前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Java编程实战技巧 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Spark
...rk与Kafka集成实战 1. 引言 嘿,各位小伙伴们!今天我要跟大家聊聊Spark与Kafka的集成。这可是大数据领域里一个超级实用且热门的话题。不管你是刚入门的小白还是有经验的大神,学会了Spark和Kafka的结合使用,在处理实时数据流时肯定会觉得轻松很多,简直像开了外挂一样! 1.1 为什么选择Spark与Kafka? 想象一下,你正在处理海量的数据流,而且这些数据是不断更新的,怎么办?这时候,Spark与Kafka的组合就派上用场了。Spark这家伙处理海量数据那是真快,而Kafka就像是个传送带,能把这些数据飞快地倒腾来倒腾去。两者结合,简直是天作之合! 1.2 本文结构 接下来,我会从基础概念讲起,然后一步步带你了解如何将Spark与Kafka集成起来。最后,我们还会一起动手实践几个具体的例子。别担心,我不会只是给你一堆枯燥的文字,而是会尽量用口语化的方式讲解,并穿插一些我个人的理解和思考过程。让我们开始吧! 2. 基础概念 2.1 Spark简介 Spark,全名Apache Spark,是一款开源的大数据处理框架。它的亮点在于能飞快地处理数据,还能在内存里直接运算,让处理大数据变得超级顺畅,简直爽翻天!Spark提供了多种API,包括Java、Scala、Python等,非常灵活易用。 2.2 Kafka简介 Kafka,全名Apache Kafka,是一个分布式的消息系统,主要用来处理实时数据流。这个东西特别能扛,能存好多数据,还不容易丢,用来搭建实时的数据流和应用再合适不过了。 2.3 Spark与Kafka集成的优势 - 实时处理:Spark可以实时处理Kafka中的数据。 - 灵活性:Spark支持多种编程语言,Kafka则提供丰富的API接口,两者结合让开发更加灵活。 - 高吞吐量:Spark的并行处理能力和Kafka的高吞吐量相结合,能够高效处理大规模数据流。 3. 实战准备 在开始之前,你需要先准备好环境。确保你的机器上已经安装了Java、Scala以及Spark。说到Kafka,你可以直接下载安装包,或者用Docker容器搞一个本地环境,超级方便!我推荐你用Docker,因为它真的超简单方便,还能随手搞出好几个实例来测试,特别实用。 bash 安装Docker sudo apt-get update sudo apt-get install docker.io 拉取Kafka镜像 docker pull wurstmeister/kafka 启动Kafka容器 docker run -d --name kafka -p 9092:9092 -e KAFKA_ADVERTISED_HOST_NAME=localhost wurstmeister/kafka 4. 集成实战 4.1 创建Kafka主题 首先,我们需要创建一个Kafka主题,以便后续的数据流能够被正确地发送和接收。 bash 进入容器 docker exec -it kafka /bin/bash 创建主题 kafka-topics.sh --create --topic test-topic --bootstrap-server localhost:9092 --replication-factor 1 --partitions 1 4.2 发送数据到Kafka 接下来,我们可以编写一个简单的脚本来向Kafka的主题中发送一些数据。这里我们使用Python的kafka-python库来实现。 python from kafka import KafkaProducer producer = KafkaProducer(bootstrap_servers='localhost:9092') for _ in range(10): message = "Hello, Kafka!".encode('utf-8') producer.send('test-topic', value=message) print("Message sent:", message.decode('utf-8')) producer.flush() producer.close() 4.3 使用Spark读取Kafka数据 现在,我们来编写一个Spark程序,用于读取刚才发送到Kafka中的数据。这里我们使用Spark的Structured Streaming API。 scala import org.apache.spark.sql.SparkSession val spark = SparkSession.builder.appName("SparkKafkaIntegration").getOrCreate() val df = spark.readStream .format("kafka") .option("kafka.bootstrap.servers", "localhost:9092") .option("subscribe", "test-topic") .load() val query = df.selectExpr("CAST(value AS STRING)") .writeStream .outputMode("append") .format("console") .start() query.awaitTermination() 这段代码会启动一个Spark应用程序,从Kafka的主题中读取数据,并将其打印到控制台。 4.4 实时处理 接下来,我们可以在Spark中对数据进行实时处理。例如,我们可以统计每秒钟接收到的消息数量。 scala import org.apache.spark.sql.functions._ val countDF = df.selectExpr("CAST(value AS STRING)") .withWatermark("timestamp", "1 minute") .groupBy( window($"timestamp", "1 minute"), $"value" ).count() val query = countDF.writeStream .outputMode("complete") .format("console") .start() query.awaitTermination() 这段代码会在每分钟的时间窗口内统计消息的数量,并将其输出到控制台。 5. 总结与反思 通过这次实战,我们成功地将Spark与Kafka进行了集成,并实现了数据的实时处理。虽然过程中遇到了一些挑战,但最终还是顺利完成了任务。这个经历让我明白,书本上的知识和实际动手做真是两码事。不一次次去试,根本没法真正搞懂怎么用这门技术。希望这次分享对你有所帮助,也期待你在实践中也能有所收获! 如果你有任何问题或想法,欢迎随时交流讨论。
2025-03-08 16:21:01
76
笑傲江湖
Go Gin
...--- 4. 实战技巧 动态前缀与中间件 除了分组之外,Group 还支持动态前缀和中间件绑定。哈哈,这个功能超实用啊!就像是给一帮小伙伴设了个统一的“群规”,所有成员都自动遵守。不过呢,要是哪天你想让某个小组玩点不一样的,比如换个新名字前缀啥的,也能随时调整,特别方便! 示例3:动态前缀与中间件 go package main import ( "github.com/gin-gonic/gin" "net/http" ) func main() { r := gin.Default() // 设置全局中间件 r.Use(func(c gin.Context) { c.Set("auth", "token") c.Next() }) // 创建一个用户组,并绑定中间件 userGroup := r.Group("/v1/users", func(c gin.Context) { token := c.MustGet("auth").(string) if token != "admin" { c.AbortWithStatus(http.StatusUnauthorized) return } }) // 用户注册接口 userGroup.POST("/register", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{"message": "User registered successfully"}) }) // 用户登录接口 userGroup.POST("/login", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{"message": "Login successful"}) }) r.Run(":8080") } 在这个例子中,我们为 /v1/users 组绑定了一个中间件,只有携带正确令牌的请求才能访问该组下的接口。这种方式特别适合处理权限控制问题,避免了重复编写相同逻辑的麻烦。 --- 5. 总结 拥抱清晰的代码 兄弟们,路由分组真的是一项非常实用的技术。它不仅能让我们的代码更加整洁,还能大大提升开发效率。试想一下,如果你接手一个没有任何分组的项目,面对成千上万行杂乱无章的代码,你会不会崩溃? 所以啊,从今天开始,不管你的项目多大,都要养成使用 Group 的好习惯。不管你是弄个小玩意儿,还是搞那种复杂得让人头大的微服务架构,只要分组分得好,就能省不少劲儿,效率蹭蹭往上涨!记住,代码不仅仅是给机器看的,更是给人看的。清晰的代码,就是对同行最大的尊重! 最后,希望这篇文章能帮到你们。如果你们还有什么疑问或者更好的实践方法,欢迎留言交流哦!一起进步,一起成长!
2025-04-10 16:19:55
42
青春印记
SpringBoot
...作为一个刚入行不久的Java开发工程师,我最近在负责一个基于Spring Boot的项目。这个项目需要与Oracle数据库交互,而我选用了Druid作为数据源管理工具。事情本来挺顺的,大家都觉得没啥问题,结果有一天,我们的系统突然蹦出个消息,说啥“查询超时”!就那么一下,气氛瞬间紧张了,感觉空气都凝固了似的。 当时我整个人都懵了——这到底是什么情况?是Oracle的问题吗?还是Spring Boot的锅?或者是我对Druid的理解还不够深入?带着这些疑问,我开始了一段探索之旅。今天,我想把这段经历分享给大家,希望能帮助那些和我一样遇到类似问题的朋友。 --- 2. 什么是“查询超时”? 简单来说,“查询超时”就是你的SQL语句执行的时间超过了设定的最大允许时间,导致系统直接抛出异常。哎呀,这种情况在实际开发里真的挺常见的,特别是那种高并发的场景。你要是数据库连接池没配好,那问题就容易冒出来了,简直防不胜防! 对于我来说,这个问题尤其令人头疼,因为我们的项目依赖于Oracle数据库,而Oracle本身就是一个功能强大的关系型数据库,但同时也有一些“坑”。比如说啊,它的默认查询超时时间可能设得有点短,要是咱们不改一下这个设置,那查询的时候就容易卡壳儿,最后连结果都拿不到。 --- 3. Spring Boot与Druid集成的基本配置 首先,让我们回顾一下如何在Spring Boot项目中集成Druid。这是一个非常基础的操作,但也是解决问题的第一步。 3.1 添加依赖 在pom.xml文件中添加Druid的相关依赖: xml com.alibaba druid-spring-boot-starter 1.2.8 3.2 配置数据源 接着,在application.yml文件中配置Druid的数据源信息: yaml spring: datasource: type: com.alibaba.druid.pool.DruidDataSource driver-class-name: oracle.jdbc.driver.OracleDriver url: jdbc:oracle:thin:@localhost:1521:orcl username: your_username password: your_password druid: initial-size: 5 max-active: 20 min-idle: 5 max-wait: 60000 time-between-eviction-runs-millis: 60000 min-evictable-idle-time-millis: 300000 validation-query: SELECT 1 FROM DUAL test-while-idle: true test-on-borrow: false test-on-return: false 这段配置看似简单,但实际上每一项参数都需要仔细斟酌。比如说啊,“max-wait”这个参数呢,就是说咱们能等连接连上的最长时间,单位是毫秒,相当于给它设了个“最长等待时间”;然后还有个“validation-query”,这个名字听起来就挺专业的,它的作用就是检查连接是不是还正常好用;最后那个“test-while-idle”,它就像是个“巡逻兵”,负责判断要不要在连接空闲的时候去检测一下这条连接还能不能用。 --- 4. 查询超时问题的初步排查 当我第一次遇到查询超时问题时,我的第一反应是:是不是Oracle那边的SQL语句太慢了?于是,我开始检查SQL语句的性能。 4.1 检查SQL语句 我用PL/SQL Developer连接到Oracle数据库,运行了一下报错的SQL语句。结果显示,这条SQL语句确实需要花费较长时间才能完成。但问题是,为什么Spring Boot会直接抛出超时异常呢? 这时,我才意识到,可能是Druid的数据源配置有问题。于是我翻阅了Druid的官方文档,发现了一个关键点:Druid默认的查询超时时间为10秒。 4.2 修改Druid的查询超时时间 为了延长查询超时时间,我在application.yml中加入了以下配置: yaml spring: datasource: druid: query-timeout: 30000 这里的query-timeout参数就是用来设置查询超时时间的,单位是毫秒。经过这次调整后,我发现查询超时的问题暂时得到了缓解。 --- 5. 进一步优化 结合Oracle的设置 虽然Druid的配置解决了部分问题,但我仍然觉得不够完美。于是,我又转向了Oracle数据库本身的设置。 5.1 设置Oracle的查询超时 在Oracle中,可以通过设置statement_timeout参数来控制查询超时时间。这个参数可以在会话级别或全局级别进行设置。 例如,在Spring Boot项目中,我们可以通过JDBC连接字符串传递这个参数: yaml spring: datasource: url: jdbc:oracle:thin:@localhost:1521:orcl?oracle.net.CONNECT_TIMEOUT=30000&oracle.jdbc.ReadTimeout=30000 这里的CONNECT_TIMEOUT和ReadTimeout分别表示连接超时时间和读取超时时间。通过这种方式,我们可以进一步提高系统的容错能力。 --- 6. 我的感悟与总结 经过这次折腾,我对Spring Boot与Druid的集成有了更深的理解。说实话,好多技术难题没那么玄乎,就是看着吓人而已。只要你肯静下心来琢磨琢磨,肯定能想出个辙来! 在这里,我也想给新手朋友们一些建议: 1. 多看官方文档 无论是Spring Boot还是Druid,它们的官方文档都非常详细,很多时候答案就在那里。 2. 学会调试 遇到问题时,不要急于求解,先用调试工具一步步分析问题所在。 3. 保持耐心 技术问题往往需要反复尝试,不要轻易放弃。 最后,我想说的是,编程之路充满了挑战,但也正因为如此才显得有趣。希望大家都能在这个过程中找到属于自己的乐趣! --- 好了,这篇文章就到这里啦!如果你也有类似的经历或想法,欢迎在评论区跟我交流哦!
