前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[远程MySQL数据库IP地址排查 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...y Update)是数据同步的一种方式,在当前的Linux内核中发挥着重要的作用。RCU主要针对的数据对象是链表,目的是提高遍历读取数据的效率,为了达到目的使用RCU机制读取数据的时候不对链表进行耗时的加锁操作。这样在同一时间可以有多个线程同时读取该链表,并且允许一个线程对链表进行修改(修改的时候,需要加锁)。RCU适用于需要频繁的读取数据,而相应修改数据并不多的情景,例如在文件系统中,经常需要查找定位目录,而对目录的修改相对来说并不多,这就是RCU发挥作用的最佳场景。 Linux内核源码当中,关于RCU的文档比较齐全,你可以在 /DocumentaTIon/RCU/ 目录下找到这些文件。Paul E. McKenney 是内核中RCU源码的主要实现者,他也写了很多RCU方面的文章。今天我们就主要来说说linux内核rcu的机制详解。 在RCU的实现过程中,我们主要解决以下问题: 在读取过程中,另外一个线程删除了一个节点。删除线程可以把这个节点从链表中移除,但它不能直接销毁这个节点,必须等到所有的线程读取完成以后,才进行销毁操作。RCU中把这个过程称为宽限期(Grace period)。 在读取过程中,另外一个线程插入了一个新节点,而读线程读到了这个节点,那么需要保证读到的这个节点是完整的。这里涉及到了发布-订阅机制(Publish-Subscribe Mechanism)。 保证读取链表的完整性。新增或者删除一个节点,不至于导致遍历一个链表从中间断开。但是RCU并不保证一定能读到新增的节点或者不读到要被删除的节点。 宽限期 通过这个例子,方便理解这个内容。以下例子修改于Paul的文章。 struct foo {int a;char b;long c;};DEFINE_SPINLOCK(foo_mutex);struct foo gbl_foo;void foo_read (void){foo fp = gbl_foo;if ( fp != NULL )dosomething(fp-》a, fp-》b , fp-》c );}void foo_update( foo new_fp ){spin_lock(&foo_mutex);foo old_fp = gbl_foo;gbl_foo = new_fp;spin_unlock(&foo_mutex);kfee(old_fp);} 如上的程序,是针对于全局变量gbl_foo的操作。假设以下场景。有两个线程同时运行 foo_ read和foo_update的时候,当foo_ read执行完赋值操作后,线程发生切换;此时另一个线程开始执行foo_update并执行完成。当foo_ read运行的进程切换回来后,运行dosomething 的时候,fp已经被删除,这将对系统造成危害。为了防止此类事件的发生,RCU里增加了一个新的概念叫宽限期(Grace period)。 如下图所示: 图中每行代表一个线程,最下面的一行是删除线程,当它执行完删除操作后,线程进入了宽限期。宽限期的意义是,在一个删除动作发生后,它必须等待所有在宽限期开始前已经开始的读线程结束,才可以进行销毁操作。这样做的原因是这些线程有可能读到了要删除的元素。图中的宽限期必须等待1和2结束;而读线程5在宽限期开始前已经结束,不需要考虑;而3,4,6也不需要考虑,因为在宽限期结束后开始后的线程不可能读到已删除的元素。为此RCU机制提供了相应的API来实现这个功能。 void foo_read(void){rcu_read_lock();foo fp = gbl_foo;if ( fp != NULL )dosomething(fp-》a,fp-》b,fp-》c);rcu_read_unlock();}void foo_update( foo new_fp ){spin_lock(&foo_mutex);foo old_fp = gbl_foo;gbl_foo = new_fp;spin_unlock(&foo_mutex);synchronize_rcu();kfee(old_fp);} 其中foo_read中增加了rcu_read_lock和rcu_read_unlock,这两个函数用来标记一个RCU读过程的开始和结束。其实作用就是帮助检测宽限期是否结束。 foo_update增加了一个函数synchronize_rcu(),调用该函数意味着一个宽限期的开始,而直到宽限期结束,该函数才会返回。我们再对比着图看一看,线程1和2,在synchronize_rcu之前可能得到了旧的gbl_foo,也就是foo_update中的old_fp,如果不等它们运行结束,就调用kfee(old_fp),极有可能造成系统崩溃。而3,4,6在synchronize_rcu之后运行,此时它们已经不可能得到old_fp,此次的kfee将不对它们产生影响。 宽限期是RCU实现中最复杂的部分,原因是在提高读数据性能的同时,删除数据的性能也不能太差。 订阅——发布机制 当前使用的编译器大多会对代码做一定程度的优化,CPU也会对执行指令做一些优化调整,目的是提高代码的执行效率,但这样的优化,有时候会带来不期望的结果。如例: void foo_update( foo new_fp ){spin_lock(&foo_mutex);foo old_fp = gbl_foo;new_fp-》a = 1;new_fp-》b = ‘b’;new_fp-》c = 100;gbl_foo = new_fp;spin_unlock(&foo_mutex);synchronize_rcu();kfee(old_fp);} 这段代码中,我们期望的是6,7,8行的代码在第10行代码之前执行。但优化后的代码并不会对执行顺序做出保证。在这种情形下,一个读线程很可能读到 new_fp,但new_fp的成员赋值还没执行完成。单独线程执行dosomething(fp-》a, fp-》b , fp-》c ) 的 这个时候,就有不确定的参数传入到dosomething,极有可能造成不期望的结果,甚至程序崩溃。可以通过优化屏障来解决该问题,RCU机制对优化屏障做了包装,提供了专用的API来解决该问题。这时候,第十行不再是直接的指针赋值,而应该改为 : rcu_assign_pointer(gbl_foo,new_fp);rcu_assign_pointer的实现比较简单,如下:define rcu_assign_pointer(p, v) \__rcu_assign_pointer((p), (v), __rcu)define __rcu_assign_pointer(p, v, space) \do { \smp_wmb(); \(p) = (typeof(v) __force space )(v); \} while (0) 我们可以看到它的实现只是在赋值之前加了优化屏障 smp_wmb来确保代码的执行顺序。另外就是宏中用到的__rcu,只是作为编译过程的检测条件来使用的。 在DEC Alpha CPU机器上还有一种更强悍的优化,如下所示: void foo_read(void){rcu_read_lock();foo fp = gbl_foo;if ( fp != NULL )dosomething(fp-》a, fp-》b ,fp-》c);rcu_read_unlock();} 第六行的 fp-》a,fp-》b,fp-》c会在第3行还没执行的时候就预先判断运行,当他和foo_update同时运行的时候,可能导致传入dosomething的一部分属于旧的gbl_foo,而另外的属于新的。