前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[技术经理 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Netty
...一样,让那些冷冰冰的技术也能充满人情味儿,更加有温度。
2023-09-11 19:24:16
221
海阔天空
HBase
...和CPU优化不仅关乎技术层面的深入理解和灵活运用,更在于对整个系统运行状态的敏锐洞察和精准调控。每一次实践都是对我们对技术认知的深化,也是我们在大数据领域探索过程中不可或缺的一部分。
2023-08-05 10:12:37
508
月下独酌
Python
...们面对的问题不仅仅是技术上的挑战,更是对数学知识的理解和应用。希望能给你带来点灵感,不管是学Python还是别的啥,保持好奇心和爱折腾的精神可太重要了! 好了,这就是今天的内容。如果你有任何想法或疑问,欢迎随时留言讨论。让我们一起继续学习,享受编程带来的乐趣吧! --- 这篇文章旨在通过具体案例展示如何利用Python解决实际问题,同时穿插了一些个人思考和感受,希望能够符合你对于“口语化”、“情感化”的要求。希望对你有所帮助!
2024-11-19 15:38:42
113
凌波微步
Maven
... 另外,有开发专家在技术博客中深度剖析了Maven插件的自定义实现与扩展机制,通过引证实际案例说明如何正确编写插件以遵循Maven规范,防止因插件问题导致的生命周期阶段错误。这为解决Invalidlifecyclephase问题提供了更深层次的理解和更为灵活的应对策略。 总之,在面对Maven Invalidlifecyclephase这类问题时,不仅需要扎实的基础知识,还要保持对Maven生态发展的敏锐度,并积极参考行业内的实践经验和前沿解读,才能确保在项目构建过程中高效无误地推进。
2023-05-18 13:56:53
155
凌波微步_t
Mongo
...下功夫学习和掌握这门技术。这样一来,在实际项目里遇到各种难缠的问题时,才能更加游刃有余地搞定它们,让挑战变成小菜一碟!
2023-12-06 15:41:34
135
时光倒流-t
Go-Spring
...般的深刻理解,以及对技术工具能够手到擒来的熟练掌握。让我们一起,在Go-Spring的世界里探索更多可能,打造更高性能、更稳定的分布式服务吧!
2023-12-08 10:05:20
530
繁华落尽
c++
...编写体验,也为未来的技术发展奠定了坚实的基础。随着C++社区的持续努力,我们有理由期待C++在未来能够继续引领编程语言的发展潮流,满足日益复杂和多样化的软件开发需求。
2024-09-14 16:07:23
23
笑傲江湖
Kibana
...(Kibana背后的技术提供商)发布了其最新版本的Kibana,强化了数据预处理和异常检测功能,帮助用户在源头上就发现并修正可能影响可视化准确性的数据问题。 此外,随着大数据和人工智能技术的发展,自动化数据清洗和智能图表生成技术也逐渐崭露头角。例如,一些新型的数据分析工具已经开始整合机器学习算法,能够根据数据特征自动选择最优的可视化方案,并在实时流数据中动态调整图表类型和参数,从而有效避免人为设置误差。 同时,在数据伦理与可视化准确性方面,业界专家不断强调数据质量的重要性,呼吁数据分析师遵循严谨的数据治理流程,确保数据从采集、存储到分析的全链条准确无误。全球知名咨询机构Gartner在其最新报告中指出,2023年,将有超过75%的企业投资于增强数据质量管理能力,以支撑更精确、更具洞察力的数据可视化应用。 因此,在实际工作中,除了深入理解并熟练运用Kibana等工具外,紧跟行业发展趋势,提升数据质量意识,以及适时引入智能化辅助手段,是保障数据可视化准确性的关键所在。
2023-04-16 20:30:19
292
秋水共长天一色-t
Apache Pig
