前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[专利全文批量下载攻略 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Flink
...理实时数据,又能应对批量数据,而且表现得超级高效、灵活又极具扩展性,就像一个随需应变、随时升级的超级数据处理器。嘿,你知道吗?动态表的JOIN操作可真是个了不得的功能。这玩意儿就像个超级小助手,能让我们轻轻松松地处理那些复杂得让人挠头的数据分析工作,让数据处理变得简单又便捷,真可谓是我们的好帮手啊!本文将会详细介绍如何在Flink中实现动态表JOIN操作。 二、什么是动态表JOIN? 动态表JOIN是一种特殊类型的JOIN操作,它可以让我们更加灵活地处理动态数据流。跟老式的静态表格JOIN玩法不一样,动态表JOIN更酷炫,它能在运行时灵活应变。就像个聪明的小助手,会根据输入数据的实时变化自动调整JOIN操作的结果,给你最准确、最新的信息。这种灵活性使得动态表JOIN非常适合处理那些不断变化的数据流。 三、如何在Flink中实现动态表JOIN? 要实现动态表JOIN,我们需要做以下几个步骤: 1. 创建两个动态表 首先,我们需要创建两个动态表,这两个表可以是任何类型的表,例如关系型表、序列文件表或者是Parquet文件表等。 2. 定义JOIN条件 接下来,我们需要定义JOIN条件,这个条件可以是任意的条件,只要它满足动态表JOIN的要求即可。一般情况下,我们常常会借助一些比较基础的条件来进行操作,就像是拿主键做个配对游戏,或者根据时间戳来个精准的时间比对什么的。 3. 使用JOIN操作 最后,我们可以使用Flink的JOIN操作来实现动态表JOIN。Flink提供了多种JOIN操作,例如Inner Join、Left Join、Right Join以及Full Join等。我们可以根据实际情况选择合适的JOIN操作。 四、代码示例 下面是一个使用Flink实现动态表JOIN的简单示例。在本次实例里,我们要用两个活灵活现的动态表格来演示JOIN操作,一个叫“users”,另一个叫“orders”。想象一下,这就像是把这两本会不断更新变化的花名册和订单簿对齐合并一样。 java // 创建两个动态表 DataStream users = ...; DataStream orders = ...; // 定义JOIN条件 MapFunction userToOrderKeyMapper = new MapFunction() { @Override public OrderKey map(User value) throws Exception { return new OrderKey(value.getId(), value.getCountry()); } }; DataStream orderKeys = users.map(userToOrderKeyMapper); // 使用JOIN操作 DataStream> joined = orders.join(orderKeys) .where(new KeySelector() { @Override public OrderKey getKey(OrderKey value) throws Exception { return value; } }) .equalTo(new KeySelector() { @Override public User getKey(User value) throws Exception { return value; } }) .window(TumblingEventTimeWindows.of(Time.minutes(5))) .apply(new ProcessWindowFunction, Tuple2, TimeWindow>() { @Override public void process(TimeWindow window, Context context, Iterable> values, Collector> out) throws Exception { int count = 0; for (Tuple2 value : values) { if (value.f1.getUserId() == value.f0.getId()) { count++; } } if (count > 1) { out.collect(new Tuple2<>(value.f0, value.f1)); } } }); 在这个示例中,我们首先创建了两个动态表users和orders。然后,我们捣鼓出了一个叫userToOrderKeyMapper的神奇小函数,它的任务就是把用户对象摇身一变,变成订单键对象。接着,我们使用这个映射函数将users表转换为orderKeys表。 接下来,我们使用JOIN操作将orders表和orderKeys表进行JOIN。在JOIN操作这个环节,我们搞了个挺实用的小玩意儿叫键选择器where,它就像是个挖掘工,专门从那个orders表格里头找出来每个订单的关键信息。我们也定义了一个键选择器equalTo,它从users表中提取出用户对象。
2023-02-08 23:59:51
370
秋水共长天一色-t
转载文章
..... 找源 找到需要下载的歌曲,然后分享,复制一下链接. 这个随便找一个: //分享链接会泄露个人信息,我就代替了 https://node.kg.qq.com/play?s=&shareuid=&topsource=a0_pn201001006_z11_u10923685_l0_t1577770997__ 右键查看源码: 你会发现这其实一个 JSON 数据...那么就不用说了.. 源码 header('content-type:application/json'); $url = @$_GET['url']; if (empty($url)) { echo json_encode(['code' => 1, 'msg' => '没有播放链接'], 320); exit; } $data = curlGet($url); $jsonData = getsubstr($data, 'window.