前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[文件块大小 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
... 1.调整桌面的图标大小 2.怎么把我的电脑放到桌面上win10 3.分屏 4.磁盘清理大法 5.hiberfil.sys&swapfile.sys 6.windows中的休眠与睡眠 7.WPS中如何不做拼写检查 8.EV视频相关方法 9.WINDOW自带剪辑方法 10.快捷键大全 11.B站上传合集 12.查看WIN电脑配置 1.调整桌面的图标大小 搜索注册表,在运行里键入regedit就可以进入了,修改计算机\HKEY_CURRENT_USER\Control Panel\Desktop\WindowMetrics中的IconSpacing,IconVerticalSpacing等值可以进行调整,之后重启电脑使得修改生效即可. 2.怎么把我的电脑放到桌面上win10 引用别人的链接:win10中如何把我的电脑放到桌面上 3.分屏 分屏的方法 4.磁盘清理大法 C:\Users\HP\AppData--占的空间很大 C:\Users\HP\AppData\Roaming\Code --大 C:\Users\HP\AppData\Roaming\Code\User\workspaceStorage ---大! C:\Users\HP\AppData\Roaming\Code\User\workspaceStorage\281c5e08bf4f59f783a3aa64953fdc77\ms-vscode.cpptools ---大!! C:\Users\HP\AppData\Roaming--文件夹能删除吗 C:\Users\HP\Documents\Tencent Files D:\014-电子书\017-杂乱下载C盘\腾讯\5723\Image--腾讯聊天的图 C:\Users\HP\AppData\Local\Microsoft---6G 5.hiberfil.sys&swapfile.sys 可参考的相关hiberfi.sys和swapfile.sys的链接 今天HP1号的C盘满了,昨天还有5G的,今天只有2G了,发现了这两个文件.hiberfil.sys有3.12G,swapfile.sys256M. 经查,“hiberfil.sys”是系统休眠文件,其大小和物理内存一样大,这里我要解释下两个名字,计算机的休眠(hibernate)与睡眠(sleep),我们常用的是sleep功能, 即电脑放置一段时间, 进入低耗状态, 工作态度保存在内存里, 恢复时1-2秒就可以恢复原状态.这个功能是实用的, 也是最常用的. hibernate是把工作状态即所有内存中的数据,写入到硬盘(这就是hiberfil.sys文件),然后关闭系统,在下次启动开机时,将保持的数据写回内存,虽然需要花费些时间,但好处就是你正在进行中的工作,都会被保存起来,就算断电以后也不回消失,这也就是为什么经常有人说几个月不用关机的原因,当然休眠并不是必须的,完全看你这个需求了,如果确实有需要也不用care这点硬盘啦。有网友说--这个文件大小的描述错误,hiberfil.sys的大小并≠内存大小,因为该文件貌似是压缩过。我的内存是8G,这个.hiberfil.sys有3.12G,这样看这个网友说的对的. hiberfi.sys的链接 首先分清SLEEP睡眠和HIBERNATE休眠两个概念. 我们常用的是SLEEP睡眠功能, 也就是电脑经过一定时间后, 进入低功耗状态, 工作态度保存在内存里, 恢复时1-2秒就可以恢复原状态.这个功能是实用的, 也是最常用的. 而休眠是把工作状态即所有内存信息写入硬盘,如有2-4G内存,即要写入2-4G的文件到硬盘,然后才能关机,开机恢复要读取2-4G的文件到内存,才能恢复原界面.而大文件的读写要花大量 的时间,已经不亚于正常开机了,所以现在休眠功能很不实用(针对1G以上内存). 休眠的HIBERFIL.SYS这个文件就是用来休眠时保存内存状态用的.会占用C盘等同内存容量的空间(以2G内存为例,这个文件也为2G),所以完全可以删掉而不影响大家使用.还会大大节省C盘空间的占用。 操作: 以管理员运行CMD, 打以下命令: POWERCFG -H OFF 即自动删除该文件. 大家看处理前后C盘空间的变化就知道了. 怎么以管理员运行: 在“所有程序”->“附件”->“命令提示符”上右键,选“以管理员运行” 如果本身是以管理员身份登录,直接运行cmd即可。 我做的测试: 文件位置C:\hiberfil.sys “pagefile.sys”是页面交换文件(即虚拟内存),这个文件不能删除,不过可以改变其大小和存放位置. 6.windows中的休眠与睡眠 windows中的休眠与睡眠 7.WPS中如何不做拼写检查 WPS中如何不做拼写检查 8.EV视频相关方法 如何利用EV视频剪辑软件合并视频 EV剪辑怎么给视频添加字幕 9.WINDOW自带剪辑方法 WIN10自带剪辑视频的方法 10.快捷键大全 快捷键大全 11.B站上传合集 B站上传合集 12.查看WIN电脑配置 13.windows远程桌面链接 win+Rmstsc 14.word中的边框和底纹如何应用于文字,段落和页面 word中边框和底纹——应用于文字、段落、页面分别如何设置? 本篇文章为转载内容。原文链接:https://blog.csdn.net/Edidaughter/article/details/111231562。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-01 13:02:11
117
转载
DorisDB
...瞧了这一步,选对备份文件存放在哪儿,多久检查一次备份,还有万一需要恢复数据,咱得有个顺溜的流程,这每一步都挺关键的。就像是给宝贝儿们做保险计划一样,得周全,还得实用,不能光图个形式,对吧?哎呀,兄弟,咱们得给数据做个保险啊!就像你出门前检查门窗一样,定期备份数据,能大大降低数据丢了找不回来的风险。万一哪天电脑罢工或者硬盘坏掉啥的,你也不至于急得团团转,还得去求那些所谓的“数据恢复大师”。而且,备份做得好,恢复数据的时候也快多了,省时间又省心,这事儿得重视起来! 4. 遇到问题时的常见错误及解决方法 错误1:备份失败,日志提示“空间不足” 原因:这通常是因为备份文件的大小超过了可用磁盘空间。 解决方法: 1. 检查磁盘空间 首先确认备份目录的磁盘空间是否足够。 2. 调整备份策略 考虑使用增量备份,仅备份自上次备份以来发生变化的数据部分,减少单次备份的大小。 3. 优化数据存储 定期清理不再需要的数据,释放更多空间。 python 示例代码:设置增量备份 dorisdb_backup = dorisdb.BackupManager() dorisdb_backup.set_incremental_mode(True) 错误2:备份过程中断电导致数据损坏 原因:断电可能导致正在执行的备份任务中断,数据完整性受损。 解决方法: 1. 使用持久化存储 确保备份操作在非易失性存储设备上进行,如SSD或RAID阵列。 2. 实施数据同步 在多个节点间同步数据,即使部分节点在断电时仍能继续备份过程。 python 示例代码:设置持久化备份 dorisdb_backup = dorisdb.BackupManager() dorisdb_backup.enable_persistence() 5. 数据恢复实战 当备份数据出现问题时,及时且正确的恢复策略至关重要。DorisDB提供了多种恢复选项,从完全恢复到特定时间点的恢复,应根据实际情况灵活选择。 步骤1:识别问题并定位 首先,确定是哪个备份文件或时间点出了问题,这需要详细的日志记录和监控系统来辅助。 步骤2:选择恢复方式 - 完全恢复:将数据库回滚到最近的备份状态。 - 时间点恢复:选择一个具体的时间点进行恢复,以最小化数据丢失。 步骤3:执行恢复操作 使用DorisDB的恢复功能,确保数据的一致性和完整性。 python 示例代码:执行时间点恢复 dorisdb_restore = dorisdb.RestoreManager() dorisdb_restore.restore_to_timepoint('2023-03-15T10:30:00Z') 6. 结语 数据备份和恢复是数据库管理中的重要环节,正确理解和应用DorisDB的相关功能,能够有效避免和解决备份过程中遇到的问题。通过本篇讨论,我们不仅了解了常见的备份错误及其解决方案,还学习了如何利用DorisDB的强大功能,确保数据的安全性和业务的连续性。记住,每一次面对挑战都是成长的机会,不断学习和实践,你的数据管理技能将愈发成熟。 --- 以上内容基于实际应用场景进行了概括和举例说明,旨在提供一种实用的指导框架,帮助读者在实际工作中应对数据备份和恢复过程中可能出现的问题。希望这些信息能够对您有所帮助!
2024-07-28 16:23:58
432
山涧溪流
转载文章
... 获取当前浏览器的大小driver.get_window_size()通过宽和高对size进行设置driver.set_window_size('100','200') 获取当前窗口针对于Windows的位置的坐标x,ydriver.get_window_position() 设置当前窗口针对Windows的位置,x,ydriver.set_window_position(20,20) 最大化当前窗口,不需要传参driver.maximize_window() 返回当前操作的浏览器句柄driver.current_window_handle 返回所有打开server的浏览器句柄driver.window_handles 截取当前页面: from selenium import webdriverdriver=webdriver.Chrome()driver.get("http://www.baidu.com")driver.get_screenshot_as_file('d.png') 执行JavaScript语句 执行JavaScript语句driver.execute_script('window.scrollTo(0,0);')执行js的api,通过js来操作滚动条,滚动到最上面 关闭与退出: 当开启多个页面时,关闭当前页面driver.close()退出并关闭所有页面驱动driver.quit() from selenium import webdriverdriver=webdriver.Chrome()driver.get("http://ui.imdsx.cn/uitester/")driver.maximize_window()将窗口放大driver.execute_script('window.scrollTo(0,0);')执行js的apidriver.find_element_by_css_selector('[href="/new-index/"]').click()handles=driver.window_handles返回所有打开server的浏览器句柄print(handles)返回listdriver.switch_to.window(handles[1])driver.find_element_by_css_selector('newtag').send_keys(1111)找到新页面上的元素driver.close()关闭当前tab页 from selenium import webdriverdriver=webdriver.Chrome()driver.get("http://ui.imdsx.cn/uitester/")driver.maximize_window()将窗口放大driver.execute_script('window.scrollTo(0,0);')执行js的apidriver.find_element_by_css_selector('[href="/new-index/"]').click()handles=driver.window_handlesprint(handles)driver.switch_to.window(handles[1])driver.find_element_by_css_selector('newtag').send_keys(1111)driver.quit() 关闭所有页面,结束服务 其他 返回页面源码driver.page_source 返回tag标题driver.title 返回当前Urldriver.current_url 获取浏览器名称 如:chromedriver.name ElementApi接口 根据标签属性名称,获取属性valueelement.get_attribute('style') 向输入框输入字符串 如果input的type为file类型 可以输入文件绝对路径上传文件element.send_keys() 清除文本内容element.clear() 鼠标左键点击操作element.click() 通过属性名称获取属性element.get_property('id') 返回元素是否可见 True or Falseelement.is_displayed() 返回元素是否被选中 True or Falseelement.is_selected() 返回标签元素的名字element.tag_name 获取当前标签的宽和高element.size 获取元素的文本内容element.text 模仿回车按钮 提交数据element.submit() 获取当前元素的坐标element.location 截取图片element.screenshot() from selenium import webdriverdriver=webdriver.Chrome()driver.get("http://ui.imdsx.cn/uitester/")driver.maximize_window()将窗口放大driver.execute_script('window.scrollTo(0,0);')执行js的apie=driver.find_element_by_css_selector('i1')e.send_keys(1111)import timetime.sleep(1)e.clear() 清除文本框内内容 转载于:https://www.cnblogs.com/wxcx/p/8934540.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34377065/article/details/94686128。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-03 12:51:11
46
转载
HessianRPC
...第一个怀疑对象是配置文件。HessianRPC的配置其实很简单,但有时候细节决定成败。比如说啊,在配置文件里我给超时时间设成了5秒,结果一到高并发那场面,这时间简直不够塞牙缝的,分分钟就崩了。修改配置后,虽然有一定的改善,但问题依然存在。 java // 修改HessianRPC的超时时间 Properties properties = new Properties(); properties.setProperty("hessian.read.timeout", "10000"); // 设置为10秒 3.2 线程池耗尽 第二个怀疑对象是线程池。HessianRPC默认使用线程池来处理请求,但如果线程池配置不当,可能会导致线程耗尽,进而引发服务不可用。我检查了一下线程池参数,发现最大线程数设置得太低了。 java // 修改线程池配置 ExecutorService executor = Executors.newFixedThreadPool(50); // 将线程数增加到50 3.3 内存泄漏 第三个怀疑对象是内存泄漏。有时候服务崩溃并不是因为CPU或网络的问题,而是内存不足导致的。我用JProfiler这个工具去给服务做了一次内存“体检”,结果一查,嘿,还真揪出了几个“大块头”对象,愣是赖在那儿没走,该回收的内存也没释放掉。 java // 使用WeakReference避免内存泄漏 WeakReference weakRef = new WeakReference<>(new Object()); --- 4. 解决方案 一步步修复服务 好了,找到了问题所在,接下来就是动手解决问题了。这里分享一些具体的解决方案,希望能帮到大家。 4.1 优化配置 首先,优化配置是最直接的方式。我调整了HessianRPC的超时时间和线程池大小,让服务能够更好地应对高并发场景。 java // 配置HessianRPC客户端 HessianProxyFactory factory = new HessianProxyFactory(); factory.setOverloadEnabled(true); // 开启方法重载 factory.setConnectTimeout(5000); // 设置连接超时时间为5秒 factory.setReadTimeout(10000); // 设置读取超时时间为10秒 4.2 异常处理 其次,完善异常处理机制也很重要。我给这个服务加了不少“兜底”的代码,就像在每个关键步骤都放了个小垫子,这样就算某个地方突然“摔跤”了,整个服务也不至于直接“趴下”,还能继续撑着运行。 java try { // 执行业务逻辑 } catch (Exception e) { log.error("服务执行失败", e); } 4.3 日志监控 最后,加强日志监控也是必不可少的。嘿,我装了个ELK日志系统,就是那个 Elasticsearch、Logstash 和 Kibana 的组合拳,专门用来实时盯着服务的日志输出。只要一出问题,我马上就能找到是哪里卡住了,超方便! java // 使用Logback记录日志 logs/service.log %d{yyyy-MM-dd HH:mm:ss} [%thread] %-5level %logger{36} - %msg%n --- 5. 总结 从失败中成长 经过这次折腾,我对HessianRPC有了更深的理解,也明白了一个道理:技术不是一蹴而就的,需要不断学习和实践。虽然这次服务异常恢复失败的经历让我很沮丧,但也让我积累了宝贵的经验。 如果你也有类似的问题,不妨按照以下步骤去排查: 1. 检查配置文件,确保所有参数都合理。 2. 监控线程池状态,避免线程耗尽。 3. 使用工具检测内存泄漏,及时清理无用资源。 4. 完善异常处理机制,增强服务的健壮性。 希望这篇文章能对你有所帮助!如果还有其他问题,欢迎随时交流。我们一起进步,一起成长! --- PS:记住,技术之路虽难,但每一步都是值得的!