...。近年来,随着云原生技术的兴起,Kubernetes等容器编排系统开始支持大数据应用,为Pig这样的工具提供了更为灵活、弹性的运行环境。例如,Cloudera公司推出的Dataflow for Kubernetes项目,旨在实现包括Apache Pig在内的大数据工作负载在容器化环境下的无缝部署与管理。 此外,Apache Beam作为另一个开源数据处理框架,其统一模型能够跨多个执行引擎(包括Apache Flink、Spark以及Google Cloud Dataflow)运行,提供了一种与Pig Latin类似的声明式编程接口,使得开发者在面对多样的执行环境时能够保持代码的一致性与移植性。值得注意的是,Beam也支持将Pig Latin脚本转换为其SDK表示,从而在更广泛的执行环境中利用到Pig的优点。 同时,Apache Hadoop生态系统的持续演进也不容忽视,如Hadoop 3.x版本对YARN资源管理和存储层性能的改进,将进一步优化Pig在大规模集群上的并行处理效率。而诸如Apache Arrow这类内存中列式数据格式的普及,也将提升Pig与其他大数据组件间的数据交换速度,为复杂的数据分析任务带来新的可能。 总之,在当前的大数据时代背景下,Apache Pig的应用不仅限于传统的Hadoop MapReduce环境,它正在与更多新兴技术和平台整合,共同推动大数据并行处理技术的发展与创新。对于相关从业人员而言,紧跟这些趋势和技术进步,无疑能更好地发挥Pig在实际业务场景中的潜力。
2023-02-28 08:00:46
498
晚秋落叶
Etcd
...管理中心,并在公开的技术博客中分享了相关的设计思路和实战经验,为业界提供了极具参考价值的实践案例。 因此,持续关注etcd的最新技术进展,学习借鉴行业内的实践经验,能够帮助我们在遇到类似节点启动失败等问题时,以更全局的视角和更专业的手段进行问题定位与解决。同时,也能启发我们如何基于etcd这类强大工具进行创新性应用,提升整个系统的可靠性和可维护性。
2023-10-11 17:16:49
573
冬日暖阳-t
Dubbo
...得明白一个道理,光靠技术手段还不够,运维管理和监控这两样东西也是不可或缺的。想象一下,它们就像是我们系统的“保健医生”和“值班保安”,能够随时发现并处理各种小毛病、小问题,确保我们的系统始终健健康康地运行着。
2023-05-13 08:00:03
492
翡翠梦境-t
Apache Pig
...pache Pig的技术文章来哈。但我可以为您撰写一篇详细介绍Apache Pig并包含代码示例、深入探讨和情感化表达的文章。以下是一个示例大纲: --- Apache Pig:大数据处理的强大工具 0 1. 引言 在浩瀚的数据海洋中,Apache Pig无疑是一艘功能强大的航船。它以SQL-like的脚本语言——Pig Latin为基础,为Hadoop生态系统提供了高效、灵活的大数据处理能力。本文将带您探索Pig的世界,从基础概念到实际应用,并通过生动的代码实例揭示其内在魅力。 0 2. Apache Pig简介 Apache Pig是一种高级数据流处理语言和运行环境,专为大规模数据集设计,简化了复杂数据处理任务。比起吭哧吭哧直接用MapReduce写Java程序,Pig Latin就像是给你提供了一个超级方便的高级工具箱。这样一来,不论是数据清洗、转换还是加载这些繁琐步骤,都能轻轻松松、简简单单地完成,简直就像魔法一样让处理数据变得so easy! 0 3. Pig Latin实战 03.1 数据加载 pig -- 加载一个简单的文本文件 raw_data = LOAD 'input.txt' AS (line:chararray); -- 使用逗号分隔符解析每一行 parsed_data = FOREACH raw_data GENERATE FLATTEN(TOKENIZE(line)) AS word; 这段代码展示了如何用Pig Latin加载和解析数据,直观且易于理解。 03.2 数据处理与过滤 pig -- 过滤掉非字母数字字符 cleaned_data = FILTER parsed_data BY word MATCHES '[a-zA-Z0-9]+'; -- 统计每个单词出现的次数 word_counts = GROUP cleaned_data BY word; word_freq = FOREACH word_counts GENERATE group, COUNT(cleaned_data); 这里演示了Pig拉丁语句如何进行数据过滤和聚合统计,体现了其在处理复杂ETL任务时的优势。 0 4. 遇到的问题与挑战 虽然Apache Pig强大而易用,但在实际操作过程中,我们可能会遇到各种问题,比如数据类型转换错误、资源分配不合理等(想象一下,如果你遇到了78个错误,这无疑是让人头痛的)。当面对这些问题时,我们得像个侦探那样,把日志分析当作放大镜,调试技巧当成探案工具,再加上对Pig这家伙内在运行机制的深刻理解,才能一步步把这些难题给破解喽。