 招聘岗位以java为主,还有搜索研发、全栈开发等。 陌陌 陌生人社交平台,深受年轻人喜爱,18年陌陌全资收购了探探,规模进一步扩大,目前月活用户在1亿+,出海业务也做的非常好。 福利待遇属于行业中等偏上,互联网有的福利基本都有,包括六险一金、年终奖等。 招聘岗位很多,包括java、中间件、推荐算法、自然语言处理、安全、游戏开发、IOS等。 面试难度中等,会有手写sql、算法、linux命令的环节。 松果出行 松果出行主要业务是构建国内县域城市交通出行网络,目前主要是共享电单车和共享新能源汽车服务。目前业务已经覆盖全国21个省,5000个县。 福利待遇属于行业中等,五险一金、年终奖等,没有补充医疗保险。 招聘岗位很多,以JAVA为主,各种级别都有。也有物联网、传感器硬件相关的岗位。 小桔科技 目前研发团队主要做推荐、搜索系统,注册地在大连。 福利待遇行业中等,五险一金、年终奖,没有补充医疗保险。 招聘岗位包括JAVA、PHP、搜索算法、前端、数仓等。 理想汽车 智能电动车品牌,这两年在行业内名气比较大。 福利待遇行业中等偏上,六险一金、交通补贴等。 招聘岗位很多,以JAVA为主,各种级别都有。另外也招聘PaaS平台研发、搜索、车载语音、大数据等。 参加过理想汽车面试的同学反馈面试体验不太好,面试官没有耐心,给大家一个参考。 狮桥 智慧物流+普惠金融融资租赁业务。 福利待遇中等偏下,五险一金、年终奖,没有补充医疗保险。 招聘岗位主要是JAVA开发。 领创集团 海外金融业务,主要做印度市场。 福利待遇中等偏下,六险一金,年终奖,工作节奏慢。 招聘岗位主要是JAVA,招聘岗位主要是java。 面试过的同学反馈体验比较好,面试官比较nice,有手写代码环节。 总结 今天主要推荐了望京的16家值得加入的互联网公司,事实上,望京区域的互联网公司和其他科技公司至少有几百家,由于个人精力有限,主要梳理了业界比较知名和自己熟悉的公司。相信还有好多非常不错的公司值得加入,欢迎大家跟我交流讨论。 欢迎关注个人公众号,一起学习进步 本篇文章为转载内容。原文链接:https://blog.csdn.net/zjj2006/article/details/121412370。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-11 22:59:19
530
转载
转载文章
...查。 2020年监测数据显示,新生代农民工占比达到50.1%,男性占比高于女性。新生代农民工中男性占比为66.3%,比上年提高4.6个百分点;男性占比高于女性32.5个百分点,比上年提高9.1个百分点。 就业集中于劳动密集型行业,从事信息传输、软件和信息技术服务业的新生代农民工占比大幅提高。 2020年就业人数前五位的行业依次为居民服务、修理和其他服务业,制造业,建筑业,批发和零售业,住宿和餐饮业,共吸纳67.2%的新生代农民工就业。 2020年北京市外来新生代农民工监测报告 为了进一步做好农民工服务工作,了解外来农民工在京工作、生活需要,国家统计局北京调查总队在全市范围开展了农民工市民化进程动态监测调查,2020年监测数据显示,新生代农民工(出生于20世纪80年代以后,年龄在16周岁及以上,在异地以非农就业为主的农业户籍人口)占比达到50.1%,已经成为农民工的主体。 一、新生代农民工总体特征 男性占比高于女性,差距进一步加大。新生代农民工中男性占比为66.3%,比上年提高4.6个百分点;男性占比高于女性32.5个百分点,比上年提高9.1个百分点。 31-40岁农民工占比提高。新生代农民工平均年龄31.4岁,比上年增加0.4岁。其中,31-40岁的占比为57.9%,比上年提高3.2个百分点;21-30岁的占比为39.9%,16-20岁的占比为2.2%,分别比上年下降2.6个和0.6个百分点。 大学本科以上学历新生代农民工占比增加。新生代农民工中大学本科以上学历占比为21.2%,比上年提高7.9个百分点。其中,大学本科学历的占比为20.0%,研究生学历的占比为1.2%。 外来新生代农民工主要来自北京周边地区。其中,河北、河南两省占比最大,河北省占比为37.3%,比上年同期提高3.5个百分点,河南省占比为12.3%,比上年同期下降3.3个百分点。 