前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[预处理 -E 参数 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Kylin
...世界里,我们经常需要处理大量的数据,并从中提取出有价值的信息。Kylin作为一款高性能的分布式列式存储和分析引擎,可以高效地处理PB级别的数据。本文将深入探讨如何利用Kylin进行多模型的数据分析与预测。 二、Kylin的特性与优势 首先,让我们来了解一下Kylin的几个关键特性: - 高性能:Kylin通过内存计算和并行处理,能够快速响应查询需求。 - 分布式架构:支持大规模数据集的存储和处理,适合于大数据环境。 - 多维分析:提供SQL-like查询接口,易于理解和使用。 - 实时性:提供实时更新和历史数据的分析能力。 三、构建多模型分析框架 在Kylin中实现多模型分析,主要步骤包括数据加载、模型训练、预测结果生成以及结果展示。以下是一个简单的示例流程: 1. 数据加载 将原始数据导入Kylin,创建Cube(多维数据集)。 python from pykylin.client import KylinClient client = KylinClient('http://your_kylin_server', 'username', 'password') cube_name = 'my_cube' model = client.get_cube(cube_name) 2. 模型训练 Kylin支持多种预测模型,如线性回归、决策树等。哎呀,咱们就拿线性回归做个例子,就像用个魔法棒一样,这魔法棒就是Python里的Scikit-learn库。咱们得先找个好点的地方,比如说数据集,然后咱们就拿着这个魔法棒在数据集上挥一挥,让它学习一下规律,最后啊,咱们就能得到一个模型了。这模型就好比是咱们的助手,能帮咱们预测或者解释一些事情。怎么样,听起来是不是有点像在玩游戏? python from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split 假设df是包含特征和目标变量的数据框 X = df.drop('target', axis=1) y = df['target'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LinearRegression() model.fit(X_train, y_train) 3. 预测结果生成 将训练好的模型应用于Kylin Cube中的数据,生成预测结果。 python 生成预测值 predictions = model.predict(X_test) 将预测结果存储回Kylin Cube model.save_predictions(predictions) 4. 结果展示 通过Kylin的Web界面查看和分析预测结果。 四、案例分析 假设我们正在对一个电商平台的数据进行分析,目标是预测用户的购买行为。嘿!你听说过Kylin这个家伙吗?这家伙可是个数据分析的大拿!我们能用它来玩转各种模型,就像是线性回归、决策树和随机森林这些小伙伴。咱们一起看看,它们在预测用户会不会买东西这件事上,谁的本领最厉害!这可是一场精彩绝伦的模型大比拼呢! python 创建多个模型实例 models = [LinearRegression(), DecisionTreeClassifier(), RandomForestClassifier()] 训练模型并比较性能 for model in models: model.fit(X_train, y_train) score = model.score(X_test, y_test) print(f"Model: {model.__class__.__name__}, Score: {score}") 五、结论 通过上述步骤,我们不仅能够在Kylin中实现多模型的数据分析和预测,还能根据实际业务需求灵活选择和优化模型。哎呀,Kylin这玩意儿可真牛!它在处理大数据分析这块儿,简直就是得心应手的利器,灵活又强大,用起来那叫一个顺手,简直就是数据分析界的扛把子啊!哎呀,随着咱手里的数据越来越多,做事儿也越来越复杂了,这时候,学会在Kylin这个工具里搭建和优化各种数据分析模型,就变得超级关键啦!就像是厨房里,你会做各种菜,每道菜的配料和做法都不一样,对吧?在Kylin这里也是一样,得会根据不同的需求,灵活地组合和优化模型,让数据分析既快又准,效率爆棚!这不仅能让咱们的工作事半功倍,还能解锁更多创新的分析思路,是不是想想都觉得挺酷的呢? --- 请注意,上述代码示例为简化版本,实际应用时可能需要根据具体数据集和业务需求进行调整。
2024-10-01 16:11:58
131
星辰大海
转载文章
...息可知,声音经过滤镜处理之后变得非常怪异。本身声音美的用户尤其女孩子必然受不了这样的声音变化,声音不好听的用户,经过处理后,结果是更加的不堪回首。所以,从实际情况来看,大多数人都会直接发布不加滤镜的原音。 另外,应用中有个设置奇特的地方在于,如果发布信息时只发布声音不附加图片,这条信息的背景会有一大片的空白,效果比较差。别说应用制作者,用户们都会觉得很有违和感,因而绝大多数用户都会添加图片。 这时候,啵啵变得非常类似啪啪,虽然本身,其与啪啪就相差不大。 是的,这是啪啪披着声音滤镜的外衣,事实上笔者怀疑啪啪不做声音滤镜就是有声音滤镜反而丑化声音的考虑。据了解,这是本周重组后的人人公司新的无线事业部推出的两款移动应用之一。但如果说这就是一个上市大公司在移动端发力所能做到的全部,这无疑是稍让人失望的。而且,人人网能不能不要这么马虎对待自己的产品?所谓的@啵啵官博就只在1月18日发布了一条消息,之后这个微博账号再无动静。 如果按照许朝军解释啪啪名字的来源:啪=口+拍,声音加图片。那啵啵又作何解? 好吧,其实人人网解释是这样的:“语音产品,所以取拟声名字,明确定位”。 参考:http://www.hooxiao.com/index.php?m=content&c=index&a=show&catid=19&id=14864(2013-01-21 10:04:03) 本篇文章为转载内容。原文链接:https://blog.csdn.net/prairie79/article/details/8546911。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-17 12:49:28
488
转载
Kafka
...afka这个分布式流处理平台中的一个重要概念——副本同步的数据复制策略。我为啥要挑这个话题呢?其实是因为我自己在学Kafka和用Kafka的时候,发现不管是新手还是有些经验的老手,都对副本同步和数据复制这些事一头雾水,挺让人头疼的。这不仅仅是因为里面藏着一堆复杂的技巧行头,更是因为它直接关系到系统能不能稳稳当当跑得快。所以呢,我打算通过这篇文章跟大家分享一下我的心得和经验,希望能帮到大家,让大家更容易搞懂这部分内容。 1. 什么是副本同步? 在深入讨论之前,我们先要明白副本同步是什么意思。简单说,副本同步就像是Kafka为了确保消息不会丢,像快递一样在集群里的各个节点间多送几份,这样即使一个地方出了问题,别的地方还能顶上。这样做可以确保即使某个节点发生故障,其他节点仍然可以提供服务。这是Kafka架构设计中非常重要的一部分。 1.1 副本的概念 在Kafka中,一个主题(Topic)可以被划分为多个分区(Partition),而每个分区可以拥有多个副本。副本分为领导者副本(Leader Replica)和追随者副本(Follower Replica)。想象一下,领导者副本就像是个大忙人,既要处理所有的读写请求,还得不停地给其他小伙伴分配任务。而那些追随者副本呢,就像是一群勤勤恳恳的小弟,只能等着老大分活儿给他们,然后照着做,保持和老大的一致。 2. 数据复制策略 接下来,让我们来看看Kafka是如何实现这些副本之间的数据同步的。Kafka的数据复制策略主要依赖于一种叫做“拉取”(Pull-based)的机制。这就意味着那些小弟们得主动去找老大,打听最新的消息。 2.1 拉取机制的优势 采用拉取机制有几个好处: - 灵活性:追随者可以根据自身情况灵活调整同步频率。 - 容错性:如果追随者副本暂时不可用,不会影响到领导者副本和其他追随者副本的工作。 - 负载均衡:领导者副本不需要承担过多的压力,因为所有的读取操作都是由追随者完成的。 2.2 实现示例 让我们来看一下如何在Kafka中配置和实现这种数据复制策略。首先,我们需要定义一个主题,并指定其副本的数量: python from kafka.admin import KafkaAdminClient, NewTopic admin_client = KafkaAdminClient(bootstrap_servers='localhost:9092') topic_list = [NewTopic(name="example_topic", num_partitions=3, replication_factor=3)] admin_client.create_topics(new_topics=topic_list) 这段代码创建了一个名为example_topic的主题,它有三个分区,并且每个分区都有三个副本。 3. 副本同步的实际应用 现在我们已经了解了副本同步的基本原理,那么它在实际应用中是如何工作的呢? 3.1 故障恢复 当一个领导者副本出现故障时,Kafka会自动选举出一个新的领导者。这时候,新上任的大佬会继续搞定读写请求,而之前的小弟们就得重新变回小弟,开始跟新大佬取经,同步最新的消息。 3.2 负载均衡 在集群中,不同的分区可能会有不同的领导者副本。这就相当于把消息的收发任务分给了不同的小伙伴,这样大家就不会挤在一个地方排队了,活儿就干得更顺溜了。 3.3 实际案例分析 假设有一个电商网站使用Kafka来处理订单数据。要是其中一个分区的大佬挂了,系统就会自动转而听命于另一个健健康康的大佬。虽然在这个过程中可能会出现一会儿数据卡顿的情况,但总的来说,这并不会拖慢整个系统的进度。 4. 总结与展望 通过上面的讨论,我们可以看到副本同步和数据复制策略对于提高Kafka系统的稳定性和可靠性有多么重要。当然,这只是Kafka众多功能中的一个小部分,但它确实是一个非常关键的部分。以后啊,随着技术不断进步,咱们可能会见到更多新颖的数据复制方法,这样就能让Kafka跑得更快更稳了。 最后,我想说的是,学习技术就像是探险一样,充满了挑战但也同样充满乐趣。希望大家能够享受这个过程,不断探索和进步! --- 以上就是我对Kafka副本同步数据复制策略的一些理解和分享。希望对你有所帮助!如果有任何问题或想法,欢迎随时交流讨论。
2024-10-19 16:26:57
57
诗和远方
转载文章