2025-05-05 15:38:48
32
风轻云淡
SpringBoot
...ing Boot进行文件上传? 在现代Web开发中,文件上传是一个常见的需求,无论是用户上传图片、视频,还是后台上传配置文件,都需要高效且稳定的处理方式。哎呀,你知道Spring Boot这个Java Web框架吗?它可是个超级好用的小工具!为什么这么说呢?因为它超级简洁,上手快,部署起来也特别方便,所以很多搞程序的大佬们都特别喜欢用它来开发项目。就像是你去超市买菜,选了个特别省事儿的购物车,推起来既轻松又快捷,Spring Boot就是那个购物车,让你的编程之旅更顺畅,效率更高!本文将详细讲解如何使用Spring Boot进行文件上传,包括配置、编码示例以及一些最佳实践。 1. 配置文件上传 在开始之前,确保你的项目中包含了必要的依赖。通常,Spring Boot会自动配置文件上传功能,但为了明确和控制,我们可以通过application.properties或application.yml文件来设置文件上传的目录和大小限制。 properties application.properties spring.servlet.multipart.max-file-size=2MB spring.servlet.multipart.max-request-size=10MB upload.path=/path/to/upload/files 这里,我们设置了单个文件的最大大小为2MB,整个请求的最大大小为10MB,并指定了上传文件的保存路径。 2. 创建Controller处理文件上传 接下来,在你的Spring Boot项目中创建一个控制器(Controller)来处理文件上传请求。下面是一个简单的例子: java import org.springframework.core.io.InputStreamResource; import org.springframework.http.MediaType; import org.springframework.http.ResponseEntity; import org.springframework.web.bind.annotation.PostMapping; import org.springframework.web.bind.annotation.RequestParam; import org.springframework.web.multipart.MultipartFile; import java.io.File; import java.io.FileOutputStream; import java.io.IOException; import java.nio.file.Files; import java.nio.file.Paths; @Controller public class FileUploadController { @PostMapping("/upload") public ResponseEntity uploadFile(@RequestParam("file") MultipartFile file) { try { // 检查文件是否存在 if (file.isEmpty()) { return ResponseEntity.badRequest().body("Failed to upload empty file."); } // 获取文件名和类型 String fileName = file.getOriginalFilename(); String contentType = file.getContentType(); // 保存文件到指定路径 File targetFile = new File(upload.path + fileName); Files.copy(file.getInputStream(), Paths.get(targetFile.getAbsolutePath())); return ResponseEntity.ok("File uploaded successfully: " + fileName); } catch (IOException e) { return ResponseEntity.internalServerError().body("Failed to upload file: " + e.getMessage()); } } } 3. 测试文件上传功能 在完成上述配置和编码后,你可以通过Postman或其他HTTP客户端向/upload端点发送一个包含文件的POST请求。确保在请求体中正确添加了文件参数,如: json { "file": "path/to/your/file" } 4. 处理异常与错误 在实际应用中,文件上传可能会遇到各种异常情况,如文件过大、文件类型不匹配、服务器存储空间不足等。在这次的案例里,我们已经用了一段 try-catch 的代码来应对一些常见的错误情况了。就像你在日常生活中遇到小问题时,会先尝试解决,如果解决不了,就会求助于他人或寻找其他方法一样。我们也是这样,先尝试执行一段代码,如果出现预料之外的问题,我们就用 catch 部分来处理这些意外状况,确保程序能继续运行下去,而不是直接崩溃。对于更复杂的场景,例如检查文件类型或大小限制,可以引入更精细的逻辑: java @PostMapping("/upload") public ResponseEntity uploadFile(@RequestParam("file") MultipartFile file) { if (!isValidFileType(file)) { return ResponseEntity.badRequest().body("Invalid file type."); } if (!isValidFileSize(file)) { return ResponseEntity.badRequest().body("File size exceeds limit."); } // ... } private boolean isValidFileType(MultipartFile file) { // Check file type logic here } private boolean isValidFileSize(MultipartFile file) { // Check file size logic here } 结语 通过以上步骤,你不仅能够实现在Spring Boot应用中进行文件上传的基本功能,还能根据具体需求进行扩展和优化。记住,良好的错误处理和用户反馈是提高用户体验的关键。希望这篇文章能帮助你更好地理解和运用Spring Boot进行文件上传操作。嘿,兄弟!你听过这样一句话吗?“实践出真知”,尤其是在咱们做项目的时候,更是得这么干!别管你是编程高手还是设计大师,多试错,多调整,才能找到最适合那个场景的那套方案。就像是做菜一样,不试试加点这个,少放点那个,怎么知道哪个味道最对路呢?所以啊,提升技能,咱们就得在实际操作中摸爬滚打,这样才能把技术玩儿到炉火纯青的地步!
2024-09-12 16:01:18
86
寂静森林
Kibana
...天都会生成大量的日志文件。这些日志里可能包含了用户的购买记录、浏览行为等重要信息。不过呢,日子一长啊,那些早期的日志就变得没啥分析的意义了,反而是白白占着磁盘空间,挺浪费的。这时候,数据保留策略就能帮你解决这个问题。 再比如,如果你是一家医院的IT管理员,医疗设备产生的监控数据可能每秒都在增加。要是不赶紧把那些旧数据清理掉,系统非但会变得越来越卡,还可能出大问题,甚至直接“翻车”!所以,合理规划数据的生命周期是非常必要的。 --- 3. 如何在Kibana中设置数据保留策略? 接下来,咱们进入正题——具体操作步骤。相信我,这并不复杂,只要跟着我的节奏走,你一定能学会! 3.1 第一步:创建索引模式 首先,我们需要确保你的数据已经被正确地存储到Elasticsearch中,并且可以通过Kibana访问。如果还没有创建索引模式,可以按照以下步骤操作: bash 登录Kibana界面 1. 点击左侧菜单栏中的“Management”。 2. 找到“Stack Management”部分,点击“Index Patterns”。 3. 点击“Create index pattern”按钮。 4. 输入你的索引名称(例如 "logstash-"),然后点击“Next step”。 5. 选择时间字段(通常是@timestamp),点击“Create index pattern”完成配置。 > 思考点:这里的关键在于选择合适的索引名称和时间字段。如果你的时间字段命名不规范,后续可能会导致数据无法正确筛选哦! 3.2 第二步:设置索引生命周期策略 接下来,我们要为索引创建生命周期策略。这是Kibana中最核心的部分,直接决定了数据的保留方式。 示例代码: javascript PUT _ilm/policy/my_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "50gb", "max_age": "30d" } } }, "delete": { "min_age": "1y", "actions": { "delete": {} } } } } } 这段代码的意思是: - 热阶段(Hot Phase):当索引大小达到50GB或者超过30天时,触发滚动操作。 - 删除阶段(Delete Phase):超过1年后,自动删除该索引。 > 小贴士:这里的max_size和max_age可以根据你的实际需求调整。比如,如果你的服务器内存较小,可以将max_size调低一点。 3.3 第三步:将策略应用到索引 设置好生命周期策略后,我们需要将其绑定到具体的索引上。具体步骤如下: bash POST /my-index/_settings { "index.lifecycle.name": "my_policy", "index.lifecycle.rollover_alias": "my_index" } 这段代码的作用是将之前创建的my_policy策略应用到名为my-index的索引上。同时,通过rollover_alias指定滚动索引的别名。 --- 4. 实战案例 数据保留策略的实际效果 为了让大家更直观地理解数据保留策略的效果,我特意准备了一个小案例。假设你是一名电商公司的运维工程师,每天都会收到大量的订单日志,格式如下: json { "order_id": "123456789", "status": "success", "timestamp": "2023-09-01T10:00:00Z" } 现在,你想对这些日志进行生命周期管理,具体要求如下: - 最近3个月的数据需要保留。 - 超过3个月的数据自动归档到冷存储。 - 超过1年的数据完全删除。 实现方案: 1. 创建索引模式,命名为orders-。 2. 定义生命周期策略 javascript PUT _ilm/policy/orders_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "10gb", "max_age": "3m" } } }, "warm": { "actions": { "freeze": {} } }, "delete": { "min_age": "1y", "actions": { "delete": {} } } } } } 3. 将策略绑定到索引 bash POST /orders-/_settings { "index.lifecycle.name": "orders_policy", "index.lifecycle.rollover_alias": "orders" } 运行以上代码后,你会发现: - 每隔3个月,新的订单日志会被滚动到一个新的索引中。 - 超过3个月的旧数据会被冻结,存入冷存储。 - 超过1年的数据会被彻底删除,释放存储空间。 --- 5. 总结与展望 通过今天的分享,相信大家对如何在Kibana中设置数据保留策略有了更深的理解。虽然设置过程看似繁琐,但实际上只需要几步就能搞定。而且啊,要是咱们好好用数据保留这招,不仅能让系统跑得更快、更顺畅,还能帮咱们把那些藏在数据里的宝贝疙瘩给挖出来,多好呀! 最后,我想说的是,技术学习是一个不断探索的过程。如果你在实践中遇到问题,不妨多查阅官方文档或者向社区求助。毕竟,我们每个人都是技术路上的探索者,一起努力才能走得更远! 好了,今天的分享就到这里啦!如果你觉得这篇文章有用,记得点赞支持哦~咱们下次再见!
2025-04-30 16:26:33
20
风轻云淡
Logstash
...各种输入插件——比如文件啊、网页数据啊、数据库啥的,还能用过滤插件整点儿花样,比如说正则表达式匹配或者修改字段之类的。最后,它还支持不少输出插件,比如往Elasticsearch或者Kafka里面扔数据,简直不要太方便!这种灵活性使得Logstash成为了处理复杂数据流的理想选择。 1.2 Elasticsearch:实时搜索与分析的利器 Elasticsearch 是一个基于Lucene构建的开源分布式搜索引擎,它提供了强大的全文搜索功能,同时也支持结构化搜索、数值搜索以及地理空间搜索等多种搜索类型。此外,Elasticsearch还拥有出色的实时分析能力,这得益于其独特的倒排索引机制。当你将数据导入Elasticsearch后,它会自动对数据进行索引,从而大大提高了查询速度。 2. 实时索引优化 让数据飞起来 现在我们已经了解了Logstash和Elasticsearch各自的特点,接下来就让我们看看如何通过它们来实现高效的实时索引优化吧! 2.1 数据采集与预处理 首先,我们需要利用Logstash从各种数据源采集数据。好嘞,咱们换个说法:比如说,我们要从服务器的日志里挖出点儿有用的东西,就像找宝藏一样,目标就是那些访问时间、用户ID和请求的网址这些信息。我们可以用Filebeat这个工具来读取日志文件,然后再用Grok这个插件来解析这些数据,让信息变得更清晰易懂。下面是一个具体的配置示例: yaml input { file { path => "/var/log/nginx/access.log" start_position => "beginning" } } filter { grok { match => { "message" => "%{COMBINEDAPACHELOG}" } } } 这段配置告诉Logstash,从/var/log/nginx/access.log这个路径下的日志文件开始读取,并使用Grok插件中的COMBINEDAPACHELOG模式来解析每一行日志内容。这样子一来,原始的文本信息就被拆成了一个个有组织的小块儿,给接下来的处理铺平了道路,简直不要太方便! 2.2 高效索引策略 一旦数据被Logstash处理完毕,下一步就是将其导入Elasticsearch。为了确保索引操作尽可能高效,我们可以采取一些策略: - 批量处理:减少网络往返次数,提高吞吐量。 - 动态映射:允许Elasticsearch根据文档内容自动创建字段类型,简化索引管理。 - 分片与副本:合理设置分片数量和副本数量,平衡查询性能与集群稳定性。 下面是一个简单的Logstash输出配置示例,演示了如何将处理后的数据批量发送给Elasticsearch: yaml output { elasticsearch { hosts => ["localhost:9200"] index => "nginx-access-%{+YYYY.MM.dd}" document_type => "_doc" user => "elastic" password => "changeme" manage_template => false template => "/path/to/template.json" template_name => "nginx-access" template_overwrite => true flush_size => 5000 idle_flush_time => 1 } } 在这段配置中,我们设置了批量大小为5000条记录,以及空闲时间阈值为1秒,这意味着当达到这两个条件之一时,Logstash就会将缓冲区内的数据一次性发送至Elasticsearch。此外,我还指定了自定义的索引模板,以便更好地控制字段映射规则。 3. 实战案例 打造高性能日志分析平台 好了,理论讲得差不多了,接下来让我们通过一个实际的例子来看看这一切是如何运作的吧! 假设你是一家电商网站的运维工程师,最近你们网站频繁出现访问异常的问题,客户投诉不断。为了找出问题根源,你需要对Nginx服务器的日志进行深入分析。幸运的是,你们已经部署了Logstash和Elasticsearch作为日志处理系统。 3.1 日志采集与预处理 首先,我们需要确保Logstash能够正确地从Nginx服务器上采集到所有相关的日志信息。根据上面说的设置,我们可以搞一个Logstash配置文件,用来从特定的日志文件里扒拉出重要的信息。嘿,为了让大家看日志的时候能更轻松明了,我们可以加点小技巧,比如说统计每个用户逛网站的频率,或者找出那些怪怪的访问模式啥的。这样一来,信息就一目了然啦! 3.2 索引优化与查询分析 接下来,我们将这些处理后的数据发送给Elasticsearch进行索引存储。有了合适的索引设置,就算同时来一大堆请求,我们的查询也能嗖嗖地快,不会拖泥带水的。比如说,在上面那个输出配置的例子里面,我们调高了批量处理的门槛,同时把空闲时间设得比较短,这样就能大大加快数据写入的速度啦! 一旦数据被成功索引,我们就可以利用Elasticsearch的强大查询功能来进行深度分析了。比如说,你可以写个DSL查询,找出最近一周内访问量最大的10个页面;或者,你还可以通过用户ID捞出某个用户的操作记录,看看能不能从中发现问题。 4. 结语 拥抱变化,不断探索 通过以上介绍,相信大家已经对如何使用Logstash与Elasticsearch实现高效的实时索引优化有了一个全面的认识。当然啦,技术这东西总是日新月异的,所以我们得保持一颗好奇的心,不停地学新技术,这样才能更好地迎接未来的各种挑战嘛! 希望这篇文章能对你有所帮助,如果你有任何疑问或建议,欢迎随时留言交流。让我们一起加油,共同成长!