二、新生代农民工就业情况 (一)就业集中于劳动密集型行业,从事信息传输、软件和信息技术服务业的新生代农民工占比大幅提高 调查样本中,2020年就业人数前五位的行业与上年一致,依次为居民服务、修理和其他服务业,制造业,建筑业,批发和零售业,住宿和餐饮业,共吸纳67.2%的新生代农民工就业。 除上述五大行业外,从事信息传输、软件和信息技术服务业的新生代农民工比例为7.9%,比上年提高3.7个百分点,在所有行业中增幅最大。 (二)收入水平整体提高,内部差距拉大 调查样本中,新生代农民工月均收入6214元,比上年增加364元,增长6.2%。其中,66.5%月均收入在5000元及以上,比上年高8.6个百分点。 1.不同行业差距较大 新生代农民工从业人数最多的七个行业按照收入水平排序依次为:信息传输、软件和信息技术服务业,建筑业,交通运输、 仓储和邮政业,制造业,批发零售业,住宿和餐饮业,居民服务、修理和其他服务业。月均收入分别为10571元、6587元、6489元、6017元、5888元、5668元和5195元。其中,收入最高的信息传输、软件和信息技术服务业从业人员月均收入比上年同期增长15.5%;从业人数最多、收入最低的居民服务、修理和其他服务业从业人员月均收入比上年同期降低2.6%。 2.不同收入段间收入差距加大 高收入段人员收入增速高于中低收入段。月均收入5000元及以上人员平均月收入为7507元,比上年同期提高2.8个百分点;月均收入4000-5000元人员平均月收入为4175元,比上年同期降低3.4个百分点;月均收入4000元以下人员平均月收入为3064元,比上年同期提高1.1个百分点。 (三)自营人员收入高,工作强度大 自营就业的新生代农民工月均收入6716元,比务工就业人员高568元;自营就业的新生代农民工平均每周工作6.5天,每天工作9.5小时,分别比务工就业人员多0.9天和0.7小时。 三、新生代农民工生活情况 (一)消费支出下降,吃穿住消费占新生代农民工总消费支出的7成以上 受疫情影响,未来收入的不确定性增加,新生代农民工户均消费支出降低。2020年,新生代农民工家庭户均生活消费支出42395元,比上年减少1833元,下降4.1%。 按照金额排序,新生代农民工消费支出排在前三位的依次为:食品烟酒、居住、衣着及其他日用品和服务,分别为14032元、10861元和5141元,前三位消费支出占总消费支出的70.8%。 (二)居住性质略有改变,居住满意度小幅提升 租赁私房人员占比减少,单位提供住房比例提升。从住房性质来看,新生代农民工主要以租赁私房为主,租赁私房的占60.5%,比上年同期降低3.2个百分点;单位提供住房的占33.1%,比上年同期提高4.7个百分点。 单位提供住房,居住消费支出减少,新生代农民工对现在居住条件表示满意的占66.5%,比上年提高3.0个百分点,其中,表示非常满意的占18.6%,比较满意的占47.9%。 (三)网络依赖增加,自我提升类活动减少 上网已经成为新生代农民工业余时间的主要休闲活动。新生代农民工业余时间的主要活动排在前三位的依次是:上网、休息和朋友聚会,其中上网占60.1%,比上年同期提高4.7个百分点。 自我提升类活动减少。业余时间参加学习培训、读书看报的新生代农民工占比分别为3.8%和7.6%,比上年同期分别下降2.5个和1.3个百分点。 四、“90后”农民工工作和生活特点 (一)“90后”农民工工作特点 1.“90后”农民工从事行业略有不同 “90后”农民工喜好略有不同,就业人数最多的七个行业依次为:制造业,建筑业,居民服务、修理和其他服务业,信息传输、软件和信息技术服务业,住宿和餐饮业,文化和娱乐服务业,批发和零售业。与新生代农民工群体差距最大的两个行业是信息传输、软件和信息技术服务业,批发和零售业,其中,从事信息传输、软件和信息技术服务业的占11.6%,比新生代农民工群体高3.7个百分点;从事批发和零售业的占5.8%,比新生代农民工群体低6.3个百分点。 2.“90后”农民工收入略高 调查样本中,“90后”农民工月均收入6424元,比新生代农民工群体平均水平高210元。其中,月均收入在5000元及以上的占68.4%,比新生代农民工群体高1.9个百分点。 3.自营人员占比较低 由于年纪尚轻,积累不够,“90后”农民工中的96.3%以受雇就业为主,自营就业人员仅占3.7%,低于新生代农民工群体7.9个百分点。 (二)“90后”农民工生活特点 1.