... 看成欲估计的分布的参数,X 表示样本,p(X|θ) 则表示似然。 现给定样本集\mathcal{D}=\{x_1,x_2,\ldots,x_N\}D={x1,x2,…,xN} ,似然函数为: p(\mathcal{D}|\theta)=\prod_{n=1}^Np(x_n|\theta) p(D|θ)=∏n=1Np(xn|θ) 为便于计算,再将其转换为对数似然函数形式: \ln p(\mathcal{D}|\theta)=\sum_{n=1}^N\ln p(x_n|\theta) lnp(D|θ)=∑n=1Nlnp(xn|θ) 我们不妨以伯努利分布为例,利用最大似然估计的方式计算其分布的参数(pp ),伯努利分布其概率密度函数(pdf)为: f_X(x)=p^x(1-p)^{1-x}=\left \{ \begin{array}{ll} p,&\mathrm{x=1},\\ q\equiv1-p ,&\mathrm{x=0},\\ 0,&\mathrm{otherwise} \end{array} \right. fX(x)=px(1−p)1−x=⎧⎩⎨⎪⎪p,q≡1−p,0,x=1,x=0,otherwise 整个样本集的对数似然函数为: \ln p(\mathcal{D}|\theta)=\sum_{n=1}^N\ln p(x_n|\theta)=\sum_{n=1}^N\ln (\theta^{x_n}(1-\theta)^{1-x_n})=\sum_{n=1}^Nx_n\ln\theta+(1-x_n)\ln(1-\theta) lnp(D|θ)=∑n=1Nlnp(xn|θ)=∑n=1Nln(θxn(1−θ)1−xn)=∑n=1Nxnlnθ+(1−xn)ln(1−θ) 等式两边对\thetaθ 求导: \frac{\partial \ln(\mathcal{D}|\theta)}{\partial \theta}=\frac{\sum_{n=1}^Nx_n}{\theta}-\frac{N}{1-\theta}+\frac{\sum_{n=1}^Nx_n}{1-\theta} ∂ln(D|θ)∂θ=∑Nn=1xnθ−N1−θ+∑Nn=1xn1−θ 令其为0,得: θml=∑Nn=1xnN Beta分布 f(μ|a,b)=Γ(a+b)Γ(a)Γ(b)μa−1(1−μ)b−1=1B(a,b)μa−1(1−μ)b−1 Beta 分布的峰值在a−1b+a−2 处取得。其中Γ(x)≡∫∞0ux−1e−udu 有如下性质: Γ(x+1)=xΓ(x)Γ(1)=1andΓ(n+1)=n! 我们来看当先验分布为 Beta 分布时的后验分布: p(θ)=1B(a,b)θa−1(1−θ)b−1p(X|θ)=(nk)θk(1−θ)n−kp(θ|X)=1B(a+k,b+n−k)θa+k−1(1−θ)b+n−k−1 对应于python中的math.gamma()及matlab中的gamma()函数(matlab中beta(a, b)=gamma(a)gamma(b)/gamma(a+b))。 条件概率(conditional probability) P(X|Y) 读作: P of X given Y ,下划线读作given X :所关心事件 Y :条件(观察到的,已发生的事件),conditional 条件概率的计算 仍然从样本空间(sample space)的角度出发。此时我们需要定义新的样本空间(给定条件之下的样本空间)。所以,所谓条件(conditional),本质是对样本空间的进一步收缩,或者叫求其子空间。 比如一个人答题,有A,B,C,D 四个选项,在答题者对题目一无所知的情况下,他答对的概率自然就是 14 ,而是如果具备一定的知识,排除了 A,C 两个错误选项,此时他答对的概率简单计算就增加到了 12 。 本质是样本空间从S={A,B,C,D} ,变为了S′={B,D} 。 新样本空间下P(A|排除A/C)=0,P(C|排除A/C)=0 ,归纳出来,也即某实验结果(outcome,oi )与某条件Y 不相交,则: P(oi|Y)=0 最后我们得到条件概率的计算公式: P(oi|Y)=P(oi)P(o1)+P(o2)+⋯+P(on)=P(oi)P(Y)Y={o1,o2,…,on} 考虑某事件X={o1,o2,q1,q2} ,已知条件Y={o1,o2,o3} 发生了,则: P(X|Y)=P(o1|Y)+P(o2|Y)+0+0=P(o1)P(Y)+P(o2)P(Y)=P(X∩Y)P(Y) 条件概率与贝叶斯公式 条件概率: P(X|Y)=P(X∩Y)P(Y) 贝叶斯公式: P(X|Y)=P(X)P(Y|X)P(Y) 其实是可从条件概率推导贝叶斯公式的: P(A|B)=P(B|A)=P(A|B)P(B)===P(B|A)=P(A∩B)P(B)P(A∩B)P(A)P(A∩B)P(B)P(B)P(A∩B)P(A)P(B|A)P(A|B)P(B)P(A) 证明:P(B,p|D)=P(B|p,D)P(p|D) P(B,p|D)====P(B,p,D)P(D)P(B|p,D)P(p,D)P(D)P(B|p,D)P(p,D)P(D)P(B|p,D)P(p|D) References [1] 概率质量函数 本篇文章为转载内容。原文链接:https://blog.csdn.net/lanchunhui/article/details/49799405。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-02-26 12:45:04
518
转载
转载文章
...)、网络通信、多媒体处理等。 积分商城 , 积分商城是在线社区或平台为鼓励用户参与互动和活跃度而设立的一种虚拟交易系统。在该文中,积分商城允许用户通过在论坛发帖、回复、参与活动等方式积累积分,并将积分兑换成实物礼品或虚拟服务,比如Android开发相关的教程资源、工具包等。 Socket编程 , Socket编程是网络编程的基础技术之一,它提供进程间通信的一种机制,允许运行于不同主机上的应用建立连接并通过端口发送和接收数据。在本文提到的“基于Socket的Android手机视频实时传输”中,Socket编程技术被用于构建客户端与服务器之间的稳定、双向的数据通道,实现实时音视频流的传输,这对于Android开发者而言是构建实时通讯类应用的关键技能之一。 AChartEngine , AChartEngine是一个开源的图表绘制库,专为Android移动应用设计。在Android开发过程中,开发者可以借助AChartEngine轻松创建各种类型的图表,例如折线图、柱状图、饼图等,以便更好地展示数据统计结果或者可视化信息。文章中的“Android Chart图开源库AChartEngine教程”,即提供了如何在Android应用中集成并利用AChartEngine绘制图表的具体指导。 喷泉粒子系统 , 喷泉粒子系统是一种计算机图形学中模拟自然现象(如水流、火焰、烟雾等)的特效技术,在游戏中和动态壁纸等场景广泛应用。在Android开发领域,喷泉粒子系统源码指的是实现这一特效效果的程序代码,通过控制大量细微的粒子状态(位置、速度、颜色等),营造出类似喷泉喷射、水珠飞溅的视觉效果。
2023-04-15 17:53:42
322
转载
转载文章
...技术的普及,开发者在处理项目部署时有了更为便捷高效的解决方案。 例如,Spring Boot通过内嵌的Tomcat服务器简化了Java Web应用的部署流程,只需构建一个可执行的JAR或WAR文件,便能在任何支持Java环境的地方启动项目,无需繁琐的服务器配置。对于版本适配问题,Spring Boot会自动管理依赖库的版本,确保项目的稳定运行。 同时,容器化技术如Docker为软件部署提供了标准化、轻量级的方式。通过编写Dockerfile定义应用环境,开发者可以快速创建包含应用程序及其所有依赖项的镜像,并在任何安装有Docker的环境中一键部署,极大提升了部署的一致性和可移植性。 另外,云原生技术的发展也改变了传统的服务器管理模式,Kubernetes作为容器编排工具,能够实现自动化部署、扩展和管理容器化应用,有效解决了多实例、动态扩容等问题,使得项目管理和运维更加灵活高效。 总之,在Eclipse等IDE之外,掌握现代化的项目部署与服务器管理技术将有助于开发者应对更多实际场景中的挑战,提升开发效率及系统的稳定性。因此,深入学习Spring Boot、Docker以及Kubernetes等相关知识,是每一位Web开发者持续进阶的必修课。
2024-02-23 12:52:12
490
转载
c++
...++时,我们经常需要处理各种数据结构,如数组、向量、列表等。嘿,兄弟!你知道数据结构这玩意儿能帮咱们整理和保管各种信息吧?但是啊,有时候呢,如果我们操作得不当,它也能给我们惹来一堆麻烦,你懂我的意思吗?就像咱们在厨房里做菜,放多了盐或者少放了调料,菜就可能不好吃一样。所以啊,用数据结构的时候可得小心点儿,别让它变成咱们的“小麻烦制造机”!其中之一就是容器大小不足的问题。哎呀,你懂的,就像你去超市购物,东西已经塞满了购物车,再往里塞个大号的西瓜,那购物车肯定要翻车或者搞不好西瓜砸到脚上。程序也一样,如果数据容器已经装得满满的了,你还拼命往里加东西,要么程序就直接罢工,要么就乱七八糟地运行,搞得谁都不开心。为了不让这种尴尬的状况发生,同时给咱们的程序员小伙伴们提供一份贴心的错误提示,C++这门编程语言特地准备了一个叫做 std::length_error 的小工具。它专门用来告诉我们,哎呀,你的容器(就是那个放东西的大盒子)不够大,装不下你想要塞进去的东西啦!这样一来,咱们在写代码的时候,如果遇到了这种情况,就知道是哪里出了问题,然后就可以愉快地修改和解决啦! 为什么需要 std::length_error 想象一下,你正在开发一个应用程序,它需要在用户输入时动态地增加数据容器的大小。哎呀,兄弟,你可得小心点啊!要是你操作不当,特别是像往杯子里倒水那样,已经装满了还拼命加,那可就麻烦大了。程序也是一样,万一你试图在容器已经满满当当的情况下继续塞东西进去,那可就有可能出岔子。可能就是程序突然罢工,或者变得乱七八糟,啥结果都可能出现。所以啊,记得要适时放手,别让东西堆积成山!使用 std::length_error 可以帮助你在这样的情况下优雅地捕获错误,而不是让程序突然停止工作。 实现 std::length_error 在C++中,std::length_error 是 头文件中的一个类模板。这个类通常用来表示操作的长度超过了容器的当前容量。例如,当你尝试访问一个超出范围的数组索引时,或者在向固定大小的数组或容器添加元素时超过了其最大容量,都会触发 std::length_error。 下面是一个简单的示例代码来展示如何使用 std::length_error: cpp include include include int main() { std::vector vec = {1, 2, 3}; // 尝试向已满的容器添加元素 try { vec.push_back(4); // 这里会触发 std::length_error } catch (const std::length_error& e) { std::cout << "Caught std::length_error: " << e.what() << std::endl; } return 0; } 在这个例子中,我们创建了一个包含三个整数的向量,并尝试向其中添加第四个元素。由于向量已经满了,这会导致 std::length_error 被抛出,然后通过 catch 块捕获并打印错误信息。 如何处理 std::length_error 处理 std::length_error 的方式与处理其他异常类型相同。通常,你会在 try-catch 块中放置可能抛出异常的代码,并在 catch 块中处理错误。例如,在上面的例子中,我们捕获了异常并输出了错误信息。 cpp try { vec.push_back(4); } catch (const std::length_error& e) { std::cerr << "Error: " << e.what() << std::endl; // 可能的处理步骤,例如记录日志、通知用户或尝试释放资源 } 结论 std::length_error 提供了一种机制,使得程序员能够在容器大小不足的情况下得到明确的错误信息,而不是让程序意外崩溃。这对于提高代码的健壮性和用户体验至关重要。哎呀,兄弟!咱们得给程序安个保险丝,对吧?这样,当它碰到那些小麻烦,比如电池没电了或者突然停电啥的,它就能聪明地自我修复,而不是直接挂掉。这样一来,咱们的应用就稳如泰山,用户们也不会觉得突然断线啥的,多爽啊! 总之,std::length_error 是C++程序员工具箱中的一个强大工具,用于管理和响应容器大小不足的错误情况。哎呀,兄弟!理解并掌握这种错误处理的方法,能让你的软件不仅稳定得像座大山,还能让用户用起来舒心顺手,就像喝了一口冰凉的可乐,那叫一个爽!这样一来,你的程序不仅能在复杂的世界里稳如泰山,还能让使用者觉得你是个细心周到的好伙伴。别忘了,这可是让你的软件在芸芸众生中脱颖而出的秘诀!