2024-12-17 15:55:35
42
追梦人
转载文章
...内容。 概述 分布式文件系统 适合:一次写入,多次读出,且不支持修改 文件块大小 128M HDFS的shell操作(重点) 基本语法 hadoop fs 具体命令或者hdfs dfs 具体命名 命令大全 Usage: hadoop fs [generic options][-appendToFile <localsrc> ... <dst>] 追加[-cat [-ignoreCrc] <src> ...] 查看[-checksum <src> ...][-chgrp [-R] GROUP PATH...] 改组[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...] 改权限[-chown [-R] [OWNER][:[GROUP]] PATH...] 改所有者[-copyFromLocal [-f] [-p] [-l] [-d] [-t <thread count>] <localsrc> ... <dst>] 上传[-copyToLocal [-f] [-p] [-ignoreCrc] [-crc] <src> ... <localdst>] 下载[-count [-q] [-h] [-v] [-t [<storage type>]] [-u] [-x] [-e] <path> ...][-cp [-f] [-p | -p[topax]] [-d] <src> ... <dst>] 复制[-createSnapshot <snapshotDir> [<snapshotName>]][-deleteSnapshot <snapshotDir> <snapshotName>][-df [-h] [<path> ...]][-du [-s] [-h] [-v] [-x] <path> ...] 统计磁盘文件大小[-expunge][-find <path> ... <expression> ...][-get [-f] [-p] [-ignoreCrc] [-crc] <src> ... <localdst>] 下载[-getfacl [-R] <path>][-getfattr [-R] {-n name | -d} [-e en] <path>][-getmerge [-nl] [-skip-empty-file] <src> <localdst>][-head <file>][-help [cmd ...]][-ls [-C] [-d] [-h] [-q] [-R] [-t] [-S] [-r] [-u] [-e] [<path> ...]] 查看列表[-mkdir [-p] <path> ...] 创建[-moveFromLocal <localsrc> ... <dst>] 剪切到hdfs[-moveToLocal <src> <localdst>] 剪切到本地[-mv <src> ... <dst>] 移动[-put [-f] [-p] [-l] [-d] <localsrc> ... <dst>] 上传[-renameSnapshot <snapshotDir> <oldName> <newName>][-rm [-f] [-r|-R] [-skipTrash] [-safely] <src> ...] 删除[-rmdir [--ignore-fail-on-non-empty] <dir> ...][-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set <acl_spec> <path>]][-setfattr {-n name [-v value] | -x name} <path>][-setrep [-R] [-w] <rep> <path> ...] 设置副本数[-stat [format] <path> ...][-tail [-f] <file>][-test -[defsz] <path>][-text [-ignoreCrc] <src> ...][-touch [-a] [-m] [-t TIMESTAMP ] [-c] <path> ...][-touchz <path> ...][-truncate [-w] <length> <path> ...][-usage [cmd ...]]Generic options supported are:-conf <configuration file> specify an application configuration file-D <property=value> define a value for a given property-fs <file:///|hdfs://namenode:port> specify default filesystem URL to use, overrides 'fs.defaultFS' property from configurations.-jt <local|resourcemanager:port> specify a ResourceManager-files <file1,...> specify a comma-separated list of files to be copied to the map reduce cluster-libjars <jar1,...> specify a comma-separated list of jar files to be included in the classpath-archives <archive1,...> specify a comma-separated list of archives to be unarchived on the compute machinesThe general command line syntax is:command [genericOptions] [commandOptions] 查看详细命令 hadoop fs -help 命令(如cat) 更改hdfs的权限 vi core-site.xml <property><name>hadoop.http.staticuser.user</name><value>root</value></property> HDFS客户端API操作 Windows环境配置 将Windows依赖放到文件夹, 配置环境变量,添加HADOOP_HOME ,编辑Path添加%HADOOP_HOME%/bin 拷贝hadoop.dll和winutils.exe到C:\Windows\System32 创建java项目 配置 编辑pom.xml <dependencies><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version></dependency><dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-slf4j-impl</artifactId><version>2.12.0</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.1.3</version></dependency></dependencies> 在src/main/resources中建立log4j2.xml 打印日志到控制台 <?xml version="1.0" encoding="UTF-8"?><Configuration status="WARN"><Appenders><Console name="Console" target="SYSTEM_OUT"><PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} - %msg%n"/></Console></Appenders><Loggers><Root level="error"><AppenderRef ref="Console"/></Root></Loggers></Configuration> 编写代码 在/src/main/java/cn.zcx.hdfs创建TestHDFS类 public class TestHDFS {// 创建全局变量private FileSystem fs;private Configuration conf;private URI uri;private String user;// 从本地上传文件@Testpublic void testUpload() throws IOException {fs.copyFromLocalFile(false,true,new Path("F:\\Download\\使用前说明.txt"),new Path("/testhdfs"));}/ @Before 方法在@Test方法执行之前执行 /@Beforepublic void init() throws IOException, InterruptedException {uri = URI.create("hdfs://master:8020");conf = new Configuration();user = "root";fs = FileSystem.get(uri,conf,user);}/ @After方法在@Test方法结束后执行 /@Afterpublic void close() throws IOException {fs.close();}@Testpublic void testHDFS() throws IOException, InterruptedException {//1. 创建文件系统对象/URI uri = URI.create("hdfs://master:8020");Configuration conf = new Configuration();String user = "root";FileSystem fs = FileSystem.get(uri,conf,user);System.out.println("fs: " + fs);/// 2. 创建一个目录boolean b = fs.mkdirs(new Path("/testhdfs"));System.out.println(b);// 3. 关闭fs.close();} } 参数优先级 xxx-default.xml < xxx-site.xml < IDEA中resource中创建xxx-site.xml < 在代码中通过更改Configuration 参数 文件下载 @Testpublic void testDownload() throws IOException {fs.copyToLocalFile(false,new Path("/testhdfs/使用前说明.txt"),new Path("F:\\Download\\"),true);} 文件更改移动 //改名or移动(路径改变就可以)@Testpublic void testRename() throws IOException {boolean b = fs.rename(new Path("/testhdfs/使用前说明.txt"),new Path("/testhdfs/zcx.txt"));System.out.println(b);} 查看文件详细信息 // 查看文件详情@Testpublic void testListFiles() throws IOException {RemoteIterator<LocatedFileStatus> listFiles = fs.listFiles(new Path("/"), true);//迭代操作while (listFiles.hasNext()){LocatedFileStatus fileStatus = listFiles.next();//获取文件详情System.out.println("文件路径:"+fileStatus.getPath());System.out.println("文件权限:"+fileStatus.getPermission());System.out.println("文件主人:"+fileStatus.getOwner());System.out.println("文件组:"+fileStatus.getGroup());System.out.println("文件大小:"+fileStatus.getLen());System.out.println("文件副本数:"+fileStatus.getReplication());System.out.println("文件块位置:"+ Arrays.toString(fileStatus.getBlockLocations()));System.out.println("===============================");} } 文件删除 第二参数,true递归删除 //文件删除@Testpublic void testDelete() throws IOException {boolean b = fs.delete(new Path("/testhdfs/"), true);System.out.println(b);} NN与2NN工作原理 本篇文章为转载内容。原文链接:https://blog.csdn.net/Python1One/article/details/108546050。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-05 22:55:20
284
转载
ElasticSearch
...日志打印到了线上日志文件,当app出现故障你需要做定位筛查的时候,可能需要登录线上机器用grep命令各种查看。 但如果你不差机器资源,可以搭建上述架构,app的日志会被收集到elasticsearch中,最终你可以在kibana中查看日志,kibana里面可以很方面的做各种筛查操作。 这个流畅大概是这样的: 3.2 通用搜索场景 但是没有上图的beats、logstash、kibana,elasticsearch可以自己工作吗?完全可以的! elasticsearch也支持单机部署,数据规模不是很大的情况下,表现也是不错的。所以,你也不用担心因为自己机器资源不够而对elasticsearch望而却步。当然,单机部署的情况下,更多的适合自己玩,对于可靠性的要求就不能太苛刻了。 如果你在用宝塔,那你可以在宝塔面板,左侧“软件商店”中直接找到elasticsearch,并“没有痛苦”的安装。 本篇文章主要讨论选型,所以不涉及安装细节。 3.2.1 性能顾虑 上面提到了“表现”,其实性能只是elasticsearch的一个方面,主要你的机器资源足够(机器资源?对,包括你的机器个数,elasticsearch可以非常方便的横向扩展,以及单机的配置,cpu+内存,内存越高越好,elasticsearch比较吃内存!),它一定会给你很好的性能反应。试想,公司里的app打印线上日志的行数其实可比一般业务系统产生的订单数量要大很多很多,elasticsearch都可以常在日志的实时分析,所以如果你要做通用场景,而且机器资源不是问题,这是完全行得通的。 3.2.2 易用性和可玩性 此外,在使用elasticsearch的时候,会有很多的可玩性。这里不引经据典,呈现很多elasticsearch官方文章的列举优秀特性(当然,确实很优秀!)。 这里举几个例子: (1)中文分词:第一章提到的其它引擎几乎很难实现,elasticsearch对分词器的支持是原生的,因为elasticsearch天生就为全文索引而生,elasticsearch的汉语名字就是“弹性搜索”。这家伙可是专门搞搜索的! 有的朋友可能不了解分词器,比如你的一个字段里存储“今天我要吃冰激凌”,在分词器的加持下,es最终会存储为“今天|我|要|吃|冰激凌”,并且使用倒排索引的形式进行存储。当你搜索“冰激凌”的时候,可以很快的反馈回来。 关于elasticsearch的原理,这里不展开说明,分词器和倒排索引是elasticsearch的最基本的概念。如果有不了解的朋友,可以自行百度一下。而且这两个概念,与elasticsearch其实不挂钩,是搜索中的通用概念。 关于倒排索引,其核心表现如下图: 如果你要用mysql、mongo实现中文分词,这......其实挺麻烦的,可能在后面的版本支持中会实现的很好,但在当前的流行版本中,它们对中文分词是不够友好的。 mysql5.7之后支持外挂第三方分词器,支持中文分词。而在数据量较大的情况下,mysql的多机器部署几乎很难实现,elasticsearch可以很容易的水平扩展。 mongo支持西方语言的分词,但不支持中文、日语、汉语等东方语言,你需要在自己的逻辑代码中实现分词器。 ngram分词,你看看效果:依旧是“今天我要吃冰激凌”,ngram二元分词后即将得到结果“今天、天我、我要、要吃、吃冰、冰激、激凌”。这....,那你搜索冰激凌就搜不出来!咋办呢,当然可以使用三元分词。但是更好的解决方案还是中文分词器,但它们原生并不支持的。 (2)自定义排名场景:比如你的搜索“冰激凌”,结果中返回了有10条,这10条应该有你想对它指定的顺序。最简单的就是用默认的得分,但是如果你想人为干预这个得分怎么办? elasticsearch支持function_score功能(可以不用,这个是增强功能),es会在计算最终得分之前回调这个你指定的function_score回调函数,传入原始得分、行的原始数据,你可以在里面做计算,比如查询其它参考表、或查看是否是广告位,以得到新的score返回给用户。 function_scrore的功能不展开描述,是一个在自定义得分场景下十分有用又简单易用的功能!下面是一个使用示例,不仅如此,它是支持自定义函数的,自由度非常高。 (3)文本高亮:你用mysql或mongo也可以实现,比如用户搜索“冰激凌”,你只需要在逻辑代码中对“冰激凌”替换为“<span class='highlight-term'>冰激凌</span>”,然后前端做样式即可。但如果用户搜索了“好吃的冰激凌”咋办呢?还有就是英文大小写的场景,用户搜索"MAIN",那结果及时匹配到了“main”(小写的),这个单词是否应该高亮呢?也许这时候你会用业务代码实现toLowerCase下基于位置下标的匹配。 挺麻烦的吧,elasticsearch,自动可以返回高亮字段!并且可以自由指定高亮的html前后标签。 (4)实在太多了....这家伙天生为索引而生,而且版本还在不断地迭代。不差机器的话,用用吧! 4. 退而求其次 4.1 普通数据库 尽管elasticsearch在搜索场景下,是非常好用的利器!但是它比较消耗机器资源,如果你的数据规模并不大,而且想快速实现功能。你可以使用mysql或mongo来代替,完全没有问题。 技术是为了解决特定业务场景下的问题,结合当前手头的资源,适合自己的才是最好的。也许你搞了一个单机器的elasticsearch,单机器内存只有2G,它的表现并不会比mysql、mongo来的好。 当然,如果你为了使用上边提到的一些优秀的独有的特性,那elasticsearch一定还是最佳选择! 对于mysql(关系型数据库)和mongo(文档数据库)的区别这里不展开描述了,但对于搜索而言,两种都合适。有时候选型也不用很纠结,其实都是差不太多的东西,适合自己的、自己熟悉的、运维起来顺手的,就是最好的。 4.2 普通数据库实现中文分词搜索的原理 尽管mysql在5.7以后支持外挂第三方分词器,mongo在截止目前的版本中也不支持中文分词(你可能会看到一些文章中说可以指定language为chinese,但其实会报错的)。 其实当你选择普通数据库,你就不得不在逻辑代码中自己实现一套索引分词+搜索分词逻辑。 索引分词+搜索分词?为什么分开写,如果你有用过elasticsearch或solr,你会知道,在指定字段的时候,需要指定index分词器和search分词器。 下面以mongo为例做简要说明。 4.2.1 index分词器 意思是当数据“索引”截断如何分词。