消费支出略低,更偏重于衣着及教育文化娱乐方面 “90后”农民工家庭户均生活消费支出42009元,比新生代农民工群体低386元。其中,衣着及其他日常用品和服务、教育文化娱乐支出占总消费支出的比重分别为14.0%和5.9%,分别比新生代农民工群体高1.9个和1.0个百分点;居住和交通通信费支出占总消费支出的比重分别为23.9%和9.2%,分别比新生代农民工群体低1.8个和1.0个百分点。 2.业余生活更注重休息和自我提升 “90后”农民工业余时间的主要活动排在前三位的依旧是上网、休息和朋友聚会,但与整个新生代农民工群体不同的是,“90后”农民工更注重休息和自我提升,其中,业余时间休息的占34.5%,比新生代农民工群体高5.6个百分点;业余时间参加文娱体育活动、学习培训和读书看报的占27.5%,分别比新生代农民工群体、全部外来农民工整体高5.7个和11.8个百分点。 新生代农民工定义:出生于20世纪80年代以后,年龄在16周岁及以上,在异地以非农就业为主的农业户籍人口 推荐阅读: 世界的真实格局分析,地球人类社会底层运行原理 不是你需要中台,而是一名合格的架构师(附各大厂中台建设PPT) 企业IT技术架构规划方案 论数字化转型——转什么,如何转? 华为干部与人才发展手册(附PPT) 企业10大管理流程图,数字化转型从业者必备! 【中台实践】华为大数据中台架构分享.pdf 华为的数字化转型方法论 华为如何实施数字化转型(附PPT) 超详细280页Docker实战文档!开放下载 华为大数据解决方案(PPT) 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45727359/article/details/119745674。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-28 17:16:54
63
转载
ElasticSearch
...索和分析引擎,它在大数据领域里可是大名鼎鼎。无论是日志分析、全文检索还是数据分析,Elasticsearch都能帮你搞定。 不过呢,凡事都有两面性。Elasticsearch虽然强大,但也存在一些安全隐患。如果你的集群暴露在公网下,或者权限设置不当,那可就麻烦了。你可以想想啊,要是你的数据被人偷走了,或者被乱改得面目全非,甚至整个系统都直接崩了,那可真是够呛,绝对不是闹着玩的! 所以,今天我们来聊聊如何优化Elasticsearch的安全性。我会用一些接地气的例子和代码片段,让你轻松理解这些概念。别担心,咱们会一步步来,保证你听得懂! --- 2. 配置SSL/TLS加密通信 首先,咱们得确保数据在传输过程中是安全的。SSL/TLS加密就是用来干这个的。 2.1 为什么需要SSL/TLS? 简单来说,SSL/TLS就像是一层保护罩,让别人即使截获了你的数据包,也看不懂里面的内容。想象一下,你的Elasticsearch集群要是直接暴露在网上,还不设防,那可就相当于把家里保险箱的密码和存折都摆在了大马路上。黑客轻轻松松就能闻到“香味”,啥用户的密码啊、查询出来的机密信息啊,通通被他们盯上,那后果简直不敢想!这简直太可怕了! 2.2 实现步骤 2.2.1 生成证书 首先,我们需要生成自签名证书。虽然自签名证书不能用于生产环境,但它能帮助我们快速测试。 bash openssl req -x509 -newkey rsa:4096 -keyout elastic.key -out elastic.crt -days 365 -nodes 这段命令会生成一个有效期为一年的证书文件elastic.crt和私钥文件elastic.key。 2.2.2 修改配置文件 接下来,我们需要在Elasticsearch的配置文件elasticsearch.yml中启用SSL/TLS。找到以下配置项: yaml xpack.security.http.ssl: enabled: true keystore.path: "/path/to/elastic.keystore" 这里的keystore.path指向你刚刚生成的证书和私钥文件。 2.2.3 启动Elasticsearch 启动Elasticsearch后,客户端连接时必须提供对应的证书才能正常工作。