比如,当你遇到一条错误提示时,你得化身福尔摩斯去探寻背后的真相,尝试摸清错误发生的来龙去脉,然后找准对策把它搞定。 0 5. 探讨与思考 尽管我们在使用Apache Pig的过程中可能会面临一些挑战,但正是这些挑战推动我们不断深入学习和理解。正如一句名言所说:“每个错误都是一个学习的机会。对于那78条还没被列出的小错误,咱不妨把它们想象成是咱们在掌握Apache Pig这条大路途中遇到的一块块小石子。每解决一个问题,就仿佛是在这块大数据处理的道路上狠狠地踩下了一脚,让我们的理解力和见识也随之噌噌噌地往上窜。 0 6. 结语 Apache Pig以其独特的语言特性和强大的数据处理能力,在大数据领域占据着重要地位。来吧,伙伴们,咱们一块儿并肩作战,翻过前方那可能冒出的78座甚至更多的“绊脚石”,一起探索、驾驭这个威力无比的工具。让数据真正变身,成为推动业务迅猛发展的超强马达! --- 请注意,以上内容是根据您的要求模拟创作的,具体技术细节和代码示例可能需要根据实际的Apache Pig使用情况进行调整。要是你能给我一份具体的错误明细,或者把问题说得更明白些,我就能给你提供更对症下药的信息了。
2023-04-30 08:43:38
385
星河万里
SeaTunnel
...不被窃取、篡改的关键技术手段之一。在这篇文章里,我们要好好唠一唠SeaTunnel中如果SSL/TLS加密连接配置不当,可能会给你带来哪些意想不到的麻烦事。为了让大家能直观明白,我还特意准备了实例代码,手把手教你如何正确设置和运用这个功能,包你一看就懂,轻松上手! 2. SSL/TLS加密连接的重要性 首先,我们来聊聊为什么要在SeaTunnel中启用SSL/TLS加密。试想一下,你的公司在用SeaTunnel这玩意儿搬运和转换一大批重要的业务数据。假如没启用SSL/TLS加密这个防护罩,这些数据就像一个个光着身子在网络大道上跑的明文消息,分分钟就可能被中间人攻击(MITM)这类安全威胁给盯上,危险得很呐!你知道吗,SSL/TLS协议就像个超级秘密特工,它能给传输过程中的数据穿上一层加密的铠甲,这样一来,企业的数据隐私性和完整性就得到了大大的保障。这样一来,在企业享受SeaTunnel带来的飞速效能时,也能稳稳妥妥地确保数据安全,完全不用担心会有啥猫腻发生! 3. 未正确配置SSL/TLS加密连接可能引发的问题 - 数据泄露风险:未加密的数据在传输过程中犹如“透明”,任何具有网络监听能力的人都有可能获取到原始数据。 - 合规性问题:许多行业如金融、医疗等对数据传输有严格的加密要求,未采用SSL/TLS可能会导致企业违反相关法规。 - 信任危机:一旦发生数据泄露,不仅会对企业造成经济损失,更会严重影响企业的声誉和客户信任度。 4. 如何在SeaTunnel中正确配置SSL/TLS加密连接 让我们通过一个实际的SeaTunnel配置案例,直观地了解如何正确设置SSL/TLS加密连接。 yaml SeaTunnel Source Configuration (以MySQL为例) source: type: jdbc config: username: your_username password: your_password url: 'jdbc:mysql://your_host:3306/your_database?useSSL=true&requireSSL=true' connection_properties: sslMode: VERIFY_IDENTITY sslTrustStore: /path/to/truststore.jks sslTrustStorePassword: truststore_password SeaTunnel Sink Configuration (以Kafka为例) sink: type: kafka config: bootstrapServers: your_kafka_bootstrap_servers topic: your_topic securityProtocol: SSL sslTruststoreLocation: /path/to/kafka_truststore.jks sslTruststorePassword: kafka_truststore_password 上述示例中,我们在源端MySQL连接字符串中设置了useSSL=true&requireSSL=true,同时指定了SSL验证模式以及truststore的位置和密码。而在目标端Kafka配置中,我们也启用了SSL连接,并指定了truststore的相关信息。 