这样会导致运行结果的错误。为了避免该类问题,RCU还是提供了宏来解决该问题: define rcu_dereference(p) rcu_dereference_check(p, 0)define rcu_dereference_check(p, c) \__rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)define __rcu_dereference_check(p, c, space) \({ \typeof(p) _________p1 = (typeof(p)__force )ACCESS_ONCE(p); \rcu_lockdep_assert(c, “suspicious rcu_dereference_check()” \usage”); \rcu_dereference_sparse(p, space); \smp_read_barrier_depends(); \(typeof(p) __force __kernel )(_________p1)); \})staTIc inline int rcu_read_lock_held(void){if (!debug_lockdep_rcu_enabled())return 1;if (rcu_is_cpu_idle())return 0;if (!rcu_lockdep_current_cpu_online())return 0;return lock_is_held(&rcu_lock_map);} 这段代码中加入了调试信息,去除调试信息,可以是以下的形式(其实这也是旧版本中的代码): define rcu_dereference(p) ({ \typeof(p) _________p1 = p; \smp_read_barrier_depends(); \(_________p1); \}) 在赋值后加入优化屏障smp_read_barrier_depends()。我们之前的第四行代码改为 foo fp = rcu_dereference(gbl_foo);,就可以防止上述问题。 数据读取的完整性 还是通过例子来说明这个问题: 如图我们在原list中加入一个节点new到A之前,所要做的第一步是将new的指针指向A节点,第二步才是将Head的指针指向new。这样做的目的是当插入操作完成第一步的时候,对于链表的读取并不产生影响,而执行完第二步的时候,读线程如果读到new节点,也可以继续遍历链表。如果把这个过程反过来,第一步head指向new,而这时一个线程读到new,由于new的指针指向的是Null,这样将导致读线程无法读取到A,B等后续节点。从以上过程中,可以看出RCU并不保证读线程读取到new节点。如果该节点对程序产生影响,那么就需要外部调用来做相应的调整。如在文件系统中,通过RCU定位后,如果查找不到相应节点,就会进行其它形式的查找,相关内容等分析到文件系统的时候再进行叙述。 我们再看一下删除一个节点的例子: 如图我们希望删除B,这时候要做的就是将A的指针指向C,保持B的指针,然后删除程序将进入宽限期检测。由于B的内容并没有变更,读到B的线程仍然可以继续读取B的后续节点。B不能立即销毁,它必须等待宽限期结束后,才能进行相应销毁操作。由于A的节点已经指向了C,当宽限期开始之后所有的后续读操作通过A找到的是C,而B已经隐藏了,后续的读线程都不会读到它。这样就确保宽限期过后,删除B并不对系统造成影响。 小结 RCU的原理并不复杂,应用也很简单。但代码的实现确并不是那么容易,难点都集中在了宽限期的检测上,后续分析源代码的时候,我们可以看到一些极富技巧的实现方式。 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_50662680/article/details/128449401。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-25 09:31:10
105
转载
转载文章
...的,比如JAVA、大数据、算法等,下图从BOSS上截取的: 蚂蚁金服不在望京,在环球金融中心。 美团 美团是望京第二大互联网公司,技术氛围浓厚。事业部很多,包括酒店事业部、闪购、美团金融、优选事业部、美团买菜等。 美团的福利常常被叫做白开水福利,不过比普通公司还是要好一些,六险一金、15薪、餐补、下午茶等。 面试比阿里容易一些,不过算法和八股文也是必须要准备的。 常年招聘,岗位很多,下面岗位来自BOSS: Lazada 东南亚头部电商,而且业务还囊括了娱乐、金融和物流,业务主要服务于东南亚。工作地点在朝阳区阿里中心。 福利待遇包括六险一金、年终奖、股权、餐补交通补等。 主要招聘岗位包括java开发、游戏开发、前端、UI等。 bilibili bilibili也是非常不错的一家互联网公司,总部在上海,北京的工作地点在朝阳区东煌大厦10层。截至2021年第一季度,B站月活用户达2.23亿 福利待遇比较完备,包括六险一金、餐补、全勤奖、下午茶、股权等。 招聘岗位包括游戏服务端开发、java开发、C++开发、TA、linux内核开发等。从招聘岗位来看,java 开发并不是bilibili的热门岗位。 每日优鲜 每日优鲜近几年的发展是非常快速的,也是一家非常值得加入的公司。工作地点在万科时代中心。 工作强度比较大,工作内容也比较有挑战,晋升也比较快。建议想在技术上成长的朋友们加入。 福利待遇包括六险一金,股票期权。 招聘岗位以java为主,架构、资深、中高级都有。 BIGO BIGO主要业务在音视频领域,主要产品有Bigo Live、Likee、Hello,目前全球月活用户近4亿,产品和服务覆盖超过150个国家和地区。 福利待遇也是非常不错的,六险一金、年终奖、住房补贴、股票期权等。 主要招聘岗位包括JAVA、音视频领域后端开发。 coupang 韩国电商平台,总部在首尔,成立于2010年,是一家成熟的老牌公司,在2021年3月上市。目前国内研发团队主要在上海,在北京也有研发团队。工作地点在颐堤港。 coupang工作强度不大,不加班不内卷。福利待遇也是很不错的,包括六险一金、餐补、补充公积金、节日福利等。 招聘岗位主要包括JAVA、IOS、搜索工程师、全栈工程师等。 面试难度比较大,前后包括五轮以上面试,第一轮是电话面试,后面线程面试会有手写代码环节。 水滴公司 水滴这两年发展很快,工作地点在望京科技园。 福利待遇方面,属于互联公司中等偏上的水平,包括六险一金、补充公积金、免费健身房等。 招聘岗位JAVA居多,各种级别的都有,还有一些中间件的岗位。 据面试过水滴的求职者反馈,面试很难,对基础要求高,可能会问一些平时不太关注的非常细的问题。 keep 爱运动的小伙伴相信都熟悉keep这款软件,目前keep的用户量已经破3亿。工作地点在万科时代中心。 薪资待遇行业中等,不过该有的服务也基本都有,包括六险一金、年终奖、股权等。 招聘岗位以java为主,各种级别都有。 雪球 国内知名的投资交流平台,2020年底完成1.2亿美元 E 轮融资,发展潜力巨大。工作地点在融新科技中心。 福利待遇在行业内属于中等水平,包括六险一金、年终奖、餐补、零食下午茶等。 招聘岗位以java为主,还有搜索研发、全栈开发等。 