例如,使用curl命令时可以这样: bash curl --cacert elastic.crt https://localhost:9200/ 2.3 小结 通过SSL/TLS加密,我们可以大大降低数据泄露的风险。不过,自签名证书只适合开发和测试环境。如果是在生产环境中,建议购买由权威机构签发的证书。 --- 3. 用户认证与授权 接下来,咱们谈谈用户认证和授权。想象一下,如果没有身份验证机制,任何人都可以访问你的Elasticsearch集群,那简直是噩梦! 3.1 背景故事 有一次,我在调试一个项目时,无意间发现了一个未设置密码的Elasticsearch集群。我当时心里一惊,心想:“乖乖,要是有谁发现这个漏洞,那可就麻烦大了!”赶紧招呼团队的小伙伴们注意一下,提醒大家赶紧加上用户认证功能,别让问题溜走。 3.2 使用内置角色管理 Elasticsearch自带了一些内置角色,比如superuser和read_only。你可以根据需求创建自定义角色,并分配给不同的用户。 3.2.1 创建用户 假设我们要创建一个名为admin的管理员用户,可以使用以下命令: bash curl -X POST "https://localhost:9200/_security/user/admin" \ -H 'Content-Type: application/json' \ -u elastic \ -d' { "password" : "changeme", "roles" : [ "superuser" ] }' 这里的-u elastic表示使用默认的elastic用户进行操作。 3.2.2 测试用户权限 创建完用户后,我们可以尝试登录并执行操作。例如,使用admin用户查看索引列表: bash curl -X GET "https://localhost:9200/_cat/indices?v" \ -u admin:changeme 如果一切正常,你应该能看到所有索引的信息。 3.3 RBAC(基于角色的访问控制) 除了内置角色外,Elasticsearch还支持RBAC。你可以给每个角色设定超级详细的权限,比如说准不准用某个API,能不能访问特定的索引之类的。 json { "role": "custom_role", "cluster": ["monitor"], "indices": [ { "names": [ "logstash-" ], "privileges": [ "read", "view_index_metadata" ] } ] } 这段JSON定义了一个名为custom_role的角色,允许用户读取logstash-系列索引的数据。 --- 4. 日志审计与监控 最后,咱们得关注日志审计和监控。即使你做了所有的安全措施,也不能保证万无一失。定期检查日志和监控系统可以帮助我们及时发现问题。 4.1 日志审计 Elasticsearch自带的日志功能非常强大。你可以通过配置日志级别来记录不同级别的事件。例如,启用调试日志: yaml logger.org.elasticsearch: debug 将这条配置添加到logging.yml文件中即可。 4.2 监控工具 推荐使用Kibana来监控Elasticsearch的状态。装好Kibana之后,你就能通过网页界面瞅一眼你的集群健不健康、各个节点都在干嘛,还能看看性能指标啥的,挺直观的! 4.2.1 配置Kibana 在Kibana的配置文件kibana.yml中,添加以下内容: yaml elasticsearch.hosts: ["https://localhost:9200"] elasticsearch.username: "kibana_system" elasticsearch.password: "changeme" 然后重启Kibana服务,打开浏览器访问http://localhost:5601即可。 --- 5. 总结 好了,朋友们,今天的分享就到这里啦!优化Elasticsearch的安全性并不是一件容易的事,但只要我们用心去做,就能大大降低风险。从SSL/TLS加密到用户认证,再到日志审计和监控,每一个环节都很重要。 我希望这篇文章对你有所帮助,如果你还有其他问题或者经验分享,欢迎随时留言交流!让我们一起打造更安全、更可靠的Elasticsearch集群吧!
