前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[SQL预编译参数匹配错误]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...可,甚至并不需要重新编译。 1.1 ptmalloc2 malloc是一个C库中的函数,malloc向glibc请求内存空间。glibc初始分配或者通过brk和sbrk或者mmap向内核批发内存,然后“卖”给我们malloc使用。 既然brk、mmap提供了内存分配的功能,直接使用brk、mmap进行内存管理不是更简单吗,为什么需要glibc呢? 因为系统调用,导致程序从用户态陷入内核态,比较消耗资源。为了减少系统调用带来的性能损耗,glibc采用了内存池的设计,增加了一个代理层,每次内存分配,都优先从内存池中寻找,如果内存池中无法提供,再向操作系统申请。 1.2 tcmalloc tcmalloc 是google开发的内存分配算法库,用来替代传统的malloc内存分配函数,它有减少内存碎片,适用于多核,更好的并行性支持等特性。 要使用tcmalloc,只要将tcmalloc通过-ltcmalloc连接到应用程序即可。 也可以使用LD_PRELOAD在不是你自己编译的应用程序中使用:$ LD_PRELOAD="/usr/lib/libtcmalloc.so" 2. 内核空间内存管理 linux操作系统内核,将内存分为一个个页去管理。 2.1 页面管理算法–伙伴系统 在实际应用中,而频繁地申请和释放不同大小的连续页框,必然导致在已分配页框的内存块中分散了许多小块的空闲页框。这样,即使这些页框是空闲的,其他需要分配连续页框的应用也很难得到满足。 为了避免出现这种内存碎片,Linux内核中引入了伙伴系统算法(buddy system)。 2.1.1 Buddy(伙伴的定义) 满足以下三个条件的称为伙伴: 1)两个块大小相同; 2)两个块地址连续; 3)两个块必须是同一个大块中分离出来的; 2.1.2 Buddy算法的分配 假设要申请一个256个页框的块,先从256个页框的链表中查找空闲块,如果没有,就去512个页框的链表中找,找到了则将页框块分为2个256个页框的块,一个分配给应用,另外一个移到256个页框的链表中。如果512个页框的链表中仍没有空闲块,继续向1024个页框的链表查找,如果仍然没有,则返回错误。 2.1.3 Buddy算法的释放 内存的释放是分配的逆过程,也可以看作是伙伴的合并过程。页框块在释放时,会主动将两个连续的页框块合并为一个较大的页框块。 2.2 Slab机制 slab是Linux操作系统的一种内存分配机制。其工作是针对一些经常分配并释放的对象,如进程描述符等,这些对象的大小一般比较小,如果直接采用伙伴系统来进行分配和释放,不仅会造成大量的内碎片,而且处理速度也太慢。 而slab分配器是基于对象进行管理的,相同类型的对象归为一类(如进程描述符就是一类),每当要申请这样一个对象,slab分配器就从一个slab列表中分配一个这样大小的单元出去,而当要释放时,将其重新保存在该列表中,而不是直接返回给伙伴系统,从而避免这些内碎片。slab分配器并不丢弃已分配的对象,而是释放并把它们保存在内存中。当以后又要请求新的对象时,就可以从内存直接获取而不用重复初始化。 2.3 内核中申请内存的函数 2.3.1 __get_free_pages __get_free_pages函数是最原始的内存分配方式,直接从伙伴系统中获取原始页框,返回值为第一个页框的起始地址. 2.3.2 kmem_cache_alloc kmem_cache_create/ kmem_cache_alloc是基于slab分配器的一种内存分配方式,适用于反复分配释放同一大小内存块的场合。首先用kmem_cache_create创建一个高速缓存区域,然后用kmem_cache_alloc从 该高速缓存区域中获取新的内存块。 2.3.3 kmalloc kmalloc是内核中最常用的一种内存分配方式,它通过调用kmem_cache_alloc函数来实现。 kmalloc() 申请的内存位于物理内存映射区域,而且在物理上也是连续的,它们与真实的物理地址只有一个固定的偏移,因为存在较简单的转换关系,所以对申请的内存大小有限制,不能超过128KB。 较常用的flags()有: GFP_ATOMIC —— 不能睡眠; GFP_KERNEL —— 可以睡眠; GFP_DMA —— 给 DMA 控制器分配内存,需要使用该标志。 2.3.4 vmalloc vmalloc() 函数则会在虚拟内存空间给出一块连续的内存区,但这片连续的虚拟内存在物理内存中并不一定连续。由于 vmalloc() 没有保证申请到的是连续的物理内存,因此对申请的内存大小没有限制,如果需要申请较大的内存空间就需要用此函数了。 注意vmalloc和vfree时可以睡眠的,因此不能从中断上下问调用。 一般情况下,内存只有在要被 DMA 访问的时候才需要物理上连续,但为了性能上的考虑,内核中一般使用 kmalloc(),而只有在需要获得大块内存时才使用 vmalloc()。例如,当模块被动态加载到内核当中时,就把模块装载到由 vmalloc() 分配的内存上。 本篇文章为转载内容。原文链接:https://secdev.blog.csdn.net/article/details/109731954。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-26 20:46:17
231
转载
Apache Solr
...! 二、Solr配置错误分析及解决方法 1.1 全文索引导入失败 根据知识库中的资料,我们发现一位开发者在2021年5月28日遇到了“solr配置错误”的问题。具体表现为:Full Import failed:java.lang.RuntimeException:java.lang.RuntimeException:org.apache.solr.handler.dataimport.DataImportHandlerException:One of driver or jndiName must be specified。 对于这个问题,我们可以从以下几个方面进行排查: - 首先,检查solr的配置文件,确认数据源驱动类是否正确配置; - 其次,检查数据库连接参数是否正确设置; - 最后,查看日志文件,查看是否有其他异常信息。 在实践中,我们可以尝试如下代码实现: java // 创建DataImporter对象 DataImporter importer = new DataImporter(); // 设置数据库连接参数 importer.setDataSource(new JdbcDataSource()); importer.setSql("SELECT FROM table_name"); // 执行数据导入 importer.fullImport("/path/to/solr/home"); 如果以上步骤无法解决问题,建议查阅相关文档或寻求专业人士的帮助。 1.2 集群配置错误 另一位开发者在2020年7月25日反馈了一个关于Solr集群配置的错误问题。其问题描述为:“淘淘商城第60讲——搭建Solr集群时,报错:org.apache.solr.common.SolrException: Could not find collection : core1”。读了这位开发者的文章,我们发现他在搭建Solr集群的时候,实实在在地碰到了上面提到的那些问题。 对于这个问题,我们可以从以下几个方面进行排查: - 首先,检查solr的配置文件,确认核心集合是否正确配置; - 其次,检查集群状态,确认所有节点是否都已经正常启动; - 最后,查看日志文件,查看是否有其他异常信息。 在实践中,我们可以尝试如下代码实现: java // 启动集群 CoreContainer cc = CoreContainer.create(CoreContainer.DEFAULT_CONFIG); cc.load(new File("/path/to/solr/home/solr.xml")); cc.start(); // 查询集群状态 Collections cores = cc.getCores(); for (SolrCore core : cores) { System.out.println(core.getName() + " status : " + core.getStatus()); } 如果以上步骤无法解决问题,建议查阅相关文档或寻求专业人士的帮助。 三、Solr代码执行漏洞排查及解决方法 近年来,随着Apache Solr的广泛应用,安全问题日益突出。嘿,你知道吗?在2019年11月19日曝出的一条消息,Apache Solr这个家伙在默认设置下有个不小的安全隐患。如果它以cloud模式启动,并且对外开放的话,那么远程的黑客就有机会利用这个漏洞,在目标系统上随心所欲地执行任何代码呢!就像是拿到了系统的遥控器一样,想想都有点让人捏把汗呐! 对于这个问题,我们可以从以下几个方面进行排查: - 首先,检查solr的安全配置,确保只允许受信任的IP地址访问; - 其次,关闭不必要的服务端功能,如远程管理、JMX等; - 最后,定期更新solr到最新版本,以获取最新的安全补丁。 在实践中,我们可以尝试如下代码实现: java // 关闭JMX服务 String configPath = "/path/to/solr/home/solr.xml"; File configFile = new File(configPath); DocumentBuilder db = DocumentBuilderFactory.newInstance().newDocumentBuilder(); Document doc = db.parse(configFile); Element root = doc.getDocumentElement(); if (!root.getElementsByTagName("jmx").isEmpty()) { Node jmxNode = root.getElementsByTagName("jmx").item(0); jmxNode.getParentNode().removeChild(jmxNode); } TransformerFactory tf = TransformerFactory.newInstance(); Transformer transformer = tf.newTransformer(); transformer.setOutputProperty(OutputKeys.INDENT, "yes"); transformer.setOutputProperty("{http://xml.apache.org/xslt}indent-amount", "2"); DOMSource source = new DOMSource(doc); StreamResult result = new StreamResult(new File(configPath)); transformer.transform(source, result); 如果以上步骤无法解决问题,建议查阅相关文档或寻求专业人士的帮助。 四、总结 总的来说,Apache Solr虽然强大,但在使用过程中也会遇到各种各样的问题。了解并搞定这些常见问题后,咱们就能把Solr的潜能发挥得更淋漓尽致,这样一来,工作效率蹭蹭上涨,用户体验也噌噌提升,妥妥的双赢局面!希望本文能对你有所帮助!
2023-05-31 15:50:32
496
山涧溪流-t
HessianRPC
...输入验证:通过严格的参数验证机制,确保所有传入的数据符合预期格式和范围,防止恶意构造的数据导致系统异常或安全漏洞。 2. 异常处理:合理配置异常处理流程,避免敏感信息泄露,并提供详细的日志记录,以便于事后分析和审计。 3. 权限控制:实现细粒度的访问控制,确保只有授权的客户端能够调用特定的服务接口,防止未经授权的访问和操作。 4. 动态安全扫描:采用自动化工具定期对服务进行安全扫描,检测潜在的安全风险,如SQL注入、XSS攻击等,并及时更新防护策略。 5. 持续集成/持续部署(CI/CD):将安全测试集成到开发和部署流程中,确保每一版本的代码在上线前都经过严格的安全审查。 近年来,随着深度学习和人工智能技术的发展,自动化安全检测领域出现了许多创新。例如,使用机器学习算法自动识别异常行为模式,或者通过自然语言处理技术解析和理解安全日志,提高检测准确性和响应速度。这些新技术的应用为分布式系统的安全防护带来了新的机遇,使得自动化安全检测更加智能、高效。 总的来说,分布式系统的自动化安全检测是确保系统稳定运行、保护业务安全的重要环节。对于HessianRPC框架而言,通过整合最新的安全技术和最佳实践,不仅可以提升系统的安全性,还能增强企业的竞争力。随着技术的不断进步,我们有理由相信,未来自动化安全检测将在分布式系统中发挥更为关键的作用,为构建更加安全、可靠和高效的数字化环境提供强有力的支持。
2024-09-08 16:12:35
102
岁月静好
Java
....suffix这个参数却没见生效的情况,是不是挺让人头疼的?接下来,我们将深入剖析这个现象,并给出针对性的解决方案。 二、背景与问题描述 假设我们正在使用Spring Boot构建一个多模块的应用,其中一个模块专门负责Web服务提供,使用了Spring MVC作为控制器及其视图层的框架。为了让HTML模板与Java逻辑更加清晰地分隔,我们在项目的布局中采用了如下结构: 1. module-core: 应用的核心业务逻辑和服务模块 2. module-web: 启动项,主要包含Web相关的配置与控制层逻辑,依赖于module-core 3. module-views: 存放JSP视图文件,用于前端展示 在此场景下,为确保正确识别并加载JSP视图,我们需要在module-web的配置文件中指定JSP后缀名(spring.mvc.view.suffix),例如: properties spring: mvc: view: prefix: /WEB-INF/views/ suffix: .jsp 然而,当运行程序并尝试访问Controller中带有相关视图名称的方法(如@GetMapping("/home")映射到WEB-INF/views/homePage.jsp)时,浏览器却无法显示出预期的JSP页面内容,且并未抛出任何异常,而是默认返回了空响应或者错误状态码。 三、问题分析与排查 面对这一看似简单的配置失效问题,我们首先需要进行如下几个方面的排查: 1. 检查视图解析器配置 确保视图解析器org.springframework.web.servlet.view.InternalResourceViewResolver已被正确注册并设置了prefix与suffix属性。检查Spring Boot启动类(如WebMvcConfig.java或Application.java中的WebMvcConfigurer实现): java @Configuration public class WebMvcConfig implements WebMvcConfigurer { @Override public void configureViewResolvers(ViewResolverRegistry registry) { InternalResourceViewResolver resolver = new InternalResourceViewResolver(); resolver.setPrefix("/WEB-INF/views/"); resolver.setSuffix(".jsp"); registry.viewResolver(resolver); } } 2. 模块间依赖与资源路径映射 确认module-web是否正确引入了module-views的相关JSP文件,并指定了正确的资源路径。查看module-web的pom.xml或build.gradle文件中对视图资源模块的依赖路径: xml com.example module-views 1.0.0 war runtime classes // Gradle dependencies { runtimeOnly 'com.example:module-views:1.0.0' } 以及主启动类(如Application.java)中的静态资源映射配置: java @SpringBootApplication public class Application { @Bean TomcatServletWebServerFactory tomcat() { TomcatServletWebServerFactory factory = new TomcatServletWebServerFactory(); factory.addContextCustomizer((TomcatWebServerContext context) -> { // 将模块视图目录映射到根URL下 context.addWelcomeFile("index.jsp"); WebResourceRoot resourceRoot = new TomcatWebResourceRoot(context, "static", "/"); resourceRoot.addDirectory(new File("src/main/resources/static")); context.setResources(resourceRoot); }); return factory; } public static void main(String[] args) { SpringApplication.run(Application.class, args); } } 3. 检查JSP引擎配置 确保Tomcat服务器配置已启用JSP支持。在module-web对应的application.properties或application.yml文件中配置JSP引擎: properties server.tomcat.jsp-enabled=true server.tomcat.jsp.version=2.3 或者在module-web的pom.xml或build.gradle文件中为Tomcat添加Jasper依赖: xml org.apache.tomcat.embed tomcat-embed-jasper provided // Gradle dependencies { implementation 'org.apache.tomcat.embed:tomcat-embed-jasper:9.0.54' } 4. 控制器与视图名称匹配验证 在完成上述配置后,请务必核实Controller中返回的视图名称与其实际路径是否一致。如果存在命名冲突或者拼写错误,将会导致Spring MVC无法找到预期的JSP视图: java @GetMapping("/home") public String home(Model model) { return "homePage"; // 视图名称应更改为"WEB-INF/views/homePage.jsp" } 四、总结与解决办法 综上所述,Spring Boot返回JSP无效的问题可能源于多个因素的叠加效应,包括但不限于视图解析器配置不完整、模块间依赖关系未正确处理、JSP引擎支持未开启、或Controller与视图名称之间的不对应等。要解决这个问题,需从以上几个方面进行逐一排查和修正。 切记,在面对这类问题时,要保持冷静并耐心地定位问题所在,仔细分析配置文件、源代码和日志输出,才能准确找出症结所在,进而成功解决问题。这不仅让我们实实在在地磨炼了编程功夫,更是让咱们对Spring Boot这家伙的工作内幕有了更深的洞察。这样一来,我们在实际项目中遇到问题时,调试和应对的能力都像坐火箭一样嗖嗖提升啦!