2025-04-21 15:34:10
39
冬日暖阳_
Apache Lucene
...he Lucene与javalangNullPointerException: null 一、引言 初遇Lucene与NullPointer 嘿,朋友们!今天我们要聊聊一个非常有趣的技术话题——Apache Lucene。这是一款开源的全文搜索库,它在搜索引擎领域有着举足轻重的地位。话说在咱们聊Lucene之前,我得先吐槽一下最近在开发中遇到的一个超级烦人的bug——就是那个“javalangNullPointerException: null”。简直让人抓狂啊!这个异常常常会出现在我们的代码中,特别是在处理复杂数据结构时。那么,让我们一边学习如何优雅地使用Lucene,一边看看如何巧妙地避开NullPointerException吧! 二、Lucene的魅力所在 从概念到实践 首先,让我们来了解一下Lucene的基本概念。Lucene可真是个厉害的角色,它是个超级能打的文本搜索小能手,给咱们提供了全套的工具,不管是建索引、搜东西还是让搜索结果更给力,都能搞定!简单来说,Lucene就像是你电脑上的超级搜索引擎,但它的能力远不止于此。 2.1 创建你的第一个索引 在开始之前,你需要确保已经在你的项目中引入了Lucene的相关依赖。接下来,让我们通过一些简单的步骤来创建一个基本的索引: java import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.apache.lucene.document.Document; import org.apache.lucene.document.Field; import org.apache.lucene.index.IndexWriter; import org.apache.lucene.index.IndexWriterConfig; import org.apache.lucene.store.Directory; import org.apache.lucene.store.RAMDirectory; public class SimpleIndexer { public static void main(String[] args) throws Exception { // 创建内存中的目录,用于存储索引 Directory directory = new RAMDirectory(); // 创建索引配置 IndexWriterConfig config = new IndexWriterConfig(new StandardAnalyzer()); // 创建索引写入器 IndexWriter indexWriter = new IndexWriter(directory, config); // 创建文档对象 Document doc = new Document(); doc.add(new Field("content", "Hello Lucene!", Field.Store.YES, Field.Index.ANALYZED)); // 添加文档到索引 indexWriter.addDocument(doc); // 关闭索引写入器 indexWriter.close(); } } 在这个例子中,我们首先创建了一个内存中的目录(RAMDirectory),这是为了方便演示。接着,我们定义了索引配置,并使用StandardAnalyzer对文本进行分析。最后,我们创建了一个文档,并将它添加到了索引中。是不是很简单呢? 2.2 解决NullPointerException:预防胜于治疗 现在,让我们回到那个恼人的NullPointerException问题上。在用Lucene做索引的时候,经常会被空指针异常坑到,特别是当你试图去访问那些还没被初始化的对象或者字段时。为了避免这种情况,我们需要养成良好的编程习惯,比如: - 检查null值:在访问任何对象前,先检查是否为null。 - 初始化变量:确保所有对象在使用前都被正确初始化。 - 使用Optional类:Java 8引入的Optional类可以帮助我们更好地处理可能为空的情况。 例如,假设我们在处理索引文档时遇到了一个可能为空的字段,我们可以这样处理: java // 假设我们有一个可能为空的内容字段 String content = getContent(); // 这里可能会返回null if (content != null) { doc.add(new Field("content", content, Field.Store.YES, Field.Index.ANALYZED)); } else { System.out.println("内容字段为空!"); } 三、深入探索 Lucene的高级特性 3.1 搜索:不仅仅是查找 除了创建索引外,Lucene还提供了强大的搜索功能。让我们来看一个简单的搜索示例: java import org.apache.lucene.index.DirectoryReader; import org.apache.lucene.queryparser.classic.QueryParser; import org.apache.lucene.search.IndexSearcher; import org.apache.lucene.search.Query; import org.apache.lucene.search.ScoreDoc; import org.apache.lucene.search.TopDocs; import org.apache.lucene.store.Directory; public class SimpleSearcher { public static void main(String[] args) throws Exception { Directory directory = new RAMDirectory(); IndexWriterConfig config = new IndexWriterConfig(new StandardAnalyzer()); IndexWriter indexWriter = new IndexWriter(directory, config); Document doc = new Document(); doc.add(new Field("content", "Hello Lucene!", Field.Store.YES, Field.Index.ANALYZED)); indexWriter.addDocument(doc); indexWriter.close(); DirectoryReader reader = DirectoryReader.open(directory); IndexSearcher searcher = new IndexSearcher(reader); QueryParser parser = new QueryParser("content", new StandardAnalyzer()); Query query = parser.parse("lucene"); TopDocs results = searcher.search(query, 10); for (ScoreDoc scoreDoc : results.scoreDocs) { System.out.println(searcher.doc(scoreDoc.doc).get("content")); } reader.close(); } } 这段代码展示了如何使用QueryParser解析查询字符串,并使用IndexSearcher执行搜索操作。通过这种方式,我们可以轻松地从索引中检索出相关的文档。 3.2 高级搜索技巧:优化你的查询 当你开始构建更复杂的搜索逻辑时,Lucene提供了许多高级功能来帮助你优化搜索结果。比如说,你可以用布尔查询把好几个搜索条件拼在一起,或者用模糊匹配让搜索变得更灵活一点。这样找东西就方便多了! java import org.apache.lucene.index.Term; import org.apache.lucene.search.BooleanClause; import org.apache.lucene.search.BooleanQuery; import org.apache.lucene.search.FuzzyQuery; // 构建布尔查询 BooleanQuery booleanQuery = new BooleanQuery(); booleanQuery.add(new TermQuery(new Term("content", "hello")), BooleanClause.Occur.MUST); booleanQuery.add(new FuzzyQuery(new Term("content", "lucen")), BooleanClause.Occur.SHOULD); TopDocs searchResults = searcher.search(booleanQuery, 10); 在这个例子中,我们创建了一个布尔查询,其中包含两个子查询:一个是必须满足的精确匹配查询,另一个是可选的模糊匹配查询。这种组合可以显著提升搜索的准确性和相关性。 四、结语 享受编码的乐趣 通过这篇文章,我们不仅学习了如何使用Apache Lucene来创建和搜索索引,还一起探讨了如何有效地避免NullPointerException。希望这些示例代码和技巧能对你有所帮助。记住,编程不仅仅是一门技术,更是一种艺术。尽情享受编程的乐趣吧,一路探索和学习,你会发现自己的收获多到让人惊喜!如果你有任何问题或想法,欢迎随时与我交流! --- 以上就是关于Apache Lucene与javalangNullPointerException: null的讨论。希望能通过这篇文章点燃你对Lucene的热情,让你在实际开发中游刃有余,玩得更嗨!让我们一起继续探索更多有趣的技术吧!
2024-10-16 15:36:29
88
岁月静好
Go Gin
...言虽然是个静态类型的编程语言,跑起来那速度杠杠的,谁用谁知道!不过呢,它的小生态也是个绕不开的话题,跟Java或者Python比起来,相关的工具、库啊,还有社区里的人气就稍微逊色那么一点点啦。嘿,我刚去瞅了瞅Gin的官网,看了几个案例之后,真是有点被圈粉了!这框架不光跑得飞快,连文档都整得明明白白的,一看就懂。还有那个社区,感觉特别热闹,大家都很积极地交流分享,这种氛围真的超棒!尤其是那种对反应速度要求特别高、分分钟得赶紧干活的场合,Gin这家伙还真挺靠谱的! --- 二、快速入门 搭建基本框架 首先,我们需要安装Gin库。如果你已经安装了Go环境,那么只需运行以下命令即可: bash go get -u github.com/gin-gonic/gin 接下来,我们来写一个最简单的HTTP服务程序: go package main import ( "github.com/gin-gonic/gin" "net/http" ) func main() { r := gin.Default() r.GET("/ping", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{ "message": "pong", }) }) r.Run(":8080") // 启动服务器监听8080端口 } 这段代码创建了一个Gin路由,并定义了一个GET请求路径/ping,当客户端访问这个地址时,会返回JSON格式的数据{"message": "pong"}。 个人感悟 刚接触这段代码的时候,我有点被惊到了——这么少的代码竟然能完成如此多的功能!当然,这也得益于Gin的设计理念:尽可能简化开发流程,让程序员专注于业务逻辑而不是框架细节。 --- 三、实时处理的核心 WebSocket支持 既然我们要讨论实时处理,那么就不得不提WebSocket。WebSocket就像是一个永不掉线的“聊天热线”,能让浏览器和服务器一直保持着畅通的联系。跟传统的请求-响应模式不一样,它可以让双方随时自由地“唠嗑”,想发啥就发啥,特别适合那些需要实时互动的应用,比如聊天室里你一言我一语,或者股票行情那种分分钟都在变化的东西,用它简直太合适了! Gin内置了对WebSocket的支持,我们可以直接通过中间件来实现这一功能。下面是一个完整的WebSocket示例: go package main import ( "log" "net/http" "github.com/gin-gonic/gin" "github.com/gorilla/websocket" ) var upgrader = websocket.Upgrader{ ReadBufferSize: 1024, WriteBufferSize: 1024, CheckOrigin: func(r http.Request) bool { return true // 允许跨域 }, } func handleWebSocket(c gin.Context) { ws, err := upgrader.Upgrade(c.Writer, c.Request, nil) if err != nil { log.Println("Failed to upgrade:", err) return } defer ws.Close() for { messageType, msg, err := ws.ReadMessage() if err != nil { log.Println("Error reading message:", err) break } log.Printf("Received: %s\n", string(msg)) err = ws.WriteMessage(messageType, msg) if err != nil { log.Println("Error writing message:", err) break } } } func main() { r := gin.Default() r.GET("/ws", handleWebSocket) r.Run(":8080") } 在这段代码中,我们利用gorilla/websocket包实现了WebSocket升级,并在handleWebSocket函数中处理了消息的读取与发送。你可以试着在浏览器里输入这个地址:ws://localhost:8080/ws,然后用JavaScript发个消息试试,看能不能马上收到服务器的回应。 深入探讨 说实话,刚开始写这部分代码的时候,我还担心WebSocket的兼容性问题。后来发现,只要正确设置了CheckOrigin方法,大多数现代浏览器都能正常工作。这让我更加坚定了对Gin的信心——它虽然简单,但足够强大! --- 四、进阶技巧 并发与性能优化 在实际项目中,我们可能会遇到高并发的情况。为了保证系统的稳定性,我们需要合理地管理线程池和内存分配。Gin提供了一些工具可以帮助我们做到这一点。 例如,我们可以使用sync.Pool来复用对象,减少垃圾回收的压力。下面是一个示例: go package main import ( "sync" "time" "github.com/gin-gonic/gin" ) var pool sync.Pool func init() { pool = &sync.Pool{ New: func() interface{} { return make([]byte, 1024) }, } } func handler(c gin.Context) { data := pool.Get().([]byte) defer pool.Put(data) copy(data, []byte("Hello World!")) time.Sleep(100 time.Millisecond) // 模拟耗时操作 c.String(http.StatusOK, string(data)) } func main() { r := gin.Default() r.GET("/", handler) r.Run(":8080") } 在这个例子中,我们定义了一个sync.Pool来存储临时数据。每次处理请求时,从池中获取缓冲区,处理完毕后再放回池中。这样可以避免频繁的内存分配和释放,从而提升性能。 反思与总结 其实,刚开始学习这段代码的时候,我对sync.Pool的理解还停留在表面。直到后来真正用它解决了性能瓶颈,我才意识到它的价值所在。这也让我明白,优秀的框架只是起点,关键还是要结合实际需求去探索和实践。 --- 五、未来展望 Gin与实时处理的无限可能 Gin的强大之处不仅仅在于它的易用性和灵活性,更在于它为开发者提供了广阔的想象空间。无论是构建大型分布式系统,还是打造小型实验项目,Gin都能胜任。 如果你也想尝试用Gin构建实时处理系统,不妨从一个小目标开始——比如做一个简单的在线聊天室。相信我,当你第一次看到用户实时交流的画面时,那种成就感绝对会让你欲罢不能! 最后的话 写这篇文章的过程,其实也是我自己重新审视Gin的过程。其实这个东西吧,说白了挺简单的,但让我学到了一个本事——用最利索的办法搞定事情。希望能这篇文章也能点醒你,让你在今后的开发路上,慢慢琢磨出属于自己的那套玩法!加油吧,程序员们!
2025-04-07 16:03:11
65
时光倒流
MemCache
...。 4. 实战案例 MemCache使用示例 为了更好地理解MemCache的工作流程及其可能出现的问题,我们通过一个简单的示例来展示其基本用法: python from pymemcache.client import base 创建MemCache客户端连接 client = base.Client(('localhost', 11211)) 缓存一个值 client.set('key', 'value') 从缓存中获取值 print(client.get('key')) 删除缓存中的值 client.delete('key') 5. 避免MutexException的策略 解决MutexException的关键在于正确管理互斥锁。以下是一些实用的策略: a. 使用原子操作 MemCache提供了原子操作,如add、replace、increment等,可以安全地执行更新操作而无需额外的锁保护。 b. 线程安全编程 确保所有涉及到共享资源的操作都是线程安全的。这意味着避免在多线程环境中直接访问全局变量或共享资源,而是使用线程本地存储或其他线程安全的替代方案。 c. 锁优化 合理使用锁。哎呀,你懂的,有时候网站或者应用里头有些东西经常被大家看,但是实际上内容变动不多。这时候,为了不让系统在处理这些信息的时候卡壳太久,我们可以用个叫做“读锁”的小技巧。简单来说,读锁就像是图书馆里的书,大家都想翻阅,但是不打算乱动它,所以不需要特别紧锁起来,这样能提高大家看书的效率,也避免了不必要的等待。此外,考虑使用更高效的锁实现,比如使用更细粒度的锁或非阻塞算法。 d. 锁超时 在获取锁时设置超时时间,避免无限等待。哎呀,如果咱们在规定的时间内没拿到钥匙(这里的“锁”就是需要获得的权限或资源),那咱们就得想点别的办法了。比如说,咱们可以先把手头的事情放一放,退一步海阔天空嘛,回头再试试;或者干脆来个“再来一次”,看看运气是不是转了一把。别急,总有办法解决问题的! 6. 结语 MemCache的未来与挑战 随着技术的发展,MemCache面临着更多的挑战,包括更高的并发处理能力、更好的跨数据中心一致性以及对新兴数据类型的支持。然而,通过持续优化互斥锁管理策略,我们可以有效地避免MutexException等并发相关问题,让MemCache在高性能缓存系统中发挥更大的作用。嘿,小伙伴们!在咱们的编程路上,要记得跟紧时代步伐,多看看那些最棒的做法和新出炉的技术。这样,咱们就能打造出既稳固又高效的超级应用了!别忘了,技术这玩意儿,就像个不停奔跑的小兔子,咱们得时刻准备着,跟上它的节奏,不然可就要被甩在后面啦!所以,多学习,多实践,咱们的编程技能才能芝麻开花节节高!