__DATA__ = ', ';'); $jsonArr = json_decode($jsonData, true); $play = [ 'avatar' => $jsonArr['detail']['avatar'], //歌手头像 'content' => $jsonArr['detail']['content'], //分享内容 'cover' => $jsonArr['detail']['cover'], //歌曲封面 'nick' => $jsonArr['detail']['kg_nick'], //歌手昵称 'playurl' => $jsonArr['detail']['playurl'], //mp3 下载地址 ]; echo json_encode($play, 320); // 取中间文本函数 function getsubstr($str, $leftStr, $rightStr) { $left = strpos($str, $leftStr); $right = strpos($str, $rightStr, $left); if ($left < 0 or $right < $left) { return ''; } return substr($str, $left + strlen($leftStr), $right - $left - strlen($leftStr)); } function curlGet($url) { $ch = curl_init(); curl_setopt($ch, CURLOPT_URL, $url); curl_setopt($ch, CURLOPT_RETURNTRANSFER, true); curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, false); curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, false); curl_setopt($ch, CURLOPT_USERAGENT, 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/65.0.3314.0 Safari/537.36 SE 2.X MetaSr 1.0'); curl_setopt($ch, CURLOPT_FOLLOWLOCATION, true); $output = curl_exec($ch); curl_close($ch); return $output; } TEST 一下 OJ8K! ~谢谢打赏~ 赏 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_28965077/article/details/115168291。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-14 14:04:46
227
转载
SeaTunnel
...SeaTunnel在下载、上传数据的时候可能就会出现“小状况”,也就是延迟的现象,这样一来,界面的反应速度自然也就没那么灵敏了。 3. 内存不足 如果你的计算机内存不足,那么SeaTunnel可能无法有效地管理数据,从而导致界面响应速度降低。比如,假设有这么个情况,你打算一股脑儿地往里塞大量的数据,但是你的电脑内存有点不给力,撑不住这个操作,那么你可能会发现SeaTunnel界面就像蜗牛爬一样,慢得让人捉急。 三、解决方案 1. 增加硬件资源 如果你发现自己经常遇到SeaTunnel界面响应速度慢的问题,那么你可以考虑增加一些硬件资源。比如,你要是想让SeaTunnel跑得更快更溜,就像给电脑升级装备一样,可以考虑买个更大容量的内存或者更猛力的CPU。这样一来,SeaTunnel处理数据的能力嗖嗖提升,界面反应速度自然也就跟打了鸡血似的,瞬间快到飞起! 2. 提高网络稳定性 如果你的网络连接不稳定,那么你可以尝试改善你的网络环境。比如说,你完全可以考虑换个更靠谱的网络服务商,或者干脆在办公室里装个飞快的Wi-Fi路由器。这样一来,保证网速嗖嗖的!这样可以帮助SeaTunnel更稳定地下载和上传数据,从而提高界面的响应速度。 3. 分批处理数据 如果你遇到的主要是由于数据量过大的问题,那么你可以尝试将数据分批处理。比如,你完全可以把那个超大的CSV文件剁成几个小份儿,然后呢,咱们就一块块慢慢处理这些小文件就行了。这样不仅可以减少SeaTunnel的压力,还可以避免界面响应速度下降的情况发生。 四、结论 总之,虽然SeaTunnel是一个非常强大的数据处理工具,但在实际使用过程中,我们也需要注意一些问题,例如数据量过大、网络连接不稳定以及内存不足等。只有解决了这些问题,我们才能充分发挥SeaTunnel的优势,提高我们的工作效率。希望这篇文章能够对你有所帮助,也希望你能在实际使用中更好地利用SeaTunnel这个工具。
2023-12-06 13:39:08
205
凌波微步-t
MyBatis
...,适用于in查询或者批量插入、更新操作。 示例一:条件查询 xml SELECT FROM user AND name LIKE CONCAT('%', {name}, '%') AND age = {age} 在这个例子中,只有当传入的name或age不为null时,对应的SQL条件才会被加入到最终的查询语句中。 示例二:多条件选择 xml SELECT FROM user SELECT FROM user WHERE is_active = 1 SELECT FROM user WHERE name IS NOT NULL 在这个示例中,根据传入的type参数,会选择执行不同的查询语句。 3. 深度探索与思考 使用MyBatis的动态SQL不仅极大地简化了我们的工作,而且提升了代码的可读性和可维护性。瞧,我们能像看故事书一样,直接从那个映射文件里瞅明白SQL是怎么根据输入的参数灵活变动的,这可真是团队一起干活儿和后面维护工作的大宝贝啊! 此外,值得注意的是,虽然动态SQL强大而灵活,但过度使用可能导致SQL解析性能下降。所以,在我们追求代码的“随心所欲”时,也别忘了给性能这块儿上点心。就拿减少那些频繁变动的元素数量、提前把SQL语句好好编译一下这些招数来说,都是能让程序跑得更溜的好方法。 总结来说,MyBatis的动态SQL是我们在应对复杂查询场景时的一把利器。这些动态元素就像是我们的法宝,即使需求七十二变,我们也能轻松写出既简洁又高效的数据库访问代码。这样一来,程序就能更好地模拟现实世界的各种复杂情况,不仅读起来更容易理解,修改起来也更加方便,就像在现实生活中调整家具布局一样简单自然。让我们在实践中不断探索和挖掘MyBatis动态SQL的魅力吧!