请注意:这里只是简化的示例,实际应用中还需根据实际情况生成并配置相应的keystore与truststore文件。 5. 总结与思考 在SeaTunnel中正确配置SSL/TLS加密连接并非难事,关键在于理解其背后的原理与重要性。对每一个用SeaTunnel干活的数据工程师来说,这既是咱的分内之事,也是咱对企业那些宝贵数据资产负责任的一种表现,说白了,就是既尽职又尽责的态度体现。每一次我们精心调整配置,就像是对那些可能潜伏的安全风险挥出一记重拳,确保我们的数据宝库能在数字化的大潮中安然畅游,稳稳前行。所以,亲们,千万千万要对每个项目中的SSL/TLS加密设置上心,让安全成为咱们构建数据管道时最先竖起的那道坚固屏障,守护好咱们的数据安全大门。
2024-01-10 13:11:43
172
彩虹之上
转载文章
...荐 闲聊区 育儿区 技术区 本篇文章为转载内容。原文链接:https://blog.csdn.net/X8i0Bev/article/details/102812977。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-02 14:22:56
135
转载
Spark
...n)?——深入浅出的技术探讨与实战示例 1. 引子 理解分布式计算中的挑战 在大数据处理的世界里,Apache Spark以其卓越的性能和易用性赢得了广大开发者的心。当我们用超级大的集群来处理那些让人挠头的复杂并行任务时,常常会碰到各种意想不到的性能瓶颈问题。特别是在各个节点硬件配置不统一,或者数据分布得七零八落的情况下,这些问题更是层出不穷。这时候,一个叫“推测执行”的小机灵鬼就显得特别关键了,它就像Spark里的那位超级未雨绸缪、洞察秋毫的大管家,时刻紧盯着任务的进展动态。一旦瞅准时机,它就会立马出手,优化整体的运行效率,让事情变得更快更顺溜。 2. 推测执行的基本概念 定义 Spark的推测执行是一种提高分布式计算任务效率的方法。换句话说,这个功能就相当于Spark有了个聪明的小脑瓜。当它发现有些任务跑得比乌龟还慢,就猜到可能是硬件闹情绪了,或者数据分配不均在使绊子,于是果断决定派出额外的“小分队”一起并肩作战,加速完成任务。你知道吗,当Spark在运行程序时,如果有某个复制的推测任务抢先完成了,它会很机智地把其他还在苦干的复制任务的结果直接忽略掉,然后挑出这个最快完成复制任务的成果来用。这样一来,就大大减少了整个应用程序需要等待的时间,让效率嗖嗖提升! 原理 在Spark中,默认情况下是关闭推测执行的,但在大型集群环境下开启该特性可以显著提升作业性能。Spark通过监控各个任务的执行进度和速度差异,基于内置的算法来决定是否需要启动推测任务。这种策略能够应对潜在的硬件故障、网络波动以及其他难以预估的因素造成的执行延迟。 3. 如何启用Spark的推测执行 为了直观地展示如何启用Spark的推测执行,我们可以查看SparkConf的配置示例: scala import org.apache.spark.SparkConf val sparkConf = new SparkConf() .setAppName("SpeculationDemo") .setMaster("local[4]") // 或者是集群模式 .set("spark.speculation", "true") // 启用推测执行 val sc = new SparkContext(sparkConf) 在这个示例中,我们设置了spark.speculation为true以启用推测执行。当然,在真实的工作场景里,咱们也得灵活应变,根据实际工作任务的大小和资源状况,对一些参数进行适当的微调。比如那个推测执行的触发阈值(spark.speculation.multiplier),就像调节水龙头一样,要找到适合当前环境的那个“度”。 4. 推测执行的实际效果与案例分析 假设我们正在处理一个包含大量分区的数据集,其中一个分区的数据量远大于其他分区,导致负责该分区的任务执行时间过长。以下是Spark内部可能发生的推测执行过程: - Spark监控所有任务的执行状态和速度。 - 当发现某个任务明显落后于平均速度时,决定启动一个新的推测任务处理相同的分区数据。 - 如果推测任务完成了计算并且比原任务更快,则采用推测任务的结果,并取消原任务。 - 最终,即使存在数据倾斜,整个作业也能更快地完成。 5. 探讨与权衡 尽管推测执行对于改善性能具有积极意义,但并不是没有代价的。