2024-02-17 11:18:11
271
半夏微凉_t
Consul
...的脚本或者直接从源码编译安装Consul。接下来,配置Consul的基本参数,如监听端口、数据目录等。对于生产环境,建议使用持久化存储(如Etcd、KV Store)来存储状态信息。 bash 使用官方脚本安装 curl -s https://dl.bintray.com/hashicorp/channels | bash -s -- -b /usr/local/bin consul 启动Consul服务 consul server 4. 使用Consul进行服务注册与发现 服务注册是Consul中最基础的操作之一。通过简单的HTTP API,服务可以将自己的信息(如服务名、IP地址、端口)发送给Consul服务器,完成注册过程。 go package main import ( "fmt" "net/http" "os" "github.com/hashicorp/consul/api" ) func main() { c, err := api.NewClient(&api.Config{ Address: "localhost:8500", }) if err != nil { fmt.Println("Error creating Consul client:", err) os.Exit(1) } // 注册服务 svc := &api.AgentService{ ID: "example-service", Name: "Example Service", Tags: []string{"example", "service"}, Address: "127.0.0.1", Port: 8080, Weights: []float64{1.0}, Meta: map[string]string{"version": "v1"}, Check: &api.AgentServiceCheck{ HTTP: "/healthcheck", Interval: "10s", DeregisterCriticalServiceAfter: "5m", }, } // 发送注册请求 resp, err := c.Agent().ServiceRegister(svc) if err != nil { fmt.Println("Error registering service:", err) os.Exit(1) } fmt.Println("Service registered:", resp.Service.ID) } 服务发现则可以通过查询Consul的服务列表来完成。客户端可以通过Consul的API获取所有注册的服务信息,并根据服务的标签和健康状态来选择合适的服务进行调用。 go package main import ( "fmt" "time" "github.com/hashicorp/consul/api" ) func main() { c, err := api.NewClient(&api.Config{ Address: "localhost:8500", }) if err != nil { fmt.Println("Error creating Consul client:", err) os.Exit(1) } // 查询特定标签的服务 opts := &api.QueryOptions{ WaitIndex: 0, } // 通过服务名称和标签获取服务列表 services, _, err := c.Health().ServiceQuery("example-service", "example", opts) if err != nil { fmt.Println("Error querying services:", err) os.Exit(1) } for _, svc := range services { fmt.Printf("Found service: %s (ID: %s, Address: %s:%d)\n", svc.Service.Name, svc.Service.ID, svc.Service.Address, svc.Service.Port) } } 5. 性能与扩展性 Consul通过其设计和优化,能够处理大规模的服务注册和发现需求。通过集群部署,可以进一步提高系统的可用性和性能。同时,Consul支持多数据中心部署,满足了跨地域服务部署的需求。 6. 总结 Consul作为一个强大的服务发现工具,不仅提供了简单易用的API接口,还具备高度的可定制性和扩展性。哎呀,你知道吗?把Consul整合进服务网格里头,就像给你的交通系统装上了智能导航!这样一来,各个服务之间的信息交流不仅快得跟风一样,还超级稳,就像在高速公路上开车,既顺畅又安全。这可是大大提升了工作效率,让咱们的服务运行起来更高效、更可靠!随着微服务架构的普及,Consul成为了构建现代服务网格不可或缺的一部分。兄弟,尝试着运行这些示例代码,你会发现如何在真正的工程里用Consul搞服务发现其实挺好玩的。就像是给你的编程技能加了个新魔法,让你在项目中找服务就像玩游戏一样简单!这样一来,你不仅能把这玩意儿玩得溜,还能深刻体会到它的魅力和实用性。别担心,跟着我,咱们边做边学,保证让你在实际操作中收获满满!
2024-08-05 15:42:27
34
青春印记
Lua
... Lua脚本中的函数参数默认值:一个值得深入探讨的话题 一、引言 Lua与函数参数的甜蜜陷阱 Lua是一门轻量级、高效且功能强大的脚本语言,广泛应用于游戏开发、脚本编写以及各种系统自动化任务中。Lua的简洁语法和灵活特性使其成为许多开发者心中的宠儿。然而,在使用Lua时,对于初学者来说,错误地设置函数参数的默认值可能会导致意想不到的错误和混淆。今天,我们将一起探索这个主题,深入了解为什么正确使用默认值如此重要,以及如何避免常见的陷阱。 二、错误的默认值设置 一场无声的危机 在Lua中,函数可以定义默认参数值,这在一定程度上简化了函数调用,并提供了更友好的接口设计。哎呀,你瞧,有时候编程里头,咱们设定的默认值如果不太对劲,那可就容易出岔子了。尤其是那种函数啊,你用得多了,参数的顺序万一搞乱了,问题就来了。就像是你在厨房里炒菜,调料放错了顺序,味道肯定不对劲。程序也是一样,顺序不对,结果就大相径庭了。所以啊,咱们在设置默认值的时候,得仔细想想,别让小细节毁了大事。例如: lua function exampleFunction(x, y) if not x then x = 1 end if not y then y = 2 end print(x + y) end exampleFunction() -- 输出 3 exampleFunction(5) -- 输出 6 exampleFunction(y=3) -- 输出 4 在这个例子中,如果直接调用 exampleFunction(),它将使用默认值 x = 1 和 y = 2,输出结果为 3。而 exampleFunction(5) 则使用了第一个参数 5,并保留了默认值 y = 2,因此输出为 7。最后,exampleFunction(y=3) 使用了默认值 x = 1 并覆盖了 y 的默认值,输出为 4。哎呀,这个例子啊,简直就是参数默认值用得好不好,对程序逻辑影响的大实锤!你看,它既展示了一波顺滑操作的魅力,也顺便揭露了个小坑——那就是如果参数的排列顺序不对头,那程序里可就容易出乱子,逻辑混乱那是分分钟的事儿。就像是你去超市买东西,明明想买牛奶结果却拿了个面包,那感觉,是不是跟程序里的逻辑混乱有那么点像?所以啊,咱们在写代码的时候,得格外注意参数的顺序,别让程序在执行过程中迷路了。 三、深挖问题 参数顺序与默认值的交织 当函数参数数量较多时,错误的默认值设置可能导致难以追踪的错误。例如,考虑以下函数: lua function complexFunction(a, b, c, d, e) print(a + b + c + d + e) end complexFunction(1, 2, 3) -- 正确使用默认值 complexFunction(1, 2, e=5) -- 错误使用默认值 在这个例子中,如果我们尝试通过 complexFunction(1, 2, e=5) 调用函数,Lua会使用 e 的默认值(在这种情况下是 5),而不是期望的参数 d 的值。这会导致输出结果不符合预期,因为实际调用的函数行为与意图不符。 四、解决方案 精心规划与测试 为了避免上述问题,开发者应该遵循一些最佳实践: 1. 明确参数顺序 在函数定义时,明确所有参数的顺序。这有助于减少因参数顺序误解而导致的错误。 2. 详细注释 为每个函数提供详细的文档,包括参数的用途、默认值的含义以及它们之间的关系。这有助于其他开发者理解和使用函数时避免意外。 3. 单元测试 编写针对函数的单元测试,特别关注默认参数的使用情况。这可以帮助及早发现潜在的逻辑错误,并确保函数行为符合预期。 4. 代码审查 定期进行代码审查,特别是在团队协作环境中。兄弟们,咱们互相提点提点,能找出不少平时自己都忽视的坑儿。比如那个默认值啊,有时候用得不恰当,就容易出问题。咱们得留心着点儿,别让这些小细节绊了脚。 五、结语 拥抱Lua的强大,同时警惕其陷阱 Lua作为一门强大的脚本语言,提供了丰富的功能和简洁的语法,使得快速开发和原型设计成为可能。然而,正如任何工具一样,正确使用Lua需要细心和谨慎。哎呀,兄弟!掌握函数参数默认值的那些事儿,这可是让你的代码变得既好懂又耐玩的魔法!想象一下,你写了一段代码,别人一看就明白你的意思,还能轻松修改和维护,多爽啊!而且,避免了因为配置不当出错,那简直就是程序员们的救星嘛!所以啊,咱们得好好学学这个技巧,让代码不仅高效,还充满人情味儿!嘿!兄弟,你听过Lua这玩意儿没?这可是个超级棒的脚本语言,用起来既灵活又高效。就像个魔法师,能让你的代码玩出花来。要是你勤学苦练,多动手实践,那简直就是如虎添翼啊!Lua能帮咱们构建出既靠谱又高效的软件系统,简直不要太爽!不信你试试,保证让你爱不释手! --- 本文旨在探讨Lua脚本中函数参数默认值的使用误区,通过具体的代码示例和分析,深入浅出地阐述了错误设置可能带来的问题及其解决方案。嘿,各位小伙伴们!在你们未来的Lua编程之旅中,我真心希望你们能对设置默认值这事儿多留点心眼。咱们可不想因为这个小细节搞出什么逻辑上的大乱子,对吧?毕竟,咱的目标可是要写出既漂亮又没bug的代码啊!所以,动起手来时,记得仔细琢磨一下每个默认值的选择,确保它们不会偷偷影响到你的程序逻辑,让代码质量蹭蹭往上涨!加油,编程达人们!
2024-09-19 16:01:49
91
秋水共长天一色
Gradle
...任务执行失败,这包括编译错误、打包失败或是测试未通过等。嘿,兄弟!这篇好东西是为你准备的,咱们要一起深度探索这个话题,从发现问题开始,一路找寻解决之道,让你在Gradle构建的路上畅通无阻,轻松解开那些可能让你头疼的谜题。跟上我,咱们一起玩转代码世界! 问题识别:理解构建失败的信号 在 Gradle 中,构建失败通常伴随着具体的错误信息,这些信息是解决问题的关键线索。例如: groovy FAILURE: Build failed with an exception. What went wrong: Could not resolve all files for configuration ':app:releaseClasspath'. 这段错误信息告诉我们,Gradle 在尝试构建应用时遇到了无法解析所有指定的类路径文件的问题。这种失败可能是由于依赖冲突、版本不兼容或是网络问题导致的。 分析原因:深入问题的核心 构建失败的原因多种多样,以下是一些常见的原因及其分析: - 依赖冲突:项目中多个模块或外部库之间存在版本冲突。 - 版本不兼容:依赖的某个库的版本与项目本身或其他依赖的版本不匹配。 - 网络问题:Gradle 无法从远程仓库下载所需的依赖,可能是由于网络连接问题或远程服务器访问受限。 - 配置错误:Gradle 的构建脚本中可能存在语法错误或逻辑错误,导致构建过程无法正常进行。 解决策略:逐步排查与修复 面对构建失败的情况,我们可以采取以下步骤进行排查与修复: 1. 检查错误日志 仔细阅读错误信息,了解构建失败的具体原因。 2. 清理缓存 使用 gradlew clean 命令清除构建缓存,有时候缓存中的旧数据可能导致构建失败。 3. 更新依赖 检查并更新所有依赖的版本,确保它们之间不存在冲突或兼容性问题。 4. 调整网络设置 如果错误信息指向网络问题,尝试更换网络环境或调整代理设置。 5. 验证构建脚本 审查 .gradle 文件夹下的 build.gradle 或 build.gradle.kts 文件,确保没有语法错误或逻辑上的疏漏。 6. 使用调试工具 利用 Gradle 提供的诊断工具或第三方工具(如 IntelliJ IDEA 的 Gradle 插件)来辅助定位问题。 示例代码:实践中的应用 下面是一个简单的示例,展示了如何在 Gradle 中配置依赖管理,并处理可能的构建失败情况: groovy plugins { id 'com.android.application' version '7.2.2' apply false } android { compileSdkVersion 31 buildToolsVersion "32.0.0" defaultConfig { applicationId "com.example.myapp" minSdkVersion 21 targetSdkVersion 31 versionCode 1 versionName "1.0" } buildTypes { release { minifyEnabled false proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro' } } } dependencies { implementation 'androidx.appcompat:appcompat:1.4.2' implementation 'com.google.android.material:material:1.4.0' } // 简单的构建任务配置,用于演示 task checkDependencies(type: Check) { description = 'Checks dependencies for any issues.' classpath = configurations.compile.get() } 在这个示例中,我们定义了一个简单的 Android 应用项目,并添加了对 AndroidX 库的基本依赖。哎呀,你这项目里的小伙伴们都还好吗?对了,咱们有个小任务叫做checkDependencies,就是专门用来查一查这些小伙伴之间是不是有啥不和谐的地方。这事儿挺重要的,就像咱们定期体检一样,能早点发现问题,比如某个小伙伴突然闹脾气不干活了,或者新来的小伙伴和老伙计们不太合拍,咱都能提前知道,然后赶紧处理,不让事情闹得更大。所以,这个checkDependencies啊,其实就是咱们的一个小预防针,帮咱们防患于未然,确保项目运行得顺溜溜的! 结语 构建过程中的挑战是编程旅程的一部分,它们不仅考验着我们的技术能力,也是提升解决问题技巧的机会。通过细致地分析错误信息、逐步排查问题,以及灵活运用 Gradle 提供的工具和资源,我们可以有效地应对构建失败的挑战。嘿!兄弟,听好了,每次你栽跟头,那都不是白来的。那是你学习、进步的机会,让咱对这个叫 Gradle 的厉害构建神器用得更溜,做出超级棒的软件产品。别怕犯错,那可是通往成功的必经之路!