2024-10-03 15:50:22
52
春暖花开
Golang
...是在Go语言里,错误处理可是个大事儿,因为这能促使开发者写出更稳当、更靠谱的代码。今天我们要聊的是“错误信息”——这东西可不只是一个简单的提示,它就像是侦探破案时的关键线索,能帮我们找到问题的症结所在。 想象一下,当你在编写一个复杂的网络应用程序时,如果某个请求失败了,你会如何追踪问题?如果没有清晰的错误信息,你可能会陷入无尽的调试之中。所以,要是能好好处理和展示错误信息,不仅能让我们程序变得更易于维护,还能大大提升我们的工作效率,省去很多头疼的时刻呢。 2. Go语言中的错误处理 Go语言有一个非常独特且强大的错误处理机制,那就是通过error接口来表示错误。这个接口非常简单,只有一个方法Error(),用于返回一个字符串,这个字符串就是错误信息。 go type error interface { Error() string } 这种设计使得Go语言在处理错误时非常灵活。我们可以自定义任何类型的错误,并通过Error()方法返回具体的错误信息。但是有个重点啊:错误信息得尽量详细清楚,这样我们才能迅速找到问题出在哪。 2.1 错误信息的重要性 错误信息不仅仅是给程序员看的,它还可能被最终用户看到。因此,在编写错误信息时,我们需要考虑两方面: - 面向开发者:确保错误信息足够具体,能够帮助开发者迅速定位问题。 - 面向用户:保持友好性和简洁性,避免暴露过多的技术细节。 举个例子,假设你的应用程序需要从数据库读取数据,但数据库连接失败了。一个好的错误信息可能是:“无法连接到数据库,请检查您的网络连接或联系管理员。这种信息不仅说清楚了问题的来龙去脉(就是数据库连不上),还给咱指了个大概的解决方向呢。 3. 实践中的错误处理 在实际项目中,错误处理是一个贯穿始终的过程。从最简单的错误检查,到复杂的错误链路追踪,每一步都至关重要。让我们来看几个具体的例子,看看如何在Go中实现有效的错误处理。 3.1 基础的错误检查 最基本也是最常见的错误处理方式,就是在函数调用后立即检查返回的错误值。如果错误不为nil,则进一步处理。 go func main() { file, err := os.Open("test.txt") if err != nil { fmt.Println("打开文件失败:", err) return } defer file.Close() // 继续处理文件... } 在这个例子中,我们尝试打开一个名为“test.txt”的文件。如果文件不存在或者权限不足等导致操作失败,os.Open()会返回一个非空的错误对象。通过检查这个错误对象,我们可以及时发现并处理问题。 3.2 使用错误链路 在复杂的应用中,一个操作可能会触发多个后续步骤,每个步骤都可能产生新的错误。在这种情况下,错误链路(即错误传播)变得尤为重要。我们可以利用Go语言的多返回值特性来实现这一点。 go func readConfig(filePath string) (map[string]string, error) { file, err := os.Open(filePath) if err != nil { return nil, fmt.Errorf("打开配置文件失败: %w", err) } defer file.Close() var config map[string]string decoder := json.NewDecoder(file) if err := decoder.Decode(&config); err != nil { return nil, fmt.Errorf("解析配置文件失败: %w", err) } return config, nil } func main() { config, err := readConfig("config.json") if err != nil { log.Fatalf("读取配置文件失败: %v", err) } // 使用配置... } 在这个例子中,readConfig函数尝试打开并解析一个JSON格式的配置文件。如果任何一步失败,我们都会返回一个包含原始错误的错误对象。这样做不仅可以让错误信息更加完整,还便于我们在调用方进行统一处理。 3.3 自定义错误类型 虽然标准库提供的error接口已经足够强大,但在某些场景下,我们可能需要更丰富的错误信息。这时,可以定义自己的错误类型来扩展功能。 go type MyError struct { Message string Code int } func (e MyError) Error() string { return fmt.Sprintf("错误代码%d: %s", e.Code, e.Message) } func doSomething() error { return &MyError{Message: "操作失败", Code: 500} } func main() { err := doSomething() if err != nil { log.Printf("发生错误: %v", err) } } 在这个例子中,我们定义了一个自定义错误类型MyError,它包含了一个消息和一个错误码。这样做的好处是可以根据不同的错误码采取不同的处理策略。 4. 错误信息的最佳实践 最后,我想分享一些我在日常开发中积累的经验,这些经验有助于写出更好的错误信息。 - 明确且具体:错误信息应该直接指出问题所在,避免模糊不清的描述。 - 用户友好的:对于最终用户可见的错误信息,尽量使用通俗易懂的语言。 - 提供解决方案:如果可能的话,给出一些基本的解决建议。 - 避免泄露敏感信息:在生成错误信息时,注意不要暴露敏感数据,如密码或密钥。 结语 错误信息是我们与程序之间的桥梁,它能帮助我们更好地理解问题所在,并找到解决问题的方法。在Go语言里,错误处理不仅仅是个技术活儿,它还代表着一种态度——就是要做出高质量的软件的那种执着精神。希望通过这篇文章,你能在未来的项目中更加重视错误信息的处理,从而写出更加健壮和可靠的代码。 --- 以上内容结合了理论与实践,旨在让你对Go语言中的错误处理有更深的理解。记住,好的错误信息就像是一位优秀的导游,它能带你穿越迷雾,找到正确的方向。
2024-11-09 16:13:46
128
桃李春风一杯酒
Nginx
...ysoev开发。它以处理并发连接的能力强、内存占用低、稳定性好等特点著称。Nginx不仅可以用作Web服务器,还可以作为邮件代理服务器以及用于负载均衡和缓存等功能。在本文中,Nginx主要用于提供Web服务,并且讨论了其权限设置的重要性。 权限 , 权限是指计算机系统中用户对文件、目录或服务的操作权限。权限分为读(Read)、写(Write)和执行(Execute)三种类型。读权限允许用户查看文件内容;写权限允许用户修改文件内容;执行权限允许用户运行程序或访问目录。在本文中,权限设置主要是指确保Nginx服务只能访问其需要使用的文件和目录,从而防止未经授权的访问和潜在的安全风险。 SELinux , SELinux(Security-Enhanced Linux)是一种强制访问控制(Mandatory Access Control, MAC)的安全机制,它增强了Linux系统的安全性。SELinux通过定义主体(如用户、进程等)和客体(如文件、目录等)的安全上下文,并强制执行基于这些上下文的访问控制规则,从而提供更强的安全保障。在本文中,SELinux被提及为一种可能影响Nginx正常运行的因素,因为它可能会阻止Nginx访问某些文件或目录,除非这些文件或目录具有正确的安全上下文。因此,在配置Nginx时,需要考虑SELinux的影响,以避免出现意外的安全问题。
2024-12-14 16:30:28
83
素颜如水_
ZooKeeper
...于分布式环境下的事务处理至关重要。这意味着无论网络延迟如何变化,客户端收到的数据总是按照创建或者更新的顺序排列。 - 代码示例: java // 创建节点 Stat createdStat = zk.create("/my/znode", "initial data".getBytes(), Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT); // 更新节点 byte[] updatedData = "updated content".getBytes(); zk.setData("/my/znode", updatedData, -1); - 思考:如果两个客户端同时尝试创建同一个路径的节点,ZooKeeper会确保先创建的请求成功返回,后续的请求则等待并获得正确的顺序响应。 2. 最终一致性 (Eventual Consistency) - 理解:虽然ZooKeeper提供强一致性,但在高可用场景下,为了容忍临时网络分区和部分节点故障,它采用了一种最终一致性模型。客户端不会傻傻地卡在等待一个还没完成的更新上,而是能够继续干自己的活儿。等到网络恢复了,或者那个闹别扭的节点修好了,ZooKeeper这个小管家就会出马,保证所有客户端都能看到一模一样的最终结果,没得商量! - 代码示例: 当一个客户端尝试更新一个已有的zNode,ZooKeeper会为此次更新生成一个事务zxid(Transaction ID)。