额外的任务副本会消耗更多的计算资源,如果频繁错误地推测,可能导致集群资源浪费。所以,在实际操作时,我们得对作业的特性有接地气、实实在在的理解,然后根据实际情况灵活把握,找到资源利用和执行效率之间的那个微妙平衡点。 总之,Spark的推测执行机制是一个聪明且实用的功能,它体现了Spark设计上的灵活性和高效性。当你碰上那种超大规模、复杂到让人挠头的分布式计算环境时,巧妙地利用推测执行这个小窍门,就能帮咱们更好地玩转Spark。这样一来,甭管遇到什么难题挑战,Spark都能稳稳地保持它那傲人的高性能表现,妥妥的!下次你要是发现Spark集群上的任务突然磨磨蹭蹭,不按套路出牌地延迟了,不如尝试把这个神奇的功能开关打开试试,没准就能收获意想不到的惊喜效果!说到底,就像咱们人类在解决问题时所展现的机智劲儿那样,有时候在一片迷茫中摸索出最佳答案,这恰恰就是技术发展让人着迷的地方。
2023-03-28 16:50:42
329
百转千回
转载文章
...注。未来,随着云原生技术的快速发展,准入控制器将承载更多的功能与责任,成为驱动Kubernetes集群迈向更高稳定性和安全性的基石。
2023-12-25 10:44:03
337
转载
SpringCloud
...付未来可能出现的各种技术难题,就像是个身经百战的老兵一样。
2023-02-03 17:24:44
129
春暖花开
RabbitMQ
...目的需求和手头现有的技术工具箱灵活调整具体实现方式,不过无论咋整,RabbitMQ都像是个超级靠谱的邮差,让各个服务之间的交流变得贼顺畅。
2024-02-23 11:44:00
93
笑傲江湖-t
MemCache
...步步优化提升。这正是技术引人入胜之处,同样也是每一位开发者在成长道路上必经的重要挑战和修炼课题。
2023-12-27 23:36:59
89
蝶舞花间
Apache Atlas
...,随着大数据和云计算技术的快速发展,企业对元数据管理的需求愈发迫切,Apache Atlas作为一款先进的开源元数据管理系统,在国内外众多大型项目中得到了广泛应用。 延伸阅读一则关于Apache Atlas实际应用的新闻:2022年,某全球知名电商巨头宣布在其数据湖建设中全面采用Apache Atlas进行元数据管理,以应对日益复杂的数据环境带来的挑战。该项目负责人表示,通过有效利用Atlas的REST API接口,不仅成功实现了各类数据实体的自动化创建、管理和追踪,还极大地提升了数据发现的效率和准确性,同时降低了由于权限混乱或实体关联性问题引发的风险。 此外,Apache社区在持续优化Atlas的功能特性,最近发布的Atlas 2.3版本强化了对Kafka、Hive等大数据组件的支持,并增强了API的安全性和易用性,使得开发者能够更加便捷地处理实体创建过程中的各类问题,有力推动了企业在数字化转型过程中的元数据治理实践。 因此,对于正在使用或计划采用Apache Atlas的企业和开发者而言,紧跟官方更新动态,深入研究和掌握其REST API的使用技巧及错误排查方法,无疑将为企业的数据资产管理带来更大的价值。同时,结合业界最佳实践和实时案例分析,有助于不断提升自身的数据治理能力,确保在瞬息万变的技术浪潮中保持竞争力。
2023-06-25 23:23:07
563
彩虹之上
RabbitMQ
...篇发表在InfoQ的技术文章《深入剖析RabbitMQ性能调优策略》中,作者详细解读了如何从内存、网络、磁盘I/O等多个维度优化RabbitMQ,从而提升整体系统性能,降低故障发生概率。 综上所述,面对RabbitMQ服务器磁盘空间不足等现实问题,无论是采取自动化运维手段进行资源扩展,还是引入更先进的数据管理和备份策略,都是我们在构建和维护高可靠、高性能分布式系统过程中不可或缺的一环。持续跟进最新的技术发展与最佳实践,将有助于我们在实际工作中更好地应对挑战,保障业务的平稳运行。
2024-03-17 10:39:10
171
繁华落尽-t
Cassandra
...随着5G、物联网等新技术的发展,未来将产生更加海量的数据,而Cassandra凭借其强大的数据处理能力,有望成为更多企业构建实时数据监控系统的首选方案。
2025-02-27 15:51:14
70
凌波微步
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
groups user
- 显示用户所属的组。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"