首先,这里必须要承认,数据之后存储了,才能被查询。在搜索中,这句话可以换成是“数据只有被索引了,才能被搜索”。 这时候请求打过来了,要索引一条数据,其中某字段是“今天我要吃冰激凌”,分词后得到“今天|我|要|吃|冰激凌”,这个就可以入库了。 如果你使用elasticsearch或solr,这个过程是自动的。如果你使用不支持外观分词器的常规数据库,这个过程你就要手动了,并把分词后的结果用空格分开(最好使用空格,因为西方语言的分词规则就是按空格拆分,以及逗号句号),存入数据库的一个待搜索的字段上。 效果如下图: 本站的其它博文中有介绍IKAnalyzer:https://www.52itw.com/java/6268.html 4.2.2 search分词器 当用户的查询请求打过来,用户输入了“好吃的冰激凌”,分词后得到“好吃|冰激凌”(“的”作为停用词stopwords,被自动忽略了,IKAnalyzer可以指定停用词表)。 于是这时候就回去上图的数据库表里面搜索“好吃 冰激凌”(与index分词器结果统一,还是用空格分隔)。 当然,对于mongo而言,你需要事先开启全文索引db.xxx.ensureIndex({content: "text"}),xxx是集合名,content是字段名,text是全文索引的标识。 mongo搜索的时候用这个语法:db.xxx.find( { $text: { $search: "好吃 冰激凌" } },{ score: { $meta: "textScore" } }).sort( { score: { $meta: "textScore" } } ) 4.2.3 索引库和存储库分开 为了减少单表的大小,为了让普通的列表查询、普通筛选可以跑的更快,你可以对原有的数据原封不动的做一张表。 然后对于搜索场景,再单独对需要被搜索的字段单独拎一张表出来! 然后二者之间做增量信号同步或定时差额同步,可能会有延迟,这个就看你能容忍多长时间(悄悄告诉你,elasticsearch也需要指定这个refresh时间,一般是1s到几秒、甚至分钟级。当然,二者的这个时间对饮的底层目的是不一样的)。 这样,搜索的时候先查询搜索库,拿到一个指针id的列表,然后拿到指针id的列表区存储里把数据一次性捞出来。当然,也是支持分页的,你查询搜索库其实也是普通的数据库查询嘛,支持分页参数的。 4.3 存储库和索引库的延伸阅读 很多有名的开源软件也是使用的存储库与索引库分离的技术方案,如apache atlas: apache atlas对于大数据领域的数据资产元数据管理、数据血缘上可谓是专家,也涉及资产搜索的特性,它的实现思路就是:从搜索库中做搜索、拿到key、再去存储库中做查询。 搜索库:上图右下角,可以看到使用的是elasticsearch、solr或lucene,多个选一个 存储库:上图左下角,可以看到使用的是Cassandra、HBase或BerkeleyDB,多个选一个 虽然apache atlas在只有搜索库或只有存储库的时候也可以很好的工作,但只针对于数据量并不大的场景。 搜索库,擅长搜索!存储库,擅长海量存储!搜索库多样化搜索,然后去存储库做点查。 当你的数据达到海量的时候,es+hbase也是一种很好的解决方案,不在这里展开说明了。
2024-01-27 17:49:04
540
admin-tim
转载文章
...在VS2015菜单“文件”→“新建”→ “项目”,启动创建项目向导。 (2)选择开发语言为“Visual C++”和程序类型“MFC应用程序”。 (3)点击下一步即可。 (4)选择类型为“基于对话框”,下一步或者完成。 (5)找到厂家提供的光盘资料,路径如下(64位库为例)。 A.进入厂商提供的光盘资料找到“8.PC函数”文件夹,并点击进入。 B.选择“函数库2.1”文件夹。 C.选择“Windows平台”文件夹。 D.根据需要选择对应的函数库这里选择64位库。 E.解压C++的压缩包,里面有C++对应的函数库。 F.函数库具体路径如下。 (6)将厂商提供的C++的库文件和相关头文件复制到新建的项目里面。 (7)在项目中添加静态库和相关头文件。 A.先右击项目文件,接着依次选择:“添加”→“现有项”。 B.在弹出的窗口中依次添加静态库和相关头文件。 (8)声明用到的头文件和定义控制器连接句柄。 至此项目新建完成,可进行MFC项目开发。 2.查看PC函数手册,熟悉相关函数接口 (1)PC函数手册也在光盘资料里面,具体路径如下:“光盘资料\8.PC函数\函数库2.1\ZMotion函数库编程手册 V2.1.pdf” (2)链接控制器,获取链接句柄。 ZAux_OpenEth()接口说明: (3)振镜运动接口。 为振镜运动单独封装了一个运动接口,使用movescanabs指令进行运动,采用FORCE_SPEED参数设置运动过程中的速度,运动过程中基本不存在加减速过程,支持us级别的时间控制。 3. MFC开发控制器双振镜运动例程 (1)例程界面如下。 (2) 链接按钮的事件处理函数中调用链接控制器的接口函数ZAux_OpenEth(),与控制器进行链接,链接成功后启动定时器1监控控制器状态。 //网口链接控制器void CSingle_move_Dlg::OnOpen(){char buffer[256]; int32 iresult;//如果已经链接,则先断开链接if(NULL != g_handle){ZAux_Close(g_handle);g_handle = NULL;}//从IP下拉框中选择获取IP地址GetDlgItemText(IDC_IPLIST,buffer,255);buffer[255] = '\0';//开始链接控制器iresult = ZAux_OpenEth(buffer, &g_handle);if(ERR_SUCCESS != iresult){g_handle = NULL;MessageBox(_T("链接失败"));SetWindowText("未链接");return;}//链接成功开启定时器1SetWindowText("已链接");SetTimer( 1, 100, NULL ); } (3)通过定时器监控控制器状态 。 void CSingle_move_Dlg::OnTimer(UINT_PTR nIDEvent) {// TODO: Add your message handler code here and/or call defaultif(NULL == g_handle){MessageBox(_T("链接断开"));return ;}if(1 == nIDEvent){CString string;float position = 0;ZAux_Direct_GetDpos( g_handle,m_nAxis,&position); //获取当前轴位置string.Format("振镜X1轴位置:%.2f", position );GetDlgItem( IDC_CURPOS )->SetWindowText( string );float NowSp = 0;ZAux_Direct_GetVpSpeed( g_handle,m_nAxis,&NowSp); //获取当前轴速度string.Format("振镜X1轴速度:%.2f", NowSp );GetDlgItem( IDC_CURSPEED)->SetWindowText( string );ZAux_Direct_GetDpos(g_handle, m_nAxis+1, &position); //获取当前轴位置string.Format("振镜Y1轴位置:%.2f", position);GetDlgItem(IDC_CURPOS2)->SetWindowText(string);ZAux_Direct_GetVpSpeed(g_handle, m_nAxis+1, &NowSp); //获取当前轴速度string.Format("振镜Y1轴速度:%.2f", NowSp);GetDlgItem(IDC_CURSPEED2)->SetWindowText(string);ZAux_Direct_GetDpos(g_handle, m_nAxis + 2, &position); //获取当前轴位置string.Format("振镜X2轴位置:%.2f", position);GetDlgItem(IDC_CURPOS3)->SetWindowText(string);NowSp = 0;ZAux_Direct_GetVpSpeed(g_handle, m_nAxis + 2, &NowSp); //获取当前轴速度string.Format("振镜X2轴速度:%.2f", NowSp);GetDlgItem(IDC_CURSPEED3)->SetWindowText(string);ZAux_Direct_GetDpos(g_handle, m_nAxis + 3, &position); //获取当前轴位置string.Format("振镜Y2轴位置:%.2f", position);GetDlgItem(IDC_CURPOS4)->SetWindowText(string);ZAux_Direct_GetVpSpeed(g_handle, m_nAxis + 3, &NowSp); //获取当前轴速度string.Format("振镜Y2轴速度:%.2f", NowSp);GetDlgItem(IDC_CURSPEED4)->SetWindowText(string);int status = 0; ZAux_Direct_GetIfIdle(g_handle, m_nAxis,&status); //判断当前轴状态if (status == -1){GetDlgItem( IDC_CURSTATE )->SetWindowText( "当前状态:停 止" );}else{GetDlgItem( IDC_CURSTATE )->SetWindowText( "当前状态:运动中" );} }CDialog::OnTimer(nIDEvent);} (4)通过启动按钮的事件处理函数获取编辑框的移动轨迹,并设置振镜轴参数操作振镜轴运动。 void CSingle_move_Dlg::OnStart() //启动运动{if(NULL == g_handle){MessageBox(_T("链接断开状态"));return ;}UpdateData(true);//刷新参数int status = 0; ZAux_Direct_GetIfIdle(g_handle, m_nAxis,&status); //判断当前轴状态 if (status == 0) //已经在运动中{ return;} //设定轴类型 1-脉冲轴类型 for (int i = 4; i < 8; i++){ZAux_Direct_SetAtype(g_handle, i, m_Atype);ZAux_Direct_SetMerge(g_handle,i,1);//设置脉冲当量ZAux_Direct_SetUnits(g_handle, i, m_units);//设定速度,加减速ZAux_Direct_SetLspeed(g_handle, i, m_lspeed);ZAux_Direct_SetSpeed(g_handle, i, m_speed);ZAux_Direct_SetForceSpeed(g_handle, i, m_speed);ZAux_Direct_SetAccel(g_handle, i, m_acc);ZAux_Direct_SetDecel(g_handle, i, m_dec);//设定S曲线时间 设置为0表示梯形加减速 ZAux_Direct_SetSramp(g_handle, i, m_sramp);}//使用MOVESCANABS运动int axislist[2] = { 4,5 };float dposlist[2] = { 0,0 };ZAux_MoveScanAbs(2, axislist, dposlist);CString str;GetDlgItem(IDC_EDIT_POSX1)->GetWindowText(str);float dbx = atof(str);GetDlgItem(IDC_EDIT_POSY1)->GetWindowText(str);float dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX2)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY2)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX3)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY3)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX4)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY4)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);//第二个振镜运动//使用MOVESCANABS运动axislist[0] = 6;axislist[1] = 7;dposlist[0] = 0;dposlist[1] = 0;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX5)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY5)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX6)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY6)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX7)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY7)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX8)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY8)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);UpdateData(false); } (5) 通过断开按钮的事件处理函数来断开与控制卡的连接。 void CSingle_move_Dlg::OnClose() //断开链接{// TODO: Add your control notification handler code hereif(NULL != g_handle){KillTimer(1); //关定时器KillTimer(2);ZAux_Close(g_handle);g_handle = NULL;SetWindowText("未链接");} } (6)通过坐标清零按钮的事件处理函数移动振镜轴回零到中心零点位置,不直接使用dpos=0,修改振镜轴坐标。 void CSingle_move_Dlg::OnZero() //清零坐标{if(NULL == g_handle){MessageBox(_T("链接断开状态"));return ;}// TODO: Add your control notification handler code hereint axislist[2] = { 4,5 };float dposlist[2] = { 0 };ZAux_Direct_MoveAbs(g_handle,2,axislist,dposlist); //设置运动回零点} 三调试与监控 编译运行例程,同时通过ZDevelop软件连接控制器对控制器状态进行监控 。 ZDevelop软件连接控制器监控控制器的状态,查看振镜轴对应参数,并可搭配示波器检测双振镜轨迹。 设置振镜轴运动,首先需要将轴类型配置成21振镜轴类型,并对应配置振镜轴的速度加减速等参数才可操作振镜进行运动。 通过ZDevelop软件的示波器监控双振镜运动运行轨迹。 视频演示。 开放式激光振镜+运动控制器(六)-双振镜运动 本次,正运动技术开放式激光振镜+运动控制器(六):双振镜运动,就分享到这里。 更多精彩内容请关注“正运动小助手”公众号,需要相关开发环境与例程代码,请咨询正运动技术销售工程师:400-089-8936。 本文由正运动技术原创,欢迎大家转载,共同学习,一起提高中国智能制造水平。文章版权归正运动技术所有,如有转载请注明文章来源。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_57350300/article/details/123402200。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-04 17:33:09
340
转载
NodeJS