即使中途网络突然抽风一下断开了,别担心,一旦网络重新连上,客户端就会收到一条带着新zxid的更新消息,这就表示这个事务已经妥妥地完成提交啦! java try { zk.exists("/my/znode", false); // check if zNode exists zk.setData("/my/znode", updatedData, -1); // update data with new transaction id } catch ( KeeperException.NoNodeException e) { System.out.println("ZNode doesn't exist yet"); } 3. 可观察性 (Observability) - 理解:ZooKeeper设计的核心在于使客户端能够感知服务器状态的变化,它通过Watcher监听机制让客户端在节点发生创建、删除、数据变更等事件后得到通知,从而保持客户端与ZooKeeper集群的同步。 - 代码示例: java // 注册一个节点变更的监听器 Watcher watcher = new Watcher() { @Override public void process(WatchedEvent event) { switch (event.getType()) { case NodeDeleted: System.out.println("ZNode deleted: " + event.getPath()); break; case NodeCreated: System.out.println("New ZNode created: " + event.getPath()); break; // ... other cases for updated or child events } }; }; zk.getData("/my/znode", false, watcher); 三、ZooKeeper设计原则的实际应用与影响 综上所述,顺序一致性提供了数据操作的可靠性,最终一致性则兼顾了系统的容错性和可扩展性,而可观测性则是ZooKeeper支持分布式协调的关键特征。这三大原则,不仅在很大程度上决定了ZooKeeper自身的行为习惯和整体架构,还实实在在地重塑了我们开发分布式应用的方式。比如说,在搭建分布式锁、配置中心或者进行分布式服务注册与发现这些常见应用场景时,开发者能够直接借用ZooKeeper提供的API和设计思路,轻而易举地打造出高效又稳定的解决方案,就像是在玩乐高积木一样,把不同的模块拼接起来,构建出强大的系统。 结论 随着云计算时代的到来,大规模分布式系统对于一致性和可靠性的需求愈发凸显,ZooKeeper正是在这个背景下诞生并不断演进的一颗璀璨明星。真正摸透并灵活运用ZooKeeper的设计精髓,那咱们就仿佛掌握了在分布式世界里驰骋的秘诀,能够随心所欲地打造出既稳如磐石又性能超群的分布式应用。
2024-02-15 10:59:33
34
人生如戏-t
Lua
...的高效优雅嘛!无论是处理日常任务,还是开发复杂系统,Lua 都能以其简洁而强大的特性,成为你编程旅程中不可或缺的一部分。
2024-08-12 16:24:19
168
夜色朦胧
Kibana
...和执行时间,特别是在处理大量数据时。合理设计脚本,避免不必要的计算,以提升效率。 - 可读性:保持代码简洁、注释清晰,方便团队成员理解和维护。 四、结语 自定义数据聚合函数是Kibana强大的功能之一,它赋予了用户无限的创造空间,能够针对特定业务需求进行精细的数据分析。通过本文的探索,相信你已经掌握了基本的实现方法。嘿,兄弟!你得记住,实践就是那最棒的导师。别老是坐在那里空想,多动手做做看,不断试验,然后调整改进。这样啊,你的数据洞察力,那可是能突飞猛进的。就像种花一样,你得浇水、施肥、修剪,它才会开花结果。所以,赶紧去实践吧,让自己的技能开枝散叶!在数据的海洋中航行,自定义聚合函数就是你手中的指南针,引领你发现更多宝藏。
2024-09-16 16:01:07
168
心灵驿站
Apache Solr
...其次,检查数据库连接参数是否正确设置; - 最后,查看日志文件,查看是否有其他异常信息。 在实践中,我们可以尝试如下代码实现: java // 创建DataImporter对象 DataImporter importer = new DataImporter(); // 设置数据库连接参数 importer.setDataSource(new JdbcDataSource()); importer.setSql("SELECT FROM table_name"); // 执行数据导入 importer.fullImport("/path/to/solr/home"); 如果以上步骤无法解决问题,建议查阅相关文档或寻求专业人士的帮助。 1.2 集群配置错误 另一位开发者在2020年7月25日反馈了一个关于Solr集群配置的错误问题。其问题描述为:“淘淘商城第60讲——搭建Solr集群时,报错:org.apache.solr.common.SolrException: Could not find collection : core1”。读了这位开发者的文章,我们发现他在搭建Solr集群的时候,实实在在地碰到了上面提到的那些问题。 对于这个问题,我们可以从以下几个方面进行排查: - 首先,检查solr的配置文件,确认核心集合是否正确配置; - 其次,检查集群状态,确认所有节点是否都已经正常启动; - 最后,查看日志文件,查看是否有其他异常信息。 在实践中,我们可以尝试如下代码实现: java // 启动集群 CoreContainer cc = CoreContainer.create(CoreContainer.DEFAULT_CONFIG); cc.load(new File("/path/to/solr/home/solr.xml")); cc.start(); // 查询集群状态 Collections cores = cc.getCores(); for (SolrCore core : cores) { System.out.println(core.getName() + " status : " + core.getStatus()); } 如果以上步骤无法解决问题,建议查阅相关文档或寻求专业人士的帮助。 三、Solr代码执行漏洞排查及解决方法 近年来,随着Apache Solr的广泛应用,安全问题日益突出。嘿,你知道吗?在2019年11月19日曝出的一条消息,Apache Solr这个家伙在默认设置下有个不小的安全隐患。如果它以cloud模式启动,并且对外开放的话,那么远程的黑客就有机会利用这个漏洞,在目标系统上随心所欲地执行任何代码呢!就像是拿到了系统的遥控器一样,想想都有点让人捏把汗呐! 对于这个问题,我们可以从以下几个方面进行排查: - 首先,检查solr的安全配置,确保只允许受信任的IP地址访问; - 其次,关闭不必要的服务端功能,如远程管理、JMX等; - 最后,定期更新solr到最新版本,以获取最新的安全补丁。 在实践中,我们可以尝试如下代码实现: java // 关闭JMX服务 String configPath = "/path/to/solr/home/solr.xml"; File configFile = new File(configPath); DocumentBuilder db = DocumentBuilderFactory.newInstance().newDocumentBuilder(); Document doc = db.parse(configFile); Element root = doc.getDocumentElement(); if (!root.getElementsByTagName("jmx").isEmpty()) { Node jmxNode = root.getElementsByTagName("jmx").item(0); jmxNode.getParentNode().removeChild(jmxNode); } TransformerFactory tf = TransformerFactory.newInstance(); Transformer transformer = tf.newTransformer(); transformer.setOutputProperty(OutputKeys.INDENT, "yes"); transformer.setOutputProperty("{http://xml.apache.org/xslt}indent-amount", "2"); DOMSource source = new DOMSource(doc); StreamResult result = new StreamResult(new File(configPath)); transformer.transform(source, result); 如果以上步骤无法解决问题,建议查阅相关文档或寻求专业人士的帮助。 四、总结 总的来说,Apache Solr虽然强大,但在使用过程中也会遇到各种各样的问题。了解并搞定这些常见问题后,咱们就能把Solr的潜能发挥得更淋漓尽致,这样一来,工作效率蹭蹭上涨,用户体验也噌噌提升,妥妥的双赢局面!希望本文能对你有所帮助!