2024-09-02 15:38:39
38
人生如戏
Mongo
...apReduce使用技巧:从入门到精通 引言 在数据库的世界里,MongoDB以其独特的NoSQL特性,为开发者提供了灵活性极高的数据存储解决方案。哎呀,兄弟!你想想看,咱们要是碰上一堆数据要处理,那些老一套的查询方法啊,那可真是不够用,捉襟见肘。就像你手头一堆零钱,想买个大蛋糕,结果发现零钱不够,还得再跑一趟银行兑换整钞。那时候,你就得琢磨琢磨,是不是有啥更省力、效率更高的办法了。哎呀,你知道的,MapReduce就像一个超级英雄,专门在大数据的世界里解决难题。它就像个大厨,能把一大堆食材快速变成美味佳肴。以前,处理海量数据就像是给蜗牛搬家,慢得让人着急。现在有了MapReduce,就像给搬家公司装了涡轮增压,速度嗖嗖的,效率那叫一个高啊!无论是分析市场趋势、优化业务流程还是挖掘用户行为,MapReduce都成了我们的好帮手,让我们的工作变得更轻松,效率也蹭蹭往上涨!本文将带你深入了解MongoDB中的MapReduce,从基础概念到实际应用,再到优化策略,一步步带你掌握这门技术。 1. MapReduce的基础概念 MapReduce是一种编程模型,用于大规模数据集的并行运算。在MongoDB中,我们可以通过map()和reduce()函数实现数据的分组、转换和聚合。基本流程如下: - Map阶段:数据被分割成多个分片,每个分片经过map()函数处理,产生键值对形式的数据流。 - Shuffle阶段:键相同的数据会被合并在一起,为reduce()阶段做准备。 - Reduce阶段:针对每个键,执行reduce()函数,合并所有相关值,产生最终的结果集。 2. MongoDB中的MapReduce实践 为了让你更好地理解MapReduce在MongoDB中的应用,下面我将通过一个具体的例子来展示如何使用MapReduce处理数据。 示例代码: 假设我们有一个名为sales的集合,其中包含销售记录,每条记录包含product_id和amount两个字段。我们的目标是计算每个产品的总销售额。 javascript // 首先,我们定义Map函数 db.sales.mapReduce( function() { // 输出键为产品ID,值为销售金额 emit(this.product_id, this.amount); }, function(key, values) { // 将所有销售金额相加得到总销售额 var total = 0; for (var i = 0; i < values.length; i++) { total += values[i]; } return total; }, { "out": { "inline": 1, "pipeline": [ {"$group": {"_id": "$_id", "total_sales": {$sum: "$value"} }} ] } } ); 这段代码首先通过map()函数将每个销售记录映射到键为product_id和值为amount的键值对。哎呀,这事儿啊,就像是这样:首先,你得有个列表,这个列表里头放着一堆商品,每一项商品下面还有一堆数字,那是各个商品的销售价格。然后,咱们用一个叫 reduce() 的魔法棒来处理这些数据。这个魔法棒能帮咱们把每一样商品的销售价格加起来,就像数钱一样,算出每个商品总共卖了多少钱。这样一来,我们就能知道每种商品的总收入啦!哎呀,你懂的,我们用out这个参数把结果塞进了一个临时小盒子里面。然后,我们用$group这个魔法棒,把数据一通分类整理,看看哪些地方数据多,哪些地方数据少,这样就给咱们的数据做了一次大扫除,整整齐齐的。 3. 性能优化与注意事项 在使用MapReduce时,有几个关键点需要注意,以确保最佳性能: - 数据分区:合理的数据分区可以显著提高MapReduce的效率。通常,我们会根据数据的分布情况选择合适的分区策略。 - 内存管理:MapReduce操作可能会消耗大量内存,特别是在处理大型数据集时。合理设置maxTimeMS选项,限制任务运行时间,避免内存溢出。 - 错误处理:在实际应用中,处理潜在的错误和异常情况非常重要。例如,使用try-catch块捕获并处理可能出现的异常。 4. 进阶技巧与高级应用 对于那些追求更高效率和更复杂数据处理场景的开发者来说,以下是一些进阶技巧: - 使用索引:在Map阶段,如果数据集中有大量的重复键值对,使用索引可以在键的查找过程中节省大量时间。 - 异步执行:对于高并发的应用场景,可以考虑将MapReduce操作异步化,利用MongoDB的复制集和分片集群特性,实现真正的分布式处理。 结语 MapReduce在MongoDB中的应用,为我们提供了一种高效处理大数据集的强大工具。哎呀,看完这篇文章后,你可不光是知道了啥是MapReduce,啥时候用,还能动手在自己的项目里把MapReduce用得溜溜的!就像是掌握了新魔法一样,你学会了怎么给这玩意儿加点料,让它在你的项目里发挥出最大效用,让工作效率蹭蹭往上涨!是不是感觉整个人都精神多了?这不就是咱们追求的效果嘛!嘿,兄弟!听好了,掌握新技能最有效的办法就是动手去做,尤其是像MapReduce这种技术。别光看书上理论,找一个你正在做的项目,大胆地将MapReduce实践起来。你会发现,通过实战,你的经验会大大增加,对这个技术的理解也会更加深入透彻。所以,行动起来吧,让自己的项目成为你学习路上的伙伴,你肯定能从中学到不少东西!让我们继续在数据处理的旅程中探索更多可能性!
2024-08-13 15:48:45
149
柳暗花明又一村
转载文章
...。 三、Python编程从入门到实践 《Python编程从入门到实践》书如其名,本书简明清晰地讲解了入门Python所需学习的基本知识,同时在讲解过程中穿插实战演练,使读者对Python有更加深刻的理解,是一本入门Python的难得好书,推荐给大家学习。 我想说,Python是否值得学,已经不再是值得怀疑的问题了。但是,如何能高效学会Python,永远是个值得思考的重要问题。这个问题的答案,是绕不开本书的。 四、Java编程思想 《Java编程思想(第4版)》赢得了全球程序员的广泛赞誉,即使是最晦涩的概念,在Bruce Eckel的文字亲和力和小而直接的编程示例面前也会化解于无形。从Java的基础语法到最高级特性(深入的面向对象概念、多线程、自动项目构建、单元测试和调试等),《Java编程思想(第4版)》都能逐步指导你轻松掌握。从java编程思想这本书获得的各项大奖以及来自世界各地的读者评论中,不难看出这是一本经典之作。 五、算法导论 《算法导论》提供了对当代计算机算法研究的一个全面、综合性的介绍。全书共八部分,内容涵盖基础知识、排序和顺序统计量、数据结构、高级设计和分析技术、高级数据结构、图算法、算法问题选编,以及数学基础知识。书中深入浅出地介绍了大量的算法及相关的数据结构,以及用于解决一些复杂计算问题的高级策略(如动态规划、贪心算法、摊还分析等),重点在于算法的分析与设计。对于每一个专题,作者都试图提供目前最新的研究成果及样例解答,并通过清晰的图示来说明算法的执行过程。 六、深入理解计算机系统 《深入理解计算机系统》是将计算机软件和硬件理论结合讲述的经典教程,内容覆盖计算机导论、体系结构和处理器设计等多门课程。本书的大优点是为程序员描述计算机系统的实现细节,通过描述程序是如何映射到系统上,以及程序是如何执行的,使读者更好地理解程序的行为为什么是这样的,以及造成效率低下的原因。 七、鸟哥的Linux私房菜 《鸟哥的Linux私房菜基础学习篇》全面而详细地介绍了Linux操作系统。着重说明计算机的基础知识、Linux的学习方法,如何规划和安装Linux主机以及CentOS 7.x的安装、登录与求助方法;介绍Linux的文件系统、文件、目录与磁盘的管理;文字模式接口shell和管理系统的好帮手shell脚本,另外还介绍了文字编辑器vi和vim的使用方法;对于系统安全非常重要的Linux账号的管理、磁盘配额、高级文件系统管理、计划任务以及进程管理,系统管理员(root)的管理事项。 本书内容丰富全面,基本概念的讲解非常细致,深入浅出。各种功能和命令的介绍,都配以大量的实例操作和详尽的解析。本书是初学者学习Linux不可多得的一本入门好书。 八、计算机网络自顶向下方法 《计算机网络自顶向下方法》是经典的计算机网络教材,采用作者独创的自顶向下方法来讲授计算机网络的原理及其协议,自第1版出版以来已经被数百所大学和学院选作教材,被译为14种语言。 新版保持了以前版本的特色,继续关注因特网和计算机网络的现代处理方式,注重原理和实践,为计算机网络教学提供一种新颖和与时俱进的方法。同时,第7版进行了相当多的修订和更新,首次改变了各章的组织结构,将网络层分成两章(第4章关注网络层的数据平面,第5章关注网络层的控制平面) 九、MySQL是怎样运行的 《MySQL是怎样运行的》采用诙谐幽默、通俗易懂的写作风格,针对上面这些问题给出了相应的解答方案。尽管本书的表达方式与司空见惯的学术派、理论派IT图书有显著区别,但本书的确是相当正经的专业技术图书,内容涵盖了使用MySQL的同学在求职面试和工作中常见的一些核心概念。无论是身居MySQL专家身份的技术人员,还是技术有待进一步提升的DBA,甚至是刚投身于数据库行业的“萌新”人员,本书都是他们彻底了解MySQL运行原理的优秀图书。 十、编程珠玑 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_65485112/article/details/122007938。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-11 11:49:14
119
转载
转载文章
...和作者。 简介 学习编程,数据结构是你必须要掌握的基础知识,那么数据结构到底是什么呢? 根据百度百科的介绍,数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。 听听这是人话么,我帮你们翻译一下,其实数据结构就是用来描述计算机里存储数据的一种数学模型,因为计算机里要存储很多乱七八糟的数据,所以也需要不同的数据结构来描述。 本文思维导图 为什么要学数据结构 了解了基本概念之后,接下来我们再来看看,为什么我们要学习数据结构呢? 在许多类型的程序的设计中,数据结构的选择是一个基本的设计考虑因素。许多大型系统的构造经验表明,系统实现的困难程度和系统构造的质量都严重的依赖于是否选择了最优的数据结构。 许多时候,确定了数据结构后,算法就容易得到了。有些时候事情也会反过来,我们根据特定算法来选择数据结构与之适应。不论哪种情况,选择合适的数据结构都是非常重要的。 选择了数据结构,算法也随之确定,是数据而不是算法是系统构造的关键因素。这种洞见导致了许多种软件设计方法和程序设计语言的出现,面向对象的程序设计语言就是其中之一。 也就是说,选定数据结构往往是解决问题的核心,比如我们做一道算法题,往往就要先确定数据结构,再根据这个数据结构去思考怎么解题。 如果没有数据结构的基础知识,也就没有谈算法的意义了,很多时候即使你会使用一些封装好的编程api,但你却不知道其背后的实现原理,比如hashmap,linkedlist这些Java里的集合类,实际上都是JDK封装好的基础数据结构。 如何学习数据结构 第一次接触 我第一次接触数据结构这门课还是4年前,那这时候我在准备考研,专业课考的就是数据结构与算法,作为一个非科班的小白,对这个东西可以说是一窍不通。 这个时候的我只有一点点c语言的基础,基本上可以忽略不计,所以小白同学也可以按照这个思路进行学习。 数据结构基本上是考研的必考科目,所以我一开始使用的是考研的复习书籍,《天勤数据结构》和《王道数据结构》这两个家的书都是专门为计算机考研服务的,可以直接百度,这两本书对于我这种小白来说居然都是可以看懂的,所以,用来入门也是ok的。 入门学习阶段 最早的时候我并没有直接看书,而是先打算先看视频,因为视频更好理解呀,找视频的办法就是百度,于是当时找到的最好资源就是《郝斌的数据结构》这个视频应该是很早之前录制的了,但是对于小白来说是够用的,特别基础,讲的很仔细。 从最开始的数组、线性表,再讲到栈和队列,以及后面更复杂的二叉树、图、哈希表,大概有几十个视频,那个时候正值暑假,我按照每天一个视频的进度看完了,看的时候还得时不时地实践一下,更有助于理解。 看完了这个系列的视频之后,我又转战开始啃书了,视频里讲的都是数据结构的基础,而书上除了基础之外,还有一些算法题目,比如你学完了线性表和链表之后,书上就会有相关的算法题,比如数组的元素置换,链表的逆置等等,这些在日后看来很容易的题目,当时把我难哭了。 好在大部分题目是有讲解的,看完讲解之后还能安抚一下我受伤的心灵。 记住这本书,我在考研之前翻了至少有三四遍。 强化学习阶段 完成了第一波视频+书籍的学习之后,我们应该已经对数据结构有了初步的了解了,对一些简单的数据结构算法也应该有所了解了,比如栈的入栈和出栈,队列的进队和出队,二叉树的先序遍历和后续遍历、层次遍历,图的最短路径算法,深度优先遍历等等。 有了一定的基础之后,我们需要对哪方面进行强化学习呢? 那就要看你学习数据结构的目的是什么了,比如你学习数据结构是为了能做算法题,那么接下来你应该重点去学习算法方面的知识,后续我们也将有一篇新的文章来讲怎么学习算法,敬请期待。 当然,我当时主要是复习考研,所以还是针对专业课的历年真题来复习,像我们的卷子中就考察了很多关于哈希表、最短路径算法、KMP算法、赫夫曼算法以及最短路径算法的应用。 对于考卷上的一些知识点,我觉得掌握的并不是很好,于是又买了《王道数据结构》以及一些并没有什么卵用的书回来看,再次强化了基础。 并且,由于我们的复试通常会考察一些比较经典的算法问题,所以我又花了很多时间去学习这些算法题,这些题目并非数据结构的基础算法,所以在之前的书和视频中可能找不到答案。 于是我又在网上搜到了另一个系列视频《小甲鱼的数据结构视频》里面除了讲解数据结构之外,还讲解了更多经典的算法题,比如八皇后问题,汉诺塔问题,马踏棋盘,旅行商问题等,这些问题对于新手来说真的是很头大的,使用视频学习确实效果更佳。 实践阶段 纸上得来终觉浅,绝知此事要躬行。 众所周知,算法题和数学题一样,需要多加练习,而且考研的时候必须要手写算法,于是我就经常在纸上写(抄)算法,你还别说,就算是抄,多抄几次也有助于理解。 很多基础的算法,比如层次遍历,深度优先遍历和广度优先遍历,多写几遍更有助理解,再比如稍微复杂一点的迪杰斯特拉算法,不多写几遍你可真记不住。 除了在纸上写之外,更好的办法自然是在电脑上敲了,写Java的使用Java写,写C++ 的用C++ 写,总之用自己擅长的语言实现就好,尴尬的是我当时只会c,所以就只好老老实实地用devc++写简单的c语言程序了。 至此,我们也算是学会了数据结构的基础知识了,至少知道每个数据结构的特性,会写常见的数据结构算法,甚至偶尔还能掏出一个八皇后出来。 推荐资源 书籍 《天勤数据结构》 《王道数据结构》 如果你要考研的话,这两本书可不要错过 严蔚敏《数据结构C语言版》 这本书是大学本科计算机专业常用的教科书,年代久远,可以看看,官方也有配套的教学视频 《大话数据结构》 官方教材大家都懂的,比较不接地气,这本书对于很多新手来说是更适合入门的书籍。 《数据结构与算法Java版》 如果你是学Java的,想有一本Java语言描述的数据结构书籍,可以试试这本,但是这本书显然比较复杂,不适合入门使用。 视频 《郝斌数据结构》 这个视频上文有提到过,年代比较久远,但是入门足够了。 《小甲鱼数据结构与算法》 这个视频比较新,更加全面,有很多关于经典算法的教程,作者也入驻了B站,有兴趣也可以到B站看他的视频。 总结 关于数据结构的学习,我们就讲到这里了,如果还有什么疑问也可以到我公众号里找我探讨,虽然我们提到了算法,但是这里只关注一些基础的数据结构算法,后续会有关于“怎么学算法“的文章推出,敬请期待。 本篇文章为转载内容。原文链接:https://blog.csdn.net/a724888/article/details/104586757。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-12 23:35:52
134
转载
ElasticSearch