陌陌 陌生人社交平台,深受年轻人喜爱,18年陌陌全资收购了探探,规模进一步扩大,目前月活用户在1亿+,出海业务也做的非常好。 福利待遇属于行业中等偏上,互联网有的福利基本都有,包括六险一金、年终奖等。 招聘岗位很多,包括java、中间件、推荐算法、自然语言处理、安全、游戏开发、IOS等。 面试难度中等,会有手写sql、算法、linux命令的环节。 松果出行 松果出行主要业务是构建国内县域城市交通出行网络,目前主要是共享电单车和共享新能源汽车服务。目前业务已经覆盖全国21个省,5000个县。 福利待遇属于行业中等,五险一金、年终奖等,没有补充医疗保险。 招聘岗位很多,以JAVA为主,各种级别都有。也有物联网、传感器硬件相关的岗位。 小桔科技 目前研发团队主要做推荐、搜索系统,注册地在大连。 福利待遇行业中等,五险一金、年终奖,没有补充医疗保险。 招聘岗位包括JAVA、PHP、搜索算法、前端、数仓等。 理想汽车 智能电动车品牌,这两年在行业内名气比较大。 福利待遇行业中等偏上,六险一金、交通补贴等。 招聘岗位很多,以JAVA为主,各种级别都有。另外也招聘PaaS平台研发、搜索、车载语音、大数据等。 参加过理想汽车面试的同学反馈面试体验不太好,面试官没有耐心,给大家一个参考。 狮桥 智慧物流+普惠金融融资租赁业务。 福利待遇中等偏下,五险一金、年终奖,没有补充医疗保险。 招聘岗位主要是JAVA开发。 领创集团 海外金融业务,主要做印度市场。 福利待遇中等偏下,六险一金,年终奖,工作节奏慢。 招聘岗位主要是JAVA,招聘岗位主要是java。 面试过的同学反馈体验比较好,面试官比较nice,有手写代码环节。 总结 今天主要推荐了望京的16家值得加入的互联网公司,事实上,望京区域的互联网公司和其他科技公司至少有几百家,由于个人精力有限,主要梳理了业界比较知名和自己熟悉的公司。相信还有好多非常不错的公司值得加入,欢迎大家跟我交流讨论。 欢迎关注个人公众号,一起学习进步 本篇文章为转载内容。原文链接:https://blog.csdn.net/zjj2006/article/details/121412370。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-11 22:59:19
529
转载
转载文章
...查。 2020年监测数据显示,新生代农民工占比达到50.1%,男性占比高于女性。新生代农民工中男性占比为66.3%,比上年提高4.6个百分点;男性占比高于女性32.5个百分点,比上年提高9.1个百分点。 就业集中于劳动密集型行业,从事信息传输、软件和信息技术服务业的新生代农民工占比大幅提高。 2020年就业人数前五位的行业依次为居民服务、修理和其他服务业,制造业,建筑业,批发和零售业,住宿和餐饮业,共吸纳67.2%的新生代农民工就业。 2020年北京市外来新生代农民工监测报告 为了进一步做好农民工服务工作,了解外来农民工在京工作、生活需要,国家统计局北京调查总队在全市范围开展了农民工市民化进程动态监测调查,2020年监测数据显示,新生代农民工(出生于20世纪80年代以后,年龄在16周岁及以上,在异地以非农就业为主的农业户籍人口)占比达到50.1%,已经成为农民工的主体。 一、新生代农民工总体特征 男性占比高于女性,差距进一步加大。新生代农民工中男性占比为66.3%,比上年提高4.6个百分点;男性占比高于女性32.5个百分点,比上年提高9.1个百分点。 31-40岁农民工占比提高。新生代农民工平均年龄31.4岁,比上年增加0.4岁。其中,31-40岁的占比为57.9%,比上年提高3.2个百分点;21-30岁的占比为39.9%,16-20岁的占比为2.2%,分别比上年下降2.6个和0.6个百分点。 大学本科以上学历新生代农民工占比增加。新生代农民工中大学本科以上学历占比为21.2%,比上年提高7.9个百分点。其中,大学本科学历的占比为20.0%,研究生学历的占比为1.2%。 外来新生代农民工主要来自北京周边地区。其中,河北、河南两省占比最大,河北省占比为37.3%,比上年同期提高3.5个百分点,河南省占比为12.3%,比上年同期下降3.3个百分点。 二、新生代农民工就业情况 (一)就业集中于劳动密集型行业,从事信息传输、软件和信息技术服务业的新生代农民工占比大幅提高 调查样本中,2020年就业人数前五位的行业与上年一致,依次为居民服务、修理和其他服务业,制造业,建筑业,批发和零售业,住宿和餐饮业,共吸纳67.2%的新生代农民工就业。 除上述五大行业外,从事信息传输、软件和信息技术服务业的新生代农民工比例为7.9%,比上年提高3.7个百分点,在所有行业中增幅最大。 (二)收入水平整体提高,内部差距拉大 调查样本中,新生代农民工月均收入6214元,比上年增加364元,增长6.2%。其中,66.5%月均收入在5000元及以上,比上年高8.6个百分点。 1.不同行业差距较大 新生代农民工从业人数最多的七个行业按照收入水平排序依次为:信息传输、软件和信息技术服务业,建筑业,交通运输、 仓储和邮政业,制造业,批发零售业,住宿和餐饮业,居民服务、修理和其他服务业。月均收入分别为10571元、6587元、6489元、6017元、5888元、5668元和5195元。其中,收入最高的信息传输、软件和信息技术服务业从业人员月均收入比上年同期增长15.5%;从业人数最多、收入最低的居民服务、修理和其他服务业从业人员月均收入比上年同期降低2.6%。 2.不同收入段间收入差距加大 高收入段人员收入增速高于中低收入段。月均收入5000元及以上人员平均月收入为7507元,比上年同期提高2.8个百分点;月均收入4000-5000元人员平均月收入为4175元,比上年同期降低3.4个百分点;月均收入4000元以下人员平均月收入为3064元,比上年同期提高1.1个百分点。 (三)自营人员收入高,工作强度大 自营就业的新生代农民工月均收入6716元,比务工就业人员高568元;自营就业的新生代农民工平均每周工作6.5天,每天工作9.5小时,分别比务工就业人员多0.9天和0.7小时。 三、新生代农民工生活情况 (一)消费支出下降,吃穿住消费占新生代农民工总消费支出的7成以上 受疫情影响,未来收入的不确定性增加,新生代农民工户均消费支出降低。2020年,新生代农民工家庭户均生活消费支出42395元,比上年减少1833元,下降4.1%。 按照金额排序,新生代农民工消费支出排在前三位的依次为:食品烟酒、居住、衣着及其他日用品和服务,分别为14032元、10861元和5141元,前三位消费支出占总消费支出的70.8%。 (二)居住性质略有改变,居住满意度小幅提升 租赁私房人员占比减少,单位提供住房比例提升。从住房性质来看,新生代农民工主要以租赁私房为主,租赁私房的占60.5%,比上年同期降低3.2个百分点;单位提供住房的占33.1%,比上年同期提高4.7个百分点。 单位提供住房,居住消费支出减少,新生代农民工对现在居住条件表示满意的占66.5%,比上年提高3.0个百分点,其中,表示非常满意的占18.6%,比较满意的占47.9%。 (三)网络依赖增加,自我提升类活动减少 上网已经成为新生代农民工业余时间的主要休闲活动。新生代农民工业余时间的主要活动排在前三位的依次是:上网、休息和朋友聚会,其中上网占60.1%,比上年同期提高4.7个百分点。 自我提升类活动减少。业余时间参加学习培训、读书看报的新生代农民工占比分别为3.8%和7.6%,比上年同期分别下降2.5个和1.3个百分点。 四、“90后”农民工工作和生活特点 (一)“90后”农民工工作特点 1.