2024-07-29 16:10:49
497
冬日暖阳
Kafka
...ka的日志中看到这个错误信息时,通常意味着生产者组的日志分区或日志段的状态不正常。这可能是由于多种原因导致的,包括但不限于: - 日志段损坏:Kafka在存储消息时,会将其分割成多个日志段(log segments)。哎呀,你猜怎么着?如果某个日志段因为存储的时候出了点小差错,或者是硬件哪里有点小故障,那可就有可能导致一些问题冒出来!就像是你家电脑里的文件不小心被删了,或者硬盘突然罢工了,结果你得花时间去找回丢失的信息,这事儿在日志里也可能会发生。所以,咱们得好好照顾这些数据,别让它们乱跑乱跳,对吧? - 日志清理策略冲突:Kafka的默认配置可能与特定场景下的需求不匹配,例如日志清理策略设置为保留时间过短或日志备份数量过多等,都可能导致日志段状态异常。 - 生产者组管理问题:生产者组内部的成员管理不当,或者组内成员的增加或减少频繁,也可能引发这种状态的错误。 三、代码示例 如何检测和修复问题 为了更直观地理解这个问题及其解决方法,下面我们将通过一些简单的代码示例来演示如何在Kafka环境中检测并修复这类问题。 示例代码1:检查和修复日志段状态 首先,我们需要使用Kafka提供的命令行工具kafka-log-consumer来检查日志段的状态。以下是一个基本的命令示例: bash 连接到Kafka集群 bin/kafka-log-consumer.sh --zookeeper localhost:2181 --topic your-topic-name --group your-group-name 检查特定日志段的状态 bin/kafka-log-consumer.sh --zookeeper localhost:2181 --topic your-topic-name --group your-group-name --log-segment-state INVALID 如果发现特定日志段的状态为“INVALID”,可以尝试使用kafka-log-cleaner工具来修复问题: bash 启动日志清理器,修复日志段 bin/kafka-log-cleaner.sh --zookeeper localhost:2181 --topic your-topic-name --group your-group-name --repair 示例代码2:调整日志清理策略 对于日志清理策略的调整,可以通过修改Kafka配置文件server.properties来实现。以下是一个示例配置,用于延长日志段的保留时间: properties 延长日志段保留时间 log.retention.hours=24 确保在进行任何配置更改后,重启Kafka服务器以使更改生效: bash 重启Kafka服务器 service kafka-server-start.sh config/server.properties 四、最佳实践与预防措施 为了预防“InvalidProducerGroupLogPartitionLogSegmentState”错误的发生,建议采取以下最佳实践: - 定期监控:使用Kafka监控工具(如Kafka Manager)定期检查集群状态,特别是日志清理和存储情况。 - 合理配置:根据实际业务需求合理配置Kafka的参数,如日志清理策略、备份策略等,避免过度清理导致数据丢失。 - 容错机制:设计具有高容错性的生产者和消费者逻辑,能够处理临时网络中断或其他不可预测的错误。 - 定期维护:执行定期的集群健康检查和日志清理任务,及时发现并解决问题。 五、结语 从失败到成长 面对“InvalidProducerGroupLogPartitionLogSegmentState”这样的问题,虽然它可能会带来暂时的困扰,但正是这些挑战促使我们深入理解Kafka的工作机制和最佳实践。哎呀,学着怎么识别问题,然后把它们解决掉,这事儿可真挺有意思的!不仅能让你的电脑或者啥设备运行得更稳当,还不停地长本事,就像个技术侦探一样,对各种情况都能看得透透的。这不是简单地提升技能,简直是开挂啊!记住,每一次挑战都是成长的机会,让我们在技术的道路上不断前行。
2024-08-28 16:00:42
107
春暖花开
SpringBoot
...求体中正确添加了文件参数,如: json { "file": "path/to/your/file" } 4. 处理异常与错误 在实际应用中,文件上传可能会遇到各种异常情况,如文件过大、文件类型不匹配、服务器存储空间不足等。在这次的案例里,我们已经用了一段 try-catch 的代码来应对一些常见的错误情况了。就像你在日常生活中遇到小问题时,会先尝试解决,如果解决不了,就会求助于他人或寻找其他方法一样。我们也是这样,先尝试执行一段代码,如果出现预料之外的问题,我们就用 catch 部分来处理这些意外状况,确保程序能继续运行下去,而不是直接崩溃。对于更复杂的场景,例如检查文件类型或大小限制,可以引入更精细的逻辑: java @PostMapping("/upload") public ResponseEntity uploadFile(@RequestParam("file") MultipartFile file) { if (!isValidFileType(file)) { return ResponseEntity.badRequest().body("Invalid file type."); } if (!isValidFileSize(file)) { return ResponseEntity.badRequest().body("File size exceeds limit."); } // ... } private boolean isValidFileType(MultipartFile file) { // Check file type logic here } private boolean isValidFileSize(MultipartFile file) { // Check file size logic here } 结语 通过以上步骤,你不仅能够实现在Spring Boot应用中进行文件上传的基本功能,还能根据具体需求进行扩展和优化。记住,良好的错误处理和用户反馈是提高用户体验的关键。希望这篇文章能帮助你更好地理解和运用Spring Boot进行文件上传操作。嘿,兄弟!你听过这样一句话吗?“实践出真知”,尤其是在咱们做项目的时候,更是得这么干!别管你是编程高手还是设计大师,多试错,多调整,才能找到最适合那个场景的那套方案。就像是做菜一样,不试试加点这个,少放点那个,怎么知道哪个味道最对路呢?所以啊,提升技能,咱们就得在实际操作中摸爬滚打,这样才能把技术玩儿到炉火纯青的地步!
2024-09-12 16:01:18
85
寂静森林
Spark
...持多种编程模型,包括SQL查询、机器学习算法、图计算和流处理等。Spark以其低延迟、高性能和易用性著称,在大数据分析、实时数据处理和机器学习应用中具有广泛的应用。 名词 , 日志记录。 解释 , 日志记录是指系统或应用程序在运行过程中生成并记录事件、操作或状态变化的记录行为。在大数据处理和分布式计算环境下,日志记录尤为重要,因为它能帮助开发者追踪程序的运行状态,诊断错误,优化性能,以及在故障发生时进行快速定位和修复。日志通常包含时间戳、事件描述、相关变量值等信息,以便于事后分析和调试。 名词 , 性能调优。 解释 , 性能调优是指通过修改系统或应用的配置、优化代码结构、调整资源分配等方式,以提高系统运行效率、响应速度和资源利用率的过程。在大数据处理领域,性能调优尤其重要,因为它直接影响到数据处理的速度、成本和可扩展性。通过性能调优,可以降低延迟、减少资源消耗,同时确保系统的稳定性和可靠性。
2024-09-07 16:03:18
141
秋水共长天一色
Groovy
...vy脚本里。结果呢,编译器它不讲武德啊,直接给我甩了个“语法错误”,啪一下,很快啊!搞得我当时一脸懵,心想:“诶?这不都差不多嘛,怎么就不行了呢?”我当时就懵圈了:“这不就是一回事儿嘛,咋就不成呢?”后来才搞明白,Groovy 根本不用特意写类名,直接写函数就行啦! 所以啊,想要玩转Groovy,首先得搞清楚它的“脾气”。好嘞,接下来咱们就举几个例子,看看这个Groovy到底有啥不一样的地方! --- 二、语法差异 为什么我的代码突然不工作了? 示例1:没有public修饰符 先来说个最基础的吧——Groovy对访问修饰符的态度真的很随意。在Java里,你要是定义了一个方法,不加public的话,默认是包级私有的(package-private)。但在Groovy里,你完全可以省略掉这些修饰符。比如: groovy // Java风格的写法 public void sayHello() { println "Hello, World!" } // Groovy风格的写法 void sayHello() { println "Hello, World!" } 看到没?Groovy直接去掉了public,而且连分号都不要了!刚开始我还觉得这太随便了吧,但后来发现,这样反而让代码更简洁明了。不过嘛,这也引出了一个小麻烦:有时候我们一忙乎起来,就把那些多余的装饰符啥的忘得一干二净,结果一运行脚本,就蹦出个提示说“你这语法我不认啊”! 比如下面这段代码: groovy public int addNumbers(int a, int b) { return a + b; } 如果你就这么直接跑起来,Groovy会很严肃地告诉你:“兄弟,这里不需要public。”所以,以后写Groovy的时候,记得把Java的习惯改掉哦! --- 示例2:闭包与匿名函数的区别 再来说说闭包和匿名函数的事儿。Groovy的闭包功能非常强大,但它和Java的匿名函数还是有区别的。比如,Groovy允许你在闭包中省略参数类型,甚至完全不写参数。这听起来是不是很酷?但实际操作起来,可能会让你一头雾水。 比如,以下这段Java风格的代码: java Runnable task = new Runnable() { @Override public void run() { System.out.println("Running..."); } }; 换成Groovy后,你可以这样写: groovy def task = { println "Running..." } 是不是简单多了?但问题是,有些人可能会觉得既然这么方便,那就啥都省略掉吧。于是就有了这样的代码: groovy def task = { -> println "Running..." } 乍一看好像没问题,但实际上Groovy会提醒你:“兄弟,这里的箭头可以省略。所以说啊,在用闭包的时候可得留点心,别小看那些语法小细节,不然就可能出现“你这代码写的啥玩意儿,语法不支持!”的情况,那多尴尬啊! --- 三、进阶问题 动态类型与静态类型之争 Groovy的一大特点是支持动态类型,这意味着你可以在运行时改变变量的类型。这一点确实很灵活,但也容易让人误以为所有类型都可以自由转换。实际上,Groovy在某些情况下还是会严格检查类型的。 比如,下面这段代码: groovy int number = 10 number = "twenty" 在Java里,这种类型转换是绝对不允许的,但在Groovy里,你可能会天真地认为它会自动帮你搞定。不过呢,现实情况是,Groovy直接炸了,还特么甩出个异常,说:“喂喂喂,你是不是有病啊?这类型根本不搭吧!”所以啊,哪怕Groovy自称是动态类型的“自由之翼”,该注意的类型转换规矩还是得守着,别不当回事儿。 --- 四、总结 拥抱变化,享受编程的乐趣 写到这里,我想跟大家聊聊我的感受。Groovy虽然看似简单,但它的每一个设计都有其背后的逻辑。一开始上手的时候,肯定会被各种“不支持的语法”绊住脚,别担心,这其实就是我们学习的必经之路啊!每一次踩坑,都是一次成长的机会。 最后,送给大家一句话:编程不是为了追求完美,而是为了找到最适合自己的方式。如果你愿意花点时间去了解Groovy的独特之处,你会发现它不仅是一个工具,更是一种思维方式。所以,别怕犯错,勇敢地去尝试吧!
2025-03-13 16:20:58
61
笑傲江湖
MySQL
MySQL日志中有大量的这个错误该怎么办? 1. 看到错误日志时的慌乱与冷静 作为一个数据库运维人员,每天面对着各种各样的问题,而当看到MySQL的日志文件里充满了大量的错误信息时,我的第一反应通常是——“天啊!这是什么情况?”尤其是在半夜加班的时候,这种感觉尤其强烈。 不过,作为一名资深的技术人,我很快意识到,慌张解决不了任何问题。咱们先别急着慌,坐下来好好琢磨琢磨这些错误到底是啥意思,到底是咋冒出来的,然后想想接下来该怎么处理才好。于是,我开始仔细阅读日志内容,并尝试重现这些错误。 比如,最近我在维护的一个生产环境下的MySQL服务器上,突然发现日志里出现了大量这样的错误信息: [ERROR] InnoDB: Operating system error number 24 in a file operation. 这让我有点懵,因为我之前从未遇到过类似的错误。所以,我决定深入研究一下这个问题,看看能不能找到解决方案。 --- 2. 错误日志解读 从表面现象到本质原因 首先,我需要弄清楚这个错误到底意味着什么。我翻了翻官方文档,又逛了逛一些社区论坛,感觉这错误八成跟操作系统里的文件操作有关系。具体来说,错误号24在Linux系统中表示“Too many open files”(打开的文件太多)。 这让我立刻联想到,可能是因为MySQL的某些进程打开了过多的文件句柄,导致操作系统限制了它进一步的操作。为了验证这一点,我执行了一个简单的命令来检查当前系统的文件描述符限制: bash ulimit -n 结果显示默认值为1024。这意味着每个进程最多只能同时打开1024个文件。说实话,咱们的MySQL实例现在正忙着应付一大堆同时连进来的需求,还得折腾临时表呢。这么一看,那个限制就跟挠痒痒似的——太不够用了! 接下来,我查看了MySQL的配置文件my.cnf,发现确实没有显式设置文件描述符的上限。于是,我修改了配置文件,将open_files_limit参数调整为更大的值: ini [mysqld] open_files_limit=65535 然后重启了MySQL服务,再次检查日志,果然,错误消失了! --- 3. 实践中的代码调试与优化 当然,仅仅解决问题还不够,我还想进一步优化整个系统的性能。于是,我编写了一些脚本来监控MySQL的运行状态,特别是文件描述符的使用情况。 以下是一个简单的Python脚本,用于统计MySQL当前使用的文件描述符数量: python import psutil import subprocess def get_mysql_open_files(): 获取所有MySQL进程ID mysql_pids = [] result = subprocess.run(['pgrep', 'mysqld'], capture_output=True, text=True) for line in result.stdout.splitlines(): mysql_pids.append(int(line)) total_open_files = 0 for pid in mysql_pids: try: proc = psutil.Process(pid) open_files = len(proc.open_files()) print(f"Process {pid} has opened {open_files} files.") total_open_files += open_files except Exception as e: print(f"Error checking process {pid}: {e}") print(f"Total open files by MySQL processes: {total_open_files}") if __name__ == "__main__": get_mysql_open_files() 运行这个脚本后,我发现某些特定的查询会导致文件描述符迅速增加。经过分析,这些问题主要出现在涉及大文件读写的场景中。所以呢,我觉得咱们开发的小伙伴们得好好捯饬捯饬这些查询语句啦!比如说,能不能少建那些没用的临时表啊?再比如,能不能换个更快的存储引擎啥的?反正就是得让这个程序跑得更顺畅些,别老是卡在那里干瞪眼不是? --- 4. 总结与反思 从问题中学到的东西 回顾这次经历,我深刻体会到,处理数据库问题时,不能仅凭直觉行事,而是要结合实际数据和技术手段,逐步排查问题的根本原因。同时,我也认识到,预防胜于治疗。如果能在日常运维中提前做好监控和预警,就可以避免很多突发状况。 最后,我想分享一点个人感悟:技术之路永无止境,每一次遇到难题都是一次成长的机会。说实话,有时候真的会觉得头大,甚至怀疑自己是不是走错了路。但我觉得啊,这就好比在黑暗里找钥匙,你得不停地摸索、试错才行。只要别轻易放弃,一直在学、一直在练,总有一天你会发现,“!原来它在这儿呢!”就跟我在处理这个MySQL报错的时候似的,最后不光把问题搞定了,还顺带学了不少实用的招儿呢! 如果你也遇到了类似的情况,不妨试试上面提到的方法,也许能帮到你!