...线了!不过这里有个小技巧分享给大家:如果你不确定扩容是否成功,可以通过以下命令检查磁盘使用情况: bash df -h 看到磁盘空间变大了,心里顿时舒坦了不少。 --- 4. 解决方案二 调整ElasticSearch配置 当然啦,仅仅扩容还不够,还需要优化ElasticSearch的配置文件。特别是那些容易导致内存不足或磁盘占用过高的参数,比如indices.memory.index_buffer_size和indices.store.throttle.max_bytes_per_sec。修改后的配置文件大概长这样: yaml cluster.routing.allocation.disk.threshold_enabled: true cluster.routing.allocation.disk.watermark.low: 85% cluster.routing.allocation.disk.watermark.high: 90% cluster.routing.allocation.disk.watermark.flood_stage: 95% cluster.info.update.interval: 30s 这些设置的意思是告诉ElasticSearch,当磁盘使用率达到85%时开始警告,达到90%时限制写入,超过95%时完全停止操作。这样可以有效避免再次出现类似的问题。 --- 5. 实战演练 代码中的应对策略 除了调整配置,我们还可以通过编写脚本来监控和处理NodeNotActiveException。比如,下面这段Java代码展示了如何捕获异常并记录日志: java import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.client.RestClient; import org.elasticsearch.client.indices.CreateIndexRequest; import org.elasticsearch.client.indices.CreateIndexResponse; public class ElasticSearchExample { public static void main(String[] args) { RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("localhost", 9200, "http"))); try { CreateIndexRequest request = new CreateIndexRequest("test_index"); CreateIndexResponse response = client.indices().create(request, RequestOptions.DEFAULT); System.out.println("Index created: " + response.isAcknowledged()); } catch (Exception e) { if (e instanceof ClusterBlockException) { System.err.println("Cluster block detected: " + e.getMessage()); } else { System.err.println("Unexpected error: " + e.getMessage()); } } finally { try { client.close(); } catch (IOException ex) { System.err.println("Failed to close client: " + ex.getMessage()); } } } } 这段代码的作用是在创建索引时捕获可能发生的异常,并根据异常类型采取不同的处理方式。如果遇到ClusterBlockException,我们可以选择延迟重试或者其他补偿措施。 --- 6. 总结与反思 成长路上的一课 通过这次经历,我深刻体会到,作为一名开发者,不仅要掌握技术细节,还要学会从实际问题出发,找到最优解。NodeNotActiveException这个错误看着不起眼,但其实背后有不少门道呢!比如说,你的服务器硬件是不是有点吃不消了?集群那边有没有啥小毛病没及时发现?还有啊,咱们平时运维的时候是不是也有点松懈了?这些都是得好好琢磨的地方! 最后,我想说的是,技术学习的过程就像爬山一样,有时候会遇到陡峭的山坡,但只要坚持下去,总能看到美丽的风景。希望这篇文章能给大家带来一些启发和帮助!如果还有其他疑问,欢迎随时交流哦~
2025-03-14 15:40:13
64
林中小径
转载文章
...的招聘力度,尤其注重实战经验和项目背景。在面试环节中,除了基础的技术原理外,也开始更多地引入实际工作场景的问题,比如高并发处理、分布式架构设计、微服务治理等热门领域。 对于准备跳槽或即将踏入职场的开发者来说,扎实的理论知识与实践经验缺一不可。例如,深入理解JVM性能优化、熟练运用MySQL索引优化查询效率、掌握Spring框架生命周期及其在项目中的应用场景,这些都已成为衡量后端开发者技术水平的重要标准。 同时,持续学习和自我提升的习惯同样被面试官看重。正如程序员H所提及的,阅读技术书籍不仅能帮助拓宽视野,也能在面试时展现自己的主动学习态度。当前市面上诸如《深入理解Java虚拟机》、《高性能MySQL》等经典著作,都是值得开发者反复研读的宝贵资源。 此外,在简历制作方面,突出个人优势和项目贡献至关重要。不仅要详尽描述自己参与项目的具体职责和取得的成果,更要体现出在团队协作、技术选型和问题解决等方面的综合能力。 综上所述,紧跟行业发展趋势、加强实战技能培养、保持持续学习的态度,并在简历中充分展示自身亮点,是当今开发者在激烈竞争中脱颖而出,顺利斩获心仪Offer的关键所在。
2023-03-08 20:01:49
68
转载
转载文章
...ues(1005,'java基础','王克晶','达内学习手册'); update语句 把1005号书,修改成'天线宝宝',作者不详,类型少儿 把1004号书修改成'天龙八部',作者金庸,类型武侠 update book1 set bname="天线宝宝",author="作者不详",type="少儿" where bno=1005; 删除类型是'恐怖'的所有书籍 删除全表记录 删除表格 修改book名称为book_item rename table book to book_item; 在表格尾部添加字段price double(7,2) alter table book_item add price double(7,2); 把price字段的位置放到author之后 alter table book_item modify price double(7,2) after author; 把表中存在的数据添加价格,每本书都在100~1000之间,自定 update book_item set price=199 where bno=1001; 修改1001的价格为500元 把所有字段的null字段补全 update book_item set pub="达内出版社",numinput=500,numstore=100 where pub is null; 删除价格小于150的所有条目 删除所有数据 SQL分类 数据定义语言 DDL 重点 数据操纵语言 DML 重点 增 删 改 数据查询语言 DQL select 查 事务控制语言 TCL 数据库控制语言 DCL 数据定义语言 DDL - 负责数据结构定义,与创建数据库对象的语言- 常用create alter drop- DDL不支持事务,DDL语句执行之后,不能回滚 数据操纵语言 DML - 对数据库中更改数据操作的语句- select insert update delete--> CRUD 增删改查- 通常把select相关操作,单独出来,称之为DQL- DML支持事务,在非自动提交模式时,可以利用rollback回滚操作. 数据查询语言 DQL - 筛选,分组,连表查询 面试重点 TCL 和 DCL - 事务控制语句TCL- 负责实现数据库中事务支持的语言,commit rollback savepoint等指令- DCL数据库控制语言- 管理数据库的授权,角色控制等,grant(授权),revoke(取消授权) 练习: 案例:创建一张表customer(顾客) create table customer(cid int(4) primary key comment '顾客编号',cname varchar(50) comment '顾客姓名',sex char(5) comment '顾客性别',address varchar(50) comment '地址',phone varchar(11) comment '手机',email varchar(50) comment '邮箱'); show create table customer; 插入5条数据 insert into customer values(1001,'小明','男','楼上18号','123','123@163.com');insert into customer values(1002,'小红','女','楼上17号','1234','1234@163.com');insert into customer values(1003,'老王','男','楼上18号隔壁','1234','1234@163.com');insert into customer values(1004,'老宋','男','楼上17号隔壁','1234','1234@163.com');insert into customer values(1005,'小马','女','楼上17号隔壁','1234','1234@163.com'); -1 修改一条数据的姓名 小红的姓名 -2 修改一条数据的性别 老王的性别 -3 修改一条数据的电话 1001号的电话 -4 修改一条数据的邮箱 邮箱为123@163.com,改成323@163.com -5 查询性别为 男的所有数据 select from customer where sex="男"; -6 自定义DDL操作的需求,5道题,可以同上面book表的操作 数据库数据类型 主要包括5大类 整数类型 int, big int 浮点数类型 double decimal 字符串类型 char varchar text 日期类型 date datetime timestamp time year... 其他数据类型 set.... 字符串 - char(固定长度) 定长字符串 最多255个字节- 定多少长度,就占用多少长度- 多了放不进去,少了用空格补全- 不认识内容尾部的空格- varchar(最大长度) 变长字符串 最大65535字节,但是使用一般不超过255- 只要不超过定的长度,都可以放进去- 以内容真实长度为准- 认识内容尾部的空格- text 最大65535字节- blob 大数据对象,以二进制(字节)的方式存储 整数 tinyint 1字节 smallint 2字节 int 4字节 bigint 8字节 int(6)影响的是查询时显示长度(zerofill)不影响数据的保存长度 create table t1(id1 int,id2 int(5)); insert into t1 values(111111,111111); alter table t1 modify id1 int zerofill; alter table t1 modify id2 int(5) zerofill; insert into t1 values (1,1); float 4字节 double 8字节 double(8,2) 可能会产生精度的缺失 10.0/3 3.3333333336 decimal 不会缺失精度,但是使用的时候需要指定总长度和小数位数 日期 - date 年月日- time 时分秒- datetime 年月日时分秒,到9999年,而且需要手动输入,如果没有手动输入,就显示null.- timestamp 年月日时分秒,在没有数据手动插入时,自动填入当前时间.最大值2038- bigint 1970-1-1 0:0:0 格林威治时间 案例:创建表t,字段d1 date,d2 time,d3 datetime,d4 timestamp create table t(id int,d1 date,d2 time,d3 datetime,d4 timestamp);insert into t (d1,d2) values ('1910-01-10','12:32:12');insert into t values(1,'2018-12-21','15:12:00','1995-02-10 12:08:12','2030-10-10 15:19:32');insert into t values(2,'3018-01-25','15:12:34','9234-12-31 12:12:12','2030-12-31 12:12:12');insert into t values(2,'3018-01-25','15:12:34','9999-12-31 23:59:59','2030-12-31 12:12:12'); 练习 创建人物表,插入,修改,查询 create table person(id int(4) primary key,name varchar(50),age int(3));insert into person values(1,"梅超风",36);insert into person values(2,"洪七公",96);insert into person values(3,"杨过",40);insert into person values(4,"令狐冲",28);insert into person values(5,"张三丰",100);insert into person values(6,"张翠山",27);insert into person values(7,"张无忌",27);insert into person values(8,"赵敏",18);insert into person values(9,"独孤求败",250);insert into person values(10,"楚留香",36);1.案例:修改张三丰的name为刘备,id为11update person set name="刘备",id=11 where name="张三丰";2.案例:修改2号人物的的name为夏侯渊update person set name="夏侯渊" where id=2;3.案例:根据条件修改person表中的数据,修改id是6的数据中,姓名改为'任我行', 年龄改为39update person set name="任我行",age=39 where id=6;4.案例:修改姓名是‘楚留香'的数据,把id改为20,年龄改为19update person set id=20,age=19 where name="楚留香";5.案例:把person所有的数据的年龄全部改为20 update person set age=20;6.案例:修改id为7的数据,把id改为100,姓名改为杨过,年龄改为21update person set id=100,name="杨过",age=21 where id=7;7.案例:修改姓名是独孤求败,把年龄改为35update person set age=35 where name="独孤求败";8.案例:修改id=8的信息,把姓名改为房玄龄update person set name="房玄龄" where id=8;9.案例 :修改id为20并且年龄为20的人的姓名为刘德华(郑少秋也行)提示 where...and...update person set name="郑少秋" where id=20 and age=20; 查询 没有条件的简单查询 select from 表名;查询表中所有的数据 select from person; select from t; select from emp; select from dept; 查询某些列中的值 select name as '姓名' from person; select name as '姓名',age as '年龄' from person; select id as '编号',name as '姓名',age as '年龄' from person; 学习过程的编程习惯select from 表; 工作中的编程习惯select id,name,age from person; 查询emp表中所有员工的姓名,上级领导的编号,职位,工资 select ename,mgr,job,sal from emp; 查询emp表中所有员工的编号,姓名,所属部门编号,工资 select empno,ename,deptno,sal from emp; 查询dept表中所有部门的名称和地址 select dname,loc from dept; 如果忘记了mysql的用户名和密码怎么办 卸载重新装 不重装软件如何修改密码 1.停止mysql服务 2.cmd中输入一个命令 mysqld --skip-grant-tables; -通过控制台,开启了一个mysql服务 3.开启一个新的cmd -mysql -u root -p 可以不使用密码进入数据库 show databases;----mysql 5. use mysql; 6. update user set password=password('新密码') where user="root"; 7. 关闭mysqld这个服务/进程 8. 重启mysql服务 作业 mysql02,一天的代码重新敲一遍,熟悉emp和dept列名 本篇文章为转载内容。原文链接:https://blog.csdn.net/sinat_41915844/article/details/79770973。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-02-16 12:44:07