“90后”农民工从事行业略有不同 “90后”农民工喜好略有不同,就业人数最多的七个行业依次为:制造业,建筑业,居民服务、修理和其他服务业,信息传输、软件和信息技术服务业,住宿和餐饮业,文化和娱乐服务业,批发和零售业。与新生代农民工群体差距最大的两个行业是信息传输、软件和信息技术服务业,批发和零售业,其中,从事信息传输、软件和信息技术服务业的占11.6%,比新生代农民工群体高3.7个百分点;从事批发和零售业的占5.8%,比新生代农民工群体低6.3个百分点。 2.“90后”农民工收入略高 调查样本中,“90后”农民工月均收入6424元,比新生代农民工群体平均水平高210元。其中,月均收入在5000元及以上的占68.4%,比新生代农民工群体高1.9个百分点。 3.自营人员占比较低 由于年纪尚轻,积累不够,“90后”农民工中的96.3%以受雇就业为主,自营就业人员仅占3.7%,低于新生代农民工群体7.9个百分点。 (二)“90后”农民工生活特点 1.消费支出略低,更偏重于衣着及教育文化娱乐方面 “90后”农民工家庭户均生活消费支出42009元,比新生代农民工群体低386元。其中,衣着及其他日常用品和服务、教育文化娱乐支出占总消费支出的比重分别为14.0%和5.9%,分别比新生代农民工群体高1.9个和1.0个百分点;居住和交通通信费支出占总消费支出的比重分别为23.9%和9.2%,分别比新生代农民工群体低1.8个和1.0个百分点。 2.业余生活更注重休息和自我提升 “90后”农民工业余时间的主要活动排在前三位的依旧是上网、休息和朋友聚会,但与整个新生代农民工群体不同的是,“90后”农民工更注重休息和自我提升,其中,业余时间休息的占34.5%,比新生代农民工群体高5.6个百分点;业余时间参加文娱体育活动、学习培训和读书看报的占27.5%,分别比新生代农民工群体、全部外来农民工整体高5.7个和11.8个百分点。 新生代农民工定义:出生于20世纪80年代以后,年龄在16周岁及以上,在异地以非农就业为主的农业户籍人口 推荐阅读: 世界的真实格局分析,地球人类社会底层运行原理 不是你需要中台,而是一名合格的架构师(附各大厂中台建设PPT) 企业IT技术架构规划方案 论数字化转型——转什么,如何转? 华为干部与人才发展手册(附PPT) 企业10大管理流程图,数字化转型从业者必备! 【中台实践】华为大数据中台架构分享.pdf 华为的数字化转型方法论 华为如何实施数字化转型(附PPT) 超详细280页Docker实战文档!开放下载 华为大数据解决方案(PPT) 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45727359/article/details/119745674。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-28 17:16:54
62
转载
Javascript
...or是JavaScript中的一个常见错误类型,特别是在处理异步操作的时候。比如fetch请求、文件上传下载、定时器这些地方都可能遇到它。它就像是一个警报器,告诉你某件事中途被中断了。 举个简单的例子: javascript const controller = new AbortController(); const signal = controller.signal; setTimeout(() => { console.log('定时器触发了!'); }, 3000); controller.abort(); // 中断定时器 console.log(signal.reason); // 输出 "AbortError: The operation was aborted." 在这个例子中,我们创建了一个AbortController实例,并通过调用它的abort()方法来中断定时器。嘿,瞧瞧最后一行输出啊!这告诉我们出问题了,是个“AbortError”,简单说就是有某个操作被强行中断啦。 --- 二、AbortError的实际应用场景 说到AbortError的应用场景,我觉得最典型的就是网络请求了。你有没有过这样的经历?比如你在网页上点了个下载按钮,想看个大图或者视频啥的。刚点完没多久,就觉得“这速度也太磨叽了吧!再等下去我都快睡着了”,然后一狠心就直接取消了操作。哎呀,这就像是服务器那边正拼了命地给你打包数据呢,结果你这边的浏览器直接甩出一句:“兄弟,不用忙活了,我不等了!””这就是AbortError发挥作用的地方。 让我们来看一段代码: javascript async function fetchData() { const controller = new AbortController(); const signal = controller.signal; try { const response = await fetch('https://example.com/large-file', { signal }); console.log('数据已成功获取'); } catch (error) { if (error.name === 'AbortError') { console.log('请求被用户取消'); } else { console.error('发生了其他错误:', error); } } // 取消请求 controller.abort(); } fetchData(); 在这段代码里,我们使用AbortController来管理一个网络请求。如果用户决定取消请求,我们就调用controller.abort(),这时fetch函数会抛出一个AbortError。嘿嘿,简单来说呢,就是咱们逮住这个错误,看看它是不是个“AbortError”,如果是的话,就用一种超优雅的方式把它处理了,不搞什么大惊小怪的。 --- 三、AbortError与其他错误的区别 说到错误,难免要和其他错误比较一番。比如说嘛,就有人会好奇地问:“AbortError跟一般的错误到底有啥不一样呀?”说实话呢,这个问题我也琢磨了好久好久,头都快想大了! 首先,AbortError是一种特殊的错误类型,专门用于表示操作被人为中断的情况。其实很多小错误啊,就是程序员自己不小心搞出来的,像打字打错了变量名,或者一激动让数组越界了之类的,都是挺常见的乌龙事件。简单来说呢,这俩的区别就是——AbortError就像是个“计划内”的小插曲,咱们事先知道它可能会发生,也能提前做好准备去应对;但普通的错误嘛,就好比是突然从天而降的小麻烦,压根儿没得防备,让人措手不及! 举个例子: javascript function divide(a, b) { if (b === 0) { throw new Error('除数不能为零'); } return a / b; } try { console.log(divide(10, 0)); // 抛出普通错误 } catch (error) { console.error(error.message); // 输出 "除数不能为零" } 在这个例子中,divide函数因为传入了非法参数(即分母为0)而抛出了一个普通错误。而如果我们换成AbortError呢? javascript const controller = new AbortController(); function process() { setTimeout(() => { console.log('处理完成'); }, 5000); } process(); controller.abort(); // 中断处理 这里虽然也有中断操作的意思,但并没有抛出任何错误。