2025-04-17 16:17:44
109
山涧溪流_
RabbitMQ
...版本,导致功能缺失或错误——RabbitMQ实战中的那些坑 1. 初识RabbitMQ 从“消息队列小白”到“菜鸟程序员” 作为一个刚接触分布式系统的菜鸟程序员,我第一次听说RabbitMQ的时候,内心是充满期待的。它可是鼎鼎大名的“全球最受欢迎的开源消息中介”,不仅稳得一批,还能用各种编程语言来玩转它。当时我觉得:“哇,这不就是传说中的‘消息传递神器’吗?” 于是,我开始着手研究如何搭建一个简单的RabbitMQ服务,并尝试用Python写了一个发送和接收消息的小程序。一切看起来都挺顺的,结果有一天,我突然发现代码竟然挂了!更气人的是,问题出在用的API版本太老旧,导致一些功能直接歇菜了。 我当时就懵了:“啥?API版本还能影响功能?这玩意儿不是应该兼容所有旧版本的嘛?”但事实告诉我,这个世界没有免费的午餐,尤其是涉及到软件开发的时候。 --- 2. 问题重现 为什么我的代码突然崩溃了? 事情要从几个月前说起。那时候,我刚刚完成了一个基于RabbitMQ的消息推送系统。为了赶紧把东西推出去,我就没太细看依赖库的版本,直接装了最新的 pika(就是 RabbitMQ 官方推荐的那个 Python 客户端库)。一切都很完美,测试通过后,我兴高采烈地部署到了生产环境。 然而好景不长,几天后同事反馈说,有些消息无法正常到达消费者端。我赶紧登录服务器检查日志,发现报错信息指向了channel.basic_publish()方法。具体错误是: AttributeError: 'Channel' object has no attribute 'basic_publish' 我当时的第一反应是:“卧槽,这是什么鬼?basic_publish明明在文档里写了啊!”于是我翻阅了官方文档,发现确实存在一个叫做basic_publish的方法,但它属于早期版本的API。 经过一番痛苦的排查,我才意识到问题出在了版本差异上。原来,在较新的pika版本中,basic_publish已经被替换成了basic_publish_exchange,并且参数顺序也发生了变化。而我的代码依然按照旧版本的写法来调用,自然就挂掉了。 --- 3. 深度剖析 过时API的危害与应对之道 这件事让我深刻认识到,RabbitMQ虽然强大,但也需要开发者时刻保持警惕。特别是当你依赖第三方库时,稍不留神就可能踩进“版本陷阱”。以下几点是我总结出来的教训: (1)永远不要忽视版本更新带来的变化 很多开发者习惯于直接复制粘贴网上的代码示例,却很少去验证这些代码是否适用于当前版本。你可能不知道,有时候就算方法名一样,背后的逻辑变了,结果可能会差很多。比如说啊,在RabbitMQ的3.x版本里,你用channel.queue_declare()这个方法的时候,它返回的东西就像是个装满数据的盒子,但这个盒子是那种普通的字典格式的。可到了4.x版本呢,这玩意儿就有点变了味儿,返回的不再是那个简单的字典盒子了,而是一个“高级定制版”的对象实例,感觉像是升级成了一个有专属身份的小家伙。 因此,每次引入新工具之前,一定要先查阅官方文档,确认其最新的API规范。要是不太确定,不妨试试跑一下官方给的例程代码,看看有没有啥奇怪的表现。 (2)版本锁定的重要性 为了避免类似的问题再次发生,我在后续项目中采取了严格的版本管理策略。例如,在requirements.txt文件中明确指定依赖库的具体版本号,而不是使用通配符(如>=)。这样做的好处是,即使未来出现了更高级别的版本,也不会意外破坏现有功能。 下面是一段示例代码,展示了如何在pip中固定pika的版本为1.2.0: python requirements.txt pika==1.2.0 当然,这种方法也有缺点,那就是升级依赖时可能会比较麻烦。不过嘛,要是咱们团队人不多,但手头的项目特别讲究稳当性,那这个方法绝对值得一试! --- 4. 实战演练 修复旧代码,拥抱新世界 既然明白了问题所在,接下来就是动手解决问题了。嘿,为了让大家更清楚地知道怎么把旧版的API换成新版的,我打算用一段代码来给大家做个示范,保证一看就懂! 假设我们有一个简单的RabbitMQ生产者程序,如下所示: python import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='hello') channel.basic_publish(exchange='', routing_key='hello', body='Hello World!') print(" [x] Sent 'Hello World!'") connection.close() 如果你直接运行这段代码,很可能会遇到如下警告: DeprecationWarning: This method will be removed in future releases. Please use the equivalent method on the Channel class. 这是因为queue_declare方法现在已经被重新设计为返回一个包含元数据的对象,而不是单纯的字典。我们需要将其修改为如下形式: python import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() result = channel.queue_declare(queue='', exclusive=True) queue_name = result.method.queue channel.basic_publish(exchange='', routing_key=queue_name, body='Hello World!') print(" [x] Sent 'Hello World!'") connection.close() 可以看到,这里新增了一行代码来获取队列名称,同时调整了routing_key参数的赋值方式。这种改动虽然简单,但却能显著提升程序的健壮性和可读性。 --- 5. 总结与展望 从失败中学习,向成功迈进 回想起这次经历,我既感到懊恼又觉得幸运。真后悔啊,当时要是多花点时间去了解API的新变化,就不会在这上面浪费那么多精力了。不过话说回来,这次小挫折也让我学到了教训,以后会更注意避免类似的错误,而且也会更加重视代码的质量。 最后想对大家说一句:技术的世界瞬息万变,没有人能够永远站在最前沿。但只要保持好奇心和学习热情,我们就一定能找到通往成功的道路。毕竟,正如那句经典的话所说:“失败乃成功之母。”只要勇敢面对挑战,总有一天你会发现,那些曾经让你头疼不已的问题,其实都是成长路上不可或缺的一部分。 希望这篇文章对你有所帮助!如果你也有类似的经历或者见解,欢迎随时交流哦~
2025-03-12 16:12:28
105
岁月如歌
ElasticSearch
...你的底层数据库用的是sql数据库(比如mysql):你可能会想到在对应字段上使用field1 like '%?%',?即用户输出的关键词 比如你的底层数据库用的是mongo:你可能会想到在对应字段上使用db.collection.find({ "field1": { $regex: /aaa/ } })做查询,aaa即用户输入的关键词 比如你的底层数据库用的是elasticsearch:那厉害了,专业全文搜索神奇,全文搜索或搜索相关的需求使用elasticsearch绝对是最合适的选择 比如你的底层数据库用的是hive、impala、clickhouse等大数据计算引擎:鸟枪换炮,其实用作全文索引和搜索的场景并不合适,你可能依旧会使用sql数据库那样用like做交互 2. 方案选择 调研之后,可能会发现对于数据量相对大一点的搜索场景,在当下流行的数据库或计算引擎中,elasticsearch是其中最合适的解决方案。 无论是sql的like、还是mongo的regex,在线上环境下,数据量较多的情况下,都不是很高效的查询,甚至有的公司的dba会禁止在线上使用类似的查询语法。 与elasticsearch是“亲戚”的,大家还常提到lucene、solr,但是无论从现在的发展趋势还是公司运维人才的储备(不得不说当下的运维人才中,对es熟悉的人才会更多一些),elasticsearch是相对较合适的选择。 一些大数据计算引擎,其实更多的适合OLAP场景。当然也完全可以使用,因为比如clickhouse、starrocks等的查询速度已经发展的非常快。但你会发现在中文分词搜索上,实现起来有一定困扰。 所以,如果你不差机器,首选方案还是elasticsearch。 3. elasticsearch的适用场景 3.1 经典的日志搜索场景 提到elasticsearch不得不提到它的几个好朋友: 一些公司里经常用elasticsearch来收集日志,然后用kibana来展示和分析。 展开来说,举个例子,你的app打印日志打印到了线上日志文件,当app出现故障你需要做定位筛查的时候,可能需要登录线上机器用grep命令各种查看。 但如果你不差机器资源,可以搭建上述架构,app的日志会被收集到elasticsearch中,最终你可以在kibana中查看日志,kibana里面可以很方面的做各种筛查操作。 这个流畅大概是这样的: 3.2 通用搜索场景 但是没有上图的beats、logstash、kibana,elasticsearch可以自己工作吗?完全可以的! elasticsearch也支持单机部署,数据规模不是很大的情况下,表现也是不错的。所以,你也不用担心因为自己机器资源不够而对elasticsearch望而却步。当然,单机部署的情况下,更多的适合自己玩,对于可靠性的要求就不能太苛刻了。 如果你在用宝塔,那你可以在宝塔面板,左侧“软件商店”中直接找到elasticsearch,并“没有痛苦”的安装。 本篇文章主要讨论选型,所以不涉及安装细节。 3.2.1 性能顾虑 上面提到了“表现”,其实性能只是elasticsearch的一个方面,主要你的机器资源足够(机器资源?对,包括你的机器个数,elasticsearch可以非常方便的横向扩展,以及单机的配置,cpu+内存,内存越高越好,elasticsearch比较吃内存!),它一定会给你很好的性能反应。试想,公司里的app打印线上日志的行数其实可比一般业务系统产生的订单数量要大很多很多,elasticsearch都可以常在日志的实时分析,所以如果你要做通用场景,而且机器资源不是问题,这是完全行得通的。 3.2.2 易用性和可玩性 此外,在使用elasticsearch的时候,会有很多的可玩性。这里不引经据典,呈现很多elasticsearch官方文章的列举优秀特性(当然,确实很优秀!)。 这里举几个例子: (1)中文分词:第一章提到的其它引擎几乎很难实现,elasticsearch对分词器的支持是原生的,因为elasticsearch天生就为全文索引而生,elasticsearch的汉语名字就是“弹性搜索”。这家伙可是专门搞搜索的! 有的朋友可能不了解分词器,比如你的一个字段里存储“今天我要吃冰激凌”,在分词器的加持下,es最终会存储为“今天|我|要|吃|冰激凌”,并且使用倒排索引的形式进行存储。当你搜索“冰激凌”的时候,可以很快的反馈回来。 关于elasticsearch的原理,这里不展开说明,分词器和倒排索引是elasticsearch的最基本的概念。如果有不了解的朋友,可以自行百度一下。而且这两个概念,与elasticsearch其实不挂钩,是搜索中的通用概念。 关于倒排索引,其核心表现如下图: 如果你要用mysql、mongo实现中文分词,这......其实挺麻烦的,可能在后面的版本支持中会实现的很好,但在当前的流行版本中,它们对中文分词是不够友好的。 mysql5.7之后支持外挂第三方分词器,支持中文分词。而在数据量较大的情况下,mysql的多机器部署几乎很难实现,elasticsearch可以很容易的水平扩展。 mongo支持西方语言的分词,但不支持中文、日语、汉语等东方语言,你需要在自己的逻辑代码中实现分词器。 ngram分词,你看看效果:依旧是“今天我要吃冰激凌”,ngram二元分词后即将得到结果“今天、天我、我要、要吃、吃冰、冰激、激凌”。这....,那你搜索冰激凌就搜不出来!咋办呢,当然可以使用三元分词。但是更好的解决方案还是中文分词器,但它们原生并不支持的。 (2)自定义排名场景:比如你的搜索“冰激凌”,结果中返回了有10条,这10条应该有你想对它指定的顺序。最简单的就是用默认的得分,但是如果你想人为干预这个得分怎么办? elasticsearch支持function_score功能(可以不用,这个是增强功能),es会在计算最终得分之前回调这个你指定的function_score回调函数,传入原始得分、行的原始数据,你可以在里面做计算,比如查询其它参考表、或查看是否是广告位,以得到新的score返回给用户。 function_scrore的功能不展开描述,是一个在自定义得分场景下十分有用又简单易用的功能!