2025-05-12 15:42:52
98
星辰大海
Go-Spring
...年来,随着云计算、大数据、人工智能等技术的快速发展,开源软件的应用范围不断扩大,不仅在企业内部得到广泛应用,也成为全球范围内科技创新与合作的新模式。本文旨在探讨开源软件的价值所在,分析其未来的发展趋势,并提出在拥抱开源软件过程中应考虑的关键因素。 开源软件的价值 开源软件以其透明、可定制和社区驱动的特点,为企业和个人用户带来了诸多价值。首先,开源软件降低了创新门槛,使得开发者能够基于已有代码进行快速迭代和创新,加速产品和服务的推出。其次,开源软件的社区化运作模式促进了知识共享与协作,形成了强大的技术支持和用户群体,有助于解决技术难题,提升产品质量。此外,开源软件的低成本和高可移植性,使其成为中小企业乃至个人开发者降低成本、快速进入市场的重要途径。 未来发展趋势 展望未来,开源软件的发展将呈现出以下几个趋势: 1. 云原生与容器化:随着云计算技术的成熟,基于云原生架构的开源软件将得到更多应用,而容器化技术的普及将进一步提升软件部署的效率与灵活性。 2. AI与机器学习:开源社区正在积极开发AI相关的开源项目,如TensorFlow、PyTorch等,这将促进AI技术的普及与创新,推动行业应用的深度发展。 3. 安全与隐私保护:随着数据安全与隐私保护成为关注焦点,开源社区将加强对安全框架和工具的开发,以满足不同行业对数据安全的需求。 4. 全球化与多语种支持:开源软件的全球化趋势日益明显,多语种支持将成为重要考量因素,有助于提升软件的国际竞争力。 拥抱开源软件的关键因素 1. 知识产权管理:明确开源软件的使用和贡献规则,保护自身权益的同时,尊重和遵守开源社区的规范。 2. 人才培养与激励:培养具备开源文化意识和技术能力的人才,通过项目贡献、社区活动等方式激励开发者积极参与开源项目。 3. 风险评估与管理:在采用开源软件前进行全面的风险评估,包括代码质量、安全漏洞、许可证合规性等方面,确保其符合组织的安全策略和法律法规要求。 4. 持续参与与贡献:积极参与开源社区,不仅使用开源软件,更要贡献自己的代码和知识,促进开源生态的健康发展。 拥抱开源软件不仅是技术层面的选择,更是推动创新、促进知识共享与合作的行动。面对未来的挑战与机遇,企业和个人开发者应积极适应这一趋势,充分利用开源资源,共同构建更加开放、协作的科技生态系统。
2024-07-31 16:06:44
278
月下独酌
Hadoop
...。作为一个程序员或者数据工程师,你可能已经听说过这个名字。Hadoop是一种开源的大数据处理框架,它的核心功能是存储和处理海量的数据。不过,我今天想带大家深入探讨的是Hadoop的一个非常实用的功能:跨硬件复制文件。 为什么这个功能这么重要呢?想象一下,如果你正在运行一个大型的分布式系统,突然某个节点挂了怎么办?数据丢了?那可太惨了!Hadoop通过分布式文件系统(HDFS)来解决这个问题。HDFS 可不只是简单地把大文件切成小块儿,它还特聪明,会把这些小块儿分散存到不同的机器上。这就跟把鸡蛋放在好几个篮子里一个道理,哪怕有一台机器突然“罢工”了(也就是挂掉了),你的数据还是稳稳的,一点都不会丢。 那么,Hadoop是如何做到这一点的呢?咱们先来看看它是怎么工作的。 --- 2. HDFS的工作原理 数据块与副本 HDFS是一个分布式的文件系统,它的设计理念就是让数据更加可靠。简单讲啊,HDFS会把一个大文件切成好多小块儿(每块默认有128MB这么大),接着把这些小块分开放到集群里的不同电脑上存着。更关键的是,HDFS会为每个数据块多弄几个备份,一般是三个副本。这就相当于给你的数据买了“多重保险”,哪怕有一台机器突然“罢工”或者出问题了,你的数据还是妥妥地躺在别的机器上,一点都不会丢。 举个例子,假设你有一个1GB的文件,HDFS会把这个文件分成8个128MB的小块,并且每个小块会被复制成3份,分别存储在不同的服务器上。这就意味着啊,就算有一台服务器“挂了”或者出问题了,另外两台服务器还能顶上,数据照样能拿得到,完全不受影响。 