这就像是说,AbortError不会自己偷偷跑出来捣乱,得咱们主动去点那个abort()按钮才行。就好比你得自己动手去按开关,灯才不会自己亮起来一样。 --- 四、深入探讨AbortError的优缺点 说到优点嘛,我觉得AbortError最大的好处就是它让我们的代码更加健壮和可控。比如说啊,在面对一堆同时涌来的请求时, AbortError 就像一个神奇的开关,能帮我们把那些没用的请求一键关掉,这样就不会白白浪费资源啦!对了,它还能帮咱们更贴心地照顾用户体验呢!比如说,当用户等得花儿都快谢了,就给个机会让他们干脆放弃这事儿,省得干着急。 但是呢,凡事都有两面性。AbortError也有它的局限性。首先,它只适用于那些支持AbortSignal接口的操作,比如fetch、XMLHttpRequest之类。如果你尝试在一个不支持AbortSignal的操作上使用它,那就会直接报错。另外啊,要是随便乱用 AbortError 可不好,比如说老是取消请求的话,系统可能就会被折腾得够呛,负担越来越重,你说是不是? 说到这里,我想起了之前开发的一个项目,当时为了优化性能,我给每个API请求都加了AbortController,结果发现有时候会导致页面加载速度反而变慢了。后来经过反复调试,我才意识到,频繁地取消请求其实是得不偿失的。所以啊,大家在使用AbortError的时候一定要权衡利弊,不能盲目追求“安全”。 --- 五、总结与展望 总的来说,AbortError是一个非常实用且有趣的错误类型。它不仅能让我们更轻松地搞定那些乱七八糟的异步任务,还能让代码变得更好懂、更靠谱!不过,就像任何工具一样,它也需要我们在实践中不断摸索和完善。 未来,随着前端开发越来越复杂,我相信AbortError会有更多的应用场景。不管是应对一大堆同时进行的任务,还是让咱们跟软件互动的时候更顺畅、更开心,它都绝对是我们离不开的得力助手!所以,各位小伙伴,不妨多尝试用它来解决实际问题,说不定哪天你会发现一个全新的解决方案呢! 好了,今天的分享就到这里啦。希望能给大家打开一点思路,也期待大家在评论区畅所欲言,分享你的想法!最后,祝大家coding愉快,早日成为编程界的高手!
2025-03-27 16:22:54
106
月影清风
ElasticSearch
...索和分析引擎,它在大数据领域里可是大名鼎鼎。无论是日志分析、全文检索还是数据分析,Elasticsearch都能帮你搞定。 不过呢,凡事都有两面性。Elasticsearch虽然强大,但也存在一些安全隐患。如果你的集群暴露在公网下,或者权限设置不当,那可就麻烦了。你可以想想啊,要是你的数据被人偷走了,或者被乱改得面目全非,甚至整个系统都直接崩了,那可真是够呛,绝对不是闹着玩的! 所以,今天我们来聊聊如何优化Elasticsearch的安全性。我会用一些接地气的例子和代码片段,让你轻松理解这些概念。别担心,咱们会一步步来,保证你听得懂! --- 2. 配置SSL/TLS加密通信 首先,咱们得确保数据在传输过程中是安全的。SSL/TLS加密就是用来干这个的。 2.1 为什么需要SSL/TLS? 简单来说,SSL/TLS就像是一层保护罩,让别人即使截获了你的数据包,也看不懂里面的内容。想象一下,你的Elasticsearch集群要是直接暴露在网上,还不设防,那可就相当于把家里保险箱的密码和存折都摆在了大马路上。黑客轻轻松松就能闻到“香味”,啥用户的密码啊、查询出来的机密信息啊,通通被他们盯上,那后果简直不敢想!这简直太可怕了! 2.2 实现步骤 2.2.1 生成证书 首先,我们需要生成自签名证书。虽然自签名证书不能用于生产环境,但它能帮助我们快速测试。 bash openssl req -x509 -newkey rsa:4096 -keyout elastic.key -out elastic.crt -days 365 -nodes 这段命令会生成一个有效期为一年的证书文件elastic.crt和私钥文件elastic.key。 2.2.2 修改配置文件 接下来,我们需要在Elasticsearch的配置文件elasticsearch.yml中启用SSL/TLS。找到以下配置项: yaml xpack.security.http.ssl: enabled: true keystore.path: "/path/to/elastic.keystore" 这里的keystore.path指向你刚刚生成的证书和私钥文件。 2.2.3 启动Elasticsearch 启动Elasticsearch后,客户端连接时必须提供对应的证书才能正常工作。例如,使用curl命令时可以这样: bash curl --cacert elastic.crt https://localhost:9200/ 2.3 小结 通过SSL/TLS加密,我们可以大大降低数据泄露的风险。不过,自签名证书只适合开发和测试环境。如果是在生产环境中,建议购买由权威机构签发的证书。 --- 3. 用户认证与授权 接下来,咱们谈谈用户认证和授权。想象一下,如果没有身份验证机制,任何人都可以访问你的Elasticsearch集群,那简直是噩梦! 3.1 背景故事 有一次,我在调试一个项目时,无意间发现了一个未设置密码的Elasticsearch集群。我当时心里一惊,心想:“乖乖,要是有谁发现这个漏洞,那可就麻烦大了!”赶紧招呼团队的小伙伴们注意一下,提醒大家赶紧加上用户认证功能,别让问题溜走。 3.2 使用内置角色管理 Elasticsearch自带了一些内置角色,比如superuser和read_only。你可以根据需求创建自定义角色,并分配给不同的用户。 3.2.1 创建用户 假设我们要创建一个名为admin的管理员用户,可以使用以下命令: bash curl -X POST "https://localhost:9200/_security/user/admin" \ -H 'Content-Type: application/json' \ -u elastic \ -d' { "password" : "changeme", "roles" : [ "superuser" ] }' 这里的-u elastic表示使用默认的elastic用户进行操作。 3.2.2 测试用户权限 创建完用户后,我们可以尝试登录并执行操作。例如,使用admin用户查看索引列表: bash curl -X GET "https://localhost:9200/_cat/indices?v" \ -u admin:changeme 如果一切正常,你应该能看到所有索引的信息。 3.3 RBAC(基于角色的访问控制) 除了内置角色外,Elasticsearch还支持RBAC。你可以给每个角色设定超级详细的权限,比如说准不准用某个API,能不能访问特定的索引之类的。 json { "role": "custom_role", "cluster": ["monitor"], "indices": [ { "names": [ "logstash-" ], "privileges": [ "read", "view_index_metadata" ] } ] } 这段JSON定义了一个名为custom_role的角色,允许用户读取logstash-系列索引的数据。 --- 4. 日志审计与监控 最后,咱们得关注日志审计和监控。即使你做了所有的安全措施,也不能保证万无一失。