2023-05-31 15:50:32
498
山涧溪流-t
转载文章
...发生在一帧之内,想要处理 “随时间推移进行的事务”, 相比Update,使用协程来执行此类任务会更方便。 协程在创建时,通常是一个 “返回值类型 为 IEnumerator”、“函数体中包含 yield return 语句 ” 的函数。 yiled return 可以暂停协程的执行,并在恰当时候恢复。具体在何时恢复,由 yield 的返回值决定。 启动协程,必须使用 MonoBehaviour 的 StartCoroutine 方法。 停止协程,可以使用 MonoBehaviour 的 StopCoroutine 方法 或 StopAllCoroutine 方法。 注意:以下情况也可能使协程停止: 1)、销毁启动协程的组件(GameObject.Destory(component);) ==> 协程停止 2)、禁用启动协程的组件(component.enabled = false;)==> 协程不停止 3)、销毁启动协程的组件所在的物体(GameObject.Destory(gameobject);) ==> 协程停止 4)、隐藏启动协程的组件所在的物体(gameobject.SetActive(false);) ==> 协程停止 2、MonoBehaviour.StartCoroutine StartCoroutine 方法总是立刻返回一个 Coroutine 对象(同步返回)。 无法保证协同程序按其启动顺序结束,即使他们在同一帧中完成也是如此(异步无序完成)。 可以在一个协程中启动另一个协程(支持协程嵌套)。 二、Unity中的 yield 语句类型 1、yield break; //打断协程运行 2、yield return null; //挂起协程,并从下一帧继续 3、yield return + “任意数字”; //挂起协程,并从下一帧继续 4、yield return + “bool值”; //挂起协程,并从下一帧继续 5、yield return + “任意字符串”; //挂起协程,并从下一帧继续 6、yield return + “普通Object”; //挂起协程,并从下一帧继续 7、yield return + “任意实现了 IEnumerator 接口的对象”。重要!(可嵌套) Unity 中,常见的、直接或间接实现了 IEnumerator 接口的类有: ------------------------------------------------------------------------------------------------ CustomYieldInstruction (abstarct) ——|> IEnumerator (interface) ------------------------------------------------------------------------------------------------ WaitUnitil (sealed) ——|> CustomYieldInstruction WaitWhile (sealed) ——|> CustomYieldInstruction WaitForSecondsRealtime (非sealed,但未发现子类) ——|> CustomYieldInstruction WWW (非sealed,但未发现子类) ——|> CustomYieldInstruction ------------------------------------------------------------------------------------------------ 随着Unity更新或在一些可选的Package中,可能有更多。。。 ------------------------------------------------------------------------------------------------ 8、yield return + “任意继承了 YieldInstruction 类 ([UsedByNativeCode],源码C层中无具体实现) 的对象”。重要!(可嵌套) Unity 中,常见的、直接或间接继承了 YieldInstruction 类的类有: ------------------------------------------------------------------------------------------------ WaitForSeconds (sealed) ——|> YieldInstruction Coroutine (sealed) ——|> YieldInstruction (Coroutine 是 StartCoroutine方法的返回值,意味着协程中可嵌套协程) WaitForEndOfFrame (sealed) ——|> YieldInstruction WaitForFixedUpdate (sealed) ——|> YieldInstruction AsyncOperation ——|> YieldInstruction ------------------------------------------------------------------------------------------------ AssetBundleCreateRequest (非sealed,但未发现子类) ——|> AsyncOperation AssetBundleRecompressOperation (非sealed,但未发现子类) ——|> AsyncOperation AssetBundleRequest (非sealed,但未发现子类) ——|> AsyncOperation ResourceRequest (非sealed,但未发现子类) ——|> AsyncOperation UnityEngine.Networking.UnityWebRequestAsyncOperation (非sealed,但未发现子类) ——|> AsyncOperation UnityEngine.iOS.OnDemandResourcesRequest (sealed) ——|> AsyncOperation ------------------------------------------------------------------------------------------------ 随着Unity更新或在一些可选的Package中,可能有更多。。。 ------------------------------------------------------------------------------------------------ 测试验证 第2、3、4、5、6条 如下: using System.Collections;using UnityEngine;public class Test : MonoBehaviour{void Start(){StartCoroutine(Func1());}IEnumerator Func1(){Debug.Log("Time.frameCount: " + Time.frameCount);yield return null;Debug.Log("Time.frameCount: " + Time.frameCount);yield return 0;Debug.Log("Time.frameCount: " + Time.frameCount);yield return 1;Debug.Log("Time.frameCount: " + Time.frameCount);yield return 99; //其他整数Debug.Log("Time.frameCount: " + Time.frameCount);yield return 0.5f; //浮点数值Debug.Log("Time.frameCount: " + Time.frameCount);yield return false; //bool值Debug.Log("Time.frameCount: " + Time.frameCount);yield return "Hi NRatel!"; //字符串Debug.Log("Time.frameCount: " + Time.frameCount);yield return new Object(); //任意对象Debug.Log("Time.frameCount: " + Time.frameCount);} } 测试验证 第7条 如下: using System.Collections;using UnityEngine;public class Test : MonoBehaviour{void Start(){StartCoroutine(Func1());}IEnumerator Func1(){Debug.Log("Func1");yield return Func2();}IEnumerator Func2(){Debug.Log("Func2");yield return Func3();}IEnumerator Func3(){Debug.Log("Func3");yield return null;} } 三、Unity协程实现原理 1、C 的迭代器。 现在已经知道:协程肯定与IEnumerator有关,因为启动协程时需要一个 IEnumerator 对象。 而 IEnumerator 是C实现的 迭代器模式 中的 枚举器(用于迭代的游标)。 迭代器相关接口定义如下: namespace System.Collections{//可枚举(可迭代)对象接口public interface IEnumerable{IEnumerator GetEnumerator();}//迭代游标接口public interface IEnumerator{object Current { get; }bool MoveNext();void Reset();} } 参考 MSDN C文档中对于 IEnumerator、IEnumerable、迭代器 的描述。 利用 IEnumerator 对象,可以对与之关联的 IEnumerable 集合 进行迭代: 1)、通过 IEnumerator 的 Current 方法,可以获取集合中位于枚举数当前位置的元素。 2)、通过 IEnumerator 的 MoveNext 方法,可以将枚举数推进到集合的下一个元素。如果 MoveNext 越过集合的末尾, 则枚举器将定位在集合中最后一个元素之后, 同时 MoveNext 返回 false。 当枚举器位于此位置时, 对 MoveNext 的后续调用也将返回 false 。如果最后一次调用 MoveNext 时返回 false,则 Current 未定义(结果为null)。 3)、通过 IEnumerator 的 Reset 方法,可以将“迭代游标” 设置为其初始位置,该位置位于集合中第一个元素之前。 2、C 的 yield 关键字。 C编译器在生成IL代码时,会将一个返回值类型为 IEnumerator 的方法(其中包含一系列的 yield return 语句),构建为一个实现了 IEnumerator 接口的对象。 注意,yield 是C的关键字,而非Unity定义!IEnumerator 对象 也可以直接用于迭代,并非只能被Unity的 StartCoroutine 使用! using System.Collections;using UnityEngine;public class Test : MonoBehaviour{void Start(){IEnumerator e = Func();while (e.MoveNext()){Debug.Log(e.Current);} }IEnumerator Func(){yield return 1;yield return "Hi NRatel!";yield return 3;} } 对上边C代码生成的Dll进行反编译,查看IL代码: 3、Unity 的协程。 Unity 协程是在逐帧迭代的,这点可以从 Unity 脚本生命周期 中看出。 可以大胆猜测一下,实现出自己的协程(功能相似,能够说明逐帧迭代的原理,不是Unity源码): using System;using System.Collections;using System.Collections.Generic;using UnityEngine;public class Test : MonoBehaviour{private Dictionary<IEnumerator, IEnumerator> recoverDict; //key:当前迭代器 value:子迭代器完成后需要恢复的父迭代器private IEnumerator enumerator;private void Start(){//Unity自身的协程//StartCoroutine(Func1());//自己实现的协程StarMyCoroutine(Func1());}private void StarMyCoroutine(IEnumerator e){recoverDict = new Dictionary<IEnumerator, IEnumerator>();enumerator = e;recoverDict.Add(enumerator, null); //完成后不需要恢复任何迭代器}private void LateUpdate(){if (enumerator != null){DoEnumerate(enumerator);} }private void DoEnumerate(IEnumerator e){object current;if (e.MoveNext()){current = e.Current;}else{//迭代结束IEnumerator recoverE = recoverDict[e];if (recoverE != null){recoverDict.Remove(e);}//恢复至父迭代器, 若没有则会至为nullenumerator = recoverE;return;}//null,什么也不做,下一帧继续if (current == null) { return; }Type type = current.GetType();//基础类型,什么也不做,下一帧继续if (current is System.Int32) { return; }if (current is System.Boolean) { return; }if (current is System.String) { return; }//IEnumerator 类型, 等待内部嵌套的IEnumerator迭代完成再继续if (current is IEnumerator){//切换至子迭代器enumerator = current as IEnumerator;recoverDict.Add(enumerator, e);return;}//YieldInstruction 类型, 猜测也是类似IEnumerator的实现if (current is YieldInstruction){//省略实现return;} }IEnumerator Func1(){Debug.Log("Time.frameCount: " + Time.frameCount);yield return null;Debug.Log("Time.frameCount: " + Time.frameCount);yield return "Hi NRatel!";Debug.Log("Time.frameCount: " + Time.frameCount);yield return 3;Debug.Log("Time.frameCount: " + Time.frameCount);yield return new WaitUntil(() =>{return Time.frameCount == 20;});Debug.Log("Time.frameCount: " + Time.frameCount);yield return Func2();Debug.Log("Time.frameCount: " + Time.frameCount);}IEnumerator Func2(){Debug.Log("XXXXXXXXX");yield return null;Debug.Log("YYYYYYYYY");yield return Func3(); //嵌套 IEnumerator}IEnumerator Func3(){Debug.Log("AAAAAAAA");yield return null;Debug.Log("BBBBBBBB");yield return null;} } 对比结果,基本可以达成协程作用,包括 IEnumerator 嵌套。 