544
转载
Golang
...大牛们,他们一看传统编程语言在多任务处理上那效率低下的样子,心里直冒火,于是下定决心要搞出一门“又快又稳还特高效”的编程语言,简直就像武侠小说里那种为了解决江湖大难题豁出去了的大侠一样! 记得我第一次接触Go时,简直被它的简洁震撼到了。不像Java那么啰嗦,也不像Python那样慢吞吞,Go简直就是为高并发而生的!每次看到它的协程(goroutine)和通道(channel),我就忍不住想:这不就是为我这种喜欢高效开发的人量身定制的语言嘛! 所以,今天咱们就来聊聊如何用Go语言构建一个高性能的服务器。嘿,别担心!我可不会整那些枯燥的理论大餐,咱们这就撸起袖子一起敲代码吧。来吧,跟着我,看看Go这小子到底是怎么一步步帮咱们搞定问题的,超有趣的! --- 2. 高性能服务器的核心要素 说到高性能服务器,其实核心无非就几个点:并发处理、内存管理、网络优化和代码结构。Go在这几个方面都有独到的优势,接下来咱们一个个拆解来看。 2.1 并发处理:协程的力量 先说并发处理吧。Go最大的特点之一就是协程(goroutine)。嘿,你知道为啥大家都说协程比线程“瘦”吗?就是因为它真的省空间啊!打个比方,一个协程的“小背包”(也就是栈内存)才不到2KB,可传统线程那背包大得吓人,动不动就几十KB起步,甚至能到上百KB。这差距,简直是一个小巧玲珑的手拿包和一个超大登山包的区别! 举个例子,假设我们要做一个聊天服务器,每秒钟需要处理上千个用户的请求。要是用那种老式的多线程方式,创建和销毁线程的代价大得会让你的服务器累得直不起腰,简直要崩溃了!但用Go的话,完全可以轻松应对: go package main import ( "fmt" "net/http" ) func handleRequest(w http.ResponseWriter, r http.Request) { fmt.Fprintf(w, "Hello, %s!", r.URL.Path[1:]) } func main() { http.HandleFunc("/", handleRequest) fmt.Println("Server started at :8080") err := http.ListenAndServe(":8080", nil) if err != nil { panic(err) } } 这段代码虽然简单,但它背后却隐藏着Go的魔力。嘿,你有没有试过访问这个地址:http://localhost:8080/username?当你这么做的时候,Go 这家伙就会偷偷摸摸地给你派来一个小帮手——一个协程,专门负责处理你的请求。而且更贴心的是,它完全不用你去管什么线程池那些听起来就头大的复杂玩意儿,简直是太省心了吧! 当然了,光靠协程还不够。为了确保程序的健壮性,我们需要合理地利用通道(channel)来进行通信。比如下面这个简单的生产者-消费者模型: go package main import ( "fmt" "time" ) func producer(ch chan<- int) { for i := 0; i < 5; i++ { ch <- i fmt.Println("Produced:", i) time.Sleep(500 time.Millisecond) } close(ch) } func consumer(ch <-chan int) { for num := range ch { fmt.Println("Consumed:", num) } } func main() { ch := make(chan int) go producer(ch) consumer(ch) } 在这个例子中,producer函数向通道发送数据,而consumer函数从通道接收数据。用这种方法,咱们就能又优雅又稳妥地搞定多线程里的同步难题,还不用担心被死锁给缠上。 --- 3. 内存管理 GC的奥秘 接下来谈谈内存管理。Go的垃圾回收器(GC)是它的一大亮点。就像用老式工具编程一样,C/C++这种传统语言就得让程序员自己动手去清理内存,稍不留神,就可能搞出内存泄漏,或者戳到那些讨厌的野指针,简直让人头大!而Go则完全解放了我们的双手,它会自动帮你清理不再使用的内存。 不过,GC也不是万能的。有时候,如果你对性能要求特别高,可能会遇到GC停顿的问题。为了解决这个问题,Go团队一直在优化GC算法。最新版本中引入了分代GC(Generational GC),大幅降低了停顿时间。 那么,我们在实际开发中应该如何减少GC的压力呢?最直接的方法就是尽量避免频繁的小对象分配。比如,我们可以复用一些常见的结构体,而不是每次都新建它们: go type Buffer struct { data []byte } func NewBuffer(size int) Buffer { return &Buffer{data: make([]byte, size)} } func (b Buffer) Reset() { b.data = b.data[:0] } func main() { buf := NewBuffer(1024) for i := 0; i < 100; i++ { buf.Reset() // 使用buf... } } 在这个例子中,我们通过Reset()方法复用了同一个Buffer实例,而不是每次都调用make([]byte, size)重新创建一个新的切片。这样可以显著降低GC的压力。 --- 4. 网络优化 TCP/IP的实战 再来说说网络优化。Go的net包提供了强大的网络编程支持,无论是HTTP、WebSocket还是普通的TCP/UDP,都能轻松搞定。特别是对那些高性能服务器而言,怎么才能又快又稳地搞定海量连接,这简直就是一个绕不开的大难题啊! 举个例子,假设我们要实现一个简单的HTTP长连接服务器。传统的做法可能是监听端口,然后逐个处理请求。但这种方式效率不高,特别是在高并发场景下。Go提供了一个更好的解决方案——使用net/http包的Serve方法: go package main import ( "log" "net/http" ) func handler(w http.ResponseWriter, r http.Request) { w.Write([]byte("Hello, World!")) } func main() { http.HandleFunc("/", handler) log.Fatal(http.ListenAndServe(":8080", nil)) } 这段代码看起来很简单,但它实际上已经具备了处理大量并发连接的能力。为啥呢?就是因为Go语言里的http.Server自带了一个超级能打的“工具箱”,里面有个高效的连接池和请求队列,遇到高并发的情况时,它就能像一个经验丰富的老司机一样,把各种请求安排得明明白白,妥妥地hold住场面! 当然,如果你想要更底层的控制,也可以直接使用net包来编写TCP服务器。比如下面这个简单的TCP回显服务器: go package main import ( "bufio" "fmt" "net" ) func handleConnection(conn net.Conn) { defer conn.Close() reader := bufio.NewReader(conn) for { message, err := reader.ReadString('\n') if err != nil { fmt.Println("Error reading:", err) break } fmt.Print("Received:", message) conn.Write([]byte(message)) } } func main() { listener, err := net.Listen("tcp", ":8080") if err != nil { fmt.Println("Error listening:", err) return } defer listener.Close() fmt.Println("Listening on :8080...") for { conn, err := listener.Accept() if err != nil { fmt.Println("Error accepting:", err) continue } go handleConnection(conn) } } 在这个例子中,我们通过listener.Accept()不断接受客户端连接,并为每个连接启动一个协程来处理请求。这种模式非常适合处理大量短连接的场景。 --- 5. 代码结构 模块化与可扩展性 最后,我们来聊聊代码结构。一个高性能的服务器不仅仅依赖于语言特性,还需要良好的设计思路。Go语言特别推崇把程序分成小块儿来写,就像搭积木一样,每个功能都封装成独立的小模块或包。这样不仅修 bug 的时候方便找问题,写代码的时候也更容易看懂,以后想加新功能啥的也简单多了。 比如,假设我们要开发一个分布式任务调度系统,可以按照以下方式组织代码: go // tasks.go package task type Task struct { ID string Name string Param interface{} } func NewTask(id, name string, param interface{}) Task { return &Task{ ID: id, Name: name, Param: param, } } // scheduler.go package scheduler import "task" type Scheduler struct { tasks []task.Task } func NewScheduler() Scheduler { return &Scheduler{ tasks: make([]task.Task, 0), } } func (s Scheduler) AddTask(t task.Task) { s.tasks = append(s.tasks, t) } func (s Scheduler) Run() { for _, t := range s.tasks { fmt.Printf("Executing task %s\n", t.Name) // 执行任务逻辑... } } 通过这种方式,我们将任务管理和调度逻辑分离出来,使得代码更加清晰易懂。同时,这样的设计也方便未来扩展新的功能,比如添加日志记录、监控指标等功能。 --- 6. 总结与展望 好了,到这里咱们就差不多聊完了如何用Go语言进行高性能服务器开发。说实话,写着这篇文章的时候,我脑海里突然蹦出大学时那股子钻研劲儿,感觉就像重新回到那些熬夜敲代码的日子了,整个人都热血上头!Go这门语言真的太带感了,简单到没话说,效率还超高,稳定性又好得没话说,简直就是程序员的救星啊! 不过,我也想提醒大家一句:技术再好,最终还是要服务于业务需求。不管你用啥法子、说啥话,老老实实问问自己:“这招到底管不管用?是不是真的解决问题了?”这才是真本事! 希望这篇文章对你有所帮助,如果你有任何疑问或者想法,欢迎随时留言讨论!让我们一起继续探索Go的无限可能吧!
2025-04-23 15:46:59
39
桃李春风一杯酒
转载文章
... 阿里中间件(四面,Java岗) 1.1 Java中间件一面 技术一面考察范围 重点问了Java线程锁:synchronized 和ReentrantLock相关的底层实现 线程池的底层实现以及常见的参数 数据结构基本都问了一遍:链表、队列等 Java内存模型:常问的JVM分代模型,以及JDK1.8后的区别,最后还问了JVM相关的调优参数 分布式锁的实现比较技术 一面题目 自我介绍 擅长哪方面的技术? java有哪些锁中类?(乐观锁&悲观锁、可重入锁&Synchronize等)。 比较重要的数据结构,如链表,队列,栈的基本原理及大致实现 J.U.C下的常见类的使用。Threadpool的深入考察;blockingQueue的使用 Java内存分代模型,GC算法,JVM常见的启动参数;CMS算法的过程。 Volatile关键字有什么用(包括底层原理) 线程池的调优策略 Spring cloud的服务注册与发现是怎么设计的? 分布式系统的全局id如何实现 分布式锁的方案,redis和zookeeper那个好,如果是集群部署,高并发情况下那个性能更好。 1.2 Java中间件二面 技术二面考察范围: 问了项目相关的技术实现细节 数据库相关:索引、索引底层实现、mysql相关的行锁、表锁等 redis相关:架构设计、数据一致性问题 容器:容器的设计原理等技术 二面题目: 参与的项目,选一个,技术难度在哪里? Collections.sort底层排序方式 负载均衡的原理设计模式与重构,谈谈你对重构的理解 谈谈redis相关的集群有哪些成熟方案? 再谈谈一致hash算法(redis)? 数据库索引,B+树的特性和建树过程 Mysql相关的行锁,表锁;乐观锁,悲观锁 谈谈多线程和并发工具的使用 谈谈redis的架构和组件 Redis的数据一致性问题(分布式多节点环境&单机环境) Docker容器 1.3 Java中间件三面 技术三面考察范围: 主要谈到了高并发的实现方案 以及中间件:redis、rocketmq、kafka等的架构设计思路 最后问了平时怎么提升技术的技术 三面题目 高并发情况下,系统是如何支撑大量的请求的? 接着上面的问题,延伸到了中间件,kafka、redis、rocketmq、mycat等设计思路和适用场景等 最近上过哪些技术网站;最近再看那些书。 工作和生活中遇见最大的挑战,怎么去克服? 未来有怎样的打算 1.4 Java中间件四面 最后,你懂的,主要就是HR走流程了,主要问了未来的职业规划。 02 头条Java后台3面 2.1 头条一面 讲讲jvm运行时数据库区 讲讲你知道的垃圾回收算法 jvm内存模型jmm 内存泄漏与内存溢出的区别 select、epool 的区别?底层的数据结构是什么? mysql数据库默认存储引擎,有什么优点 优化数据库的方法,从sql到缓存到cpu到操作系统,知道多少说多少 什么情景下做分表,什么情景下做分库 linkedList与arrayList区别 适用场景 array list是如何扩容的 volatile 关键字的作用?Java 内存模型? java lock的实现,公平锁、非公平锁 悲观锁和乐观锁,应用中的案例,mysql当中怎么实现,java中的实现 2.2 头条二面 Java 内存分配策略? 多个线程同时请求内存,如何分配? Redis 底层用到了哪些数据结构? 使用 Redis 的 set 来做过什么? Redis 使用过程中遇到什么问题? 搭建过 Redis 集群吗? 如何分析“慢查询”日志进行 SQL/索引 优化? MySQL 索引结构解释一下?(B+ 树) MySQL Hash 索引适用情况?举下例子? 2.3 头条三面 如何保证数据库与redis缓存一致的Redis 的并发竞争问题是什么? 如何解决这个问题? 了解 Redis 事务的 CAS 方案吗? 如何保证 Redis 高并发、高可用? Redis 的主从复制原理,以及Redis 的哨兵原理? 如果让你写一个消息队列,该如何进行架构设计啊?说一下你的思路。 MySQL数据库主从同步怎么实现? 秒杀模块怎么设计的,如何压测,抗压手段 03 今日头条Java后台研发三面 3.1 一面 concurrent包下面用过哪些? countdownlatch功能实现 synchronized和lock区别,重入锁thread和runnable的区别 AtomicInteger实现原理(CAS自旋) java并发sleep与wait、notify与notifyAll的区别 如何实现高效的同步链表 java都有哪些加锁方式(synchronized、ReentrantLock、共享锁、读写锁等) 设计模式(工厂模式、单例模式(几种情况)、适配器模式、装饰者模式) maven依赖树,maven的依赖传递,循环依赖 3.2 二面 synchronized和reentrantLock的区别,synchronized用在代码快、方法、静态方法时锁的都是什么? 介绍spring的IOC和AOP,分别如何实现(classloader、动态代理)JVM的内存布局以及垃圾回收原理及过程 讲一下,讲一下CMS垃圾收集器垃圾回收的流程,以及CMS的缺点 redis如何处理分布式服务器并发造成的不一致OSGi的机制spring中bean加载机制,bean生成的具体步骤,ioc注入的方式spring何时创建- applicationContextlistener是监听哪个事件? 介绍ConcurrentHashMap原理,用的是哪种锁,segment有没可能增大? 解释mysql索引、b树,为啥不用平衡二叉树、红黑树 Zookeeper如何同步配置 3.3 三面 Java线程池ThreadPoolEcecutor参数,基本参数,使用场景 MySQL的ACID讲一下,延伸到隔离级别 dubbo的实现原理,说说RPC的要点 GC停顿原因,如何降低停顿? JVM如何调优、参数怎么调? 