下面是一个使用示例,不仅如此,它是支持自定义函数的,自由度非常高。 (3)文本高亮:你用mysql或mongo也可以实现,比如用户搜索“冰激凌”,你只需要在逻辑代码中对“冰激凌”替换为“<span class='highlight-term'>冰激凌</span>”,然后前端做样式即可。但如果用户搜索了“好吃的冰激凌”咋办呢?还有就是英文大小写的场景,用户搜索"MAIN",那结果及时匹配到了“main”(小写的),这个单词是否应该高亮呢?也许这时候你会用业务代码实现toLowerCase下基于位置下标的匹配。 挺麻烦的吧,elasticsearch,自动可以返回高亮字段!并且可以自由指定高亮的html前后标签。 (4)实在太多了....这家伙天生为索引而生,而且版本还在不断地迭代。不差机器的话,用用吧! 4. 退而求其次 4.1 普通数据库 尽管elasticsearch在搜索场景下,是非常好用的利器!但是它比较消耗机器资源,如果你的数据规模并不大,而且想快速实现功能。你可以使用mysql或mongo来代替,完全没有问题。 技术是为了解决特定业务场景下的问题,结合当前手头的资源,适合自己的才是最好的。也许你搞了一个单机器的elasticsearch,单机器内存只有2G,它的表现并不会比mysql、mongo来的好。 当然,如果你为了使用上边提到的一些优秀的独有的特性,那elasticsearch一定还是最佳选择! 对于mysql(关系型数据库)和mongo(文档数据库)的区别这里不展开描述了,但对于搜索而言,两种都合适。有时候选型也不用很纠结,其实都是差不太多的东西,适合自己的、自己熟悉的、运维起来顺手的,就是最好的。 4.2 普通数据库实现中文分词搜索的原理 尽管mysql在5.7以后支持外挂第三方分词器,mongo在截止目前的版本中也不支持中文分词(你可能会看到一些文章中说可以指定language为chinese,但其实会报错的)。 其实当你选择普通数据库,你就不得不在逻辑代码中自己实现一套索引分词+搜索分词逻辑。 索引分词+搜索分词?为什么分开写,如果你有用过elasticsearch或solr,你会知道,在指定字段的时候,需要指定index分词器和search分词器。 下面以mongo为例做简要说明。 4.2.1 index分词器 意思是当数据“索引”截断如何分词。首先,这里必须要承认,数据之后存储了,才能被查询。在搜索中,这句话可以换成是“数据只有被索引了,才能被搜索”。 这时候请求打过来了,要索引一条数据,其中某字段是“今天我要吃冰激凌”,分词后得到“今天|我|要|吃|冰激凌”,这个就可以入库了。 如果你使用elasticsearch或solr,这个过程是自动的。如果你使用不支持外观分词器的常规数据库,这个过程你就要手动了,并把分词后的结果用空格分开(最好使用空格,因为西方语言的分词规则就是按空格拆分,以及逗号句号),存入数据库的一个待搜索的字段上。 效果如下图: 本站的其它博文中有介绍IKAnalyzer:https://www.52itw.com/java/6268.html 4.2.2 search分词器 当用户的查询请求打过来,用户输入了“好吃的冰激凌”,分词后得到“好吃|冰激凌”(“的”作为停用词stopwords,被自动忽略了,IKAnalyzer可以指定停用词表)。 于是这时候就回去上图的数据库表里面搜索“好吃 冰激凌”(与index分词器结果统一,还是用空格分隔)。 当然,对于mongo而言,你需要事先开启全文索引db.xxx.ensureIndex({content: "text"}),xxx是集合名,content是字段名,text是全文索引的标识。 mongo搜索的时候用这个语法:db.xxx.find( { $text: { $search: "好吃 冰激凌" } },{ score: { $meta: "textScore" } }).sort( { score: { $meta: "textScore" } } ) 4.2.3 索引库和存储库分开 为了减少单表的大小,为了让普通的列表查询、普通筛选可以跑的更快,你可以对原有的数据原封不动的做一张表。 然后对于搜索场景,再单独对需要被搜索的字段单独拎一张表出来! 然后二者之间做增量信号同步或定时差额同步,可能会有延迟,这个就看你能容忍多长时间(悄悄告诉你,elasticsearch也需要指定这个refresh时间,一般是1s到几秒、甚至分钟级。当然,二者的这个时间对饮的底层目的是不一样的)。 这样,搜索的时候先查询搜索库,拿到一个指针id的列表,然后拿到指针id的列表区存储里把数据一次性捞出来。当然,也是支持分页的,你查询搜索库其实也是普通的数据库查询嘛,支持分页参数的。 4.3 存储库和索引库的延伸阅读 很多有名的开源软件也是使用的存储库与索引库分离的技术方案,如apache atlas: apache atlas对于大数据领域的数据资产元数据管理、数据血缘上可谓是专家,也涉及资产搜索的特性,它的实现思路就是:从搜索库中做搜索、拿到key、再去存储库中做查询。 搜索库:上图右下角,可以看到使用的是elasticsearch、solr或lucene,多个选一个 存储库:上图左下角,可以看到使用的是Cassandra、HBase或BerkeleyDB,多个选一个 虽然apache atlas在只有搜索库或只有存储库的时候也可以很好的工作,但只针对于数据量并不大的场景。 搜索库,擅长搜索!存储库,擅长海量存储!搜索库多样化搜索,然后去存储库做点查。 当你的数据达到海量的时候,es+hbase也是一种很好的解决方案,不在这里展开说明了。
2024-01-27 17:49:04
537
admin-tim
转载文章
...捕获并处理可能出现的错误(异常)。在文章语境中,作者最初使用此结构来确保在数据库操作结束后,无论是否发生异常,都能正确关闭SqlConnection连接。try块内包含可能抛出异常的代码,catch块则用来捕获并处理特定类型的异常,finally块中的代码无论如何都会被执行,常用于资源清理工作,如关闭数据库连接、文件流等。 using()结构 , 在C中,using语句提供了一种更简洁的方式来管理那些实现IDisposable接口的对象生命周期,以确保其Dispose方法在适当的时候被调用,从而释放非托管资源或执行其他清理任务。在本文中,通过将SqlConnection对象置于using语句中,可以自动在离开using代码块时关闭数据库连接,即使在执行过程中遇到异常也能确保资源得到释放。 SqlDataReader , SqlDataReader是.NET框架中System.Data.SqlClient命名空间下的一个类,它提供了一种只进、只读、高性能的方式从SQL Server数据库获取查询结果。在文中,SqlDataReader被用来执行SQL命令并逐行读取返回的数据集,进而将这些数据转换为CategoryInfo对象,并添加到IList集合中进行后续操作。它的特点是按需读取数据,而不是一次性加载所有数据到内存,因此适用于处理大量数据的情形。 CommandBehavior.CloseConnection , 这是SqlCommand.ExecuteReader方法的一个可选参数,当设置此标志时,在SqlDataReader关闭时,会同时关闭与之关联的SqlConnection。在文章中,作者建议通过设置CommandBehavior.CloseConnection,确保在完成数据读取后能自动关闭数据库连接,从而简化了代码并降低了资源泄漏的风险。
2023-03-18 20:09:36
89
转载
Mongo
...oDB以其独特的NoSQL特性,为开发者提供了灵活性极高的数据存储解决方案。哎呀,兄弟!你想想看,咱们要是碰上一堆数据要处理,那些老一套的查询方法啊,那可真是不够用,捉襟见肘。就像你手头一堆零钱,想买个大蛋糕,结果发现零钱不够,还得再跑一趟银行兑换整钞。那时候,你就得琢磨琢磨,是不是有啥更省力、效率更高的办法了。哎呀,你知道的,MapReduce就像一个超级英雄,专门在大数据的世界里解决难题。它就像个大厨,能把一大堆食材快速变成美味佳肴。以前,处理海量数据就像是给蜗牛搬家,慢得让人着急。现在有了MapReduce,就像给搬家公司装了涡轮增压,速度嗖嗖的,效率那叫一个高啊!无论是分析市场趋势、优化业务流程还是挖掘用户行为,MapReduce都成了我们的好帮手,让我们的工作变得更轻松,效率也蹭蹭往上涨!本文将带你深入了解MongoDB中的MapReduce,从基础概念到实际应用,再到优化策略,一步步带你掌握这门技术。 1. MapReduce的基础概念 MapReduce是一种编程模型,用于大规模数据集的并行运算。在MongoDB中,我们可以通过map()和reduce()函数实现数据的分组、转换和聚合。基本流程如下: - Map阶段:数据被分割成多个分片,每个分片经过map()函数处理,产生键值对形式的数据流。 - Shuffle阶段:键相同的数据会被合并在一起,为reduce()阶段做准备。 - Reduce阶段:针对每个键,执行reduce()函数,合并所有相关值,产生最终的结果集。 2. MongoDB中的MapReduce实践 为了让你更好地理解MapReduce在MongoDB中的应用,下面我将通过一个具体的例子来展示如何使用MapReduce处理数据。 示例代码: 假设我们有一个名为sales的集合,其中包含销售记录,每条记录包含product_id和amount两个字段。我们的目标是计算每个产品的总销售额。 javascript // 首先,我们定义Map函数 db.sales.mapReduce( function() { // 输出键为产品ID,值为销售金额 emit(this.product_id, this.amount); }, function(key, values) { // 将所有销售金额相加得到总销售额 var total = 0; for (var i = 0; i < values.length; i++) { total += values[i]; } return total; }, { "out": { "inline": 1, "pipeline": [ {"$group": {"_id": "$_id", "total_sales": {$sum: "$value"} }} ] } } ); 这段代码首先通过map()函数将每个销售记录映射到键为product_id和值为amount的键值对。哎呀,这事儿啊,就像是这样:首先,你得有个列表,这个列表里头放着一堆商品,每一项商品下面还有一堆数字,那是各个商品的销售价格。然后,咱们用一个叫 reduce() 的魔法棒来处理这些数据。这个魔法棒能帮咱们把每一样商品的销售价格加起来,就像数钱一样,算出每个商品总共卖了多少钱。这样一来,我们就能知道每种商品的总收入啦!哎呀,你懂的,我们用out这个参数把结果塞进了一个临时小盒子里面。然后,我们用$group这个魔法棒,把数据一通分类整理,看看哪些地方数据多,哪些地方数据少,这样就给咱们的数据做了一次大扫除,整整齐齐的。 3. 性能优化与注意事项 在使用MapReduce时,有几个关键点需要注意,以确保最佳性能: - 数据分区:合理的数据分区可以显著提高MapReduce的效率。通常,我们会根据数据的分布情况选择合适的分区策略。 - 内存管理:MapReduce操作可能会消耗大量内存,特别是在处理大型数据集时。合理设置maxTimeMS选项,限制任务运行时间,避免内存溢出。 - 错误处理:在实际应用中,处理潜在的错误和异常情况非常重要。例如,使用try-catch块捕获并处理可能出现的异常。 4. 进阶技巧与高级应用 对于那些追求更高效率和更复杂数据处理场景的开发者来说,以下是一些进阶技巧: - 使用索引:在Map阶段,如果数据集中有大量的重复键值对,使用索引可以在键的查找过程中节省大量时间。 - 异步执行:对于高并发的应用场景,可以考虑将MapReduce操作异步化,利用MongoDB的复制集和分片集群特性,实现真正的分布式处理。 结语 MapReduce在MongoDB中的应用,为我们提供了一种高效处理大数据集的强大工具。哎呀,看完这篇文章后,你可不光是知道了啥是MapReduce,啥时候用,还能动手在自己的项目里把MapReduce用得溜溜的!就像是掌握了新魔法一样,你学会了怎么给这玩意儿加点料,让它在你的项目里发挥出最大效用,让工作效率蹭蹭往上涨!是不是感觉整个人都精神多了?这不就是咱们追求的效果嘛!嘿,兄弟!听好了,掌握新技能最有效的办法就是动手去做,尤其是像MapReduce这种技术。别光看书上理论,找一个你正在做的项目,大胆地将MapReduce实践起来。你会发现,通过实战,你的经验会大大增加,对这个技术的理解也会更加深入透彻。所以,行动起来吧,让自己的项目成为你学习路上的伙伴,你肯定能从中学到不少东西!让我们继续在数据处理的旅程中探索更多可能性!