但是 Time.frameCount 的结果不同,想来实现细节必然是有差别的。 四、部分Unity源码分析 1、CustomYieldInstruction 类 可以继承该类,并实现自己的、需要异步等待的类。 原理: 当协程中 yield return “一个CustomYieldInstruction的子类”; 其实就相当于在原来的 迭代器A 中,插入了一个 新的迭代器B。 当迭代程序进入 B ,如果 keepWaiting 为 true,MoveNext() 就总是返回 true。 上面已经说过,迭代器在迭代时,MoveNext() 返回false 才标志着迭代完成! 那么,B 就总是完不成,直到 keepWaiting 变为 false。 这样 A 运行至 B处就 处于了 等待B完成的状态,相当于A挂起了。 猜测 YieldInstruction 也是类似的实现。 // Unity C reference source// Copyright (c) Unity Technologies. For terms of use, see// https://unity3d.com/legal/licenses/Unity_Reference_Only_Licenseusing System.Collections;namespace UnityEngine{public abstract class CustomYieldInstruction : IEnumerator{public abstract bool keepWaiting{get;}public object Current{get{return null;} }public bool MoveNext() { return keepWaiting; } public void Reset() {} }} 2、WaitUntil 类 语义为 “等待...直到满足...” 继承自 CustomYieldInstruction,需要等待时让 m_Predicate 返回 false (keepWating为true)。 // Unity C reference source// Copyright (c) Unity Technologies. For terms of use, see// https://unity3d.com/legal/licenses/Unity_Reference_Only_Licenseusing System;namespace UnityEngine{public sealed class WaitUntil : CustomYieldInstruction{Func<bool> m_Predicate;public override bool keepWaiting { get { return !m_Predicate(); } }public WaitUntil(Func<bool> predicate) { m_Predicate = predicate; } }} 3、WaitWhile 类 语义为 “等待...如果满足...” 继承自 CustomYieldInstruction,需要等待时让 m_Predicate 返回 true (keepWating为true)。 与 WaitUntil 的实现恰好相反。 // Unity C reference source// Copyright (c) Unity Technologies. For terms of use, see// https://unity3d.com/legal/licenses/Unity_Reference_Only_Licenseusing System;namespace UnityEngine{public sealed class WaitWhile : CustomYieldInstruction{Func<bool> m_Predicate;public override bool keepWaiting { get { return m_Predicate(); } }public WaitWhile(Func<bool> predicate) { m_Predicate = predicate; } }} 本篇文章为转载内容。原文链接:https://blog.csdn.net/NRatel/article/details/102870744。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-24 16:50:42
390
转载
Kotlin
...l安全性的支持,这在处理可能返回null的函数时尤为重要。哎呀,咱们在那个safeDivide函数里头啊,咱不搞那些硬核的错误处理,直接用返回null的方式,优雅地解决了分母为零的问题。这样一来,程序就不会突然蹦出个啥运行时错误,搞得人心惶惶的。这样子一来,咱们的代码不仅健健康康的,还能让人心情舒畅,多好啊!这样的设计大大提升了代码的安全性和健壮性。 4. 功能性编程与面向对象编程的结合 示例代码: kotlin fun calculateSum(numbers: List): Int { return numbers.fold(0) { acc, num -> acc + num } } fun main() { println(calculateSum(listOf(1, 2, 3, 4))) // 10 } Kotlin允许你轻松地将功能性编程与传统的面向对象编程结合起来。想象一下,fold函数就像是一个超级聪明的厨师,它能将一堆食材(也就是列表中的元素)巧妙地混合在一起,做出一道美味的大餐(即列表的总和)。这种方式既简单又充满创意,就像是一场烹饪表演,让人看得津津有味。这不仅提高了代码的可读性,还使得功能组合变得更加灵活和强大。 5. Kotlin与生态系统融合 Kotlin不仅自身强大,而且与Java虚拟机(JVM)兼容,这意味着它能无缝集成到现有的Java项目中。此外,Kotlin还能直接编译为JavaScript,使得跨平台开发变得简单。这事儿对那些手握现代Kotlin大棒,却又不打算彻底扔掉旧武器的程序员们来说,简直就是个天大的利好!他们既能享受到新工具带来的便利,又能稳稳守住自己的老阵地,这不是两全其美嘛! 结语 通过上述例子,我们可以看到Kotlin是如何在代码的简洁性、安全性以及与现有技术生态系统的融合上提供了一种更加高效、可靠和愉悦的编程体验。从“Expected';butfound''的挣扎中解脱出来,Kotlin让我们专注于创造,而不是被繁琐的细节所困扰。哎呀,你猜怎么着?Kotlin 这个编程小能手,在 Android 开发圈可是越来越火了,还慢慢往外扩散,走进了更多程序员的日常工作中。这货简直就是个万能钥匙,不仅能帮咱们打造超赞的手机应用,还能在其他领域大展身手,简直就是编程界的超级英雄嘛!用 Kotlin 编写的代码,不仅质量高,还能让工作变得更高效,开发者们可喜欢它了!
2024-07-25 00:16:35
267
风轻云淡
转载文章
...文就是在做类神经网络处理文字辨识,以你的例子而言,旋转随意角度对辨识来说并不会有太大影响,只要抓字的重心,360度旋转抓取特微值,还是可以辨识的出来。 通常文字辨识的有一个重要的动作,就是要把个别文字分割,你只要把文字弄的难分割就有不错的安全性。 --------------------------------------------------- 代码比较粗糙,而且比较菜,其中遇到一个问题,未对 Graphics 填充底色,那么文字的 ClearType 效果没有了,文字毛边比较明显,不知道为什么,谁能告诉竹子? 代码相对粗糙,没有考虑更多的情况,在测试过程中,以20px 字体呈现,效果感觉还不错,只是 ClearType 效果没有了。 帖几张看看 ------------ ------------ ------------ ------------ 有一些随机的不好,象下面这张 相关链接: 查看 V1.0 .NET 2.0 代码如下: using System; using System.Drawing; using System.Web; namespace Oran.Image { /// <summary> /// 旋转的可视验证码图象 /// </summary> public class RotatedVlidationCode { public enum RandomStringMode { /// <summary> /// 小写字母 /// </summary> LowerLetter, /// <summary> /// 大写字母 /// </summary> UpperLetter, /// <summary> /// 混合大小写字母 /// </summary> Letter, /// <summary> /// 数字 /// </summary> Digital, /// <summary> /// 混合数字与大小字母 /// </summary> Mix } public static string GenerateRandomString(int length, RandomStringMode mode) { string rndStr = string.Empty; if (length == 0) return rndStr; //以数组方式候选字符,可以更方便的剔除不要的字符,如数字 0 与字母 o char[] digitals = new char[10] { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9' }; char[] lowerLetters = new char[26] { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z' }; char[] upperLetters = new char[26] { 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' }; char[] letters = new char[52]{ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' }; char[] mix = new char[62]{ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' }; int[] range = new int[2] { 0, 0 }; Random random = new Random(); switch (mode) { case RandomStringMode.Digital: for (int i = 0; i < length; ++i) rndStr += digitals[random.Next(0, digitals.Length)]; break; case RandomStringMode.LowerLetter: for (int i = 0; i < length; ++i) rndStr += lowerLetters[random.Next(0, lowerLetters.Length)]; break; case RandomStringMode.UpperLetter: for (int i = 0; i < length; ++i) rndStr += upperLetters[random.Next(0, upperLetters.Length)]; break; case RandomStringMode.Letter: for (int i = 0; i < length; ++i) rndStr += letters[random.Next(0, letters.Length)]; break; default: for (int i = 0; i < length; ++i) rndStr += mix[random.Next(0, mix.Length)]; break; } return rndStr; } /// <summary> /// 显示验证码 /// </summary> /// <param name="seed">随机数辅助种子</param> /// <param name="strLen">验证码字符长度</param> /// <param name="fontSize">字体大小</param> /// <param name="mode">随机字符模式</param> /// <param name="clrFont">字体颜色</param> /// <param name="clrBg">背景颜色</param> public static void ShowValidationCode(ref int seed, int strLen, int fontSize, RandomStringMode mode, Color clrFont, Color clrBg) { int tmpSeed; unchecked { tmpSeed = (int)(seed DateTime.Now.Ticks); ++seed; } Random rnd = new Random(tmpSeed); string text = GenerateRandomString(strLen, mode); int height = fontSize 2; // 因为字体旋转后每个字体所占宽度会所有加大,所以要加一点补偿宽度 int width = fontSize text.Length + fontSize / (text.Length - 2); Bitmap bmp = new Bitmap(width, height); Graphics graphics = Graphics.FromImage(bmp); Font font = new Font("Courier New", fontSize, FontStyle.Bold); Brush