如何用工具分析jvm状态(visualVM看堆中对象的分配,对象间的引用、是否有内存泄漏,jstack看线程状态、是否死锁等等) 描述一致性hash算法 分布式雪崩场景如何避免? 再谈谈消息队列 04 抖音Java 三面 4.1 一面: hashmap,怎么扩容,怎么处理数据冲突? 怎么高效率的实现数据迁移? Linux的共享内存如何实现,大概说了一下。 socket网络编程,说一下TCP的三次握手和四次挥手同步IO和异步IO的区别? Java GC机制?GC Roots有哪些? 红黑树讲一下,五个特性,插入删除操作,时间复杂度? 快排的时间复杂度,最坏情况呢,最好情况呢,堆排序的时间复杂度呢,建堆的复杂度是多少 4.2 二面: 自我介绍,主要讲讲做了什么和擅长什么 设计模式了解哪些? AtomicInteger怎么实现原子修改的? ConcurrentHashMap 在Java7和Java8中的区别? 为什么Java8并发效率更好?什么情况下用HashMap,什么情况用ConcurrentHashMap? redis数据结构? redis数据淘汰机制? 4.3 三面(约五十分钟): mysql实现事务的原理(MVCC) MySQL数据主从同步是如何实现的? MySQL索引的实现,innodb的索引,b+树索引是怎么实现的,为什么用b+树做索引节点,一个节点存了多少数据,怎么规定大小,与磁盘页对应。 如果Redis有1亿个key,使用keys命令是否会影响线上服务? Redis的持久化方式,aod和rdb,具体怎么实现,追加日志和备份文件,底层实现原理的话知道么? 遇到最大困难是什么?怎么克服? 未来的规划是什么? 你想问我什么? 05 百度三面 5.1 百度一面 自我介绍 Java中的多态 为什么要同时重写hashcode和equals Hashmap的原理 Hashmap如何变线程安全,每种方式的优缺点 垃圾回收机制 Jvm的参数你知道的说一下 设计模式了解的说一下啊 手撕一个单例模式 手撕算法:反转单链表 手撕算法:实现类似微博子结构的数据结构,输入一系列父子关系,输出一个类似微博评论的父子结构图 手写java多线程 手写java的soeket编程,服务端和客户端 手撕算法: 爬楼梯,写出状态转移方程 智力题:时针分针什么时候重合 5.2 百度二面(现场) 自我介绍 项目介绍 服务器如何负载均衡,有哪些算法,哪个比较好,一致性哈希原理,怎么避免DDOS攻击请求打到少数机器。 TCP连接中的三次握手和四次挥手,四次挥手的最后一个ack的作用是什么,为什么要time wait,为什么是2msl。 数据库的备份和恢复怎么实现的,主从复制怎么做的,什么时候会出现数据不一致,如何解决。 Linux查看cpu占用率高的进程 手撕算法:给定一个数字三角形,找到从顶部到底部的最小路径和。每一步可以移动到下面一行的相邻数字上。 然后继续在这个问题上扩展 求出最短那条的路径 递归求出所有的路径 设计模式讲一下熟悉的 会不会滥用设计模式 多线程条件变量为什么要在while体里 你遇到什么挫折,怎么应对和处理 5.3 百度三面(现场) 自我介绍 项目介绍 Redis的特点 Redis的持久化怎么做,aof和rdb,有什么区别,有什么优缺点。 Redis使用哨兵部署会有什么问题,我说需要扩容的话还是得集群部署。 说一下JVM内存模型把,有哪些区,分别干什么的 说一下gc算法,分代回收说下 MySQL的引擎讲一下,有什么区别,使用场景呢 分布式事务了解么 反爬虫的机制,有哪些方式 06 蚂蚁中间件团队面试题 6.1 蚂蚁中间件一面: 自我介绍 JVM垃圾回收算法和垃圾回收器有哪些,最新的JDK采用什么算法。 新生代和老年代的回收机制。 讲一下ArrayList和linkedlist的区别,ArrayList与HashMap的扩容方式。 Concurrenthashmap1.8后的改动。 Java中的多线程,以及线程池的增长策略和拒绝策略了解么。 Tomcat的类加载器了解么 Spring的ioc和aop,Springmvc的基本架构,请求流程。 HTTP协议与Tcp有什么区别,http1.0和2.0的区别。 Java的网络编程,讲讲NIO的实现方式,与BIO的区别,以及介绍常用的NIO框架。 索引什么时候会失效变成全表扫描 介绍下分布式的paxos和raft算法 6.2 蚂蚁中间件二面 你在项目中怎么用到并发的。 消息队列的使用场景,谈谈Kafka。 你说了解分布式服务,那么你怎么理解分布式服务。 Dubbo和Spring Clound的区别,以及使用场景。 讲一下docker的实现原理,以及与JVM的区别。 MongoDB、Redis和Memcached的应用场景,各自优势 MongoDB有事务吗 Redis说一下sorted set底层原理 讲讲Netty为什么并发高,相关的核心组件有哪些 6.3 蚂蚁中间件三面 完整的画一个分布式集群部署图,从负载均衡到后端数据库集群。 分布式锁的方案,Redis和Zookeeper哪个好,如果是集群部署,高并发情况下哪个性能更好。 分布式系统的全局id如何实现。 数据库万级变成亿级,你如何来解决。 常见的服务器雪崩是由什么引起的,如何来防范。 异地容灾怎么实现 常用的高并发技术解决方案有哪些,以及对应的解决步骤。 07 京东4面(Java研发) 7.1 一面(基础面:约1小时) 自我介绍,主要讲讲做了什么和擅长什么 springmvc和spring-boot区别 @Autowired的实现原理 Bean的默认作用范围是什么?其他的作用范围? 索引是什么概念有什么作用?MySQL里主要有哪些索引结构?哈希索引和B+树索引比较? Java线程池的原理?线程池有哪些?线程池工厂有哪些线程池类型,及其线程池参数是什么? hashmap原理,处理哈希冲突用的哪种方法? 还知道什么处理哈希冲突的方法? Java GC机制?GC Roots有哪些? Java怎么进行垃圾回收的?什么对象会进老年代?垃圾回收算法有哪些?为什么新生代使用复制算法? HashMap的时间复杂度?HashMap中Hash冲突是怎么解决的?链表的上一级结构是什么?Java8中的HashMap有什么变化?红黑树需要比较大小才能进行插入,是依据什么进行比较的?其他Hash冲突解决方式? hash和B+树的区别?分别应用于什么场景?哪个比较好? 项目里有个数据安全的,aes和md5的区别?详细点 7.2 二面(问数据库较多) 自我介绍 为什么MyISAM查询性能好? 事务特性(acid) 隔离级别 SQL慢查询的常见优化步骤? 说下乐观锁,悲观锁(select for update),并写出sql实现 TCP协议的三次握手和四次挥手过程? 用到过哪些rpc框架 数据库连接池怎么实现 Java web过滤器的生命周期 7.3 三面(综合面;约一个小时) 自我介绍。 ConcurrentHashMap 在Java7和Java8中的区别?为什么Java8并发效率更好?什么情况下用HashMap,什么情况用ConcurrentHashMap? 加锁有什么机制? ThreadLocal?应用场景? 数据库水平切分,垂直切分的设计思路和切分顺序 Redis如何解决key冲突 soa和微服务的区别? 单机系统演变为分布式系统,会涉及到哪些技术的调整?请从前面负载到后端详细描述。 设计一个秒杀系统? 7.4 四面(HR面) 你自己最大优势和劣势是什么 平时遇见过什么样的挑战,怎么去克服的 工作中遇见了技术解决不了的问题,你的应对思路? 你的兴趣爱好? 未来的职业规划是什么? 08 美团java高级开发3面 8.1 美团一面 自我介绍 项目介绍 Redis介绍 了解redis源码么 了解redis集群么 Hashmap的原理,增删的情况后端数据结构如何位移 hashmap容量为什么是2的幂次 hashset的源码 object类你知道的方法 hashcode和equals 你重写过hashcode和equals么,要注意什么 假设现在一个学生类,有学号和姓名,我现在hashcode方法重写的时候,只将学号参与计算,会出现什么情况? 往set里面put一个学生对象,然后将这个学生对象的学号改了,再put进去,可以放进set么?并讲出为什么 Redis的持久化?有哪些方式,原理是什么? 讲一下稳定的排序算法和不稳定的排序算法 讲一下快速排序的思想 8.2 美团二面 自我介绍 讲一下数据的acid 什么是一致性 什么是隔离性 Mysql的隔离级别 每个隔离级别是如何解决 Mysql要加上nextkey锁,语句该怎么写 Java的内存模型,垃圾回收 线程池的参数 每个参数解释一遍 然后面试官设置了每个参数,给了是个线程,让描述出完整的线程池执行的流程 Nio和IO有什么区别 Nio和aio的区别 Spring的aop怎么实现 Spring的aop有哪些实现方式 动态代理的实现方式和区别 Linux了解么 怎么查看系统负载 Cpu load的参数如果为4,描述一下现在系统处于什么情况 Linux,查找磁盘上最大的文件的命令 Linux,如何查看系统日志文件 手撕算法:leeetcode原题 22,Generate Parentheses,给定 n 对括号,请- 写一个函数以将其生成新的括号组合,并返回所有组合结果。 8.3 美团三面(现场) 三面没怎么问技术,问了很多技术管理方面的问题 自我介绍 项目介绍 怎么管理项目成员 当意见不一致时,如何沟通并说服开发成员,并举个例子 怎么保证项目的进度 数据库的索引原理 非聚簇索引和聚簇索引 索引的使用注意事项 联合索引 从底层解释最左匹配原则 Mysql对联合索引有优化么?会自动调整顺序么?哪个版本开始优化? Redis的应用 Redis的持久化的方式和原理 技术选型,一个新技术和一个稳定的旧技术,你会怎么选择,选择的考虑有哪些 说你印象最深的美团点评技术团队的三篇博客 最近在学什么新技术 你是怎么去接触一门新技术的 会看哪些书 怎么选择要看的书 最后 由于篇幅限制,小编在此截出几张知识讲解的图解,有需要的程序猿(媛)可以点赞后戳这里免费领取全部资料获取哦 子 怎么保证项目的进度 数据库的索引原理 非聚簇索引和聚簇索引 索引的使用注意事项 联合索引 从底层解释最左匹配原则 Mysql对联合索引有优化么?会自动调整顺序么?哪个版本开始优化? Redis的应用 Redis的持久化的方式和原理 技术选型,一个新技术和一个稳定的旧技术,你会怎么选择,选择的考虑有哪些 说你印象最深的美团点评技术团队的三篇博客 最近在学什么新技术 你是怎么去接触一门新技术的 会看哪些书 怎么选择要看的书 最后 由于篇幅限制,小编在此截出几张知识讲解的图解,有需要的程序猿(媛)可以点赞后戳这里免费领取全部资料获取哦 [外链图片转存中…(img-SFREePIJ-1624074891834)] [外链图片转存中…(img-5kF3pkiC-1624074891834)] [外链图片转存中…(img-HDVXfOMR-1624074891835)] [外链图片转存中…(img-RyaAC5jy-1624074891836)] [外链图片转存中…(img-iV32C5Ok-1624074891837)] 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_57285325/article/details/118051767。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-13 23:43:59
85
转载
转载文章
...andler : [java] view plain copy print ? Handler mHandler = new Handler() { @Override public void handleMessage(Message msg) { mImageView.setImageBitmap(mBitmap); } } 然后,我们用 右键 选中工程 运行 lint工具 , android tools---run lint ,就会提示我们这样一个warning: In Android, Handler classes should be static or leaks might occur.。 就是 ,推荐我们 把handler 定义成static,具体 看这里解释的很详细:http://www.linuxidc.com/Linux/2013-12/94065.htm 类似的还有 匿名子线程。 2.还是 拿网上的 栗子来说, [java] view plain copy print ? Vector v = new Vector( 10 ); for ( int i = 1 ;i < 100 ; i ++ ){ Object o = new Object(); v.add(o); o = null ; } 即便是 我们把 o 对象 置为 null,但是 vector 集合中还有有o的引用,所以 集合 没有被清空,这一部分内存 还是不能被释放,这就导致了内存泄露。 3, 当我们操作数据库的时候,我们在执行完 相应的crud 方法后,我们没有关闭 cursor .close()或者 db.close(),也同样会占用内存、因为只有关闭连接后,才会被GC 回收。 4.继续举个栗子 [java] view plain copy print ? Set<Person> set = new HashSet<Person>(); Person p1 = new Person("唐僧","pwd1",25); Person p2 = new Person("孙悟空","pwd2",26); Person p3 = new Person("猪八戒","pwd3",27); set.add(p1); set.add(p2); set.add(p3); System.out.println("总共有:"+set.size()+" 个元素!"); //结果:总共有:3 个元素! p3.setAge(2); //修改p3的年龄,此时p3元素对应的hashcode值发生改变 set.remove(p3); //此时remove不掉,造成内存泄漏 set.add(p3); //重新添加,居然添加成功 System.out.println("总共有:"+set.size()+" 个元素!"); //结果:总共有:4 个元素! J哥 亲自 实践了下,发现问题了,这个网上的栗子 是错的。实际上是可以remove掉得、真是个悲伤地故事。这个栗子是不正确的。。网上好有一片这样的文章,都是这个栗子。。 这里 看下其他网站上的总结吧 :强烈推荐http://developer.51cto.com/art/201111/302465.htm。很详细。 OK。还有最后一点,就是关于图片的,bitmap对象的及时释放,这里 就不细说了,等在图片三级缓存一起去总结。 此时 感觉 对面的android 小哥 已经被我吸引了。好像很认真的在听我讲课一样。 然后, 他问我问题。我大体总结了一下。 面试官01问:有没有自定义过view。 J哥回答:这个很常见,我自己定义过很多,比如 下拉刷新,上拉加载更多数据的listview,类似github 上面的pulltorefreshlistview。 还有图片轮询播放的viewpager,也是 继承viewpager,然后自己开启一个线程,去控制 切换的。还比如,跑马灯效果的textview ,scrollview与 listview 相互嵌套 导致 listview 高度计算不正确,我也是 自定义listview,复写了 onmeaure方法,然后解决冲突的。在比如 一些开源的 可以放大缩小的图片,我也是做过,主要是对onmeasure 方法,onlayout方法,ondraw 方法的复写。以及复写一下 view 自己的 touch事件等等,奥 对了,我们公司当时有需求 做一个 锁屏软件,侧滑解锁的,我也是自己定义的,然后展示给他看了一下,当时 那篇文章在这里。传送门http://blog.csdn.net/u011733020/article/details/41863861。 面试官01问:listview的优化、 J哥回答:(PS:这种问题,基本上 都快被问烂了,但是没办法 还是要回答。)listview作为最常见的 用来显示数据的view ,一般 从四个方面 去优化。 1 ,复用convertview, 不然假如有1000条数据,那么我们滑动,就会 产生1000个convertview ,这对内存是很大的浪费,所以 我们一定要复用。 2. 减少 findviewbyid 的次数, 因为 每次 去 执行 findviewbyid 也是要消耗资源的,我们要尽可能的减少,通常 我们定义一个viewholder,去管理 这些id ,然后通过tag 去直接拿到 id。 3, 分页加载,延迟加载 预加载。 这个在我们以前项目,有一个榜单,数据量很大,一次请求过来的数据量很大,这样有两个问题,一个是请求网络 时间可能会很长,另一个展示数据 上面 体验对不是很好,所以 我们做了 第一次加载 20条,然后每次请求 再去 加载10条新数据。 4.就是 对 listview 中一些 类似头像, 图片的 优化。这里 类似 三级缓存,推荐大家看一下 开源 的universal-image-loader 的源码。