...各种依赖库,还有配置文件啥的——全都打包成一个“镜像”,就像是给你的应用做一个完整的备份。这样,无论你什么时候部署,都像是复制了一份一模一样的东西,绝不会出岔子! - 高效部署:传统的部署方式可能是手动上传文件到服务器再启动服务,不仅费时还容易出错。而Docker只需要推送镜像,然后在目标机器上拉取并运行即可,省去了很多麻烦。 当然,这些优点的背后离不开Docker的核心概念——镜像、容器和仓库。简单来说啊,镜像就像是做菜的菜谱,容器就是按照这个菜谱写出来的菜,仓库呢,就是放这些菜谱的地方,想做菜的时候随时拿出来用就行啦!听起来是不是有点抽象?没关系,接下来我们会一步步实践! --- 3. 准备工作 搭建Node.js项目 既然要学怎么用Docker部署Node.js应用,那我们得先有个项目吧?这里我假设你已经会用npm初始化一个Node.js项目了。如果没有的话,可以按照以下步骤操作: bash mkdir my-node-app cd my-node-app npm init -y 这会在当前目录下生成一个package.json文件,用于管理项目的依赖。接下来,我们随便写点代码让这个项目动起来。比如新建一个index.js文件,内容如下: javascript // index.js const http = require('http'); const hostname = '127.0.0.1'; const port = 3000; const server = http.createServer((req, res) => { res.statusCode = 200; res.setHeader('Content-Type', 'text/plain'); res.end('Hello World\n'); }); server.listen(port, hostname, () => { console.log(Server running at http://${hostname}:${port}/); }); 现在你可以直接运行它看看效果: bash node index.js 打开浏览器访问http://127.0.0.1:3000/,你会看到“Hello World”。不错,我们的基础项目已经搭建好了! --- 4. 第一步 编写Dockerfile 接下来我们要做的就是给这个项目添加Docker的支持。为此,我们需要创建一个特殊的文件叫Dockerfile。这个名字是固定的,不能改哦。 进入项目根目录,创建一个空文件名为Dockerfile,然后在里面输入以下内容: dockerfile 使用官方的Node.js镜像作为基础镜像 FROM node:16-alpine 设置工作目录 WORKDIR /app 将当前目录下的所有文件复制到容器中的/app目录 COPY . /app 安装项目依赖 RUN npm install 暴露端口 EXPOSE 3000 启动应用 CMD ["node", "index.js"] 这段代码看起来有点复杂,但其实逻辑很简单: 1. FROM node:16-alpine 告诉Docker从官方的Node.js 16版本的Alpine镜像开始构建。 2. WORKDIR /app 指定容器内的工作目录为/app。 3. COPY . /app 把当前项目的文件拷贝到容器的/app目录下。 4. RUN npm install 在容器内执行npm install命令,安装项目的依赖。 5. EXPOSE 3000 声明应用监听的端口号。 6. CMD ["node", "index.js"]:定义容器启动时默认执行的命令。 保存完Dockerfile后,我们可以试着构建镜像了。 --- 5. 构建并运行Docker镜像 在项目根目录下运行以下命令来构建镜像: bash docker build -t my-node-app . 这里的. 表示当前目录,my-node-app是我们给镜像起的名字。构建完成后,可以用以下命令查看是否成功生成了镜像: bash docker images 输出应该类似这样: REPOSITORY TAG IMAGE ID CREATED SIZE my-node-app latest abcdef123456 2 minutes ago 150MB 接着,我们可以启动容器试试看: bash docker run -d -p 3000:3000 my-node-app 参数解释: - -d:以后台模式运行容器。 - -p 3000:3000:将主机的3000端口映射到容器的3000端口。 - my-node-app:使用的镜像名称。 启动成功后,访问http://localhost:3000/,你会发现依然可以看到“Hello World”!这说明我们的Docker化部署已经初步完成了。 --- 6. 进阶 多阶段构建优化镜像大小 虽然上面的方法可行,但生成的镜像体积有点大(大约150MB左右)。有没有办法让它更小呢?答案是有!这就是Docker的“多阶段构建”。 修改后的Dockerfile如下: dockerfile 第一阶段:构建阶段 FROM node:16-alpine AS builder WORKDIR /app COPY package.json ./ RUN npm install COPY . . RUN npm run build 假设你有一个build脚本 第二阶段:运行阶段 FROM node:16-alpine WORKDIR /app COPY --from=builder /app/dist ./dist 假设build后的文件存放在dist目录下 COPY package.json ./ RUN npm install --production EXPOSE 3000 CMD ["node", "dist/index.js"] 这里的关键在于“--from=builder”,它允许我们在第二个阶段复用第一个阶段的结果。这样就能让开发工具和测试依赖 stays 在它们该待的地方,而不是一股脑全塞进最终的镜像里,这样一来镜像就能瘦成一道闪电啦! --- 7. 总结与展望 写到这里,我相信你已经对如何用Docker部署Node.js应用有了基本的认识。虽然过程中可能会遇到各种问题,但每一次尝试都是成长的机会。记得多查阅官方文档,多动手实践,这样才能真正掌握这项技能。 未来,随着云计算和微服务架构的普及,容器化将成为每个开发者必备的技能之一。所以,别犹豫啦,赶紧去试试呗!要是你有什么不懂的,或者想聊聊自己的经历,就尽管来找我聊天,咱们一起唠唠~咱们一起进步! 最后,祝大家都能早日成为Docker高手!😄
2025-05-03 16:15:16
45
海阔天空
转载文章
...统系列采用的一种高级文件系统,相较于早期的FAT系统,它提供了更高效的数据存储和安全性特性。文中提到的NTFSInfo工具就是用来查看详细的NTFS分区信息,包括主文件表(MFT)、MFT区域大小与位置,以及NTFS元数据文件大小等重要信息。 Active Directory , Active Directory是Microsoft Windows Server操作系统的一部分,提供网络环境中的中央身份认证、授权与目录服务功能。管理员可以利用Active Directory管理域内的用户账户、计算机、组策略、安全设置等资源。文章提及AdRestore工具能够恢复Server 2003 Active Directory对象,表明该工具在AD故障恢复场景中有重要作用。 登录会话(Logon Sessions) , 在多用户操作系统的环境中,登录会话是指用户通过验证后,在系统上创建的一个独立的工作环境,其中包含了用户的配置、权限和其他相关状态信息。Sysinternals工具集中的LogonSessions工具则能列出当前系统上的所有活动登录会话,帮助管理员监控和管理用户登录情况。 动态磁盘分区(Dynamic Disk Partitioning) , 动态磁盘是Windows操作系统中相对于基本磁盘而言的一种更为灵活的磁盘管理方式,它可以支持诸如跨多个物理磁盘的卷扩展等功能。LDMDump工具在文章中被提及,作用是倾倒逻辑磁盘管理器在Windows 2000动态磁盘分区上的数据库内容,从而让管理员了解和分析动态磁盘的详细配置信息。
2024-01-22 15:44:41
103
转载
Hive
...IP是一种广泛使用的文件压缩算法,以其快速压缩和解压缩速度著称。它通常用于单个文件的压缩,能够有效减少文件大小从而节省存储空间。在本文中,GZIP被用来解决大量小文件带来的性能问题,通过压缩这些文件后再导入到Hive中,以提高存储效率和查询性能。 BZIP2 , BZIP2是一种高压缩比的文件压缩算法,相较于GZIP,它能提供更高的压缩率但速度稍慢。BZIP2特别适合用于那些访问频率较低的大规模静态数据集,能够在保证较高压缩比的同时保持较好的数据完整性。本文中,BZIP2被用来演示如何在Hive中创建分区表并启用BZIP2压缩,以优化大规模数据集的存储效率。
2025-04-19 16:20:43
47
翡翠梦境
转载文章
...-- 指定允许上传的文件大小最大为50000字节 --><param name="maximumSize">50000</param></interceptor-ref><!-- 配置默认系统拦截器栈 --><interceptor-ref name="defaultStack"/><!-- param子元素配置了DocUploadAction类中savePath属性值为/upload --><param name="savePath">/upload</param><result>/showFile.jsp</result><!-- 指定input逻辑视图,即不符合上传要求,被fileUpload拦截器拦截后,返回的视图页面 --><result name="input">/uploadFile.jsp</result></action> <action name="docDownload" class="nuc.sw.action.DocDownloadAction"><!-- 指定结果类型为stream --><result type="stream"><!-- 指定下载文件的文件类型 text/plain表示纯文本 --><param name="contentType">application/msword,text/plain</param><!-- 指定下载文件的入口输入流 --><param name="inputName">inputStream</param><!-- 指定下载文件的处理方式与文件保存名 attachment表示以附件形式下载,也可以用inline表示内联即在浏览器中直接显示,默认值为inline --><param name="contentDisposition">attachment;filename="${downloadFileName}"</param><!-- 指定下载文件的缓冲区大小,默认为1024 --><param name="bufferSize">40960</param></result></action><action name="loginAction" class="nuc.sw.action.LoginAction" method="loginMethod"><result name="loginOK">/uploadFile.jsp</result><result name="loginFail">/login.jsp</result><result name="input">/login.jsp</result></action> </package></struts> /20171105_shiyan_upanddown/WebContent/login.jsp <%@ page language="java" contentType="text/html; charset=UTF-8"pageEncoding="UTF-8"%><%@ taglib prefix="s" uri="/struts-tags" %> <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>登录页</title><s:head/></head><body><s:actionerror/><s:fielderror fieldName="err"></s:fielderror><s:form action="loginAction" method="post"> <s:textfield label="用户名" name="username"></s:textfield><s:password label="密码" name="password"></s:password><s:submit value="登陆"></s:submit></s:form></body></html> /20171105_shiyan_upanddown/WebContent/showFile.jsp <%@ page language="java" contentType="text/html; charset=UTF-8"pageEncoding="UTF-8"%><%@ taglib prefix="s" uri="/struts-tags" %><!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>显示上传文档</title></head><body><center><font style="font-size:18px;color:red">上传者:<s:property value="name"/></font><table width="45%" cellpadding="0" cellspacing="0" border="1"><tr><th>文件名称</th><th>上传者</th><th>上传时间</th></tr><s:iterator value="uploadFileName" status="st" var="doc"><tr><td align="center"><a href="docDownload.action?downPath=upload/<s:property value="doc"/>"><s:property value="doc"/> </a></td><td align="center"><s:property value="name"/></td><td align="center"><s:date name="createTime" format="yyyy-MM-dd HH:mm:ss"/></td></tr></s:iterator></table></center></body></html> /20171105_shiyan_upanddown/WebContent/uploadFile.jsp <%@ page language="java" contentType="text/html; charset=UTF-8"pageEncoding="UTF-8"%><%@ taglib prefix="s" uri="/struts-tags" %><!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>多文件上传</title></head><body><center><s:form action="docUpload" method="post" enctype="multipart/form-data"><s:textfield name="name" label="姓名" size="20"/><s:file name="upload" label="选择文档" size="20"/><s:file name="upload" label="选择文档" size="20"/><s:file name="upload" label="选择文档" size="20"/><s:submit value="确认上传" align="center"/></s:form></center></body></html> 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_34101492/article/details/78811741。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-12 20:53:42
142
转载
Hadoop
... Hadoop分布式文件系统,是Hadoop框架的核心组件之一,负责存储和管理海量数据。它将文件分割成固定大小的数据块(默认128MB),并将这些数据块分布存储在由多个服务器组成的集群中。为了提高数据的可靠性和可用性,HDFS会对每个数据块创建多个副本,默认情况下每个数据块会有三个副本。这些副本会被放置在不同的服务器上,当某台服务器发生故障时,数据仍可以从其他服务器获取,从而避免数据丢失。这种分布式存储方式不仅提高了系统的容错能力,还便于实现负载均衡。 伪分布式模式 , 这是一种特殊的Hadoop运行模式,允许用户在一个物理机器上模拟完整的Hadoop集群环境。在这种模式下,所有的Hadoop服务都在同一台机器上运行,但它们彼此独立,就像在真实的分布式环境中一样。这种方式非常适合初学者和小型项目,因为它不需要额外的硬件成本就能体验Hadoop的各项功能。通过伪分布式模式,用户可以练习文件上传、下载、查看副本分布等基本操作,为后续在真实集群环境中部署和管理Hadoop打下坚实的基础。此外,由于只需要一台机器即可完成配置,因此调试和解决问题也变得更加方便快捷。 副本策略 , HDFS中的一个重要概念,指的是如何决定文件数据块副本的存放位置。默认的副本策略考虑到了网络拓扑结构,旨在优化数据访问性能和系统稳定性。通常情况下,第一个副本会存放在与客户端最接近的节点上,这样可以减少网络延迟;第二个副本则会放到另一个机架上,以增加数据的容灾能力;第三个副本通常会放在同一个机架内的其他节点上,以便在本机架内实现快速恢复。这种策略有助于平衡数据冗余带来的存储开销与读取效率之间的关系。当然,用户也可以根据实际需求自定义副本策略,比如指定所有副本都位于同一机架内,或者按照特定规则分配副本位置,从而满足不同的业务场景需求。
2025-03-26 16:15:40
98
冬日暖阳
Netty
...个例子,假设我们要将文件内容发送给远程客户端,传统的做法是先将文件读取到内存中,然后再逐字节写入Socket输出流。这样不仅效率低下,还会浪费大量内存资源。Netty 这家伙可聪明了,它能用 FileRegion 类直接把文件塞进 Socket 通道里,这样就省得在内存里来回倒腾数据啦,效率蹭蹭往上涨! java // 使用FileRegion发送文件 FileInputStream fileInputStream = new FileInputStream(new File("data.txt")); FileRegion region = new DefaultFileRegion(fileInputStream.getChannel(), 0, fileSize); channel.writeAndFlush(region); 在这段代码中,我们利用DefaultFileRegion将文件内容直接传递给了Netty的通道,大大提升了传输效率。 --- 3.3 长连接复用与心跳检测 第三个重要的机制是长连接复用与心跳检测。 在高并发环境下,频繁创建和销毁TCP连接的成本是非常高的。所以啊,Netty这个家伙超级聪明,它能让一个TCP连接反复用,不用每次都重新建立新的连接。这就像是你跟朋友煲电话粥,不用每次说完一句话就挂断重拨,直接接着聊就行啦,省心又省资源! 与此同时,为了防止连接因为长时间闲置而失效,Netty还引入了心跳检测机制。简单说吧,就像你隔一会儿给对方发个“我还在线”的消息,就为了确认你们的联系没断就行啦! java // 设置心跳检测参数 Bootstrap bootstrap = new Bootstrap(); bootstrap.option(ChannelOption.SO_KEEPALIVE, true); // 开启TCP保活功能 bootstrap.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 5000); // 设置连接超时时间 在这里,我们通过设置SO_KEEPALIVE选项开启了TCP保活功能,并设置了最长的连接等待时间为5秒。这样一来,即使网络出现短暂中断,Netty也会自动尝试恢复连接。 --- 3.4 数据缓冲与批量处理 最后一个要点是数据缓冲与批量处理。 在网络通信过程中,数据的大小和频率往往不可控。要是每次传来的数据都一点点的,那老是去处理这些小碎数据,就会多花不少功夫啦。Netty通过内置的缓冲区(Buffer)解决了这个问题。 例如,我们可以使用ByteBuf来存储和处理接收到的数据。ByteBuf就像是内存管理界的“万金油”,不仅能够灵活地伸缩大小,还能轻松应对各种编码需求,简直是程序员手里的瑞士军刀! java // 创建一个ByteBuf实例 ByteBuf buffer = Unpooled.buffer(1024); buffer.writeBytes(data); // 处理数据 while (buffer.readableBytes() > 0) { byte b = buffer.readByte(); process(b); } 在这段代码中,我们首先创建了一个容量为1024字节的缓冲区,然后将接收到的数据写入其中。接着,我们通过循环逐个读取并处理缓冲区中的数据。这种方式不仅可以提高处理效率,还能更好地应对突发流量。 --- 四、总结与展望 好了,朋友们,今天的分享就到这里啦!通过上面的内容,相信大家对Netty的故障恢复机制有了更深的理解。不管是应对各种意外情况的异常处理,还是能让数据传输更高效的零拷贝技术,又或者是能重复利用长连接和设置数据缓冲这些招数,Netty可真是个实力派选手啊! 不过,技术的世界永远没有尽头。Netty虽然已经足够优秀,但在某些特殊场景下仍可能存在局限性。未来的日子啊,我超级期待能看到更多的小伙伴,在Netty的基础上大展身手,把自己的系统捯饬得既聪明又靠谱,简直就像给它装了个“智慧大脑”一样! 最后,我想说的是,技术的学习是一个不断探索的过程。希望大家能在实践中积累经验,在挑战中成长进步。如果你有任何疑问或者想法,欢迎随时留言交流哦! 祝大家都能写出又快又稳的代码,一起迈向技术巅峰吧!😎
2025-03-19 16:22:40
79
红尘漫步
转载文章