2024-02-16 11:34:53
133
风轻云淡_
转载文章
... 5.6.5+ 2.下载 两种方式: 1.下载源码自己编译(需要修改源码的可以选择) https://github.com/ctripcorp/apollo 2.下载官方编译好的 https://github.com/ctripcorp/apollo/releases 这里选择官方编译好的,下载如下三个压缩包 3.下载sql文件,生成数据库 地址:https://github.com/nobodyiam/apollo-build-scripts/tree/master/sql 下载好后通过mysql生成数据库: 4. 将下载好的三个压缩包上传至linux下并解压 其中shutdown.sh和start.sh是自己写的脚本(用来启动和关闭三个服务) 5.修改三个服务的配置文件 1.分别修改三个服务下的数据连接配置文件 /config/application-github.properties 2.分别修改三个服务下的启动端口号配置文件 /scripts/startup.sh 3.修改apollo-portal服务的下的meta配置:apollo-portal/config/sapollo-env.properties 这里的地址是apollo-configservice的服务地址,分别是不同环境下的服务地址,这里我只配置了(开发-dev)环境下的地址。 6.修改数据库中的meta地址 修改apolloconfigdb数据库中serverconfig表中的eureka.service.url:其中的地址为apollo-configservice的服务地址 7.新建启动和关闭三个服务的shell脚本 start.sh 注意服务的启动顺序 configservice - adminservice - portal !/bin/bash/usr/local/apollo-1.5.1/apollo-configservice/scripts/startup.sh/usr/local/apollo-1.5.1/apollo-adminservice/scripts/startup.sh/usr/local/apollo-1.5.1/apollo-portal/scripts/startup.sh shutdown.sh !/bin/bash/usr/local/apollo-1.5.1/apollo-adminservice/scripts/shutdown.sh/usr/local/apollo-1.5.1/apollo-configservice/scripts/shutdown.sh/usr/local/apollo-1.5.1/apollo-portal/scripts/shutdown.sh 8.启动服务访问apollo 运行start.sh,启动三个服务后:输入如下地址 http://39.108.107.163:8003/ 这是portal的服务地址(注意自己修改的端口号) 默认的用户名 apollo 密码 :admin 登录后看到如下页面代表成功了: 9.下篇文章会讲到springboot整合apollo,请关注博客内容 springboot整合apollo: https://blog.csdn.net/qq_34707456/article/details/103745839 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_34707456/article/details/103702828。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-16 10:44:16
330
转载
Groovy
...到,也可以直接在网上下载 groovy-all-2.x.x.jar文件。 三、使用println语句打印变量值 在Groovy脚本中,我们最常用的调试方式就是通过println语句打印出变量的值。例如: groovy def name = 'Tom' println "My name is $name" 这样,我们就可以看到控制台输出的结果是"My name is Tom",这表明变量name已经被正确赋值。 四、使用@Grab注解获取依赖库 在实际的开发过程中,我们可能需要调用一些外部的库或者API。这个时候,我们可以借助Groovy那个超级方便的@Grab注解,一键获取我们需要的依赖库,就像在超市拿货架上的商品一样轻松。 例如,如果我们需要使用logback日志框架,我们可以在Groovy脚本的头部加上以下代码: groovy @Grab(group='ch.qos.logback', module='logback-classic', version='1.2.3') 然后,我们就可以在代码中正常调用logback的API了。 五、使用grails-app目录下的配置文件 在Grails框架中,我们会发现有一个grails-app目录,其中包含了各种配置文件。比如,你可以想象一下resources.groovy文件就像是Spring应用的小助手,专门用来设置和管理这个应用程序的一些核心信息。 在资源文件中,我们可以定义一些变量,然后在其他地方引用它们。这对于管理应用程序的全局变量非常有用。 例如,在resources.groovy文件中,我们可以定义一个名为config的变量,然后在其他地方引用它: groovy import org.springframework.context.annotation.Bean beans { config = new ConfigBean() } 然后,在其他地方,我们就可以通过@Value注解来获取这个变量的值了: groovy @Value('${config.myConfig}') String myConfig 六、总结 总的来说,Groovy提供了许多方便的方式来帮助我们调试脚本,并查看其内部变量的值。甭管是简单易懂的println命令,还是更高端大气的@Grab注解,都能妥妥地满足我们的各种需求。另外,Grails框架还悄悄塞给我们一些超实用的小工具,比如说资源文件这个小玩意儿,这可帮了我们大忙,让咱能更轻松地驾驭和打理自己的应用程序呢!