定期检查日志和监控系统可以帮助我们及时发现问题。 4.1 日志审计 Elasticsearch自带的日志功能非常强大。你可以通过配置日志级别来记录不同级别的事件。例如,启用调试日志: yaml logger.org.elasticsearch: debug 将这条配置添加到logging.yml文件中即可。 4.2 监控工具 推荐使用Kibana来监控Elasticsearch的状态。装好Kibana之后,你就能通过网页界面瞅一眼你的集群健不健康、各个节点都在干嘛,还能看看性能指标啥的,挺直观的! 4.2.1 配置Kibana 在Kibana的配置文件kibana.yml中,添加以下内容: yaml elasticsearch.hosts: ["https://localhost:9200"] elasticsearch.username: "kibana_system" elasticsearch.password: "changeme" 然后重启Kibana服务,打开浏览器访问http://localhost:5601即可。 --- 5. 总结 好了,朋友们,今天的分享就到这里啦!优化Elasticsearch的安全性并不是一件容易的事,但只要我们用心去做,就能大大降低风险。从SSL/TLS加密到用户认证,再到日志审计和监控,每一个环节都很重要。 我希望这篇文章对你有所帮助,如果你还有其他问题或者经验分享,欢迎随时留言交流!让我们一起打造更安全、更可靠的Elasticsearch集群吧!
2025-05-12 15:42:52
98
星辰大海
Go-Spring
...年来,随着云计算、大数据、人工智能等技术的快速发展,开源软件的应用范围不断扩大,不仅在企业内部得到广泛应用,也成为全球范围内科技创新与合作的新模式。本文旨在探讨开源软件的价值所在,分析其未来的发展趋势,并提出在拥抱开源软件过程中应考虑的关键因素。 开源软件的价值 开源软件以其透明、可定制和社区驱动的特点,为企业和个人用户带来了诸多价值。首先,开源软件降低了创新门槛,使得开发者能够基于已有代码进行快速迭代和创新,加速产品和服务的推出。其次,开源软件的社区化运作模式促进了知识共享与协作,形成了强大的技术支持和用户群体,有助于解决技术难题,提升产品质量。此外,开源软件的低成本和高可移植性,使其成为中小企业乃至个人开发者降低成本、快速进入市场的重要途径。 未来发展趋势 展望未来,开源软件的发展将呈现出以下几个趋势: 1. 云原生与容器化:随着云计算技术的成熟,基于云原生架构的开源软件将得到更多应用,而容器化技术的普及将进一步提升软件部署的效率与灵活性。 2. AI与机器学习:开源社区正在积极开发AI相关的开源项目,如TensorFlow、PyTorch等,这将促进AI技术的普及与创新,推动行业应用的深度发展。 3. 安全与隐私保护:随着数据安全与隐私保护成为关注焦点,开源社区将加强对安全框架和工具的开发,以满足不同行业对数据安全的需求。 4. 全球化与多语种支持:开源软件的全球化趋势日益明显,多语种支持将成为重要考量因素,有助于提升软件的国际竞争力。 拥抱开源软件的关键因素 1. 知识产权管理:明确开源软件的使用和贡献规则,保护自身权益的同时,尊重和遵守开源社区的规范。 2. 人才培养与激励:培养具备开源文化意识和技术能力的人才,通过项目贡献、社区活动等方式激励开发者积极参与开源项目。 3. 风险评估与管理:在采用开源软件前进行全面的风险评估,包括代码质量、安全漏洞、许可证合规性等方面,确保其符合组织的安全策略和法律法规要求。 4. 持续参与与贡献:积极参与开源社区,不仅使用开源软件,更要贡献自己的代码和知识,促进开源生态的健康发展。 拥抱开源软件不仅是技术层面的选择,更是推动创新、促进知识共享与合作的行动。面对未来的挑战与机遇,企业和个人开发者应积极适应这一趋势,充分利用开源资源,共同构建更加开放、协作的科技生态系统。
2024-07-31 16:06:44
277
月下独酌
Apache Lucene
...牛的!在处理海量文本数据的时候,无论是建立索引还是进行搜索,它都能玩得飞起,简直就像是个搜索界的超级英雄!它的效率高,用起来又非常灵活,想怎么调整都行,真是让人大呼过瘾。然而,即便是如此强大的工具,也并非没有挑战。本文将深入探讨一个常见的错误——org.apache.lucene.analysis.TokenStream$EOFException: End of stream,并尝试通过实例代码来揭示其背后的原因与解决之道。 第一部分:理解 TokenStream 和 EOFException TokenStream 是 Lucene 提供的一个抽象类,它负责将输入的文本分割成一系列可处理的令牌(tokens),这些令牌是构成文本的基本单位,例如单词、符号等。当 TokenStream 遇到文件末尾(EOF),即无法获取更多令牌时,就会抛出 EOFException。 示例代码:创建 TokenStream 并处理 EOFException 首先,我们编写一段简单的代码来生成一个 TokenStream,并观察如何处理可能出现的 EOFException。 java import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.apache.lucene.analysis.tokenattributes.CharTermAttribute; import org.apache.lucene.analysis.tokenattributes.OffsetAttribute; import org.apache.lucene.document.Document; import org.apache.lucene.index.DirectoryReader; import org.apache.lucene.index.IndexReader; import org.apache.lucene.index.IndexWriter; import org.apache.lucene.index.IndexWriterConfig; import org.apache.lucene.search.IndexSearcher; import org.apache.lucene.store.Directory; import org.apache.lucene.store.RAMDirectory; import org.apache.lucene.util.Version; import java.io.IOException; public class TokenStreamDemo { public static void main(String[] args) throws IOException { // 创建 RAMDirectory 实例 Directory directory = new RAMDirectory(); // 初始化 IndexWriterConfig IndexWriterConfig config = new IndexWriterConfig(Version.LATEST, new StandardAnalyzer()); // 创建 IndexWriter 并初始化索引 IndexWriter writer = new IndexWriter(directory, config); // 添加文档至索引 Document doc = new Document(); doc.add(new