...; / 表示哈西表大小 , 此哈西表用来存放tcp_stream 数据结构 , 默认值 1040.在同一时刻 Libnids 捕获的 TCP 数据包的最大个数必须是此参数值的3/4/ int n_hosts; / 表示哈西表的大小 , 此哈西表用来存储IP 碎片信息的 , 默认值为 256/ char device; / 表示网络接口 ,Libnids 将在此网络接口上捕获数据, 默认值为 NULL. 这样 Libnids将使用 pcap_lookupdev来查找可以用的网络接口 . 如果其值为 all, 表示捕获所有网络接口的数据/ char filename; / 表示用来存储网络数据的捕获文件 , 此文件的类型必须与 Libpcap 类型一致 , 如果设置了文件, 与此同时就应该设置 device 为 NULL,默认值为 NULL/ int sk_buff_size; / 表示的是数据接口 sk_buff 的大小 .sk_buff 是Linux 内核中一个重要的数据结构, 是用来进行数据包排队操作的 , 默认值为 168/ int dev_addon; / 表示在数据结构 sk_buff 中用于网络接口上信息的字节数. 如果是 -1( 默认值 ),那么 Libnids 会根据不同的网络接口进行修正 / void (syslog) (); / 是一个函数指针 , 默认值为nids_syslog() 函数 . 在 syslog函数中可以检测入侵攻击 , 如网络扫描攻击 , 也可以检测一些异常情况, 如无效 TCP 标记 / int syslog_level; / 表示日志等级 , 默认值是LOG_ALERT/ int scan_num_hosts; / 表示一个哈西表的大小 ,( 此哈西表用来存储端口扫描信息) 表示 Libnids 将要检测的同时扫描的端口数据 . 如果其值为 0,Libnids将不提供端口扫描功能 . 默认值 256/ int scan_delay; / 表示在扫描检测中 , 俩端口扫描的间隔时间, 以毫秒来计算 , 缺省值为 3000/ int scan_num_ports; / 表示相同源地址必须扫描的 TCP 端口数目 , 默认值为10/ void (no_mem) (char ); / 是一个函数指针 , 当Libnids 发生内存溢出时被调用/ int (ip_filter) (); / 是一个函数指针 , 此函数可以用来分析IP 数据包 , 当有 IP 数据包到达时 , 此函数就被调用. 如果此函数返回非零值 , 此数据包就被处理 ;如果返回零 , 此 IP 数据包就被丢弃. 默认值为 nids_ip_filter 函数 , 总是返回 1./ char pcap_filter; / 表示过滤规则 , 即Libpcap 的过滤规则 , 默认值为 NULL,表示捕获所有数据包 . 可以在此设置过滤规则 , 只捕获感兴趣的开发包/ int promisc; / 表示网卡模式 , 如果是非零, 就把此网卡设置为混杂模式 ; 否则 , 设为非混杂模式 . 默认值为1/ int one_loop_less; / 初始值为 0/ int pcap_timeout; / 表示捕获数据返回的时间 , 以毫秒计算. 实际上它表示的就是 Libpcap 函数中的 pcap_open_live函数的 timeout 参数 , 默认值 1024/ }; / 返回值 : 调用成功返回 1,失败返回 0 参 数 : 无 功 能 : 对 Libnids 初始化, 这是所有设计基于 Libnids 的程序最开始调用的函数 . 它的主要内容包括打开网络接口 , 打开文件 , 编译过滤规则 , 判断网络链路层类型, 进行必要的初始化工作 / int nids_init (void); / 返回值 : 无 参 数 : 回调函数名字 功 能 : 注册一个能够检测所有 IP 数据包的回调函数, 包括 IP 碎片 .e.g nids_register_ip_frag(ip_frag_function); void ip_frag_function(struct ip a_packet,int len) a_packet 表示接收的IP 数据包 len 表示接收的数据包长度 此回调函数可以检测所有的IP 数据包 , 包括 IP 碎片 / void nids_register_ip_frag (void ()); // / 返回值 : 无 参 数 : 回调函数名字 功 能 : 注册一个回调函数 , 此回调函数可以接收正常的IP 数据包 .e.g nids_register_ip_frag(ip_frag_function); void ip_frag_function(struct ip a_packet) a_packet 表示接收的IP 数据包 此回调函数可以接收正常的IP 数据包 , 并在此函数中对捕获数到的 IP数据包进行分析 . / void nids_register_ip (void ()); // / 返回值 : 无 参 数 : 回调函数 功 能 : 注册一个 TCP 连接的回调函数. 回调函数的类型定义如下 : void tcp_callback(struct tcp_stream ns,void param) ns 表示一个TCP 连接的所有信息 , param 表示要传递的参数信息 , 可以指向一个 TCP连接的私有数据 此回调函数接收的TCP 数据存放在 half_stream 的缓存中 , 应该马上取出来 ,一旦此回调函数返回 , 此数据缓存中存储的数据就不存在 了 .half_stream 成员 offset描述了被丢弃的数据字节数 . 如果不想马上取出来 , 而是等到存储一定数量的数据之后再取出来, 那么可 以使用函数nids_discard(struct tcp_stream ns, int num_bytes)来处理 . 这样回调函数返回时 ,Libnids 将丢弃缓存数据之前 的 num_bytes 字节的数据 .如果不调用 nids_discard()函数 , 那么缓存数据的字节应该为 count_new 字节 . 一般情况下, 缓存中的数据 应该是count-offset 字节 / void nids_register_tcp (void ()); / 返回值 : 无 参 数 : 回调函数 功 能 : 注册一个分析 UDP 协议的回调函数, 回调函数的类型定义如下 : void udp_callback(struct tuple4 addr,char buf,int len,struct ip iph) addr 表示地址端口信息buf 表示 UDP 协议负载的数据内容 len表是 UDP 负载数据的长度 iph 表示一个IP 数据包 , 包括 IP 首部 ,UDP 首部以及UDP 负载内容 / void nids_register_udp (void ()); / 返回值 : 无 参 数 : 表示一个 TCP 连接 功 能 : 终止 TCP 连接 . 它实际上是调用 Libnet的函数进行构造数据包 , 然后发送出去 / void nids_killtcp (struct tcp_stream ); / 返回值 : 无 参 数 : 参数 1 一个 TCP 连接 参数 2 个数 功 能 : 丢弃参数 2 字节 TCP 数据 , 用于存储更多的数据 / void nids_discard (struct tcp_stream , int); / 返回值 : 无 参 数 : 无 功 能 : 运行 Libnids, 进入循环捕获数据包状态. 它实际上是调用 Libpcap 函数 pcap_loop()来循环捕获数据包 / void nids_run (void); / 返回值 : 调用成功返回文件描述符 ,失败返回 -1 参 数 : 无 功 能 : 获得文件描述符号 / int nids_getfd (void); / 返回值 : 调用成功返回个数 ,失败返回负数 参 数 : 表示捕获数据包的个数 功 能 : 调用 Libpcap 中的捕获数据包函数pcap_dispatch() / int nids_dispatch (int); / 返回值 : 调用成功返回 1,失败返回 0 参 数 : 无 功 能 : 调用 Libpcap 中的捕获数据包函数pcap_next() / int nids_next (void); extern struct nids_prm nids_params; /libnids.c定以了一个全部变量 , 其定义和初始值在 nids_params/ extern char nids_warnings[]; extern char nids_errbuf[]; extern struct pcap_pkthdr nids_last_pcap_header; struct nids_chksum_ctl { / 描述的是计算校验和 , 用于决定是否计算校验和/ u_int netaddr; / 表示地址 / u_int mask; / 表示掩码 / u_int action; / 表示动作 , 如果是NIDS_DO_CHKSUM, 表示计算校验和; 如果是 NIDS_DONT_CHKSUM, 表示不计算校验和 / u_int reserved; / 保留未用 / }; / 返回值 : 无 参 数 : 参数 1 表示 nids_chksum_ctl 列表 参数 2 表示列表中的个数 功 能 : 决定是否计算校验和 . 它是根据数据结构nids_chksum_ctl 中的action 进行决定的 , 如果所要计算的对象不在列表中 , 则必须都要计算校验和 / extern void nids_register_chksum_ctl(struct nids_chksum_ctl , int); endif / _NIDS_NIDS_H / 本篇文章为转载内容。原文链接:https://blog.csdn.net/xieqb/article/details/7681968。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-08 17:36:31
310
转载
ZooKeeper
...oKeeper的队列大小是由配置文件中的zookeeper.commitlog.capacity参数决定的。默认情况下,这个值是比较小的,可能只有几兆字节。想象一下,你的应用像一个忙碌的快递站,接到了无数订单(也就是那些请求)。但要是快递小哥忙得顾不上送货,订单就会越堆越多,很快整个站点就塞满了,连下一份订单都没地方放了! 其次,网络环境也是一个重要因素。有时候,客户端和服务端之间的网络延迟会导致请求堆积。就算客户端那边请求没那么频繁,但要是服务端反应慢了,照样会出问题啊。 最后,还有一个容易被忽视的原因就是客户端的连接数过多。每个连接都会占用一定的资源,包括内存和CPU。要是连上的用户太多了,但服务器的“体力”又不够强(比如内存、CPU之类的资源有限),那它就很容易“忙不过来”,导致请求都排着队等着,根本处理不完。 说到这里,我忍不住想吐槽一下自己曾经犯过的错误。嘿,有次我在测试环境里弄了个能扛大流量的程序,结果发现ZooKeeper老是蹦出个叫“CommitQueueFullException”的错误,烦得不行!我当时就纳闷了:“我明明设了个挺合理的线程池大小啊,怎么还出问题了呢?”后来一查才发现,坏事了,是客户端的连接数配少了,结果请求都堵在那儿了,就像高速公路堵车一样。真是教训深刻啊! --- 三、如何优雅地处理CommitQueueFullException? 既然知道了问题的根源,那接下来就要谈谈具体的解决办法了。我觉得可以从以下几个方面入手: 1. 调整队列大小 最直接的办法当然是增大队列的容量。通过修改zookeeper.commitlog.capacity参数,可以让ZooKeeper拥有更大的缓冲空间。其实嘛,这个方法也不是啥灵丹妙药,毕竟咱们手头的硬件资源就那么多,要是傻乎乎地把队列弄得太长,说不定反而会惹出别的麻烦,比如让系统跑得更卡之类的。 代码示例: properties zookeeper.commitlog.capacity=10485760 上面这段配置文件的内容表示将队列大小调整为10MB。你可以根据实际情况进行调整。 2. 优化客户端逻辑 很多时候,CommitQueueFullException并不是因为服务器的问题,而是客户端的请求模式不合理造成的。比如说,你是否可以合并多个小请求为一个大请求?或者是否可以采用批量操作的方式减少请求次数? 举个例子,假设你在做一个日志采集系统,每天需要向ZooKeeper写入成千上万个临时节点。与其每次都往一个节点里写东西,不如一口气往多个节点里写,这样能大大减少你发出的请求次数,省事儿又高效! 代码示例: java List nodesToCreate = Arrays.asList("/node1", "/node2", "/node3"); List createdNodes = zk.create("/batch/", new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL, nodesToCreate.size()); System.out.println("Created nodes: " + createdNodes); 在这段代码中,我们一次性创建了三个临时节点,而不是分别调用三次create()方法。这样的做法不仅减少了请求次数,还提高了效率。 3. 增加服务器资源 如果以上两种方法都不能解决问题,那么可能就需要考虑升级服务器硬件了。比如增加内存、提升CPU性能,甚至更换更快的磁盘。当然,这通常是最后的选择,因为它涉及到成本和技术难度。 4. 使用异步API ZooKeeper提供了同步和异步两种API,其中异步API可以在一定程度上缓解CommitQueueFullException的问题。异步API可酷了!你提交个请求,它立马给你返回结果,根本不用傻等那个响应回来。这样一来啊,就相当于给任务队列放了个假,压力小了很多呢! 代码示例: java import org.apache.zookeeper.AsyncCallback.StringCallback; public class AsyncExample implements StringCallback { @Override public void processResult(int rc, String path, Object ctx, String name) { if (rc == 0) { System.out.println("Node created successfully at path: " + name); } else { System.err.println("Failed to create node with error code: " + rc); } } public static void main(String[] args) throws Exception { ZooKeeper zk = new ZooKeeper("localhost:2181", 5000, null); zk.createAsync("/asyncTest", "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT, new AsyncExample(), null); } } 在这段代码中,我们使用了createAsync()方法来异步创建节点。相比于同步版本,这种方式不会阻塞主线程,从而降低了队列满的风险。 --- 四、总结与展望 通过今天的探讨,我相信大家都对CommitQueueFullException有了更深刻的理解。嘿,别被这个错误吓到!其实啊,它也没那么可怕。只要你找到对的方法,保证分分钟搞定,就跟玩儿似的! 回顾整个过程,我觉得最重要的是要保持冷静和耐心。遇到技术难题的时候啊,别慌!先搞清楚它到底是个啥问题,就像剥洋葱一样,一层层搞明白本质。接着呢,就一步一步地去找解决的办法,慢慢来,总能找到出路的!就像攀登一座高山一样,每一步都需要脚踏实地。 最后,我想鼓励大家多动手实践。理论固然重要,但真正的成长来自于不断的尝试和失败。希望大家能够在实际项目中运用今天学到的知识,创造出更加优秀的应用! 好了,今天的分享就到这里啦!如果你还有什么疑问或者想法,欢迎随时交流哦~
2025-03-16 15:37:44
11
林中小径
ElasticSearch
...登录服务器,增加磁盘大小就行。具体步骤如下: bash 查看当前磁盘状态 df -h 扩展磁盘(假设你已经购买了额外的存储) sudo growpart /dev/xvda 1 sudo resize2fs /dev/xvda1 完成后记得重启ElasticSearch服务: bash sudo systemctl restart elasticsearch 重启之后,神奇的事情发生了——我的节点重新上线了!不过这里有个小技巧分享给大家:如果你不确定扩容是否成功,可以通过以下命令检查磁盘使用情况: bash df -h 看到磁盘空间变大了,心里顿时舒坦了不少。 --- 4. 解决方案二 调整ElasticSearch配置 当然啦,仅仅扩容还不够,还需要优化ElasticSearch的配置文件。特别是那些容易导致内存不足或磁盘占用过高的参数,比如indices.memory.index_buffer_size和indices.store.throttle.max_bytes_per_sec。修改后的配置文件大概长这样: yaml cluster.routing.allocation.disk.threshold_enabled: true cluster.routing.allocation.disk.watermark.low: 85% cluster.routing.allocation.disk.watermark.high: 90% cluster.routing.allocation.disk.watermark.flood_stage: 95% cluster.info.update.interval: 30s 这些设置的意思是告诉ElasticSearch,当磁盘使用率达到85%时开始警告,达到90%时限制写入,超过95%时完全停止操作。这样可以有效避免再次出现类似的问题。 --- 5. 实战演练 代码中的应对策略 除了调整配置,我们还可以通过编写脚本来监控和处理NodeNotActiveException。比如,下面这段Java代码展示了如何捕获异常并记录日志: java import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.client.RestClient; import org.elasticsearch.client.indices.CreateIndexRequest; import org.elasticsearch.client.indices.CreateIndexResponse; public class ElasticSearchExample { public static void main(String[] args) { RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("localhost", 9200, "http"))); try { CreateIndexRequest request = new CreateIndexRequest("test_index"); CreateIndexResponse response = client.indices().create(request, RequestOptions.DEFAULT); System.out.println("Index created: " + response.isAcknowledged()); } catch (Exception e) { if (e instanceof ClusterBlockException) { System.err.println("Cluster block detected: " + e.getMessage()); } else { System.err.println("Unexpected error: " + e.getMessage()); } } finally { try { client.close(); } catch (IOException ex) { System.err.println("Failed to close client: " + ex.getMessage()); } } } } 这段代码的作用是在创建索引时捕获可能发生的异常,并根据异常类型采取不同的处理方式。如果遇到ClusterBlockException,我们可以选择延迟重试或者其他补偿措施。 --- 6. 总结与反思 成长路上的一课 通过这次经历,我深刻体会到,作为一名开发者,不仅要掌握技术细节,还要学会从实际问题出发,找到最优解。NodeNotActiveException这个错误看着不起眼,但其实背后有不少门道呢!比如说,你的服务器硬件是不是有点吃不消了?集群那边有没有啥小毛病没及时发现?还有啊,咱们平时运维的时候是不是也有点松懈了?这些都是得好好琢磨的地方! 最后,我想说的是,技术学习的过程就像爬山一样,有时候会遇到陡峭的山坡,但只要坚持下去,总能看到美丽的风景。希望这篇文章能给大家带来一些启发和帮助!如果还有其他疑问,欢迎随时交流哦~