或者 这篇文章http://www.jb51.net/article/38162.htm,J哥有时间 专门写一篇过于 图片缓存的。 面试官01问: 看你简历上面 做过 社交,通信这块是怎么做的。 J哥回答:我看 咱们公司 也用到了 聊天,咱们公司是 自己做的 还是 用的第三方的类似 环信的。结果被J哥猜中,他说 是集成的环信(但是 有丢包现象,所以打算自己做通信)。 OK,J哥说 ,我们 项目中聊天 是基于xmpp协议的做的,在没有android以前 ,java有个开源的 smack ,android 上 现在有一个asmack ,其实 就是移植到android 中来了, 服务端是基于 openfire的 ,我们就是做的 openfire+asmack 的 聊天,这个原理主要 就是 绑定 ip 拿到 connection 然后 connect ,然后进行通信,我说,这个 跟http请求 其实原理上一样,都是 绑定ip,然后 设置一些property,然后通过类似流进行通信的, asmack,其实底层 就是xml通信的。 面试官01问: touch 事件的传递机制,还特意画了,一个 就是 button LinearLayout 嵌套 。 J哥回答:就是这个, 这也难不倒我。因为J哥觉得 这个问题肯定会问到 所以 早有准备,这里 我就大体说下结论,详细原理 给你传送门。 我回答,这个很简单,只要你继承一下 button 和 linearlayout 复写一下 三个方法 dispatchtouchEvent onInterceptTouchEvent 和onTouchEvent .就能很清楚的明白 传递的过程,我给你总的说下结论的,点击这个button,一般是 外面的父控件 先响应这个down 事件,然后 往子类里面传递,让子类 在往子类的下一级子类去传递,让最终的孩子去决定是不要要消费掉这个点击事件,如果消费掉,那么父类将不会响应,如果子类不消费,那么会退回到次级子类,然后看是否要消费,这样,一句话 就是父传子, 子决定要不要,不要 然后传回去。 这里有很详细 很详细的介绍, 包裹事件的分发。所以我就不罗嗦,http://blog.csdn.net/yanbober/article/details/45887547?ref=myread 面试官01问: 项目中图片的优化。 J哥回答:我给他展示的项目 其中有一款app 是有很多图片 ,但是 很流畅,也没有oom。关于图片 优化,一般我们采用三级缓存,1 。内存加载 2.本地加载 3 网络加载。 首先 我们看 内存中有没有,有直接拿来用,这里 我项目里是这样做的,我先获取一下 分配给我们应用的可用内存是多少,然后 拿1/4 或者 1/8做一个 lrucache. 把我们的bitmap对象添加进去。有些比较常用的图片,我会保存到本地,避免每次重复联网下载。结合 开源的 afinal universalimageloader 以及 13年谷歌官方推荐的volley(号称是 asynchttpclient 和universalimageloader)的结合、 所以 在我的项目中基本没有遇到过图片导致的oom 问题,对于单张的 大图片,我也会利用bitmapFactory,进行计算大小,然后 计算手机分辨率,进行定量的 压缩 处理。 面试官问: GC的回收 J哥回答:我说。GC 回收 应该不只是按照一种方式,应该有多种不同的算法,我看过谷歌 官网介绍的一点,有这样一块区域,他分为 latest(最近) middle(中等)permanent(永久的),这样三块子区域。里面分别存放,刚刚被创建的,以及 时间 靠后的,很久的,对象,不断地新对象 往latest里面添加,当达到相应对象区域的阀值的时候,就会触发GC,GC 进行回收的时候,对于latest 中回收的速度是最快的,而permanent 相对是最久的,而时间 也跟 每块区域中对象的个数有关系, 还有一种算法,是根据最近被引用的时间,或者 被引用的次数 去进行 GC的、、这里随便扯就是了。GC 回收并不是立即执行的。是不定时的。GC回收的时候 会阻塞线程,所以代码中要避免创建不必要的对象,例如for循环中 创建大量对象 就会容易引起GC。 当我们也可以主动 在方法中执行system.gc() 去手动释放一些资源。 面试官01问: 怎么避免 viewpager 预加载 fragment的、 J哥回答:这个问题 我也碰到过,我们都知道,viewpager 它本身会预加载 左右两个 和当前一个对象、而 我们viewpager setOffscreenPageLimit(0) 不生效因为看源码知道,这个方法默认最少也要加载一个。所以 这个fragment 还没有被当前页面显示出来,已经夹在好了,有可能数据不是最新的,我是在 setuservisibilityhint() 这个方法中跟参数 动态去判断 要不要刷新的。 问了一圈,这个哥们大概没什么问的了,然后 就让我等一下,说让他们技术总监过来 。 我就等。。。 然后等了几分钟,进来一小姑娘,坐下,看了我简历,我以为是人事,来跟我谈人生理想。结果,没说几句话,让我讲一下我的项目。我qu,惊呆我了。我问,你也是做android的,我去,是这样的、、把J哥吓到, 然后问了J哥几个问题。 Android 小姑娘问: 看你项目中的listview 中item类型 是统一的,而加入 item 差别挺大的 你怎么复用。 J哥回答:J哥装作很牛的样子说,我暂时想到两种方法,1.给这个对象 加一个type 然后 根据 type 去复用,或者 把这几种类型 一起加载,然后控制显示隐藏。然后 我反问小姑娘,假如 我这里 有一百条数据,这一百条是无序的,包含了 10种 item类型,你有没有什么好方法 去处理这个问题, 小姑娘说,你不是定义了类型吗,我们就是 通过type 去判断的。 Android 小姑娘问: onAttch onDetach还是onAttachedToWindow,onDetachedFromWindow J哥回答:其实 那个小姑娘忘记这两个方法了。我说什么方法,她说onAttachIntent() 和 onDetachIntent(). 反正 J哥是没听说过, 我只见过 onAttach ,但是 这个方法 我也没用过。我就问她,这两个方法是做什么的,小姑娘跟我说 是 把子view绑定到界面上的,那么的话 应该是onAttachedToWindow,onDetachedFromWindow方法了,小姑娘说: 在这个方法 可以计算子 view的高度宽度,在 oncreate 里面不能计算,其实虽然刚开始 在oncreate里面是不能计算,但是还是有方法计算的,(本人觉得面试 问你 API 是 最2的了,忍不住吐槽下,我遇到过,Camera 拍照,问我获取 一个图片,还是 视频的 方法,我去百度 一下,随便就知道,真是不懂 为什么会问方法。随便一个程序员 都会百度。。) 跟小姑娘聊得其他问题 不太记得了,感觉这个女程序员啊。。就问方法 给我的印象不太好,不管方法用没用到,我觉得面试 直接问你方法 好2 好2... 然后技术总监 有进来跟我聊了,后技术总监 有进来跟我聊了、技术总监 年龄30出头吧,到是没有问我什么技术问题, 总监: 问我 做没做过通信这块,能不能做这一块。 J哥回答:,我说做过,通信有几种协议的,我们用的 是xmpp协议的 ,服务器 是 基于apache的 openfire 搭建的,客户端 是用的asmack。还有一些 其他协议的 ,比如我知道有些项目中用的 soap协议的,还有ip 协议的。PS:反正就是扯 我说 通信 客户端这一块 我没问题,但是 服务端 我 从工作以来 一直偏向 android 移动端开发,后台这一块,如果数据量大了,还要考虑并发之类的,我是做不了,让我做个tomcat搭建的demo 我可能可以。 其他也是随便聊了下,然后 就说,让人事来跟我谈理想了。 总监: 问我 什么时候能上班 J哥回答:我说 这个看公司需求啦。 其他也是随便聊了下,然后 就说,让人事来跟我谈理想了。 这里 感觉应该没问题了。差不多能拿下了。 人事1:一进来,就问东问西。问加班看法啊,他们公司技术 一般都八九点走啊。说七点基本没有走的啊、、、 J哥回答:我说,一般遇到项目加功能 ,版本升级,等等 这些加班都没什么,只要不是一直在加班。。。。这里每个人自己看法就好了、、 反正人事 是一直跟我强调这个,她不停强调 我就暗暗下决心,薪资 我是不会要低了。 人事1:看你还年轻啊,还能拼一拼啊、、、、 J哥回答:我说现在 这几年对我人生规划也算比较重要的时期,也是过一年少一年了,其实她的意思 还是侧面强调加班。。。。日了UZI了。 中间一堆废话,然后我问了她 公司一般上下班时间啊。。之类的有没有技术交流啊,之类的。。。 最后到关键问题上啦,最关心的,薪资问题。 人事1:期望薪资 J哥回答:我说16K左右吧。她问 你以前公司多少 握手 15K。她说她们公司 是 14薪。反正 我还是说16K。她说 那好,你等下,然后就出去了。 不知道 跟什么人 讨论了许久,然后又来一个 可能是人事吧。又进来,问了一遍,也问了薪资。。哥还是说16K 。 。。估计是她们公司想要我,但是又觉得有点超出她们薪资期望吧,当场被没有给什么offer。然后就有点婉拒的说,两天给我答复,心里很气愤,饿着肚子 面试到三点,竟然婉拒、、、 反正我是很生气,我说,好,然后我就走。结果,没过一个小时,人事又打电话来,非要约我 见一下她们CEO。这是什么鬼,难道她们CEO要给我煲汤 了?我说可以,然后时间定在后天了,,反正心灵鸡汤对我是没用了、 OK ,这家面试 先写到这里,下面下午还有一家,等下在写。准备睡觉。今天面试回来,累的就睡着了,晚上十点多才醒过来,想了想还是 把今天面试的过程总结一下。 ------------------------------待续------------------------- 第二弹http://blog.csdn.net/u011733020/article/details/46058273 本篇文章为转载内容。原文链接:https://blog.csdn.net/haluoluo211/article/details/51010955。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-19 17:42:52
336
转载
SpringBoot
...ing Boot这个Java Web框架吗?它可是个超级好用的小工具!为什么这么说呢?因为它超级简洁,上手快,部署起来也特别方便,所以很多搞程序的大佬们都特别喜欢用它来开发项目。就像是你去超市买菜,选了个特别省事儿的购物车,推起来既轻松又快捷,Spring Boot就是那个购物车,让你的编程之旅更顺畅,效率更高!本文将详细讲解如何使用Spring Boot进行文件上传,包括配置、编码示例以及一些最佳实践。 1. 配置文件上传 在开始之前,确保你的项目中包含了必要的依赖。通常,Spring Boot会自动配置文件上传功能,但为了明确和控制,我们可以通过application.properties或application.yml文件来设置文件上传的目录和大小限制。 properties application.properties spring.servlet.multipart.max-file-size=2MB spring.servlet.multipart.max-request-size=10MB upload.path=/path/to/upload/files 这里,我们设置了单个文件的最大大小为2MB,整个请求的最大大小为10MB,并指定了上传文件的保存路径。 2. 创建Controller处理文件上传 接下来,在你的Spring Boot项目中创建一个控制器(Controller)来处理文件上传请求。下面是一个简单的例子: java import org.springframework.core.io.InputStreamResource; import org.springframework.http.MediaType; import org.springframework.http.ResponseEntity; import org.springframework.web.bind.annotation.PostMapping; import org.springframework.web.bind.annotation.RequestParam; import org.springframework.web.multipart.MultipartFile; import java.io.File; import java.io.FileOutputStream; import java.io.IOException; import java.nio.file.Files; import java.nio.file.Paths; @Controller public class FileUploadController { @PostMapping("/upload") public ResponseEntity uploadFile(@RequestParam("file") MultipartFile file) { try { // 检查文件是否存在 if (file.isEmpty()) { return ResponseEntity.badRequest().body("Failed to upload empty file."); } // 获取文件名和类型 String fileName = file.getOriginalFilename(); String contentType = file.getContentType(); // 保存文件到指定路径 File targetFile = new File(upload.path + fileName); Files.copy(file.getInputStream(), Paths.get(targetFile.getAbsolutePath())); return ResponseEntity.ok("File uploaded successfully: " + fileName); } catch (IOException e) { return ResponseEntity.internalServerError().body("Failed to upload file: " + e.getMessage()); } } } 3. 测试文件上传功能 在完成上述配置和编码后,你可以通过Postman或其他HTTP客户端向/upload端点发送一个包含文件的POST请求。确保在请求体中正确添加了文件参数,如: json { "file": "path/to/your/file" } 4. 处理异常与错误 在实际应用中,文件上传可能会遇到各种异常情况,如文件过大、文件类型不匹配、服务器存储空间不足等。在这次的案例里,我们已经用了一段 try-catch 的代码来应对一些常见的错误情况了。就像你在日常生活中遇到小问题时,会先尝试解决,如果解决不了,就会求助于他人或寻找其他方法一样。我们也是这样,先尝试执行一段代码,如果出现预料之外的问题,我们就用 catch 部分来处理这些意外状况,确保程序能继续运行下去,而不是直接崩溃。对于更复杂的场景,例如检查文件类型或大小限制,可以引入更精细的逻辑: java @PostMapping("/upload") public ResponseEntity uploadFile(@RequestParam("file") MultipartFile file) { if (!isValidFileType(file)) { return ResponseEntity.badRequest().body("Invalid file type."); } if (!isValidFileSize(file)) { return ResponseEntity.badRequest().body("File size exceeds limit."); } // ... } private boolean isValidFileType(MultipartFile file) { // Check file type logic here } private boolean isValidFileSize(MultipartFile file) { // Check file size logic here } 结语 通过以上步骤,你不仅能够实现在Spring Boot应用中进行文件上传的基本功能,还能根据具体需求进行扩展和优化。记住,良好的错误处理和用户反馈是提高用户体验的关键。希望这篇文章能帮助你更好地理解和运用Spring Boot进行文件上传操作。嘿,兄弟!你听过这样一句话吗?“实践出真知”,尤其是在咱们做项目的时候,更是得这么干!别管你是编程高手还是设计大师,多试错,多调整,才能找到最适合那个场景的那套方案。就像是做菜一样,不试试加点这个,少放点那个,怎么知道哪个味道最对路呢?所以啊,提升技能,咱们就得在实际操作中摸爬滚打,这样才能把技术玩儿到炉火纯青的地步!