TextField("content", "这是一个测试文档,用于演示 Lucene 的 TokenStream 功能。", Field.Store.YES, Field.Index.ANALYZED)); writer.addDocument(doc); // 关闭 IndexWriter writer.close(); // 创建 IndexReader IndexReader reader = DirectoryReader.open(directory); // 使用 IndexSearcher 查找文档 IndexSearcher searcher = new IndexSearcher(reader); // 获取 TokenStream 对象 org.apache.lucene.search.IndexSearcher.SearchContext context = searcher.createSearchContext(); org.apache.lucene.analysis.standard.StandardAnalyzer analyzer = new org.apache.lucene.analysis.standard.StandardAnalyzer(Version.LATEST); org.apache.lucene.analysis.TokenStream tokenStream = analyzer.tokenStream("content", context.reader().getTermVector(0, 0).getPayload().toString()); // 检查是否有异常抛出 while (tokenStream.incrementToken()) { System.out.println("Token: " + tokenStream.getAttribute(CharTermAttribute.class).toString()); } // 关闭 TokenStream 和 IndexReader tokenStream.end(); reader.close(); } } 在这段代码中,我们首先创建了一个 RAMDirectory,并使用它来构建一个索引。接着,我们添加了一个包含测试文本的文档到索引中。之后,我们创建了 IndexSearcher 来搜索文档,并使用 StandardAnalyzer 来创建 TokenStream。在循环中,我们逐个输出令牌,直到遇到 EOFException,这通常意味着已经到达了文本的末尾。 第二部分:深入分析 EOFException 的原因与解决策略 在实际应用中,EOFException 通常意味着 TokenStream 已经到达了文本的结尾,这可能是由于以下原因: - 文本过短:如果输入的文本长度不足以产生足够的令牌,TokenStream 可能会过早地报告结束。 - 解析问题:在复杂的文本结构下,解析器可能未能正确地分割文本,导致部分文本未被识别为有效的令牌。 为了应对这种情况,我们可以采取以下策略: - 增加文本长度:确保输入的文本足够长,以生成多个令牌。 - 优化解析器配置:根据特定的应用场景调整分析器的配置,例如使用不同的分词器(如 CJKAnalyzer)来适应不同语言的需求。 - 错误处理机制:在代码中加入适当的错误处理逻辑,以便在遇到 EOFException 时进行相应的处理,例如记录日志、提示用户重新输入更长的文本等。 结语:拥抱挑战,驾驭全文检索 面对 org.apache.lucene.analysis.TokenStream$EOFException: End of stream 这样的挑战,我们的目标不仅仅是解决问题,更是通过这样的经历深化对 Lucene 工作原理的理解。哎呀,你猜怎么着?咱们在敲代码、调参数的过程中,不仅技术越来越溜,还能在处理那些乱七八糟的数据时,感觉自己就像个数据处理的小能手,得心应手的呢!就像是在厨房里,熟练地翻炒各种食材,做出来的菜品色香味俱全,让人赞不绝口。编程也是一样,每一次的实践和调试,都是在给我们的技能加料,让我们的作品越来越美味,越来越有营养!嘿!兄弟,听好了,每次遇到难题都像是在给咱的成长加个buff,咱们得一起揭开全文检索的神秘面纱,掌控技术的大棒,让用户体验到最棒、最快的搜索服务,让每一次敲击键盘都能带来惊喜! --- 以上内容不仅涵盖了理论解释与代码实现,还穿插了人类在面对技术难题时的思考与探讨,旨在提供一种更加贴近实际应用、充满情感与主观色彩的技术解读方式。
2024-07-25 00:52:37
392
青山绿水
Hadoop
...。作为一个程序员或者数据工程师,你可能已经听说过这个名字。Hadoop是一种开源的大数据处理框架,它的核心功能是存储和处理海量的数据。不过,我今天想带大家深入探讨的是Hadoop的一个非常实用的功能:跨硬件复制文件。 为什么这个功能这么重要呢?想象一下,如果你正在运行一个大型的分布式系统,突然某个节点挂了怎么办?数据丢了?那可太惨了!Hadoop通过分布式文件系统(HDFS)来解决这个问题。HDFS 可不只是简单地把大文件切成小块儿,它还特聪明,会把这些小块儿分散存到不同的机器上。这就跟把鸡蛋放在好几个篮子里一个道理,哪怕有一台机器突然“罢工”了(也就是挂掉了),你的数据还是稳稳的,一点都不会丢。 那么,Hadoop是如何做到这一点的呢?咱们先来看看它是怎么工作的。 --- 2. HDFS的工作原理 数据块与副本 HDFS是一个分布式的文件系统,它的设计理念就是让数据更加可靠。简单讲啊,HDFS会把一个大文件切成好多小块儿(每块默认有128MB这么大),接着把这些小块分开放到集群里的不同电脑上存着。更关键的是,HDFS会为每个数据块多弄几个备份,一般是三个副本。这就相当于给你的数据买了“多重保险”,哪怕有一台机器突然“罢工”或者出问题了,你的数据还是妥妥地躺在别的机器上,一点都不会丢。 举个例子,假设你有一个1GB的文件,HDFS会把这个文件分成8个128MB的小块,并且每个小块会被复制成3份,分别存储在不同的服务器上。这就意味着啊,就算有一台服务器“挂了”或者出问题了,另外两台服务器还能顶上,数据照样能拿得到,完全不受影响。 说到这里,你可能会问:“为什么要复制这么多份?会不会浪费空间?”确实,多副本策略会占用更多的磁盘空间,但它的优点远远超过这一点。先说白了就是,它能让数据更好用、更靠谱啊!再说了,在那种超大的服务器集群里头,这样的备份机制还能帮着分散压力,不让某一个地方出问题就整个崩掉。 --- 3. 实战演示 如何使用Hadoop进行跨硬件复制? 接下来,让我们动手试试看!我会通过一些实际的例子来展示Hadoop是如何完成文件跨硬件复制的。 3.1 安装与配置Hadoop 首先,你需要确保自己的环境已经安装好了Hadoop。如果你还没有安装,可以参考官方文档一步步来配置。对新手来说,建议先试试伪分布式模式,相当于在一台电脑上“假装”有一个完整的集群,方便你熟悉环境又不用折腾多台机器。 3.2 创建一个简单的文本文件 我们先创建一个简单的文本文件,用来测试Hadoop的功能。你可以使用以下命令: bash echo "Hello, Hadoop!" > test.txt 然后,我们将这个文件上传到HDFS中: bash hadoop fs -put test.txt /user/hadoop/ 这里的/user/hadoop/是HDFS上的一个目录路径。 3.3 查看文件的副本分布 上传完成后,我们可以检查一下这个文件的副本分布情况。