2024-08-13 15:48:45
149
柳暗花明又一村
转载文章
...发布机制 当前使用的编译器大多会对代码做一定程度的优化,CPU也会对执行指令做一些优化调整,目的是提高代码的执行效率,但这样的优化,有时候会带来不期望的结果。如例: void foo_update( foo new_fp ){spin_lock(&foo_mutex);foo old_fp = gbl_foo;new_fp-》a = 1;new_fp-》b = ‘b’;new_fp-》c = 100;gbl_foo = new_fp;spin_unlock(&foo_mutex);synchronize_rcu();kfee(old_fp);} 这段代码中,我们期望的是6,7,8行的代码在第10行代码之前执行。但优化后的代码并不会对执行顺序做出保证。在这种情形下,一个读线程很可能读到 new_fp,但new_fp的成员赋值还没执行完成。单独线程执行dosomething(fp-》a, fp-》b , fp-》c ) 的 这个时候,就有不确定的参数传入到dosomething,极有可能造成不期望的结果,甚至程序崩溃。可以通过优化屏障来解决该问题,RCU机制对优化屏障做了包装,提供了专用的API来解决该问题。这时候,第十行不再是直接的指针赋值,而应该改为 : rcu_assign_pointer(gbl_foo,new_fp);rcu_assign_pointer的实现比较简单,如下:define rcu_assign_pointer(p, v) \__rcu_assign_pointer((p), (v), __rcu)define __rcu_assign_pointer(p, v, space) \do { \smp_wmb(); \(p) = (typeof(v) __force space )(v); \} while (0) 我们可以看到它的实现只是在赋值之前加了优化屏障 smp_wmb来确保代码的执行顺序。另外就是宏中用到的__rcu,只是作为编译过程的检测条件来使用的。 在DEC Alpha CPU机器上还有一种更强悍的优化,如下所示: void foo_read(void){rcu_read_lock();foo fp = gbl_foo;if ( fp != NULL )dosomething(fp-》a, fp-》b ,fp-》c);rcu_read_unlock();} 第六行的 fp-》a,fp-》b,fp-》c会在第3行还没执行的时候就预先判断运行,当他和foo_update同时运行的时候,可能导致传入dosomething的一部分属于旧的gbl_foo,而另外的属于新的。这样会导致运行结果的错误。为了避免该类问题,RCU还是提供了宏来解决该问题: define rcu_dereference(p) rcu_dereference_check(p, 0)define rcu_dereference_check(p, c) \__rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)define __rcu_dereference_check(p, c, space) \({ \typeof(p) _________p1 = (typeof(p)__force )ACCESS_ONCE(p); \rcu_lockdep_assert(c, “suspicious rcu_dereference_check()” \usage”); \rcu_dereference_sparse(p, space); \smp_read_barrier_depends(); \(typeof(p) __force __kernel )(_________p1)); \})staTIc inline int rcu_read_lock_held(void){if (!debug_lockdep_rcu_enabled())return 1;if (rcu_is_cpu_idle())return 0;if (!rcu_lockdep_current_cpu_online())return 0;return lock_is_held(&rcu_lock_map);} 这段代码中加入了调试信息,去除调试信息,可以是以下的形式(其实这也是旧版本中的代码): define rcu_dereference(p) ({ \typeof(p) _________p1 = p; \smp_read_barrier_depends(); \(_________p1); \}) 在赋值后加入优化屏障smp_read_barrier_depends()。我们之前的第四行代码改为 foo fp = rcu_dereference(gbl_foo);,就可以防止上述问题。 数据读取的完整性 还是通过例子来说明这个问题: 如图我们在原list中加入一个节点new到A之前,所要做的第一步是将new的指针指向A节点,第二步才是将Head的指针指向new。这样做的目的是当插入操作完成第一步的时候,对于链表的读取并不产生影响,而执行完第二步的时候,读线程如果读到new节点,也可以继续遍历链表。如果把这个过程反过来,第一步head指向new,而这时一个线程读到new,由于new的指针指向的是Null,这样将导致读线程无法读取到A,B等后续节点。从以上过程中,可以看出RCU并不保证读线程读取到new节点。如果该节点对程序产生影响,那么就需要外部调用来做相应的调整。如在文件系统中,通过RCU定位后,如果查找不到相应节点,就会进行其它形式的查找,相关内容等分析到文件系统的时候再进行叙述。 我们再看一下删除一个节点的例子: 如图我们希望删除B,这时候要做的就是将A的指针指向C,保持B的指针,然后删除程序将进入宽限期检测。由于B的内容并没有变更,读到B的线程仍然可以继续读取B的后续节点。B不能立即销毁,它必须等待宽限期结束后,才能进行相应销毁操作。由于A的节点已经指向了C,当宽限期开始之后所有的后续读操作通过A找到的是C,而B已经隐藏了,后续的读线程都不会读到它。这样就确保宽限期过后,删除B并不对系统造成影响。 小结 RCU的原理并不复杂,应用也很简单。但代码的实现确并不是那么容易,难点都集中在了宽限期的检测上,后续分析源代码的时候,我们可以看到一些极富技巧的实现方式。 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_50662680/article/details/128449401。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-25 09:31:10
105
转载
转载文章
...txt文件内容并传入参数hal=1000 HTTP/1.1表示HTTP版本是1.1 2、服务端传回HTTP响应 HTTP/1.0200OK Server:ReageWebServer Content-Type:text/html <!DOCTYPEhtmlPUBLIC"-//W3C//DTDXHTML1.0Strict//EN""http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <htmlxmlns="http://www.w3.org/1999/xhtml"> <!--Copyright(c)2000-2008QuadralayCorporation.Allrightsreserved.--> <head> <title>WebWorksHelp5.0</title> </head> <body>wuff</body> </html> 前面四行(包括空行)是消息体,后面是消息。一般要指明消息体的长度,方便客户端的接收处理。 三、示例程序 ====================================================================== / 主要实现功能,处理浏览器的get请求信息,发送网页文件。处理404、403等错误。 1.实现绑定本机机器的1024端口作为ReageWeb服务提供网页服务的端口。(避免与机器上装有web服务器产生端口冲突) 2.实现get获取网页方式。 3.实现index.html作为网站的首页面 作者:Reage blog:http://blog.csdn.net/rentiansheng / include<stdio.h> include<stdlib.h> include<string.h> include<sys/types.h> include<sys/socket.h> include<sys/un.h> include<netinet/in.h> include<arpa/inet.h> include<fcntl.h> include<string.h> include<sys/stat.h> include<signal.h> defineMAX1024 intres_socket; voidapp_exit(); / @description:开始服务端监听 @parameter ip:web服务器的地址 port:web服务器的端口 @result:成功返回创建socket套接字标识,错误返回-1 / intsocket_listen(charip,unsignedshortintport){ intres_socket;//返回值 intres,on; structsockaddr_inaddress; structin_addrin_ip; res=res_socket=socket(AF_INET,SOCK_STREAM,0); setsockopt(res_socket,SOL_SOCKET,SO_REUSEADDR,&on,sizeof(on)); memset(&address,0,sizeof(address)); address.sin_family=AF_INET; address.sin_port=htons(port); address.sin_addr.s_addr=htonl(INADDR_ANY);//inet_addr("127.0.0.1"); res=bind(res_socket,(structsockaddr)&address,sizeof(address)); if(res){printf("portisused,nottorepeatbind\n");exit(101);}; res=listen(res_socket,5); if(res){printf("listenportiserror;\n");exit(102);}; returnres_socket; } / @description:向客户端发送网页头文件的信息 @parameter conn_socket:套接字描述符。 status:http协议的返回状态码。 @s_status:http协议的状态码的含义 @filetype:向客户端发送的文件类型 / voidsend_http_head(intconn_socket,intstatus,chars_status,charfiletype){ charbuf[MAX]; memset(buf,0,MAX); sprintf(buf,"HTTP/1.0%d%s\r\n",status,s_status); sprintf(buf,"%sServer:ReageWebServer\r\n",buf); sprintf(buf,"%sContent-Type:%s\r\n\r\n",buf,filetype); write(conn_socket,buf,strlen(buf)); } / @description:向客户端发送错误页面信息 @parameter conn_socket:套接字描述符。 status:http协议的返回状态码。 @s_status:http协议的状态码的含义 @filetype:向客户端发送的文件类型 @msg:错误页面信息内容 / voidsend_page_error(intconn_socket,intstatus,chars_status,charmsg){ charbuf[MAX]; sprintf(buf,"<html><head></head><body><h1>%s</h1><hr>ReageWebServer0.01</body></head>",msg); send_http_head(conn_socket,status,s_status,"text/html"); write(conn_socket,buf,strlen(buf)); } / @description:向客户端发送文件 @parameter conn_socket:套接字描述符。 @file:要发送文件路径 / intsend_html(intconn_socket,charfile){ intf; charbuf[MAX]; inttmp; structstatfile_s; //如果file为空,表示发送默认主页。主页暂时固定 if(0==strlen(file)){ strcpy(file,"index.html"); } //如果获取文件状态失败,表示文件不存的,发送404页面,暂时404页面内容固定。 if(stat(file,&file_s)){ send_page_error(conn_socket,404,"Notfound","Notfound<br/>Reagedoesnotimplementthismothod\n"); return0; } //如果不是文件或者无读权限,发送无法读取文件 if(!(S_ISREG(file_s.st_mode))||!(S_IRUSR&file_s.st_mode)){ send_page_error(conn_socket,403,"Forbidden","Forbidden<br/>Reagecouldn'treadthefile\n"); return0; } //发送头文件,现在只提供html页面 send_http_head(conn_socket,200,"OK","text/html"); f=open(file,O_RDONLY); if(0>f){ //打开文件失败,发送404页面,其实感觉发送5xx也可以的,服务器内部错误 send_page_error(conn_socket,404,"Notfound","Notfound<br/>Reagecouldn'treadthefile\n"); return0; } buf[MAX-1]=0;//将文件内容缓冲区最后的位设置位结束标志。 //发送文件的内容 while((tmp=read(f,buf,MAX-1))&&EOF!=tmp){ write(conn_socket,buf,strlen(buf)); } } / @description:提取url中可用的信息。访问的网页和数据访问方式 @parameter: conn_socket:与客户端链接的套接字 uri:要处理的url,注意不是浏览器中的url,而是浏览器发送的http请求 @resutl: / intdo_uri(intconn_socket,charuri){ charp; p=strchr(uri,'?'); if(p){p=0;p++;} send_html(conn_socket,uri); } voidulog(charmsg){} voidprint(charmsg){ ulog(msg); printf(msg); } intmain(intargc,charargv[]){ intconn_socket; inttmp; intline; structsockaddr_inclient_addr; charbuf[MAX]; intlen=sizeof(client_addr); charmethod[100],uri[MAX],version[100]; charpwd[1024]; res_socket=socket_listen("127.0.0.1",1024); //当按ctrl+c结束程序时调用,使用app_exit函数处理退出过程 signal(SIGINT,app_exit); while(1){ conn_socket=accept(res_socket,(structsockaddr)&client_addr,&len); printf("reage\n"); line=0; //从客户端获取请求信息 while(0==(tmp=read(conn_socket,buf,MAX-1))||tmp!=EOF){ buf[MAX-1]=0; break;//我只使用了第一行的请求信息,所以丢弃其他的信息 } //send_http_head(conn_socket,200,"text/html"); sscanf(buf,"%s%s%s",method,uri,version); //目前只处理get请求 if(!strcasecmp(method,"get")) //send_html(conn_socket,"h.html"); do_uri(conn_socket,uri+1); close(conn_socket); } } voidapp_exit(){ //回复ctrl+c组合键的默认行为 signal(SIGINT,SIG_DFL); //关闭服务端链接、释放服务端ip和端口 close(res_socket); printf("\n"); exit(0); } ====================================================================== 本篇文章为转载内容。原文链接:https://blog.csdn.net/iteye_9368/article/details/82520401。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-30 18:31:58
90
转载
转载文章