2025-03-14 15:40:13
66
林中小径
转载文章
...adb.repo仓库文件 添加MariaDB源 vi /etc/yum.repos.d/MariaDB.repo 粘贴官方的或者阿里云的镜像: [mariadb]name = MariaDBbaseurl = http://yum.mariadb.org/10.3/centos7-amd64gpgkey=https://yum.mariadb.org/RPM-GPG-KEY-MariaDBgpgcheck=1[mariadb]name = MariaDBbaseurl = https://mirrors.aliyun.com/mariadb/yum/10.4/centos7-amd64/gpgkey=https://mirrors.aliyun.com/mariadb/yum/RPM-GPG-KEY-MariaDBgpgcheck=1 2.如果下载速度太慢,请删除 mariadb.repo,只是为了使用阿里云的yum源中的mariadb rm -rf /etc/yum.repos.d/Mariadb.repo然后清空yum 缓存yum clean all 3.通过yum安装mariadb软件,安装mariadb服务端和客户端 官方 yum install MariaDB-server MariaDB-client -y阿里云 yum install mariadb mariadb-server -y 4.安装完成后,启动mariadb服务端 systemctl start/stop/restart/status mariadbsystemctl enable mariadb 开机启动mariadb 5. mariadb初始化 这条命令可以初始化mysql,删除匿名用户,设置root密码等等....mysql_secure_installation1.输入当前密码,初次安装后是没有密码的,直接回车2.询问是否使用 'unix_socket' 进行身份验证: n3.为 root 设置密码:y4.输入 root 的新密码: root5.确认输入 root 的新密码: root6.是否移除匿名用户,这个随意,建议删除: y7.拒绝用户远程登录,这个建议开启:n8.删除 test 库,可以保留:n9.重新加载权限表:y 6. 设置mysql的中文编码支持,修改/etc/my.cnf 1.vi /etc/my.cnf在[mysqld]中添加参数,使得mariadb服务端支持中文[mysqld]character-set-server=utf8collation-server=utf8_general_ci2.重启mariadb服务,读取my.cnf新配置systemctl restart mariadb 3.登录数据库,查看字符编码mysql -uroot -p输入 \s 查看编码 7. mysql常用命 desc 查看表结构create database 数据库名create table 表名查看如何创建db的show create database 库名 查看如何创建table结构的show create table 表名; 修改mysql的密码set password = PASSWORD('redhat'); 创建mysql的普通用户,默认权限非常低create user zhang@'%' identified by '123456'; 查询mysql数据库中的用户信息use mysql;select host,user,password from user; 7. 给用户添加权限命令 对所有库和所有表授权所有权限grant all privileges on . to 账户@主机名 给zhang用户授予所有权限grant all privileges on . to zhang@'%'; 刷新授权表flush privileges; 8. 给用户添加权限命令 给zhangsan用户授予所有权限grant all privileges on . to zhangsan@'%'; 给与root权限授予远程登录的命令 'centos这是密码随意设置grant all privileges on . to root@'%' identified by '123456'; 此时可以在windows登录linux的数据库 连接服务器的mysqlmysql -uyining -p -h 服务器的地址 9. 数据备份与恢复 导出当前数据库的所有db,到一个文件中1.mysqldump -u root -p --all-databases > /data/AllMysql.dump2.登录mysql 导入数据mysql -u root -p> source /data/AllMysql.dump3.通过命令导入数据 在登录时候,导入数据文件,一样可以写入数据mysql -uroot -p < /data/AllMysql.dump 10. 修改Mariadb存储路径 10.1 首先确定MariaDB数据库能正常运行,确定正常后关闭服务 systemctl stop mariadb 10.2 建立要更改数据存放的目录,如:我这单独分了一个区/data存放MariaDB的数据 mkdir /data/mysql_data chown -R mysql:mysql /data/mysql_data 10.3 复制默认数据存放文件夹到/data/mysql_data cp -a /var/lib/mysql /data/mysql_data 10.4 修改/etc/my.cnf.d/server.cnf vim /etc/my.cnf.d/server.cnf 在[mysqld]标签下添加如下内容 datadir=/data/mysql_data/mysqlsocket=/var/lib/mysql/mysql.sockdefault-character-set=utf8character_set_server=utf8slow_query_log=onslow_query_log_file=/data/mysql_data/slow_query_log.loglong_query_time=2 10.5 配置MariaDB慢查询 touch /data/mysql_data/slow_query_log.logchown mysql:mysql /data/mysql_data/slow_query_log.log 10.6 重启数据库 systemctl start mariadb 10.7 注意: 1、配置文件my.cnf存在,但是修改的并不是my.cnf,而是/etc/my.cnf.d/server.cnf; 2、并没有更改mysql.sock的路径配置; 3、没有修改/etc/init.d/mysql中的内容; 4、没有修改mysql_safe中的内容; 5、增加了数据库的慢查询配置。 11. Mariadb主从复制 11.1 主从库初始化 这条命令可以初始化mysql,删除匿名用户,设置root密码等等....mysql_secure_installation1.输入当前密码,初次安装后是没有密码的,直接回车2.询问是否使用 'unix_socket' 进行身份验证: n3.为 root 设置密码:y4.输入 root 的新密码: root5.确认输入 root 的新密码: root6.是否移除匿名用户,这个随意,建议删除: y7.拒绝用户远程登录,这个建议开启:n8.删除 test 库,可以保留:n9.重新加载权限表:y 11.2 修改主库配置 [root@mster mysql] grep -Ev "^$|^" /etc/my.cnf.d/server.cnf[server][mysqld]character-set-server=utf8collation-server=utf8_general_ciserver_id = 13 一组主从组里的每个id必须是唯一值。推荐用ip位数log-bin= mysql-bin 二进制日志,后面指定存放位置。如果只是指定名字,默认存放在/var/lib/mysql下lower_case_table_names=1 不区分大小写binlog-format=ROW 二进制日志文件格式log-slave-updates=True slave更新是否记入日志sync-master-info=1 值为1确保信息不会丢失slave-parallel-threads=3 同时启动多少个复制线程,最多与要复制的数据库数量相等即可binlog-checksum=CRC32 效验码master-verify-checksum=1 启动主服务器效验slave-sql-verify-checksum=1 启动从服务器效验[galera][embedded][mariadb][mariadb-10.6][root@mster-k8s mysql] 11.2 修改从库配置 [mysqld]character-set-server=utf8collation-server=utf8_general_ciserver_id=14log-bin= mysql-bin log-bin是二进制文件relay_log = relay-bin 中继日志, 后面指定存放位置。如果只是指定名字,默认存放在/var/lib/mysql下lower_case_table_names=1 11.3 重启主库和从库服务 systemctl restart mariad 11.4 master节点配置 MariaDB [huawei]> grant replication slave, replication client on . to 'liu'@'%' identified by '123456';Query OK, 0 rows affected (0.001 sec)MariaDB [huawei]> show master status;+------------------+----------+--------------+------------------+| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |+------------------+----------+--------------+------------------+| mysql-bin.000001 | 4990 | | |+------------------+----------+--------------+------------------+1 row in set (0.000 sec)MariaDB [huawei]> select binlog_gtid_pos('mysql-bin.000001', 4990 );+-------------------------------------------+| binlog_gtid_pos('mysql-bin.000001', 4990) |+-------------------------------------------+| 0-13-80 |+-------------------------------------------+1 row in set (0.000 sec)MariaDB [huawei]> flush privileges; 11.5 slave节点配置 MariaDB [(none)]> set global gtid_slave_pos='0-13-80';Query OK, 0 rows affected (0.004 sec)MariaDB [(none)]> change master to master_host='101.34.141.216',master_user='liu',master_password='123456',master_use_gtid=slave_pos;Query OK, 0 rows affected (0.008 sec)MariaDB [(none)]> start slave;Query OK, 0 rows affected (0.005 sec)MariaDB [(none)]> 11.6 验证salve状态 MariaDB [(none)]> show slave status\G 1. row Slave_IO_State: Waiting for master to send eventMaster_Host: 101.34.141.216Master_User: liuMaster_Port: 3306Connect_Retry: 60Master_Log_File: mysql-bin.000001Read_Master_Log_Pos: 13260Relay_Log_File: relay-bin.000002Relay_Log_Pos: 10246Relay_Master_Log_File: mysql-bin.000001Slave_IO_Running: YesSlave_SQL_Running: YesReplicate_Do_DB: Replicate_Ignore_DB: Replicate_Do_Table: Replicate_Ignore_Table: Replicate_Wild_Do_Table: Replicate_Wild_Ignore_Table: Last_Errno: 0Last_Error: Skip_Counter: 0Exec_Master_Log_Pos: 13260Relay_Log_Space: 10549Until_Condition: NoneUntil_Log_File: Until_Log_Pos: 0Master_SSL_Allowed: NoMaster_SSL_CA_File: 本篇文章为转载内容。原文链接:https://blog.csdn.net/l363130002/article/details/126121255。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-12 10:11:01
311
转载
转载文章
...ool可以方便的进行文件类型的判断、唯一id(uuid,Snowflake)的生成、数据加密解密、二维码生成、图片加水印、BASE64编码解码、图片验证码等操作 集合 使用Arrays.asList()返回的list为数组的内部list,只允许遍历不允许增删,可以使用Stream流转换为list Collection和map对于仅遍历可以使用增强for循环和,但如果有删除为避免错误必须使用迭代器 foreach遍历不允许改变变量的地址,java的参数是值传递,修改了形参的地址并不影响原来的参数,故即使你修改了值也不会同步到原变量中,故操作的变量都显式或者隐式的定义为final JSON fastjson parseArray(String text, Class<T> clazz) 解析List parseObject(String text, Class<T> clazz) 解析Object JSON对于null、空白字符串、“null”会返回nullif (text == null) {return null;} else {DefaultJSONParser parser = new DefaultJSONParser(text, ParserConfig.getGlobalInstance());JSONLexer lexer = parser.lexer;int token = lexer.token();ArrayList list;if (token == 8) {lexer.nextToken(); // nextToken() => ...if ("null".equalsIgnoreCase(ident)) this.token = 8;list = null;} } String toJSONString(Object object) 将对象转为String toJSONBytes(Object object, SerializerFeature... features) 将对象转为byte[] @JSONField() 可以忽略字段serialize ,别名映射name,日期格式化format等 jackson @JsonFormat(pattern = "yyyy-MM-dd HH:mm:ss") 设置Date到前台的格式 @JsonIgnore SpringMVC不会向前台传递该字段 ObjectMapper mapper = new ObjectMapper();String str = mapper.writeValueAsString(admin); // 对象转JSON字符串mapper.readValue(s,Admin.class ); // JSON字符串转对象 EasyExcel 官方API https://www.yuque.com/easyexcel/doc 使用类注解@ExcelIgnoreUnannotated配合@ExcelProperty操作 @ExcelProperty可以指定表头列名,列顺序和表头的合并 @ColumnWidth(10)可以指定列宽,其长度约为(中文length3+英文length1) @DateTimeFormat(value="yyyy-MM-dd HH:mm:ss")可以指定日期格式 自定义策略实现SheetWriteHandler工作表回调接口,在afterSheetCreate()工作表创建之后方法可以 设置列宽 自定义表头 新建单元格 自定义策略实现RowWriteHandler行回调接口,在afterRowDispose()行操作完之后方法可以 设置行高 设置行样式 自定义策略实现CustomerCellHandler单元格回调接口,在afterCellDispose()单元格操作完之后方法可以 根据行号,列宽甚至是单元格的值来设置单元格样式 可以对单元格的值获取和修改 样式通常包括内容格式、批注、背景色、自动换行、平和垂直居中、边框大小和颜色、字体实例(格式,颜色,大小,加粗等)等 自定义策略继承AbstractMergeStrategy单元格合并抽象类,在merge()方法中可以通过CellRangeAddress合并单元格 过于复杂的表格可以使用模板,配合写出write和填充fill一起使用 Mybatis 在mapper方法的@select中也是可以直接书写动态SQL的,但要使用<script></script>包裹,这样就不用在java文件和xml文件切换了,将@select中包裹的代码直接放到浏览器的控制台输出后会自动转义\n,\t,+,"等 动态sql中“<” 和 “>” 号要用转义字符 “<” 和 ”>“ (分号要带) 动态sql中test中表达式通常使用 test=“id != null and id != ‘’”,要注意的是字符串不能直接识别单引号,有两种方法使用id==“1001"或者id==‘1001’.toString(),另外参数如果是boolean,可以直接使用test=”!flag",如果判定集合的话可以使用 test=“list != null and list.size>0” 返回数据类型为Map只能接收一条记录,字段为键名,字段值为值,但通常是用实体类接收,或是使用注解@MapKey来进行每条记录的映射,效果等同于List用Stream流转Map foreach遍历list collection=“list” item=“vo” separator="," open="(" close=")"> {vo.id} foreach遍历map collection=“map” index=“key” item=“value”,{key}获取建,{value}获取值,$亦可 collection=“map.entrySet()” index=“key” item=“value”,同上 collection=“map.keys” item=“key”,{key}为键 不要使用where 1=1,使用动态where拼接,会自动剔除where后多余的and和or 单个参数时无论基本和引用并且未使用在动态SQL可以不加参数注解@Param,但一旦参数大于一个或者参数在动态SQL中使用就必须加@Param 并不是直接把参数加引号,而是变成?