2023-07-29 22:56:33
644
断桥残雪-t
ElasticSearch
...earch(用于实时全文搜索和数据分析)、Logstash(用于数据处理管道,支持从各种来源收集数据并转发到多个目的地)、Kibana(提供基于Web的图形化界面,便于对Elasticsearch中的数据进行搜索、分析和可视化展示)以及Beats(轻量级数据采集器,负责从服务器、容器等源头收集日志、指标等数据)。在本文中,Elastic Stack被用来监控Nginx Web服务器性能和稳定性。 Beats , Beats是Elastic Stack家族的一部分,主要功能是作为数据收集代理,负责从分布式系统中的各个节点收集不同类型的数据源信息,如系统日志、网络流量、应用性能数据等,并将这些数据高效地发送至Elasticsearch进行存储和进一步分析。文中提到使用Beats中的Filebeat模块来专门收集和传输Nginx Web服务器的日志文件。 Nginx Web服务器 , Nginx是一款高性能、高并发、稳定可靠的Web服务器和反向代理服务器软件。相较于传统的Apache等服务器,Nginx以其低内存消耗、高并发处理能力和灵活的配置机制而受到广泛青睐。在本文语境下,Nginx Web服务器是企业IT基础设施的重要组成部分,通过部署Elastic Stack中的Beats对其日志进行监控,能够及时发现和解决潜在问题,保障业务服务的稳定性和性能表现。
2023-06-05 21:03:14
612
夜色朦胧-t
Docker
...该镜像。 3. 镜像下载失败 如果网络连接不稳定,或者Docker镜像源出现问题,也可能导致镜像下载失败,从而无法访问到该镜像。 五、如何解决无法访问的问题? 针对以上可能出现的问题,我们可以采取以下方法来解决: 1. 使用唯一的镜像名称 我们可以为每个Docker容器指定唯一的镜像名称,以避免名称冲突的问题。 2. 更新镜像 我们可以定期更新Docker缓存中的镜像,以保证使用的镜像是最新的。 3. 检查网络连接 如果网络连接不稳定,我们应该检查网络连接,尝试重新下载镜像。 六、结论 总的来说,Docker是一款非常实用的工具,可以极大地提升我们的开发效率和生产力。虽然有时候咱们免不了会碰上一些头疼的问题,但只要咱掌握了那些解决问题的独门秘诀,就能轻轻松松地把这些问题摆平,然后尽情享受Docker带来的各种便利,就像喝凉水一样简单畅快。同时,我们也应该注意及时更新镜像,避免因镜像过期而导致的问题。
2023-04-14 21:52:33
1259
星河万里_t
Apache Solr
... Solr以其强大的全文检索能力,成为了众多开发者心中的首选。特别是当你手头堆满了如山的数据,急需打造一个既飞快又弹性的分布式搜索团队时,SolrCloud模式简直就是你的超级英雄!嘿,伙计们,今天我要来聊聊自己在摆弄SolrCloud那会儿的一些小窍门和实战经验,说不定能给你的项目带来点灵感或者省点时间呢!咱们一起交流交流。 二、SolrCloud简介 SolrCloud是Solr的分布式版本,它通过Zookeeper进行协调,实现了数据的水平扩展和故障容错。通俗点讲,就像把Solr这哥们儿扩展成团队合作模式,每个节点都是个小能手,一起协作搞定那些海量的搜素任务,超级高效! 1.1 Zookeeper的角色 Zookeeper在这个架构中扮演着关键角色,它是集群的协调者,负责维护节点列表、分配任务以及处理冲突等。下面是一个简单的Zookeeper配置示例: xml localhost:9983 1.2 节点配置 每个Solr节点需要配置为一个Cloud节点,通过solrconfig.xml中的cloud元素启用分布式功能: xml localhost:8983 3 mycollection 这里设置了三个分片(shards),每个分片都会有自己的索引副本。 三、搭建与部署 搭建SolrCloud涉及安装Solr、Zookeeper,然后配置和启动。以下是一个简化的部署步骤: - 安装Solr和Zookeeper - 配置Zookeeper,添加Solr服务器地址 - 在每个Solr节点上,配置为Cloud节点并启动 四、数据分发与查询优化 当数据量增大,单机Solr可能无法满足需求,这时就需要将数据分散到多个节点。SolrCloud会自动处理数据的复制和分发。例如,当我们向集群提交文档时: java SolrClient client = new CloudSolrClient.Builder("http://solr1,http://solr2,http://solr3").build(); Document doc = new Document(); doc.addField("id", "1"); client.add(doc); SolrCloud会根据策略将文档均匀地分配到各个节点。 五、性能调优与故障恢复 为了确保高可用性和性能,我们需要关注索引分片、查询负载均衡以及故障恢复策略。例如,可以通过调整solrconfig.xml中的solrcloud部分来优化分片: xml 2 这将保证每个分片至少有两个副本,提高数据可靠性。 六、总结与展望 SolrCloud的搭建和使用并非易事,但其带来的性能提升和可扩展性是显而易见的。在实践中,我们需要不断调整参数,监控性能,以适应不断变化的数据需求。当你越来越懂SolrCloud这家伙,就会发现它简直就是个能上天入地的搜索引擎神器,无论多棘手的搜素需求,都能轻松搞定,就像你的万能搜索小能手一样。 作为一个技术爱好者,我深深被SolrCloud的魅力所吸引,它让我看到了搜索引擎技术的可能性。读完这篇东西,希望能让你对SolrCloud这家伙有个新奇又深刻的了解,然后让它在你的项目中大显神威,就像超能力一样惊艳全场!