brush = new SolidBrush(clrFont); Brush brushBg = new SolidBrush(clrBg); graphics.FillRectangle(brushBg, 0, 0, width, height); Bitmap tmpBmp = new Bitmap(height, height); Graphics tmpGph = null; int degree = 40; Point tmpPoint = new Point(); for (int i = 0; i < text.Length; i++) { tmpBmp = new Bitmap(height, height); tmpGph = Graphics.FromImage(tmpBmp); // tmpGph.TextRenderingHint = System.Drawing.Text.TextRenderingHint.SingleBitPerPixelGridFit; // 不填充底色,文字 ClearType 效果不见了,why?! // tmpGph.FillRectangle(brushBg, 0, 0, tmpBmp.Width, tmpBmp.Height); degree = rnd.Next(20, 51); // [20, 50]随机角度 if (rnd.Next(0, 2) == 0) { tmpPoint.X = 12; // 调整文本坐标以适应旋转后的图象 tmpPoint.Y = -6; } else { degree = ~degree + 1; // 逆时针旋转 tmpPoint.X = -10; tmpPoint.Y = 6; } tmpGph.RotateTransform(degree); tmpGph.DrawString(text[i].ToString(), font, brush, tmpPoint); graphics.DrawImage(tmpBmp, i fontSize, 0); // 拼接图象 } //输出图象 System.IO.MemoryStream memoryStream = new System.IO.MemoryStream(); bmp.Save(memoryStream, System.Drawing.Imaging.ImageFormat.Gif); HttpContext.Current.Response.Cache.SetCacheability(HttpCacheability.NoCache); HttpContext.Current.Response.ClearContent(); HttpContext.Current.Response.ContentType = "image/gif"; HttpContext.Current.Response.BinaryWrite(memoryStream.ToArray()); HttpContext.Current.Response.End(); //释放资源 font.Dispose(); brush.Dispose(); brushBg.Dispose(); tmpGph.Dispose(); tmpBmp.Dispose(); graphics.Dispose(); bmp.Dispose(); memoryStream.Dispose(); } } } 转载于:https://www.cnblogs.com/iRed/archive/2008/06/22/1227687.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30600197/article/details/96672619。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-27 09:38:56
250
转载
Spark
...不断增加,对于大数据处理的需求也在不断增长。Apache Spark,这可真是个厉害的角色啊!它就是一个超级强大的分布式计算工具,能够轻轻松松地应对海量数据的处理任务,速度快到飞起,绝对是我们处理大数据问题时的得力助手。然而,在处理大量小文件时,Spark的性能可能会受到影响。那么,如何通过一些技巧来优化Spark在读取大量小文件时的性能呢? 二、为什么要关注小文件处理? 在实际应用中,我们往往会遇到大量的小文件。例如,电商网站上的商品详情页、新闻站点的每篇文章等都是小文件。这些小文件要是拿Spark直接处理的话,可能不大给力,性能上可能会有点缩水。 首先,小文件的数量非常多。由于磁盘I/O这小子的局限性,咱们现在只能像小蚂蚁啃骨头那样,每次读取一点点的小文件,意思就是说,想要完成整个大任务,就得来回折腾、反复读取多次才行。这无疑会增加处理的时间和开销。 其次,小文件的大小较小,因此在传输过程中也会消耗更多的网络带宽。这不仅增加了数据传输的时间,还可能会影响到整体的系统性能。 三、优化小文件处理的方法 针对上述问题,我们可以采用以下几种方法来优化Spark在读取大量小文件时的性能。 1. 使用Dataframe API Dataframe API是Spark 2.x版本新增的一个重要特性,它可以让我们更方便地处理结构化数据。相比于RDD,Dataframe API可真是个贴心小能手,它提供的接口不仅瞅着更直观,操作起来更是高效溜溜的。这样一来,咱们就能把那些不必要的中间转换和操作通通“踢飞”,让数据处理变得轻松又愉快!另外,Dataframe API还超级给力地支持一些更高级的操作,比如聚合、分组什么的,这对于处理那些小文件可真是帮了大忙了! 下面是一个简单的例子,展示如何使用Dataframe API来读取小文件: java val df = spark.read.format("csv") .option("header", "true") .option("inferSchema", "true") .load("/path/to/files/") 在这个例子中,我们使用read函数从指定目录下读取CSV文件,并将其转化为DataFrame。然后,我们可以通过各种函数对DataFrame进行操作,如show、filter、groupBy等。 2. 使用Spark SQL Spark SQL是一种高级抽象,用于查询关系表。就像Dataframe API那样,Spark SQL也给我们带来了一种超级实用又高效的处理小文件的方法,一点儿也不复杂,特别接地气儿。Spark SQL还自带了一堆超级实用的内置函数,比如COUNT、SUM、AVG这些小帮手,用它们来处理小文件,那速度可真是嗖嗖的,轻松又高效。 下面是一个简单的例子,展示如何使用Spark SQL来读取小文件: scss val df = spark.sql("SELECT FROM /path/to/files/") 在这个例子中,我们使用sql函数来执行SQL语句,从而从指定目录下读取CSV文件并转化为DataFrame。 3. 使用Partitioner Partitioner是Spark的一种内置机制,用于将数据分割成多个块。当我们处理大量小文件时,可以使用Partitioner来提高处理效率。其实呢,我们可以这样来操作:比如说,按照文件的名字呀,或者文件里边的内容这些规则,把那些小文件分门别类地整理一下。就像是给不同的玩具放在不同的抽屉里一样,每个类别都单独放到一个文件夹里面去存储,这样一来就清清楚楚、井井有条啦!这样一来,每次我们要读取文件的时候,就只需要瞄一眼一个文件夹里的内容,压根不需要把整个目录下的所有文件都翻个底朝天。 下面是一个简单的例子,展示如何使用Partitioner来处理小文件: python val partitioner = new HashPartitioner(5) val rdd = sc.textFile("/path/to/files/") .map(line => (line.split(",").head, line)) .partitionBy(partitioner) val output = rdd.saveAsTextFile("/path/to/output/") 在这个例子中,我们首先使用textFile函数从指定目录下读取文本文件,并将其转化为RDD。接着,我们运用一个叫做map的神奇小工具,就像魔法师挥动魔杖那样,把每一行文本巧妙地一分为二,一部分是文件名,另一部分则是内容。然后,我们采用了一个叫做partitionBy的神奇函数,就像把RDD里的数据放进不同的小篮子里那样,按照文件名给它们分门别类。这样一来,每个“篮子”里都恰好装了5个小文件,整整齐齐,清清楚楚。最后,我们使用saveAsTextFile函数将RDD保存为文本文件。因为我们已经按照文件名把文件分门别类地放进不同的“小桶”里了,所以现在每次找文件读取的时候,就不用像无头苍蝇一样满目录地乱窜,只需要轻轻松松打开一个文件夹,就能找到我们需要的文件啦! 四、结论 通过以上三种方法,我们可以有效地优化Spark在读取大量小文件时的性能。Dataframe API和Spark SQL提供了简单且高效的API,可以快速处理结构化数据。Partitioner这个小家伙,就像个超级有条理的文件整理员,它能够按照特定的规则,麻利地把那些小文件分门别类放好。这样一来,当你需要读取文件的时候,就仿佛拥有了超能力一般,嗖嗖地提升读取速度,让效率飞起来!当然啦,这只是入门级别的小窍门,真正要让方案火力全开,还得瞅准实际情况灵活变通,不断打磨和优化才行。
2023-09-19 23:31:34
45
清风徐来-t
转载文章
...、图论算法、自然语言处理等领域有广泛的应用。阅读相关的学术论文或博客文章,了解递归在现代AI领域的具体实践案例。 总之,理论知识与实践相结合才能更好地理解和运用上述编程技术,时刻关注行业动态和最新研究成果,将有助于提高技术水平和应对不断变化的技术挑战。
2023-05-28 18:35:16
91
转载
Ruby
...能包括用户管理、订单处理、支付系统等。如果所有代码都堆在一个文件里,不仅难以维护,还容易出错。模块化嘛,就好比把一大块蛋糕切成好多小块,每一块都能单独派上用场。这样一来,不仅好收拾、好分配,要是还想加点什么进去,也超级方便! 在Ruby中,模块化是一个核心概念。Ruby提供了Module类来帮助我们实现模块化设计。用模块化的方式来写代码,就像给一堆零件分类整理好一样,不仅能让整个程序看起来条理分明,还方便以后直接拿出来用,省时又省力! 示例代码: ruby module PaymentProcessor def process_payment(amount) puts "Processing payment of ${amount}" end end class Order include PaymentProcessor def initialize(total_amount) @total_amount = total_amount end def checkout process_payment(@total_amount) end end order = Order.new(100) order.checkout 在这个例子中,我们创建了一个名为PaymentProcessor的模块,其中包含一个process_payment方法。然后我们将这个模块包含到Order类中,使得Order类可以调用process_payment方法。这种模块化的设计让我们的代码更加简洁和易于理解。 2. 封装的概念及其在Ruby中的应用 接下来,我们谈谈封装。封装嘛,在面向对象编程里算个挺关键的概念。简单说就是把对象的“私密信息”藏起来,不让外面随便乱动,但可以通过专门设计的一些方法去操作它。就像给你的宝贝东西加了个小锁,别人不能直接打开看或者乱翻,不过你可以用钥匙去管理它。 为什么要进行封装呢?因为封装可以帮助我们保护数据不被外部随意修改,从而减少错误的发生。比如,在我们电商网站上,要是把用户的信用卡信息直接亮出来,那这些重要信息分分钟可能就被拿去乱用啦!通过封装,我们可以确保这些信息只能在安全的环境中被处理。 在Ruby中,我们可以通过定义私有方法和属性来实现封装。让我们来看一个具体的例子。 示例代码: ruby class User attr_reader :name def initialize(name, password) @name = name @password = password end private def password @password end def change_password(new_password) @password = new_password end end user = User.new("Alice", "secret123") puts user.name user.password 这行代码会报错,因为password是私有的 user.change_password("new_secret") 在这个例子中,我们定义了一个User类,其中包含了name和password两个属性。通过attr_reader,我们可以公开访问name属性,但是password属性是私有的,外部无法直接访问。我们需要通过change_password这样的方法来更改密码,这种方式更安全。 3. 模块化设计的实际应用案例 现在,让我们来看看模块化设计在实际项目中的应用。好啦,咱们就拿做个博客系统来说吧!想想看,这个博客要是弄好了,得能让好多人一起用,每个人都能注册账号、登进来写东西。写完的文章呢,其他小伙伴能看到,还能在底下留言评论啥的,就跟咱们平时在社交平台上互动一样热闹!我们可以将这些功能分别放在不同的模块中,以便于管理和维护。 首先,我们可以创建一个Authentication模块来处理用户的登录和登出操作。 示例代码: ruby module Authentication def login(username, password) 登录逻辑 end def logout 登出逻辑 end end class User include Authentication def initialize(username, password) @username = username @password = password end def authenticate(password) password == @password end end user = User.new("admin", "admin123") user.login("admin", "admin123") if user.authenticate("admin123") 在这个例子中,我们将Authentication模块包含到User类中,这样User类就可以使用login和logout方法了。通过这种方式,我们实现了功能的分离,使得代码结构更加清晰。 4. 总结与展望 通过这篇文章,我们探讨了Ruby中的模块化设计与封装的重要性,并通过实际的代码示例展示了如何在项目中应用这些概念。用模块化的方式来写代码,就像搭积木一样,既能让程序变得更靠谱,又能省下很多开发和后期维护的力气,简直是一举两得的好事! 未来,随着软件开发的不断发展,我相信模块化设计和封装的理念将会变得更加重要。嘿,咱们做开发的啊,就得不停地学、不停地练,把这些好习惯给用起来。为啥呢?就为了写出那种既好看又顺手的代码,谁不喜欢看着清爽、跑得飞快的程序呢? 希望这篇文章对你有所帮助!如果你有任何疑问或想法,欢迎随时交流。记住,编程不仅仅是技术的积累,更是一种艺术的创造。让我们一起享受编程的乐趣吧!