...it 7. 安装MySQL MySQL :: Download MySQL Community Server 下载Debian版DEB Bundle 解压 进入目录,执行 sudo dpkg -i mysql-{common,community-client,client,community-server,server}_.deb 如果报错,执行 sudo apt-get -f install 中途设置root用户密码 8. 安装PostgreSQL 安装PostgreSQL sudo apt-get install -y postgresql-11 修改postgres用户密码 sudo -u postgres psql 进入后执行SQL ALTER USER postgres WITH PASSWORD 'postgres'; 退出 exit; 9. 安装Redis sudo apt-get install -y redis-server 修改配置文件 sudo vim /etc/redis/redis.conf 重启 sudo systemctl restart redis sudo systemctl enable redis-server 10. 安装Nginx sudo apt-get install -y nginx 修改配置文件 sudo vim /etc/nginx/nginx.conf 重启 sudo systemctl restart nginx sudo systemctl enable nginx 11. 安装VMWare Workstation 下载 https://www.vmware.com/go/getworkstation-linux 放到文件夹,进入,执行 sudo chmod +x VMware-Workstation-Full-17.0.0-20800274.x86_64.bundle sudo ./VMware-Workstation-Full-17.0.0-20800274.x86_64.bundle 安装gcc sudo apt-get install -y gcc 进入控制台,找到VMWare,开始安装,安装过程同Windows 如果如果遇到build environment error错误,执行下列命令后再重新在控制台打开图标 sudo apt-get install -y libcanberra 如果还不行,执行 sudo vmware-modconfig --console --install-all 看看还缺什么 12. 安装百度网盘 官网下载Linux版本的软件:百度网盘 客户端下载 deepin的软件包格式为deb。安装: sudo dpkg -i baidunetdisk_3.5.0_amd64.deb 最新版本 sudo dpkg -i baidunetdisk_4.17.7_amd64.deb 如果报错,执行 sudo apt-get -f install 13. 安装WPS 官网下载Linux版本的软件:WPS Office 2019 for Linux-支持多版本下载_WPS官方网站 deepin的软件包格式为deb。安装: sudo dpkg -i wps-office_11.1.0.10702_amd64.deb 最新版本 sudo dpkg -i wps-office_11.1.0.11691_amd64.deb 如果报错执行 sudo apt-get -f install wps有可能会报缺字体,缺的字体如下,双击安装 百度网盘 请输入提取码 提取码:lexo 14. 安装VS Code 官网下载Linux版本的软件:Visual Studio Code - Code Editing. Redefined deepin的软件包格式为deb。安装: sudo dpkg -i code_1.61.1-1634175470_amd64.deb 最新版本 sudo dpkg -i code_1.76.0-1677667493_amd64.deb 如果报错执行 sudo apt-get -f install 15. 安装微信、QQ、迅雷 微信 sudo apt-get install -y com.qq.weixin.deepin QQ sudo apt-get install -y com.qq.im.deepin 迅雷 sudo apt-get install -y com.xunlei.download 16. 安装视频播放器 sudo apt-get -y install smplayer sudo apt-get -y install vlc 17. 安装SSH工具electerm 下载electerm的deb版本 deepin的软件包格式为deb。安装: https://github.com/electerm/electerm/releases/download/v1.25.16/electerm-1.25.16-linux-amd64.deb sudo dpkg -i electerm-1.25.16-linux-amd64.deb 18.安装FTP/SFTP工具FileZilla sudo apt-get -y install filezilla 19. 安装edge浏览器 下载edge浏览器 deepin的软件包格式为deb。安装: 下载 Microsoft Edge sudo apt-get -y install fonts-liberation sudo apt-get -y install libu2f-udev sudo dpkg -i microsoft-edge-beta_95.0.1020.30-1_amd64.deb 最新版本 sudo dpkg -i microsoft-edge-stable_110.0.1587.63-1_amd64.deb 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42173947/article/details/119973703。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-15 19:14:44
54
转载
Apache Lucene
...f stream 错误谈起 引言:文本检索的魔法与挑战 在浩瀚的互联网海洋中,如何快速准确地定位到用户所需的那片信息岛屿?这就是全文检索引擎如 Apache Lucene 所承担的使命。哎呀,Lucene这玩意儿,那可是真挺牛的!在处理海量文本数据的时候,无论是建立索引还是进行搜索,它都能玩得飞起,简直就像是个搜索界的超级英雄!它的效率高,用起来又非常灵活,想怎么调整都行,真是让人大呼过瘾。然而,即便是如此强大的工具,也并非没有挑战。本文将深入探讨一个常见的错误——org.apache.lucene.analysis.TokenStream$EOFException: End of stream,并尝试通过实例代码来揭示其背后的原因与解决之道。 第一部分:理解 TokenStream 和 EOFException TokenStream 是 Lucene 提供的一个抽象类,它负责将输入的文本分割成一系列可处理的令牌(tokens),这些令牌是构成文本的基本单位,例如单词、符号等。当 TokenStream 遇到文件末尾(EOF),即无法获取更多令牌时,就会抛出 EOFException。 示例代码:创建 TokenStream 并处理 EOFException 首先,我们编写一段简单的代码来生成一个 TokenStream,并观察如何处理可能出现的 EOFException。 java import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.apache.lucene.analysis.tokenattributes.CharTermAttribute; import org.apache.lucene.analysis.tokenattributes.OffsetAttribute; import org.apache.lucene.document.Document; import org.apache.lucene.index.DirectoryReader; import org.apache.lucene.index.IndexReader; import org.apache.lucene.index.IndexWriter; import org.apache.lucene.index.IndexWriterConfig; import org.apache.lucene.search.IndexSearcher; import org.apache.lucene.store.Directory; import org.apache.lucene.store.RAMDirectory; import org.apache.lucene.util.Version; import java.io.IOException; public class TokenStreamDemo { public static void main(String[] args) throws IOException { // 创建 RAMDirectory 实例 Directory directory = new RAMDirectory(); // 初始化 IndexWriterConfig IndexWriterConfig config = new IndexWriterConfig(Version.LATEST, new StandardAnalyzer()); // 创建 IndexWriter 并初始化索引 IndexWriter writer = new IndexWriter(directory, config); // 添加文档至索引 Document doc = new Document(); doc.add(new TextField("content", "这是一个测试文档,用于演示 Lucene 的 TokenStream 功能。", Field.Store.YES, Field.Index.ANALYZED)); writer.addDocument(doc); // 关闭 IndexWriter writer.close(); // 创建 IndexReader IndexReader reader = DirectoryReader.open(directory); // 使用 IndexSearcher 查找文档 IndexSearcher searcher = new IndexSearcher(reader); // 获取 TokenStream 对象 org.apache.lucene.search.IndexSearcher.SearchContext context = searcher.createSearchContext(); org.apache.lucene.analysis.standard.StandardAnalyzer analyzer = new org.apache.lucene.analysis.standard.StandardAnalyzer(Version.LATEST); org.apache.lucene.analysis.TokenStream tokenStream = analyzer.tokenStream("content", context.reader().getTermVector(0, 0).getPayload().toString()); // 检查是否有异常抛出 while (tokenStream.incrementToken()) { System.out.println("Token: " + tokenStream.getAttribute(CharTermAttribute.class).toString()); } // 关闭 TokenStream 和 IndexReader tokenStream.end(); reader.close(); } } 在这段代码中,我们首先创建了一个 RAMDirectory,并使用它来构建一个索引。接着,我们添加了一个包含测试文本的文档到索引中。之后,我们创建了 IndexSearcher 来搜索文档,并使用 StandardAnalyzer 来创建 TokenStream。在循环中,我们逐个输出令牌,直到遇到 EOFException,这通常意味着已经到达了文本的末尾。 第二部分:深入分析 EOFException 的原因与解决策略 在实际应用中,EOFException 通常意味着 TokenStream 已经到达了文本的结尾,这可能是由于以下原因: - 文本过短:如果输入的文本长度不足以产生足够的令牌,TokenStream 可能会过早地报告结束。 - 解析问题:在复杂的文本结构下,解析器可能未能正确地分割文本,导致部分文本未被识别为有效的令牌。 为了应对这种情况,我们可以采取以下策略: - 增加文本长度:确保输入的文本足够长,以生成多个令牌。 - 优化解析器配置:根据特定的应用场景调整分析器的配置,例如使用不同的分词器(如 CJKAnalyzer)来适应不同语言的需求。 - 错误处理机制:在代码中加入适当的错误处理逻辑,以便在遇到 EOFException 时进行相应的处理,例如记录日志、提示用户重新输入更长的文本等。 结语:拥抱挑战,驾驭全文检索 面对 org.apache.lucene.analysis.TokenStream$EOFException: End of stream 这样的挑战,我们的目标不仅仅是解决问题,更是通过这样的经历深化对 Lucene 工作原理的理解。哎呀,你猜怎么着?咱们在敲代码、调参数的过程中,不仅技术越来越溜,还能在处理那些乱七八糟的数据时,感觉自己就像个数据处理的小能手,得心应手的呢!就像是在厨房里,熟练地翻炒各种食材,做出来的菜品色香味俱全,让人赞不绝口。编程也是一样,每一次的实践和调试,都是在给我们的技能加料,让我们的作品越来越美味,越来越有营养!嘿!兄弟,听好了,每次遇到难题都像是在给咱的成长加个buff,咱们得一起揭开全文检索的神秘面纱,掌控技术的大棒,让用户体验到最棒、最快的搜索服务,让每一次敲击键盘都能带来惊喜! --- 以上内容不仅涵盖了理论解释与代码实现,还穿插了人类在面对技术难题时的思考与探讨,旨在提供一种更加贴近实际应用、充满情感与主观色彩的技术解读方式。
2024-07-25 00:52:37
391
青山绿水
转载文章
...在等号的右边(函数的参数和返回值例外),这一定程度避免了一些误操作导致指针所有权转移,然而,unique_str依然有提供所有权转移的方法move,调用move后,原unique_ptr就会失效,再用其访问裸指针也会发生和auto_ptr相似的crash,如下面示例代码,所以,即使使用了unique_ptr,也要慎重使用move方法,防止指针所有权被转移。 unique_ptr<int> up(new int(5));//auto up2 = up; // 编译错误auto up2 = move(up);cout << up << endl; //crash,up已经失效,无法访问其裸指针 除了上述用法,unique_ptr还支持创建动态数组。在C++中,创建数组有很多方法,如下所示: // 静态数组,在编译时决定了数组大小int arr[10];// 通过指针创建在堆上的数组,可在运行时动态指定数组大小,但需要手动释放内存int arr = new int[10];// 通过std::vector容器创建动态数组,无需手动释放数组内存vector<int> arr(10);// 通过unique_ptr创建动态数组,也无需手动释放数组内存,比vector更轻量化unique_ptr<int[]> arr(new int[10]); 这里需要注意的是,不管vector还是unique_ptr,虽然可以帮我们自动释放数组内存,但如果数组的元素是复杂数据类型时,我们还需要在其析构函数中正确释放内存。 真正的智能指针:shared_ptr auto_ptr和unique_ptr都有或多或少的缺陷,因此C++11还推出了shared_ptr,这也是目前工程内使用最多最广泛的智能指针,他使用引用计数(感觉有参考Objective-C的嫌疑),实现对同一块内存可以有多个引用,在最后一个引用被释放时,指向的内存才释放,这也是和unique_ptr最大的区别。 另外,使用shared_ptr过程中有几点需要注意: 构造shared_ptr的方法,如下示例代码所示,我们尽量使用shared_ptr构造函数或者make_shared的方式创建shared_ptr,禁止使用裸指针赋值的方式,这样会shared_ptr难于管理指针的生命周期。 // 使用裸指针赋值构造,不推荐,裸指针被释放后,shared_ptr就野了,不能完全控制裸指针的生命周期,失去了智能指针价值int p = new int(10);shared_ptr<int>sp = p;delete p; // sp将成为野指针,使用sp将crash// 将裸指针作为匿名指针传入构造函数,一般做法,让shared_ptr接管裸指针的生命周期,更安全shared_ptr<int>sp1(new int(10));// 使用make_shared,推荐做法,更符合工厂模式,可以连代码中的所有new,更高效;方法的参数是用来初始化模板类shared_ptr<int>sp2 = make_shared<int>(10); 禁止使用指向shared_ptr的裸指针,也就是智能指针的指针,这听起来就很奇怪,但开发中我们还需要注意,使用shared_ptr的指针指向一个shared_ptr时,引用计数并不会加一,操作shared_ptr的指针很容易就发生野指针异常。 shared_ptr<int>sp = make_shared<int>(10);cout << sp.use_count() << endl; //输出1shared_ptr<int> sp1 = &sp;cout << (sp1).use_count() << endl; //输出依然是1(sp1).reset(); //sp成为野指针cout << sp << endl; //crash 使用shared_ptr创建动态数组,在介绍unique_ptr时我们就讲过创建动态数组,而shared_ptr同样可以做到,不过稍微复杂一点,如下代码所示,除了要显示指定析构方法外(因为默认是T的析构函数,不是T[]),另外对外的数据类型依然是shared_ptr<T>,非常有迷惑性,看不出来是数组,最后不能直接使用下标读写数组,要先get()获取裸指针才可以使用下标。所以,不推荐使用shared_ptr来创建动态数组,尽量使用unique_ptr,这可是unique_ptr为数不多的优势了。 template <typename T>shared_ptr<T> make_shared_array(size_t size) {return shared_ptr<T>(new T[size], default_delete<T[]>());}shared_ptr<int>sp = make_shared_array(10); //看上去是shared<int>类型,实际上是数组sp.get()[0] = 100; //不能直接使用下标读写数组元素,需要通过get()方法获取裸指针后再操作 用shared_ptr实现多态,在我们使用裸指针时,实现多态就免不了定义虚函数,那么用shared_ptr时也不例外,不过有一处是可以省下的,就是析构函数我们不需要定义为虚函数了,如下面代码所示: class A {public:~A() {cout << "dealloc A" << endl;} };class B : public A {public:~B() {cout << "dealloc B" << endl;} };int main(int argc, const char argv[]) {A a = new B();delete a; //只打印dealloc Ashared_ptr<A>spa = make_shared<B>(); //析构spa是会先打印dealloc B,再打印dealloc Areturn 0;} 循环引用,笔者最先接触引用计数的语言就是Objective-C,而OC中最常出现的内存问题就是循环引用,如下面代码所示,A中引用B,B中引用A,spa和spb的强引用计数永远大于等于1,所以直到程序退出前都不会被退出,这种情况有时候在正常的业务逻辑中是不可避免的,而解决循环引用的方法最有效就是改用weak_ptr,具体可见下一章。 class A {public:shared_ptr<B> b;};class B {public:shared_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb;spb->a = spa;return 0;} //main函数退出后,spa和spb强引用计数依然为1,无法释放 刚柔并济:weak_ptr 正如上一章提到,使用shared_ptr过程中有可能会出现循环引用,关键原因是使用shared_ptr引用一个指针时会导致强引用计数+1,从此该指针的生命周期就会取决于该shared_ptr的生命周期,然而,有些情况我们一个类A里面只是想引用一下另外一个类B的对象,类B对象的创建不在类A,因此类A也无需管理类B对象的释放,这个时候weak_ptr就应运而生了,使用shared_ptr赋值给一个weak_ptr不会增加强引用计数(strong_count),取而代之的是增加一个弱引用计数(weak_count),而弱引用计数不会影响到指针的生命周期,这就解开了循环引用,上一章最后的代码使用weak_ptr可改造为如下代码。 