2024-04-29 11:12:01
436
昨夜星辰昨夜风
Hibernate
...te方言实现更高效的批量数据加载和查询响应。 综上所述,在实际项目开发中,紧跟Hibernate框架更新与数据库技术发展,深入理解和灵活运用SQL方言机制,将有助于提升系统性能,降低维护成本,并确保应用在不断变化的技术环境中保持良好适应性和扩展性。
2023-12-01 18:18:30
613
春暖花开
c#
...相匹配。 4. 处理批量插入和事务 --- 当需要执行批量插入时,可能会涉及到事务管理以保证数据的一致性。假设我们要插入多个学生记录,可以如下所示: csharp using (SqlTransaction transaction = sqlHelper.Connection.BeginTransaction()) { try { foreach (var student in studentsList) { var sql = "INSERT INTO Students (Name, Age) VALUES (@Name, @Age)"; var parameters = new SqlParameter[] { new SqlParameter("@Name", SqlDbType.NVarChar) { Value = student.Name }, new SqlParameter("@Age", SqlDbType.Int) { Value = student.Age } }; sqlHelper.ExecuteNonQuery(sql, parameters, transaction); } transaction.Commit(); } catch { transaction.Rollback(); throw; } } 5. 结论与思考 --- 封装SqlHelper类在处理插入数据时确实会面临一系列挑战,包括安全性、数据类型匹配以及批量操作和事务管理等。但只要我们遵循最佳实践,如始终使用参数化查询,谨慎处理数据类型转换,适时利用事务机制,就能有效避免并解决这些问题。在这个编程探险的旅程中,持续地动手实践、勇敢地探索未知、如饥似渴地学习新知识,这可是决定咱们旅途能否充满乐趣、成就感爆棚的关键所在!
2023-09-06 17:36:13
508
山涧溪流_
DorisDB
...(约500字) 总结全文讨论的关键点,强调在面对DorisDB系统升级挑战时,理解其内在原理、严谨执行升级步骤以及科学的运维管理策略的重要性。同时,分享对未来DorisDB升级优化方向的思考与期待。 以上内容只是大纲和部分示例,您可以根据实际需求,进一步详细阐述每个章节的内容,增加更多的实战经验和具体代码示例,使文章更具可读性和实用性。
2023-06-21 21:24:48
384
蝶舞花间
Shell
...台执行命令,简化了大批量服务器的运维流程,降低了由于人为操作失误导致的连接问题。 总之,在实际工作中,不断跟进远程连接技术的发展和最佳实践,结合文中所述的基础问题排查方法,将有助于我们在面对复杂多变的运维环境时,更加从容地处理各种远程连接问题,确保业务系统的稳定运行。
2023-02-04 15:53:29
92
凌波微步_
转载文章
...容。 1.源码获取 下载源代码并且编译 源码下载地址:https://canfestival.org/code.html.en 下载后解压压缩包,得到如下内容 创建一个文件夹tmp用于安装文件存放,其实就是把需要的库文件拷贝到tmp文件夹 2.编译源代码 注意:编译canfestival需要python2环境,编译前确认。终端输入查看版本:python --version 如果不是python2,请点击链接查看python2的环境配置 Ubuntu上python2和python3安装配置_凉拌卷心菜的博客-CSDN博客 打开终端输入 ./configure --cc=arm-linux-gnueabihf-gcc --arch=arm --os=unix --kerneldir=/home/lkdbb61/MineHarmony/linux-fslc-5.10-2.1.x-imx/kernel --prefix=$PWD/tmp --target=unix --can=socket --timers=unix --debug=WAR,MSG--cc:配置开发板交叉编译器--arch:开发板架构--os:使用系统--kerneldir:使用的内核实际目录--prefix:在源码首页创建一个安装文件夹--can:Linux下使用的是socket--timers:定时器也是Linux自带的--debug:返回执行信息 执行结果如下: 继续执行 make clean清除遗留的编译信息 继续执行make all(确保当前python环境是python2) 执行make install 将需要的文件拷贝至tmp文件夹中,进入tmp文件夹查看,这就是编译好所需要的 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_44848795/article/details/131277804。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-12 16:38:10