说到这里,你可能会问:“为什么要复制这么多份?会不会浪费空间?”确实,多副本策略会占用更多的磁盘空间,但它的优点远远超过这一点。先说白了就是,它能让数据更好用、更靠谱啊!再说了,在那种超大的服务器集群里头,这样的备份机制还能帮着分散压力,不让某一个地方出问题就整个崩掉。 --- 3. 实战演示 如何使用Hadoop进行跨硬件复制? 接下来,让我们动手试试看!我会通过一些实际的例子来展示Hadoop是如何完成文件跨硬件复制的。 3.1 安装与配置Hadoop 首先,你需要确保自己的环境已经安装好了Hadoop。如果你还没有安装,可以参考官方文档一步步来配置。对新手来说,建议先试试伪分布式模式,相当于在一台电脑上“假装”有一个完整的集群,方便你熟悉环境又不用折腾多台机器。 3.2 创建一个简单的文本文件 我们先创建一个简单的文本文件,用来测试Hadoop的功能。你可以使用以下命令: bash echo "Hello, Hadoop!" > test.txt 然后,我们将这个文件上传到HDFS中: bash hadoop fs -put test.txt /user/hadoop/ 这里的/user/hadoop/是HDFS上的一个目录路径。 3.3 查看文件的副本分布 上传完成后,我们可以检查一下这个文件的副本分布情况。使用以下命令: bash hadoop fsck /user/hadoop/test.txt -files -blocks -locations 这段命令会输出类似如下的结果: /user/hadoop/test.txt 128 bytes, 1 block(s): OK 0. BP-123456789-192.168.1.1:50010 file:/path/to/local/file 1. BP-123456789-192.168.1.2:50010 file:/path/to/local/file 2. BP-123456789-192.168.1.3:50010 file:/path/to/local/file 从这里可以看到,我们的文件已经被复制到了三台不同的服务器上。 --- 4. 深度解读 Hadoop的副本策略 在前面的步骤中,我们已经看到了Hadoop是如何将文件复制到不同节点上的。但是,你知道吗?Hadoop的副本策略其实是非常灵活的。它可以根据网络拓扑结构来决定副本的位置。 例如,默认情况下,第一个副本会放在与客户端最近的节点上,第二个副本会放在另一个机架上,而第三个副本则会放在同一个机架的不同节点上。这样的策略可以最大限度地减少网络延迟,提高读取效率。 当然,如果你对默认的副本策略不满意,也可以自己定制。比如,如果你想让所有副本都放在同一个机架内,可以通过修改dfs.replication.policy参数来实现。 --- 5. 总结与展望 通过今天的讨论,我们了解了Hadoop是如何通过HDFS实现文件的跨硬件复制的。虽然这个功能看似简单,但它背后蕴含着复杂的设计理念和技术细节。正是这些设计,才使得Hadoop成为了一个强大的大数据处理工具。 最后,我想说的是,学习新技术的过程就像探险一样,充满了未知和挑战。嘿,谁还没遇到过点麻烦事儿呢?有时候一头雾水,感觉前路茫茫,但这不正是探索的开始嘛!别急着放弃,熬过去你会发现,那些让人头疼的问题其实藏着不少小惊喜,等你拨开云雾时,成就感绝对让你觉得值了!希望这篇文章能给你带来一些启发,也希望你能亲自尝试一下Hadoop的实际操作,感受一下它的魅力! 好了,今天的分享就到这里啦!如果你有任何疑问或者想法,欢迎随时留言交流。让我们一起探索更多有趣的技术吧!
2025-03-26 16:15:40
98
冬日暖阳
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
systemctl start|stop|restart service_name
- 控制systemd服务的启动、停止或重启。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"