2024-09-12 16:01:18
85
寂静森林
Java
...etTimeout是JavaScript中的一个全局函数,用于在指定的毫秒数后调用一个函数或者执行某段代码。它属于浏览器环境提供的Web API,常被用来实现异步编程和延迟任务调度。在本文中,setTimeout与闭包的结合使用展示了如何在回调函数中维持外部作用域的状态。 闭包(Closure) , 闭包是一种特殊的函数,它可以访问并保持对其定义时所在的作用域(包括变量和函数)的引用,即使该函数在原始作用域之外被执行。在JavaScript和Java示例中,通过闭包机制,即使在setTimeout回调函数或Lambda表达式等异步执行环境中,也能正确访问并保留循环变量的值。 Lambda表达式 , Lambda表达式是Java 8及更高版本引入的一种简洁的、功能强大的函数式编程特性。它允许开发者以匿名函数的形式编写简短的、可传递的代码块,并能够捕获其外部作用域的变量(即形成闭包)。在模拟setTimeout场景时,Java利用Lambda表达式创建了一个能记住每次循环迭代状态的任务单元。 ScheduledExecutorService , ScheduledExecutorService是Java并发包(java.util.concurrent)中提供的一种服务,用于管理和调度周期性或延迟执行的任务。在Java代码示例中,通过ScheduledExecutorService可以安排任务在未来某个时间点执行,这与JavaScript中的setTimeout有异曲同工之妙。同时,在这个过程中,ScheduledExecutorService配合Lambda表达式实现了类似闭包的效果,确保了每个任务都能正确访问到各自循环迭代时的变量副本。
2023-05-05 15:35:33
280
灵动之光_
转载文章
...秀的持久层框架,用于Java应用程序与数据库之间的交互。在本文中,开发者使用的是Mybatis 3.2.0版本,它通过提供SQL映射文件和接口的方式来解耦Java程序与SQL语句,简化了数据访问操作,实现了数据的增删改查等功能。 Spring Framework , Spring是一个开源的企业级Java应用程序框架,文中使用的版本是Spring-4.0.0。Spring以其控制反转(IoC)和面向切面编程(AOP)等特性著称,能帮助开发者构建高质量、松耦合的应用系统。在该项目中,Spring负责管理和整合各组件,如数据源配置、事务管理以及集成Mybatis实现业务逻辑层的功能。 DAO(Data Access Object)接口 , 在软件开发领域,DAO是一种设计模式,常用于将底层的数据访问细节与业务逻辑分离。在本文中,创建的UserMapper.java文件就是一个DAO接口示例,定义了一系列与用户表t_user相关的CRUD操作方法,如保存(save)、更新(update)、删除(delete)、按ID查找(findById)以及查询所有用户信息(findAll)。通过这种方式,业务层代码只需调用这些接口方法即可进行数据库操作,无需关心具体的SQL执行细节。 XML映射文件 , 在Mybatis框架中,XML映射文件用于描述SQL语句以及SQL结果如何映射到Java对象上。例如,UserMapper.xml文件就是对UserMapper.java接口中的方法对应的SQL实现,每个方法对应一个SQL片段,并通过 参数名 的方式引用Java方法传递过来的参数,确保SQL执行时能够动态绑定参数值,同时也提供了处理结果集映射到Java对象的方法,实现了ORM(对象关系映射)功能。
2023-09-05 11:56:25
111
转载
转载文章
...ng;import javax.servlet.http.HttpServletRequest;import javax.servlet.http.HttpServletResponse;import java.io.;import java.net.URLEncoder;import java.util.Optional;/ @Description 文件切片下载 @ClassName DownLoadController @Author 康世行 @Date 20:58 2023/2/22 @Version 1.0/@Controller@Slf4jpublic class DownLoadController {private final static String utf8 = "utf-8";@RequestMapping("/down")public void downLoadFile(HttpServletRequest request, HttpServletResponse response) throws IOException {// 设置编码格式response.setCharacterEncoding(utf8);//获取文件路径String fileName=request.getParameter("fileName");String drive=request.getParameter("drive");//参数校验log.info(fileName,drive);//完整路径(路径拼接待优化-前端传输优化-后端从新格式化 )String pathAll=drive+":\\"+fileName;log.info("pathAll{}",pathAll);Optional<String> pathFlag = Optional.ofNullable(pathAll);File file=null;if (pathFlag.isPresent()){//根据文件名,读取file流file = new File(pathAll);log.info("文件路径是{}",pathAll);if (!file.exists()){log.warn("文件不存在");return;} }else {//请输入文件名log.warn("请输入文件名!");return;}InputStream is = null;OutputStream os = null;try {//分片下载long fSize = file.length();//获取长度response.setContentType("application/x-download");String file_Name = URLEncoder.encode(file.getName(),"UTF-8");response.addHeader("Content-Disposition","attachment;filename="+fileName);//根据前端传来的Range 判断支不支持分片下载response.setHeader("Accept-Range","bytes");//获取文件大小//response.setHeader("fSize",String.valueOf(fSize));response.setHeader("fName",file_Name);//定义断点long pos = 0,last = fSize-1,sum = 0;//判断前端需不需要分片下载if (null != request.getHeader("Range")){response.setStatus(HttpServletResponse.SC_PARTIAL_CONTENT);String numRange = request.getHeader("Range").replaceAll("bytes=","");String[] strRange = numRange.split("-");if (strRange.length == 2){pos = Long.parseLong(strRange[0].trim());last = Long.parseLong(strRange[1].trim());//若结束字节超出文件大小 取文件大小if (last>fSize-1){last = fSize-1;} }else {//若只给一个长度 开始位置一直到结束pos = Long.parseLong(numRange.replaceAll("-","").trim());} }long rangeLenght = last-pos+1;String contentRange = new StringBuffer("bytes").append(pos).append("-").append(last).append("/").append(fSize).toString();response.setHeader("Content-Range",contentRange);// response.setHeader("Content-Lenght",String.valueOf(rangeLenght));os = new BufferedOutputStream(response.getOutputStream());is = new BufferedInputStream(new FileInputStream(file));is.skip(pos);//跳过已读的文件(重点,跳过之前已经读过的文件)byte[] buffer = new byte[1024];int lenght = 0;//相等证明读完while (sum < rangeLenght){lenght = is.read(buffer,0, (rangeLenght-sum)<=buffer.length? (int) (rangeLenght - sum) :buffer.length);sum = sum+lenght;os.write(buffer,0,lenght);}log.info("下载完成");}finally {if (is!= null){is.close();}if (os!=null){os.close();} }} } 启动成功 Vue <html xmlns:th="http://www.thymeleaf.org"><head><meta charset="utf-8"/><title>狂神说Java-ES仿京东实战</title><link rel="stylesheet" th:href="@{/css/style.css}"/></head><body class="pg"><div class="page" id="app"><div id="mallPage" class=" mallist tmall- page-not-market "><!-- 头部搜索 --><div id="header" class=" header-list-app"><div class="headerLayout"><div class="headerCon "><!-- Logo--><h1 id="mallLogo"><img th:src="@{/images/jdlogo.png}" alt=""></h1><div class="header-extra"><!--搜索--><div id="mallSearch" class="mall-search"><form name="searchTop" class="mallSearch-form clearfix"><fieldset><legend>天猫搜索</legend><div class="mallSearch-input clearfix"><div class="s-combobox" id="s-combobox-685"><div class="s-combobox-input-wrap"><input v-model="keyword" type="text" autocomplete="off" value="java" id="mq"class="s-combobox-input" aria-haspopup="true"></div></div><button type="submit" @click.prevent="searchKey" id="searchbtn">搜索</button></div></fieldset></form><ul class="relKeyTop"><li><a>狂神说Java</a></li><li><a>狂神说前端</a></li><li><a>狂神说Linux</a></li><li><a>狂神说大数据</a></li><li><a>狂神聊理财</a></li></ul></div></div></div></div></div><el-button @click="download" id="download">下载</el-button><!-- <el-button @click="concurrenceDownload" >并发下载测试</el-button>--><el-button @click="stop">停止</el-button><el-button @click="start">开始</el-button>{ {fileFinalOffset} }{ {contentList} }<el-progress type="circle" :percentage="percentage"></el-progress></div><!--前端使用Vue,实现前后端分离--><script th:src="@{/js/axios.min.js}"></script><script th:src="@{/js/vue.min.js}"></script><!-- 引入样式 --><link rel="stylesheet" href="https://unpkg.com/element-ui/lib/theme-chalk/index.css"><!-- 引入组件库 --><script src="https://unpkg.com/element-ui/lib/index.js"></script><script>new Vue({ el: 'app',data: {keyword: '', //搜索关键字results: [] ,//搜索结果percentage: 0, // 下载进度filesCurrentPage:0,//文件开始偏移量fileFinalOffset:0, //文件最后偏移量stopRecursiveTags:true, //停止递归标签,默认是true 继续进行递归contentList: [], // 文件流数组breakpointResumeTags:false, //断点续传标签,默认是false 不进行断点续传temp:[],fileMap:new Map(),timer:null, //定时器名称},methods: {//根据关键字搜索商品信息searchKey(){var keyword=this.keyword;axios.get('/search/JD/search/'+keyword+"/1/10").then(res=>{this.results=res.data;//绑定数据console.log(this.results)console.table(this.results)})},//停止下载stop(){//改变递归标签为falsethis.stopRecursiveTags=false;},//开始下载start(){//重置递归标签为true 最后进行合并this.stopRecursiveTags=true;//重置断点续传标签this.breakpointResumeTags=true;//重新调用下载方法this.download();},// 分段下载需要后端配合download() {// 下载地址const url = "/down?fileName="+this.keyword.trim()+"&drive=E";console.log(url)const chunkSize = 1024 1024 50; // 单个分段大小,这里测试用100Mlet filesTotalSize = chunkSize; // 安装包总大小,默认100Mlet filesPages = 1; // 总共分几段下载//计算百分比之前先清空上次的if(this.percentage==100){this.percentage=0;}let sentAxios = (num) => {let rande = chunkSize;//判断是否开启了断点续传(断点续传没法并行-需要上次请求的结果作为参数)if (this.breakpointResumeTags){rande = ${Number(this.fileFinalOffset)+1}-${num chunkSize + 1};}else {if (num) {rande = ${(num - 1) chunkSize + 2}-${num chunkSize + 1};} else {// 第一次0-1方便获取总数,计算下载进度,每段下载字节范围区间rande = "0-1";} }let headers = {range: rande,};axios({method: "get",url: url.trim(),async: true,data: {},headers: headers,responseType: "blob"}).then((response) => {if (response.status == 200 || response.status == 206) {//检查了下才发现,后端对文件流做了一层封装,所以将content指向response.data即可const content = response.data;//截取文件总长度和最后偏移量let result= response.headers["content-range"].split("/");// 获取文件总大小,方便计算下载百分比filesTotalSize =result[1];//获取最后一片文件位置,用于断点续传this.fileFinalOffset=result[0].split("-")[1]// 计算总共页数,向上取整filesPages = Math.ceil(filesTotalSize / chunkSize);// 文件流数组this.contentList.push(content);// 递归获取文件数据(判断是否要继续递归)if (this.filesCurrentPage < filesPages&&this.stopRecursiveTags==true) {this.filesCurrentPage++;//计算下载百分比 当前下载的片数/总片数this.percentage=Number((this.contentList.length/filesPages)100).toFixed(2);sentAxios(this.filesCurrentPage);//结束递归return;}//递归标签为true 才进行下载if (this.stopRecursiveTags){// 文件名称const fileName =decodeURIComponent(response.headers["fname"]);//构造一个blob对象来处理数据const blob = new Blob(this.contentList);//对于<a>标签,只有 Firefox 和 Chrome(内核) 支持 download 属性//IE10以上支持blob但是依然不支持downloadif ("download" in document.createElement("a")) {//支持a标签download的浏览器const link = document.createElement("a"); //创建a标签link.download = fileName; //a标签添加属性link.style.display = "none";link.href = URL.createObjectURL(blob);document.body.appendChild(link);link.click(); //执行下载URL.revokeObjectURL(link.href); //释放urldocument.body.removeChild(link); //释放标签} else {//其他浏览器navigator.msSaveBlob(blob, fileName);} }} else {//调用暂停方法,记录当前下载位置console.log("下载失败")} }).catch(function (error) {console.log(error);});};// 第一次获取数据方便获取总数sentAxios(this.filesCurrentPage);this.$message({message: '文件开始下载!',type: 'success'});} }})</script></body></html> 本篇文章为转载内容。原文链接:https://blog.csdn.net/kangshihang1998/article/details/129407214。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-19 08:12:45
546
转载
Java
..., Scanner是Java中用于接收用户输入的标准类,它提供了多种方法来读取不同数据类型(如整数、浮点数、字符串等)的输入。在程序运行时,通过创建Scanner对象并关联到System.in流,可以实现从键盘、文件或其他输入源获取用户输入的功能。 System.out.println() , 在Java编程语言中,System.out.println()是一个预定义的方法,属于java.io.PrintStream类的一部分,主要用于向控制台输出信息,并在输出内容后自动添加一个换行符。程序员可以通过该方法将变量值、字符串或者其他数据类型的表达式结果以可读的形式显示在控制台上,是Java中最常用的输出功能之一。 String.format() , String.format()是Java中的一个静态方法,属于String类,用于格式化并组合一组对象。它可以按照指定的格式规范生成一个新的字符串,类似于C语言中的printf函数。在处理输出时,String.format()允许程序员精确地控制输出内容的格式,比如对齐方式、整数和浮点数的小数位数以及如何插入变量值。例如,在文章中的应用场景中,String.format()被用来确保整数与字符串能够正确且美观地拼接在一起输出。
2023-12-24 11:21:23
397
数据库专家
转载文章
...样至关重要。 另外,Java 8及以上版本引入了全新的日期和时间API(java.time包),提供了更强大且灵活的方式来处理日期、时间和时区问题。LocalDateTime、Duration和Period等类可以高效准确地完成时间单位之间的转换,包括毫秒到小时、分钟、秒的转换,同时支持格式化输出。 不仅如此,对于大规模分布式系统,微服务架构下的各个组件间的时间同步也是基础能力之一,NTP(网络时间协议)等协议便承担着将UTC时间精确到毫秒级同步到全球各节点的任务。而在呈现给终端用户时,仍需经过类似上述"convertMillis"方法的处理,转化为人性化的“小时:分钟:秒”格式。 综上所述,无论是基础的编程实践还是高级的应用场景,将毫秒数转换为小时、分钟、秒不仅是一种基本技能,更是解决复杂时间管理问题的关键环节。与时俱进地掌握并运用相关技术和最佳实践,有助于提升系统的可靠性和用户体验。
2024-03-25 12:35:31
506
转载
Struts2
...src/main/java目录里,找起来可就要费一番功夫了。 代码示例: 假设我们的config.properties文件应该放在src/main/resources目录下。我们可以这样编写一个简单的Action类来读取这个文件: java package com.example; import com.opensymphony.xwork2.ActionSupport; import java.io.InputStream; import java.util.Properties; public class ConfigAction extends ActionSupport { private Properties props = new Properties(); public String execute() throws Exception { InputStream inputStream = getClass().getClassLoader().getResourceAsStream("config.properties"); if (inputStream == null) { throw new RuntimeException("Could not find config.properties file!"); } props.load(inputStream); return SUCCESS; } } 在这个例子中,我们使用getClass().getClassLoader().getResourceAsStream方法来获取资源流。如果文件不存在,会抛出异常。 2.2 文件编码问题 另一个常见的问题是文件编码问题。确保你的properties文件用的是UTF-8编码,有些系统默认可不是这种编码。 代码示例: 你可以通过IDE的设置来修改文件的编码。例如,在IntelliJ IDEA中,右键点击文件,选择File Encoding,然后选择UTF-8。 3. 解决方案 现在我们已经了解了问题的原因,接下来就来谈谈具体的解决办法。 3.1 检查文件路径 最简单的方法是检查文件路径是否正确。确保文件确实存在于src/main/resources目录下,并且没有拼写错误。 代码示例: 如果你不确定文件路径是否正确,可以在控制台打印出文件路径进行检查: java System.out.println(getClass().getClassLoader().getResource("config.properties").getPath()); 这段代码会输出文件的实际路径,帮助你确认文件是否存在以及路径是否正确。 3.2 验证文件编码 如果文件路径没有问题,那么可能是文件编码问题。确保你的properties文件是以UTF-8编码保存的。 代码示例: 如果你是在Eclipse中开发,可以通过以下步骤更改文件编码: 1. 右键点击文件 -> Properties。 2. 在Resource选项卡下找到Text file encoding。 3. 选择Other,然后选择UTF-8。 3.3 使用Spring集成 如果你的应用使用了Spring框架,可以考虑将properties文件作为Spring Bean来管理。这样一来,不仅能轻松地用在其他的Bean里,还能统一搞定配置文件的加载呢。 代码示例: 在Spring配置文件中添加如下配置: xml classpath:config.properties 然后在其他Bean中可以直接引用配置属性: java @Autowired private Environment env; public void someMethod() { String dbUrl = env.getProperty("db.url"); // ... } 4. 总结 通过以上步骤,你应该能够解决“Could not load the following properties file: config.properties”这个问题。其实问题本身并不复杂,关键是要细心排查每一个可能的原因。希望本文能对你有所帮助! 最后,我想说的是,编程路上总会有各种各样的问题等着我们去解决。别担心会犯错,也别害怕遇到难题。多动脑筋,多动手试试,办法总比困难多,你一定能找到解决的办法!加油,我们一起前行!
2025-02-19 15:42:11
56
翡翠梦境
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
systemctl start|stop|restart service_name
- 控制systemd服务的启动、停止或重启。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"