115
转载
转载文章
...微信小程序是一种无需下载安装即可使用的应用程序,它实现了“触手可及”的梦想,用户扫一扫或搜一下即可打开应用。文中提及的“腾讯QQ”小程序让用户能够在微信平台上查看QQ消息,但功能有限,不支持回复消息等全面操作。 大义灭亲 , 原指为了维护正义而不顾亲情,严格执法的行为。在本文中,“大义灭亲”一词形象地描绘了微信平台对自家产品——腾讯QQ小程序采取的封禁措施,即使该产品隶属于同一家公司,但在违反相关规定的情况下仍依法依规进行处理,体现了微信平台对规则的严格执行态度。 跨应用信息互通 , 指的是不同应用程序之间实现数据和服务的相互调用与共享,使得用户能在一个应用内使用另一个应用的部分功能或获取其信息。文中提到的腾讯QQ小程序即尝试通过微信平台实现跨应用的信息互通,让用户可以在微信上接收QQ消息。
2023-02-16 23:38:34
118
转载
Datax
...,遇到了Datax的批量插入操作超出最大行数限制的问题?如果你的答案是肯定的,那么你来到了正确的地方。本文将帮助你理解这个错误,并提供一些解决这个问题的方法。 首先,我们需要了解什么是Datax的最大行数限制。Datax是个超级厉害的数据传输神器,不仅速度快得飞起,性能杠杠的,而且稳定性超强,尤其擅长处理那种海量级别的数据交换工作,简直无所不能!不过,这个高效的家伙Datax也带来个小插曲,就是它对每条数据的操作都有个“小脾气”——有个单次操作能处理的最大行数限制。要是你碰巧超过了这个限制,Datax可不会跟你客气,它会立马蹦出一个异常消息,明确告诉你:“喂,老兄,你的批量插入操作已经超标啦,超出了我能处理的最大行数限制!” 现在,让我们来深入了解一下这个错误的具体表现以及如何解决。 一、错误的表现形式 当你尝试插入的数据量超过了Datax的最大行数限制,你会收到一个类似的错误提示: bash ERROR: batch size (65536) is larger than the max insert row count of your destination table, you can reduce batch size or increase the max insert row count of your destination table. 二、错误的原因分析 这个错误的主要原因是你的批量插入数据量过大,超出了Datax对单次操作的最大行数限制。具体来说,这可能是由于以下原因造成的: 1. 数据量过大 如果你一次性想要插入的数据过多,那么这个错误就很容易出现。 2. Datax配置不当 如果你没有正确配置Datax,让它适应你的大数据量需求,也会导致这个错误。 3. 目标表设置不当 如果你的目标表的max insert row count设置得过低,也可能引发这个错误。 三、解决方案 针对上述错误的原因,我们可以从以下几个方面来解决问题: 1. 分批插入数据 如果是因为数据量过大导致的错误,你可以考虑分批次插入数据,每次只插入一部分数据,直到所有数据都被插入为止。这样既可以避免超过最大行数限制,也可以提高插入效率。 2. 调整Datax配置 如果你发现是Datax配置不当导致的错误,你需要检查并调整Datax的配置。例如,你可以增加Datax的并发度,或者调整Datax的内存大小等。 3. 调整目标表设置 如果你发现是目标表的max insert row count设置过低导致的错误,你需要去数据库管理后台,把目标表的max insert row count调高。 四、预防措施 为了避免这种错误的发生,我们还可以采取以下预防措施: 1. 在开始工作前,先进行一次数据分析,估算需要插入的数据量,以此作为基础来设定Datax的工作参数。 2. 对于大项目,可以采用分阶段的方式,先完成一部分,再进行下一部分。 3. 及时监控Datax的工作状态,一旦发现问题,及时进行调整。 总结 当你的Datax批量插入操作遇到最大行数限制时,不要惊慌,要冷静应对。经过以上这些分析和解决步骤,我真心相信你绝对能够挖掘出最适合你的那个解决方案,没跑儿!记住,数据分析师的使命就是让数据说话,让数据为你服务,而不是被数据所困扰。加油!