的形式交给prepareStatement处理,$直接使用值,当ORDER BY诸如此类不需要加引号的参数时,使用$代替,但为避免sql注入,该参数不能交由用户控制 Plus 官方API https://baomidou.com/guide/ @TableName 表名 @TableField(strategy = FieldStrategy.IGNORED) 更新不会忽略NULL值 @TableField(exist = false)表明该字段非数据字段,否则新增更新会报错 MybatisPlus对于单表的操作还是非常优秀的,在对单表进行新增或者更新的时候经常使用,但对于单表的查询业务上很少出现仅仅查询一张表的情况,但也会有,如果条件不大于3个还是可以使用的,多了倒没有直接写SQL来的方便了 MybatisPlus的批量插入也是通过for循环插入的,还是建议使用Mybatis的动态foreach进行批量插入 MybatisPlus的分页器会对方法中的参数判断,如果存在分页对象就先查询总数看是否大于0,然后拼接当前的数据库limit语句,所以如果我们分页对象为null,就可以实现不分页查询 Object paramObj = boundSql.getParameterObject();IPage page = null;if (paramObj instanceof IPage) { ……public static String getOriginalCountSql(String originalSql) {return String.format("SELECT COUNT(1) FROM ( %s ) TOTAL", originalSql);} ……originalSql = DialectFactory.buildPaginationSql(page, buildSql, dbType, this.dialectClazz); ……public String buildPaginationSql(String originalSql, long offset, long limit) {StringBuilder sql = new StringBuilder(originalSql);sql.append(" LIMIT ").append(offset).append(",").append(limit);return sql.toString();} IDEA 插件 Lombok : 快速生成getter、setter等 Alibaba Java Coding Guidelines :阿里规约扫描 Rainbow Brackets :彩色括号 HighlightBracketPair :高亮提示 MyBatisX :mabatisPlus提供的xml和mapper转换的插件,小鸟图标 CamelCase :大小写、驼峰、下划线、中划线转换插件 使用shift+Alt+u进行转换(很方便) 可以在Editor中设置CamelCase的转换,一般只保留下划线和驼峰两种 String Manipulation :字符串工具(未使用) RestfulToolkit http :Restful请求工具 打开idea,在右侧边栏会有一个标签(RestServices),打开可以看到里面是url路径 ctrl+\或者ctrl+alt+n会检索路径 Ctrl + Enter格式化json 没有记忆功能,也不能加token,只是查找请求路径使用 easycode :代码生成工具(个人觉得很好用,常用于生成实体类) 支持自定义模板 支持添加自定义列,不影响数据库 支持多表同时生成 支持自定义类型映射 支持配置导入导出 支持动态调试 支持自定义属性 Power Mode 11 :打字特效(纯属装逼) Nyan Progress Bar :漂亮的进度条(纯属装逼) Other Vo:数据持久化模型 Query:数据查询模型 Dto:数据传输模型 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_40910781/article/details/111416185。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-26 23:30:52
269
转载
转载文章
...除相应内容。 大容量文件上传早已不是什么新鲜问题,在.net 2.0时代,HTML5也还没有问世,要实现这样的功能,要么是改web.config,要么是用flash,要么是用一些第三方控件,然而这些解决问题的方法要么很麻烦,比如改配置,要么不稳定,比如文件上G以后,上传要么死掉,要么卡住,通过设置web.config并不能很好的解决这些问题。 这是一个Html5统治浏览器的时代,在这个新的时代,这种问题已被简化并解决,我们可以利用Html5分片上传的技术,那么Plupload则是一个对此技术进行封装的前端脚本库,这个库的好处是可以自动检测浏览器是否支持html5技术,不支持再检测是否支持flash技术,甚至是sliverlight技术,如果支持,就使用检测到的技术。 那么这个库到哪里下载,怎么搭建呢,比较懒的童鞋还是用Install-Package Plupload搞定吧,一个命令搞定所有事 Plupload支持的功能这里就不细说了,什么批量上传,这里我没有用到,主要是感觉它支持的事件非常丰富,文件选取后的事件,文件上传中的事件(可获得文件的上传进度),文件上传成功的事件,文件上传失败的事件,等等 我的例子主要是上传一个单个文件,并显示上传的进度条(使用jQuery的一个进度条插件) 下面的例子主要是为文件上传交给 UploadCoursePackage.ashx 来处理 /ProgressBar/ var progressBar = $("loading").progressbar({ width: '500px', color: 'B3240E', border: '1px solid 000000' }); /Plupload/ //实例化一个plupload上传对象 var uploader = new plupload.Uploader({ browse_button: 'browse', //触发文件选择对话框的按钮,为那个元素id runtimes: 'html5,flash,silverlight,html4',//兼容的上传方式 url: "Handlers/UploadCoursePackage.ashx", //后端交互处理地址 max_retries: 3, //允许重试次数 chunk_size: '10mb', //分块大小 rename: true, //重命名 dragdrop: false, //允许拖拽文件进行上传 unique_names: true, //文件名称唯一性 filters: { //过滤器 max_file_size: '999999999mb', //文件最大尺寸 mime_types: [ //允许上传的文件类型 { title: "Zip", extensions: "zip" }, { title: "PE", extensions: "pe" } ] }, //自定义参数 (键值对形式) 此处可以定义参数 multipart_params: { type: "misoft" }, // FLASH的配置 flash_swf_url: "../Scripts/plupload/Moxie.swf", // Silverligh的配置 silverlight_xap_url: "../Scripts/plupload/Moxie.xap", multi_selection: false //true:ctrl多文件上传, false 单文件上传 }); //在实例对象上调用init()方法进行初始化 uploader.init(); uploader.bind('FilesAdded', function (uploader, files) { $("<%=fileSource.ClientID %>").val(files[0].name); $.ajax( { type: 'post', url: 'HardDiskSpace.aspx/GetHardDiskFreeSpace', data: {}, dataType: 'json', contentType: 'application/json;charset=utf-8', success: function (result) { //选择文件以后检测服务器剩余磁盘空间是否够用 if (files.length > 0) { if (parseInt(files[0].size) > parseInt(result.d)) { $('error-msg').text("文件容量大于剩余磁盘空间,请联系管理员!"); } else { $('error-msg').text(""); } } }, error: function (xhr, err, obj) { $('error-msg').text("检测服务器剩余磁盘空间失败"); } }); }); uploader.bind('UploadProgress', function (uploader, file) { var percent = file.percent; progressBar.progress(percent); }); uploader.bind('FileUploaded', function (up, file, callBack) { var data = $.parseJSON(callBack.response); if (data.statusCode === "1") { $("<%=hfPackagePath.ClientID %>").val(data.filePath); var id = $("<%=hfCourseID.ClientID %>").val(); __doPostBack("save", id); } else { hideLoading(); $('error-msg').text(data.message); } }); uploader.bind('Error', function (up, err) { alert("文件上传失败,错误信息: " + err.message); }); /Plupload/ 后台 UploadCoursePackage.ashx 的代码也重要,主要是文件分片跟不分片的处理方式不一样 using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.IO; namespace WebUI.Handlers { /// <summary> /// UploadCoursePackage 的摘要说明 /// </summary> public class UploadCoursePackage : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; int statuscode = 1; string message = string.Empty; string filepath = string.Empty; if (context.Request.Files.Count > 0) { try { string resourceDirectoryName = System.Configuration.ConfigurationManager.AppSettings["resourceDirectory"]; string path = context.Server.MapPath("~/" + resourceDirectoryName); if (!Directory.Exists(path)) Directory.CreateDirectory(path); int chunk = context.Request.Params["chunk"] != null ? int.Parse(context.Request.Params["chunk"]) : 0; //获取当前的块ID,如果不是分块上传的。chunk则为0 string fileName = context.Request.Params["name"]; //这里写的比较潦草。判断文件名是否为空。 string type = context.Request.Params["type"]; //在前面JS中不是定义了自定义参数multipart_params的值么。其中有个值是type:"misoft",此处就可以获取到这个值了。获取到的type="misoft"; string ext = Path.GetExtension(fileName); //fileName = string.Format("{0}{1}", Guid.NewGuid().ToString(), ext); filepath = resourceDirectoryName + "/" + fileName; fileName = Path.Combine(path, fileName); //对文件流进行存储 需要注意的是 files目录必须存在(此处可以做个判断) 根据上面的chunk来判断是块上传还是普通上传 上传方式不一样 ,导致的保存方式也会不一样 FileStream fs = new FileStream(fileName, chunk == 0 ? FileMode.OpenOrCreate : FileMode.Append); //write our input stream to a buffer Byte[] buffer = null; if (context.Request.ContentType == "application/octet-stream" && context.Request.ContentLength > 0) { buffer = new Byte[context.Request.InputStream.Length]; context.Request.InputStream.Read(buffer, 0, buffer.Length); } else if (context.Request.ContentType.Contains("multipart/form-data") && context.Request.Files.Count > 0 && context.Request.Files[0].ContentLength > 0) { buffer = new Byte[context.Request.Files[0].InputStream.Length]; context.Request.Files[0].InputStream.Read(buffer, 0, buffer.Length); } //write the buffer to a file. if (buffer != null) fs.Write(buffer, 0, buffer.Length); fs.Close(); statuscode = 1; message = "上传成功"; } catch (Exception ex) { statuscode = -1001; message = "保存时发生错误,请确保文件有效且格式正确"; Util.LogHelper logger = new Util.LogHelper(); string path = context.Server.MapPath("~/Logs"); logger.WriteLog(ex.Message, path); } } else { statuscode = -404; message = "上传失败,未接收到资源文件"; } string msg = "{\"statusCode\":\"" + statuscode + "\",\"message\":\"" + message + "\",\"filePath\":\"" + filepath + "\"}"; context.Response.Write(msg); } public bool IsReusable { get { return false; } } } } 再附送一个检测服务器端硬盘剩余空间的功能吧 using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Web; using System.Web.Script.Services; using System.Web.Services; using System.Web.UI; using System.Web.UI.WebControls; namespace WebUI { public partial class CheckHardDiskFreeSpace : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { } /// <summary> /// 获取磁盘剩余容量 /// </summary> /// <returns></returns> [WebMethod] public static string GetHardDiskFreeSpace() { const string strHardDiskName = @"F:\"; var freeSpace = string.Empty; var drives = DriveInfo.GetDrives(); var myDrive = (from drive in drives where drive.Name == strHardDiskName select drive).FirstOrDefault(); if (myDrive != null) { freeSpace = myDrive.TotalFreeSpace+""; } return freeSpace; } } } 效果展示: 详细配置信息可以参考这篇文章:http://blog.ncmem.com/wordpress/2019/08/12/plupload%e4%b8%8a%e4%bc%a0%e6%95%b4%e4%b8%aa%e6%96%87%e4%bb%b6%e5%a4%b9-2/ 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45525177/article/details/100654639。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-19 09:43:46
129
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
rsync -avz source destination
- 在本地或远程之间同步文件夹并保留属性和压缩传输。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"