class A {public:shared_ptr<B> b;};class B {public:weak_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb; //spb强引用计数为2,弱引用计数为1spb->a = spa; //spa强引用计数为1,弱引用计数为2return 0;} //main函数退出后,spa先释放,spb再释放,循环解开了使用weak_ptr也有需要注意的点,因为既然weak_ptr不负责裸指针的生命周期,那么weak_ptr也无法直接操作裸指针,我们需要先转化为shared_ptr,这就和OC的Strong-Weak Dance有点像了,具体操作如下:shared_ptr<int> spa = make_shared<int>(10);weak_ptr<int> spb = spa; //weak_ptr无法直接使用裸指针创建if (!spb.expired()) { //weak_ptr最好判断是否过期,使用expired或use_count方法,前者更快spb.lock() += 10; //调用weak_ptr转化为shared_ptr后再操作裸指针}cout << spa << endl; //20 智能指针原理 看到这里,智能指针的用法基本介绍完了,后面笔者来粗浅地分析一下为什么智能指针可以有效帮我们管理裸指针的生命周期。 使用栈对象管理堆对象 在C++中,内存会分为三部分,堆、栈和静态存储区,静态存储区会存放全局变量和静态变量,在程序加载时就初始化,而堆是由程序员自行分配,自行释放的,例如我们使用裸指针分配的内存;而最后栈是系统帮我们分配的,所以也会帮我们自动回收。因此,智能指针就是利用这一性质,通过一个栈上的对象(shared_ptr或unique_ptr)来管理一个堆上的对象(裸指针),在shared_ptr或unique_ptr的析构函数中判断当前裸指针的引用计数情况来决定是否释放裸指针。 shared_ptr引用计数的原理 一开始笔者以为引用计数是放在shared_ptr这个模板类中,但是细想了一下,如果这样将shared_ptr赋值给另一个shared_ptr时,是怎么做到两个shared_ptr的引用计数同时加1呢,让等号两边的shared_ptr中的引用计数同时加1?不对,如果还有第二个shared_ptr再赋值给第三个shared_ptr那怎么办呢?或许通过下面的类图便清楚个中奥秘。 [ boost中shared_ptr与weak_ptr类图 ] 我们重点关注shared_ptr<T>的类图,它就是我们可以直接操作的类,这里面包含裸指针T,还有一个shared_count的对象,而shared_count对象还不是最终的引用计数,它只是包含了一个指向sp_counted_base的指针,这应该就是真正存放引用计数的地方,包括强应用计数和弱引用计数,而且shared_count中包含的是sp_counted_base的指针,不是对象,这也就意味着假如shared_ptr<T> a = b,那么a和b底层pi_指针指向的是同一个sp_counted_base对象,这就很容易做到多个shared_ptr的引用计数永远保持一致了。 多线程安全 本章所说的线程安全有两种情况: 多个线程操作多个不同的shared_ptr对象 C++11中声明了shared_ptr的计数操作具有原子性,不管是赋值导致计数增加还是释放导致计数减少,都是原子性的,这个可以参考sp_counted_base的源码,因此,基于这个特性,假如有多个shared_ptr共同管理一个裸指针,那么多个线程分别通过不同的shared_ptr进行操作是线程安全的。 多个线程操作同一个shared_ptr对象 同样的道理,既然C++11只负责sp_counted_base的原子性,那么shared_ptr本身就没有保证线程安全了,加入两个线程同时访问同一个shared_ptr对象,一个进行释放(reset),另一个读取裸指针的值,那么最后的结果就不确定了,很有可能发生野指针访问crash。 作者:腾讯技术工程 https://mp.weixin.qq.com/s?__biz=MjM5ODYwMjI2MA==&mid=2649743462&idx=1&sn=c9d94ddc25449c6a0052dc48392a33c2&utm_source=tuicool&utm_medium=referralmp.weixin.qq.com 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_31467557/article/details/113049179。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-24 18:25:46
141
转载
转载文章
...大值为 TCP 连接参数的哈西表长度的 3/4/ NIDS_WARN_TCP_HDR, / 表示无效 TCP首部 ,TCP 数据包发生异常 / NIDS_WARN_TCP_BIGQUEUE, / 表示 TCP 接受的队列数据过多 / NIDS_WARN_TCP_BADFLAGS / 表示错误标记 / }; /Libnids 状态描述的是连接的逻辑状态, 真正的 TCP 连接状态有 11种 . TCP_ESTABLISHED TCP 连接建立 , 开始传输数据 TCP_SYN_SEND 主动打开 TCP_SYN_RECV 接受 SYN TCP_FIN_WAIT1 TCP_FIN_WAIT2 TCP_TIME_WAIT TCP_CLOSE TCP_CLOSE_WAIT TCP_LAST_ACK TCP_LISTEN TCP_CLOSING / define NIDS_JUST_EST 1 / 表示 TCP 连接建立 , 在此状态下就可以决定是否对此TCP 连接进行数据分析 , 可以决定是否捕获 TCP客户端接收的数据 ,TCP 服务端接收的数据 ,TCP 客户端接收的紧急数据或者TCP 客户端接收的紧急数据 / define NIDS_DATA 2 / 表示接收数据的状态 ,在这个状态可以判断是否有新的数据到达 ,如果有就可以把数据存储起来 , 可以在这个状态之中来分析 TCP 传输的数据 , 此数据就存储在half_stream 数据接口的缓存之中/ define NIDS_CLOSE 3 / 表示 TCP 连接正常关闭 / define NIDS_RESET 4 / 表是 TCP 连接被重置关闭 / define NIDS_TIMED_OUT 5 / 表示由于超时 TCP连接被关闭 / define NIDS_EXITING 6 / 表示 Libnids正在退出 , 在这个状态下可以最后一次使用存储在 half_stream 数据结构中的缓存数据 / / 校验和 / define NIDS_DO_CHKSUM 0 / 表示告诉 Libnids要计算校验和 / define NIDS_DONT_CHKSUM 1 / 表示告诉 Libnids不要计算校验和 / struct tuple4 / 描述一个地址端口对 , 它表示发送发IP 和端口以及接收方 IP 和端口 , 适用 TCP,UDP/ { u_short source; / 源 IP 地址的端口号/ u_short dest; / 目的 IP 地址的端口号/ u_int saddr; / 源 IP 地址 / u_int daddr; / 目的 IP 地址 / }; struct half_stream / 描述在 TCP 连接中一端的所有信息, 可以是客户端 , 也可以是服务端 / { char state; / 表示套接字的状态 , 也就是TCP 的状态 / char collect; / 可以表示有数据到达 , 此数据存放在data 成员中 , 也可以表示不存储此数据到 data中 , 此数据忽略 . 如果大于0 就存储 , 否则就忽略 / char collect_urg; / 可以表示有紧急数据到达 , 此数据就存放在urgdata 中 , 也可以表示不存储此数据到 urgdata中 , 此速数据忽略 . 如果大于0 就存储 , 否则就忽略 / char data; / 用户存储正常接受到的数据 / int offset; / 表示存储在 data 中数据的第一个字节的偏移量/ int count; / 表示从 TCP 连接开始已经存储到data 中的数据的字节数 / int count_new; / 有多少新的数据存储到 data 中, 如果为 0, 则表示没有新的数据到达 / int bufsize; int rmem_alloc; int urg_count; / 用来存储紧急数据 / u_int acked; u_int seq; u_int ack_seq; u_int first_data_seq; u_char urgdata; //存储紧急数据 u_char count_new_urg; / 表示有新的紧急数据到达 , 如果为0 表示没有新的紧急数据 / u_char urg_seen; //新的urg数据,不是以前重复的数据 u_int urg_ptr;/指向urg在流中的位置/ u_short window; u_char ts_on; u_char wscale_on; u_int curr_ts; u_int wscale; struct skbuff list; struct skbuff listtail; }; struct tcp_stream / 描述一个 TCP 连接的所有信息/ { struct tuple4 addr; char nids_state; struct lurker_node listeners; struct half_stream client; / 表示客户端信息 / struct half_stream server; / 表示服务端信息 / struct tcp_stream next_node; struct tcp_stream prev_node; int hash_index; struct tcp_stream next_time; struct tcp_stream prev_time; int read; struct tcp_stream next_free; }; struct nids_prm / 描述了 Libnids 的一些全局参数信息/ { int n_tcp_streams; / 表示哈西表大小 , 此哈西表用来存放tcp_stream 数据结构 , 默认值 1040.在同一时刻 Libnids 捕获的 TCP 数据包的最大个数必须是此参数值的3/4/ int n_hosts; / 表示哈西表的大小 , 此哈西表用来存储IP 碎片信息的 , 默认值为 256/ char device; / 表示网络接口 ,Libnids 将在此网络接口上捕获数据, 默认值为 NULL. 这样 Libnids将使用 pcap_lookupdev来查找可以用的网络接口 . 如果其值为 all, 表示捕获所有网络接口的数据/ char filename; / 表示用来存储网络数据的捕获文件 , 此文件的类型必须与 Libpcap 类型一致 , 如果设置了文件, 与此同时就应该设置 device 为 NULL,默认值为 NULL/ int sk_buff_size; / 表示的是数据接口 sk_buff 的大小 .sk_buff 是Linux 内核中一个重要的数据结构, 是用来进行数据包排队操作的 , 默认值为 168/ int dev_addon; / 表示在数据结构 sk_buff 中用于网络接口上信息的字节数. 如果是 -1( 默认值 ),那么 Libnids 会根据不同的网络接口进行修正 / void (syslog) (); / 是一个函数指针 , 默认值为nids_syslog() 函数 . 在 syslog函数中可以检测入侵攻击 , 如网络扫描攻击 , 也可以检测一些异常情况, 如无效 TCP 标记 / int syslog_level; / 表示日志等级 , 默认值是LOG_ALERT/ int scan_num_hosts; / 表示一个哈西表的大小 ,( 此哈西表用来存储端口扫描信息) 表示 Libnids 将要检测的同时扫描的端口数据 . 如果其值为 0,Libnids将不提供端口扫描功能 . 默认值 256/ int scan_delay; / 表示在扫描检测中 , 俩端口扫描的间隔时间, 以毫秒来计算 , 缺省值为 3000/ int scan_num_ports; / 表示相同源地址必须扫描的 TCP 端口数目 , 默认值为10/ void (no_mem) (char ); / 是一个函数指针 , 当Libnids 发生内存溢出时被调用/ int (ip_filter) (); / 是一个函数指针 , 此函数可以用来分析IP 数据包 , 当有 IP 数据包到达时 , 此函数就被调用. 如果此函数返回非零值 , 此数据包就被处理 ;如果返回零 , 此 IP 数据包就被丢弃. 默认值为 nids_ip_filter 函数 , 总是返回 1./ char pcap_filter; / 表示过滤规则 , 即Libpcap 的过滤规则 , 默认值为 NULL,表示捕获所有数据包 . 可以在此设置过滤规则 , 只捕获感兴趣的开发包/ int promisc; / 表示网卡模式 , 如果是非零, 就把此网卡设置为混杂模式 ; 否则 , 设为非混杂模式 . 默认值为1/ int one_loop_less; / 初始值为 0/ int pcap_timeout; / 表示捕获数据返回的时间 , 以毫秒计算. 实际上它表示的就是 Libpcap 函数中的 pcap_open_live函数的 timeout 参数 , 默认值 1024/ }; / 返回值 : 调用成功返回 1,失败返回 0 参 数 : 无 功 能 : 对 Libnids 初始化, 这是所有设计基于 Libnids 的程序最开始调用的函数 . 它的主要内容包括打开网络接口 , 打开文件 , 编译过滤规则 , 判断网络链路层类型, 进行必要的初始化工作 / int nids_init (void); / 返回值 : 无 参 数 : 回调函数名字 功 能 : 注册一个能够检测所有 IP 数据包的回调函数, 包括 IP 碎片 .e.g nids_register_ip_frag(ip_frag_function); void ip_frag_function(struct ip a_packet,int len) a_packet 表示接收的IP 数据包 len 表示接收的数据包长度 此回调函数可以检测所有的IP 数据包 , 包括 IP 碎片 / void nids_register_ip_frag (void ()); // / 返回值 : 无 参 数 : 回调函数名字 功 能 : 注册一个回调函数 , 此回调函数可以接收正常的IP 数据包 .e.g nids_register_ip_frag(ip_frag_function); void ip_frag_function(struct ip a_packet) a_packet 表示接收的IP 数据包 此回调函数可以接收正常的IP 数据包 , 并在此函数中对捕获数到的 IP数据包进行分析 . / void nids_register_ip (void ()); // / 返回值 : 无 参 数 : 回调函数 功 能 : 注册一个 TCP 连接的回调函数. 回调函数的类型定义如下 : void tcp_callback(struct tcp_stream ns,void param) ns 表示一个TCP 连接的所有信息 , param 表示要传递的参数信息 , 可以指向一个 TCP连接的私有数据 此回调函数接收的TCP 数据存放在 half_stream 的缓存中 , 应该马上取出来 ,一旦此回调函数返回 , 此数据缓存中存储的数据就不存在 了 .half_stream 成员 offset描述了被丢弃的数据字节数 . 如果不想马上取出来 , 而是等到存储一定数量的数据之后再取出来, 那么可 以使用函数nids_discard(struct tcp_stream ns, int num_bytes)来处理 . 这样回调函数返回时 ,Libnids 将丢弃缓存数据之前 的 num_bytes 字节的数据 .如果不调用 nids_discard()函数 , 那么缓存数据的字节应该为 count_new 字节 . 一般情况下, 缓存中的数据 应该是count-offset 字节 / void nids_register_tcp (void ()); / 返回值 : 无 参 数 : 回调函数 功 能 : 注册一个分析 UDP 协议的回调函数, 回调函数的类型定义如下 : void udp_callback(struct tuple4 addr,char buf,int len,struct ip iph) addr 表示地址端口信息buf 表示 UDP 协议负载的数据内容 len表是 UDP 负载数据的长度 iph 表示一个IP 数据包 , 包括 IP 首部 ,UDP 首部以及UDP 负载内容 / void nids_register_udp (void ()); / 返回值 : 无 参 数 : 表示一个 TCP 连接 功 能 : 终止 TCP 连接 . 它实际上是调用 Libnet的函数进行构造数据包 , 然后发送出去 / void nids_killtcp (struct tcp_stream ); / 返回值 : 无 参 数 : 参数 1 一个 TCP 连接 参数 2 个数 功 能 : 丢弃参数 2 字节 TCP 数据 , 用于存储更多的数据 / void nids_discard (struct tcp_stream , int); / 返回值 : 无 参 数 : 无 功 能 : 运行 Libnids, 进入循环捕获数据包状态. 它实际上是调用 Libpcap 函数 pcap_loop()来循环捕获数据包 / void nids_run (void); / 返回值 : 调用成功返回文件描述符 ,失败返回 -1 参 数 : 无 功 能 : 获得文件描述符号 / int nids_getfd (void); / 返回值 : 调用成功返回个数 ,失败返回负数 参 数 : 表示捕获数据包的个数 功 能 : 调用 Libpcap 中的捕获数据包函数pcap_dispatch() / int nids_dispatch (int); / 返回值 : 调用成功返回 1,失败返回 0 参 数 : 无 功 能 : 调用 Libpcap 中的捕获数据包函数pcap_next() / int nids_next (void); extern struct nids_prm nids_params; /libnids.c定以了一个全部变量 , 其定义和初始值在 nids_params/ extern char nids_warnings[]; extern char nids_errbuf[]; extern struct pcap_pkthdr nids_last_pcap_header; struct nids_chksum_ctl { / 描述的是计算校验和 , 用于决定是否计算校验和/ u_int netaddr; / 表示地址 / u_int mask; / 表示掩码 / u_int action; / 表示动作 , 如果是NIDS_DO_CHKSUM, 表示计算校验和; 如果是 NIDS_DONT_CHKSUM, 表示不计算校验和 / u_int reserved; / 保留未用 / }; / 返回值 : 无 参 数 : 参数 1 表示 nids_chksum_ctl 列表 参数 2 表示列表中的个数 功 能 : 决定是否计算校验和 . 它是根据数据结构nids_chksum_ctl 中的action 进行决定的 , 如果所要计算的对象不在列表中 , 则必须都要计算校验和 / extern void nids_register_chksum_ctl(struct nids_chksum_ctl , int); endif / _NIDS_NIDS_H / 本篇文章为转载内容。原文链接:https://blog.csdn.net/xieqb/article/details/7681968。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-08 17:36:31
306
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
netstat -tulpn
- 显示所有活动的网络连接、监听端口以及关联的进程。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"