2023-08-21 19:59:32
526
青春印记-t
Docker
...ub 上,供其他用户下载和使用。docker hub 上已经有数以万计的常用镜像,例如 nginx、mysql、redis 等等,用户可以根据自己的需求选择下载并在自己的容器中运行。 此外,docker 还衍生出了很多周边产品,例如 docker swarm、docker compose 等等。docker swarm 是一个容器集群管理工具,可以帮助用户管理多个 docker 容器并高效地进行负载均衡和容错处理。docker compose 则是一个多容器协作工具,可以帮助用户管理多个 docker 容器之间的依赖关系,迅速构建出一个复杂的、多容器的应用程序。 总之,docker 技术的出现在很大程度上解决了现代应用程序开发和安装中的痛点,使得应用程序能够更加高效、灵活和可信地运行。随着 docker 技术的不断发展和完善,相信未来它将会在云计算、数据中心、物联网等领域发挥更加重要的作用。
2023-01-02 19:11:15
391
电脑达人
Tesseract
...onica),查看并下载最新稳定版源码包。 b. 解压并进入源码目录,执行如下命令编译和安装: bash ./autobuild ./configure make sudo make install c. 安装完毕后,确认新版Leptonica是否已成功安装: bash leptinfo -v d. 最后,重新配置和编译Tesseract,指向新的Leptonica库路径,确保二者匹配: bash ./configure --prefix=/usr/local --with-extra-libraries=/usr/local/lib/liblept.so. make sudo make install 5. 结论与思考 通过以上操作,我们可以有效地解决“Outdated version of Leptonica library”带来的问题,让Tesseract得以在最新Leptonica的支持下更高效、准确地进行OCR识别。在这一整个过程中,我们完全可以亲身感受到,软件生态里的各个部分就像拼图一样密不可分,而且啊,及时给这些依赖库“打补丁”,那可是至关重要的。每一次我们更新版本,那不仅仅意味着咱们技术水平的升级、性能更上一层楼,更是实实在在地在为开发者们精心雕琢,让他们的使用体验越来越顺溜、越来越舒心,这是我们始终如一的追求。所以,兄弟们,咱们得养成一个好习惯,那就是定期检查并更新那些依赖库,这样才能够把像Tesseract这样的神器效能发挥到极致,让它们在咱们的项目开发和创新过程中大显身手,帮咱们更上一层楼。
2023-03-22 14:28:26
154
繁华落尽
Apache Lucene
...cene是一个开源的全文搜索引擎库,可以用于构建各种搜索引擎应用。它最擅长的就是快速存取和查找大量的文本信息,不过在对付那些超大的文本文件时,可能会有点力不从心,出现性能上的小状况。 三、Lucene处理大型文本文件的问题 那么,当我们在处理大型文本文件时,Apache Lucene为什么会遇到问题呢? 1. 存储效率低下 Lucene主要是通过索引来提高搜索效率,但是随着文本数据的增大,索引也会变得越来越大。这就意味着,为了存储这些索引,我们需要更多的内存空间,这样一来,不可避免地会对整个系统的运行速度和效率产生影响。说得通俗点,就像是你的书包,如果放的索引卡片越多,虽然找东西方便了,但书包本身会变得更重,背起来也就更费劲儿,系统也是一样的道理,索引多了,内存空间占用大了,自然就会影响到它整体的运行表现啦。 2. 分片限制 Lucene的内部设计是基于分片进行数据处理的,每一份分片都有自己的索引。不过呢,要是遇到那种超级大的文本文件,这些切分出来的片段也会跟着变得贼大,这样一来,查询速度可就慢得跟蜗牛赛跑似的了。 3. IO操作频繁 当处理大型文本文件时,Lucene需要频繁地进行IO操作(例如读取和写入磁盘),这会极大地降低系统性能。 四、解决办法 既然我们已经了解了Lucene处理大型文本文件的问题所在,那么有什么方法可以解决这些问题呢? 1. 使用分布式存储 如果文本文件非常大,我们可以考虑将其分割成多个部分,然后在不同的机器上分别存储和处理。这样不仅可以减少单台机器的压力,还可以提高整个系统的吞吐量。 2. 使用更高效的索引策略 我们可以尝试使用更高效的索引策略,例如倒排索引或者近似最近邻算法。这些策略可以在一定程度上提高索引的压缩率和查询速度。 3. 优化IO操作 为了减少IO操作的影响,我们可以考虑使用缓存技术,例如MapReduce。这种技术有个绝活,能把部分计算结果暂时存放在内存里头,这样一来就不用老是翻来覆去地读取和写入磁盘了,省了不少功夫。 五、总结 虽然Apache Lucene在处理大量文本数据时可能存在一些问题,但只要我们合理利用现有的技术和工具,就可以有效地解决这些问题。在未来,我们盼着Lucene能够再接再厉,进一步把自己的性能和功能提升到新的高度,这样一来,就能轻轻松松应对更多的应用场景,满足大家的各种需求啦!