2025-03-23 16:13:26
38
繁华落尽
Mongo
...易就出问题啦!特别是处理那些涉及多个集合的操作时,你得弄明白每一步到底干了啥,不然就容易出岔子。 最后,我想说的是,无论是在编程还是生活中,遇到困难并不可怕,可怕的是放弃思考。只要愿意花时间去研究和实践,总会找到解决问题的办法。希望大家都能从中受益匪浅! 好了,今天的分享就到这里啦!如果你也有类似的经历或者疑问,欢迎随时留言交流哦~
2025-04-28 15:38:33
19
柳暗花明又一村_
Beego
...涉及数据库操作、路由处理、中间件等多个部分之间的集成。 2.2 Beego集成测试示例 Beego通过中间件机制使得集成测试变得相对容易。我们完全可以在控制器这一层面上,动手编写集成测试。就拿检查路由、处理请求、保存数据这些操作来说,都是我们可以验证的对象。比如,想象一下你正在玩一个游戏,你要确保从起点到终点的每一个步骤(就好比路由和请求处理)都能顺畅进行,而且玩家的所有进度都能被稳妥地记录下来(这就类似数据持久化的过程)。这样,咱们就能在实际运行中对整个系统做全面健康检查啦!创建一个controller_test.go文件并添加如下内容: go package controllers import ( "net/http" "testing" "github.com/astaxie/beego" "github.com/stretchr/testify/assert" ) type MockUserService struct{} func (m MockUserService) GetUser(id int64) (User, error) { return &User{ID: id, Name: fmt.Sprintf("User %d", id)}, nil } func TestUserController_GetByID(t testing.T) { userService := &MockUserService{} ctrl := NewUserController(userService) beego.SetController(&ctrl) request, _ := http.NewRequest("GET", "/users/1", nil) response := new(http.Response) defer response.Body.Close() _ctrl := beego.NewControllerWithRequest(request) _ctrl.ServeHTTP(response, nil) if response.StatusCode != http.StatusOK { t.Fatalf("Expected status code 200 but got %d", response.StatusCode) } userData, err := getUserFromResponse(response) assert.NoError(t, err) assert.NotNil(t, userData) assert.Equal(t, "User 1", userData.Name) } func getUserFromResponse(r http.Response) (User, error) { var user User err := json.Unmarshal(r.Body, &user) return &user, err } 五、结论 通过以上讲解,相信你已经掌握了如何在Beego项目中编写单元测试和集成测试,它们各自对代码质量保障和功能协作的有效性不容忽视。在实际做项目的时候,咱们得瞅准不同的应用场景,灵活选用最对口的测试方案。并且,持续打磨、改进测试覆盖面,这样一来,你的代码质量就能妥妥地更上一个台阶,杠杠的!祝你在Beego开发之旅中,既能写出高质量的代码,又能保证万无一失的功能交付!
2024-02-09 10:43:01
460
落叶归根-t
转载文章
...最早被提出的,它可以处理离散属性样本的分类,C4.5和CART算法则可以处理更加复杂的分类问题,本文重点介绍ID3算法。 1、决策树基本流程 决策树 (decision tree) 是一类常见的机器学习方法。它是对给定的数据集学到一个模型对新示例进行分类的过程。下图所示为一个流程图的决策树,长方形代表判断模块(decision block),椭圆形代表终止模块(terminating block),表示已经得出结论,可以终止运行。从判断模块引出的左右箭头称作分支(branch),可以达到另一个判断模块或终止模块。 决策过程是基于树结构来进行决策的。如下图,首先检查邮件域名地址,如果地址为myEmployer.com,则将其分类为“无聊时需要阅读的邮件”。否则,则检查邮件内容里是否包含单词“曲棍球”,如果包含则归类为“需要及时处理的朋友邮件”,如果不包含则归类到“无需阅读的垃圾邮件” 流程图形式的决策树 显然,决策过程的最终结论对应了我们所希望的判定结果,例如"需要阅读"或"不需要阅读”。 决策过程中提出的每个判定问题都是对某个属性的"测试",如邮件地址域名为?是否包含“曲棍球”? 每个测试的结果或是导出最终结论,或是导出进一步的判定问题,其考虑范围是在上次决策结果的限定范围之内,例如若邮件地址域名不是myEmployer.com之后再判断是否包含“曲棍球”。 一般的,决策树包含一个根节点、若干个内部节点和若干个叶节点。根节点包含样本全集;叶节点对应于决策结果,例如“无聊时需要阅读的邮件”。其他每个结点则对应于一个属性测试;每个节点包含的样本集合根据属性测试的结果被划分到子结点中。 决策树学习基本算法 显然,决策树的生成是一个递归过程.在决策树基本算法中,有三种情形会导致递归返回: (1)当前结点包含的样本全属于同一类别,无需划分; (2)当前属性集为空,或是所有样本在所有属性上取值相同,无法划分; (3)当前结点包含的样本集合为空,不能划分。 2、划分选择 决策树算法的关键是如何选择最优划分属性。一般而言,随着划分过程不断进行,我们希望决策树的分支结点所包含的样本尽可能属于同一类别,即结点的"纯度" (purity)越来越高。 (1)信息增益 信息熵 "信息熵" (information entropy)是度量样本集合纯度最常用的一种指标,定义为信息的期望。假定当前样本集合 D 中第 k 类样本所占的比例为 ,则 D 的信息熵定义为: H(D)的值越小,则D的纯度越高。信息增益 一般而言,信息增益越大,则意味着使周属性 来进行划分所获得的"纯度提升"越大。因此,我们可用信息增益来进行决策树的划分属性选择,信息增益越大,属性划分越好。 以西瓜书中表 4.1 中的西瓜数据集 2.0 为例,该数据集包含17个训练样例,用以学习一棵能预测设剖开的是不是好瓜的决策树.显然,。 在决策树学习开始时,根结点包含 D 中的所有样例,其中正例占 ,反例占 信息熵计算为: 我们要计算出当前属性集合{色泽,根蒂,敲声,纹理,脐部,触感}中每个属性的信息增益。以属性"色泽"为例,它有 3 个可能的取值: {青绿,乌黑,浅自}。若使用该属性对 D 进行划分,则可得到 3 个子集,分别记为:D1 (色泽=青绿), D2 (色泽2=乌黑), D3 (色泽=浅白)。 子集 D1 包含编号为 {1,4,6,10,13,17} 的 6 个样例,其中正例占 p1=3/6 ,反例占p2=3/6; D2 包含编号为 {2,3,7,8, 9,15} 的 6 个样例,其中正例占 p1=4/6 ,反例占p2=2/6; D3 包含编号为 {5,11,12,14,16} 的 5 个样例,其中正例占 p1=1/5 ,反例占p2=4/5; 根据信息熵公式可以计算出用“色泽”划分之后所获得的3个分支点的信息熵为: 根据信息增益公式计算出属性“色泽”的信息增益为(Ent表示信息熵): 类似的,可以计算出其他属性的信息增益: 显然,属性"纹理"的信息增益最大,于是它被选为划分属性。图 4.3 给出了基于"纹理"对根结点进行划分的结果,各分支结点所包含的样例子集显示在结点中。 然后,决策树学习算法将对每个分支结点做进一步划分。以图 4.3 中第一个分支结点( "纹理=清晰" )为例,该结点包含的样例集合 D 1 中有编号为 {1, 2, 3, 4, 5, 6, 8, 10, 15} 的 9 个样例,可用属性集合为{色泽,根蒂,敲声,脐部 ,触感}。基于 D1计算出各属性的信息增益: "根蒂"、 "脐部"、 "触感" 3 个属性均取得了最大的信息增益,可任选其中之一作为划分属性.类似的,对每个分支结点进行上述操作,最终得到的决策树如圈 4.4 所示。 3、剪枝处理 剪枝 (pruning)是决策树学习算法对付"过拟合"的主要手段。决策树剪枝的基本策略有"预剪枝" (prepruning)和"后剪枝 "(post" pruning) [Quinlan, 1993]。 预剪枝是指在决策树生成过程中,对每个结点在划分前先进行估计,若当前结点的划分不能带来决策树泛化性能提升,则停止划 分并将当前结点标记为叶结点; 后剪枝则是先从训练集生成一棵完整的决策树,然后自底向上地对非叶结点进行考察,若将该结点对应的子树替换为叶结点能带来决策树泛化性能提升,则将该子树替换为叶结点。 往期回顾 ● 带你详细了解机器视觉竞赛—ILSVRC竞赛 ● 到底什么是“机器学习”?机器学习有哪些基本概念?(简单易懂) ● 带你自学Python系列(一):变量和简单数据类型(附思维导图) ● 带你自学Python系列(二):Python列表总结-思维导图 ● 2018年度最强的30个机器学习项目! ● 斯坦福李飞飞高徒Johnson博士论文: 组成式计算机视觉智能(附195页PDF) ● 一文详解计算机视觉的广泛应用:网络压缩、视觉问答、可视化、风格迁移 本篇文章为转载内容。原文链接:https://blog.csdn.net/Sophia_11/article/details/113355312。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-27 21:53:08
285
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
systemctl start|stop|restart|status service_name
- 管理systemd服务。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"