2023-01-19 10:46:46
509
清风徐来-t
Lua
...的模块依赖管理和自动下载功能,使得开发者能够更加便捷地安装和更新第三方模块,有效避免了手动设置package.path的繁琐过程。 此外,LuaJIT项目也在持续优化其模块加载性能,通过Fengari等开源项目,Lua模块加载机制得以在JavaScript环境中实现,为跨平台应用和游戏开发带来了新的可能。同时,结合LuaRPG、OpenResty等应用场景,我们可以看到Lua模块化设计在实际项目中如何影响程序结构和运行效率,这对于理解和实践Lua模块化编程具有很高的参考价值。 因此,建议读者在掌握基础模块加载原理后,关注Lua社区的最新动态和技术分享,深入了解LuaRocks、LuaJIT等相关工具及项目的最佳实践,以应对不断变化的实际开发需求,并提升自身对Lua模块化设计和管理的综合能力。同时,阅读Lua官方文档和相关开源项目的源码也是深入学习模块加载机制的重要途径。
2023-05-18 14:55:34
113
昨夜星辰昨夜风
Tesseract
...页PDF或图像文件的批量识别,它倾向于一次性处理一张图像上的所有文本。这意味着当面对一个多页文档时,如果只是简单地将其作为一个整体输入给Tesseract,可能会导致页面间的文本混淆、识别结果错乱的问题。这就好比一个人同时阅读几本书,难免会把内容搞混,让人头疼不已。 3. 代码实例 原始方法及问题揭示 首先,我们看看使用原始方式处理多页PDF时的代码示例: python import pytesseract from PIL import Image 打开一个多页PDF并转换为图像 images = convert_from_path('multipage.pdf') for i, image in enumerate(images): text = pytesseract.image_to_string(image) print(f"Page {i+1} Text: {text}") 运行上述代码,你会发现输出的结果是各个页面的文本混合在一起,而不是独立分页识别。这就是Tesseract在处理多页图像时的核心痛点。 4. 解决策略与改进方案 要解决这个问题,我们需要采取更精细的方法,即对每一页进行单独处理。以下是一个改进后的Python代码示例: python import pytesseract from pdf2image import convert_from_path from PIL import Image 将多页PDF转换为多个图像对象 images = convert_from_path('multipage.pdf') 对每个图像页面分别进行文本识别 for i, image in enumerate(images): 转换为灰度图以提高识别率(根据实际情况调整) gray_image = image.convert('L') 使用Tesseract对单个页面进行识别 text = pytesseract.image_to_string(gray_image) 输出或保存每一页的识别结果 print(f"Page {i+1} Text: {text}") with open(f"page_{i+1}.txt", "w") as f: f.write(text) 5. 深入思考与探讨 尽管上述改进方案可以有效解决多页图像的识别问题,但依然存在一些潜在挑战,例如识别精度受图像质量影响较大、特定复杂排版可能导致识别错误等。所以呢,在面对一些特殊场合和需求时,我们可能还需要把其他图像处理的小窍门(比如二值化、降噪这些招数)给用上,再搭配上版面分析的算法,甚至自定义训练Tesseract模型这些方法,才能让识别效果更上一层楼。 6. 结语 Tesseract在OCR领域的强大之处毋庸置疑,但在处理多页图像文本识别任务时,我们需要更加智慧地运用它,既要理解其局限性,又要充分利用其灵活性。每一个技术难题的背后,其实都蕴藏着人类无穷的创新能量。来吧,伙伴们,一起握紧手,踏上这场挖掘潜力的旅程,让机器更懂我们的世界,更会讲我们这个世界的故事。
2024-01-12 23:14:58
121
翡翠梦境
Gradle
...着开发者可以从该仓库下载和管理项目所需的第三方依赖包。MavenCentral拥有丰富的Java组件资源,遵循统一的坐标系统,使得项目的依赖管理变得便捷且规范。 依赖管理 , 在软件开发过程中,依赖管理是指对项目所依赖的外部库或组件进行有效识别、获取、更新与版本控制的过程。在Gradle中,依赖管理是一项核心功能,它能够自动解析并处理项目间的依赖关系,避免重复编译和部署,确保构建过程顺利进行。开发者只需在构建脚本中声明项目依赖,Gradle就能从指定的仓库中下载对应的依赖文件,并解决可能出现的版本冲突问题。
2024-01-13 12:54:38
481
梦幻星空_t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
sudo apt update && sudo apt upgrade (适用于基于Debian/Ubuntu)
- 更新软件包列表并升级所有已安装软件包。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"