使用以下命令: bash hadoop fsck /user/hadoop/test.txt -files -blocks -locations 这段命令会输出类似如下的结果: /user/hadoop/test.txt 128 bytes, 1 block(s): OK 0. BP-123456789-192.168.1.1:50010 file:/path/to/local/file 1. BP-123456789-192.168.1.2:50010 file:/path/to/local/file 2. BP-123456789-192.168.1.3:50010 file:/path/to/local/file 从这里可以看到,我们的文件已经被复制到了三台不同的服务器上。 --- 4. 深度解读 Hadoop的副本策略 在前面的步骤中,我们已经看到了Hadoop是如何将文件复制到不同节点上的。但是,你知道吗?Hadoop的副本策略其实是非常灵活的。它可以根据网络拓扑结构来决定副本的位置。 例如,默认情况下,第一个副本会放在与客户端最近的节点上,第二个副本会放在另一个机架上,而第三个副本则会放在同一个机架的不同节点上。这样的策略可以最大限度地减少网络延迟,提高读取效率。 当然,如果你对默认的副本策略不满意,也可以自己定制。比如,如果你想让所有副本都放在同一个机架内,可以通过修改dfs.replication.policy参数来实现。 --- 5. 总结与展望 通过今天的讨论,我们了解了Hadoop是如何通过HDFS实现文件的跨硬件复制的。虽然这个功能看似简单,但它背后蕴含着复杂的设计理念和技术细节。正是这些设计,才使得Hadoop成为了一个强大的大数据处理工具。 最后,我想说的是,学习新技术的过程就像探险一样,充满了未知和挑战。嘿,谁还没遇到过点麻烦事儿呢?有时候一头雾水,感觉前路茫茫,但这不正是探索的开始嘛!别急着放弃,熬过去你会发现,那些让人头疼的问题其实藏着不少小惊喜,等你拨开云雾时,成就感绝对让你觉得值了!希望这篇文章能给你带来一些启发,也希望你能亲自尝试一下Hadoop的实际操作,感受一下它的魅力! 好了,今天的分享就到这里啦!如果你有任何疑问或者想法,欢迎随时留言交流。让我们一起探索更多有趣的技术吧!
2025-03-26 16:15:40
97
冬日暖阳
转载文章
...如果数组的元素是复杂数据类型时,我们还需要在其析构函数中正确释放内存。 真正的智能指针:shared_ptr auto_ptr和unique_ptr都有或多或少的缺陷,因此C++11还推出了shared_ptr,这也是目前工程内使用最多最广泛的智能指针,他使用引用计数(感觉有参考Objective-C的嫌疑),实现对同一块内存可以有多个引用,在最后一个引用被释放时,指向的内存才释放,这也是和unique_ptr最大的区别。 另外,使用shared_ptr过程中有几点需要注意: 构造shared_ptr的方法,如下示例代码所示,我们尽量使用shared_ptr构造函数或者make_shared的方式创建shared_ptr,禁止使用裸指针赋值的方式,这样会shared_ptr难于管理指针的生命周期。 // 使用裸指针赋值构造,不推荐,裸指针被释放后,shared_ptr就野了,不能完全控制裸指针的生命周期,失去了智能指针价值int p = new int(10);shared_ptr<int>sp = p;delete p; // sp将成为野指针,使用sp将crash// 将裸指针作为匿名指针传入构造函数,一般做法,让shared_ptr接管裸指针的生命周期,更安全shared_ptr<int>sp1(new int(10));// 使用make_shared,推荐做法,更符合工厂模式,可以连代码中的所有new,更高效;方法的参数是用来初始化模板类shared_ptr<int>sp2 = make_shared<int>(10); 禁止使用指向shared_ptr的裸指针,也就是智能指针的指针,这听起来就很奇怪,但开发中我们还需要注意,使用shared_ptr的指针指向一个shared_ptr时,引用计数并不会加一,操作shared_ptr的指针很容易就发生野指针异常。 shared_ptr<int>sp = make_shared<int>(10);cout << sp.use_count() << endl; //输出1shared_ptr<int> sp1 = &sp;cout << (sp1).use_count() << endl; //输出依然是1(sp1).reset(); //sp成为野指针cout << sp << endl; //crash 使用shared_ptr创建动态数组,在介绍unique_ptr时我们就讲过创建动态数组,而shared_ptr同样可以做到,不过稍微复杂一点,如下代码所示,除了要显示指定析构方法外(因为默认是T的析构函数,不是T[]),另外对外的数据类型依然是shared_ptr<T>,非常有迷惑性,看不出来是数组,最后不能直接使用下标读写数组,要先get()获取裸指针才可以使用下标。所以,不推荐使用shared_ptr来创建动态数组,尽量使用unique_ptr,这可是unique_ptr为数不多的优势了。 template <typename T>shared_ptr<T> make_shared_array(size_t size) {return shared_ptr<T>(new T[size], default_delete<T[]>());}shared_ptr<int>sp = make_shared_array(10); //看上去是shared<int>类型,实际上是数组sp.get()[0] = 100; //不能直接使用下标读写数组元素,需要通过get()方法获取裸指针后再操作 用shared_ptr实现多态,在我们使用裸指针时,实现多态就免不了定义虚函数,那么用shared_ptr时也不例外,不过有一处是可以省下的,就是析构函数我们不需要定义为虚函数了,如下面代码所示: class A {public:~A() {cout << "dealloc A" << endl;} };class B : public A {public:~B() {cout << "dealloc B" << endl;} };int main(int argc, const char argv[]) {A a = new B();delete a; //只打印dealloc Ashared_ptr<A>spa = make_shared<B>(); //析构spa是会先打印dealloc B,再打印dealloc Areturn 0;} 循环引用,笔者最先接触引用计数的语言就是Objective-C,而OC中最常出现的内存问题就是循环引用,如下面代码所示,A中引用B,B中引用A,spa和spb的强引用计数永远大于等于1,所以直到程序退出前都不会被退出,这种情况有时候在正常的业务逻辑中是不可避免的,而解决循环引用的方法最有效就是改用weak_ptr,具体可见下一章。 class A {public:shared_ptr<B> b;};class B {public:shared_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb;spb->a = spa;return 0;} //main函数退出后,spa和spb强引用计数依然为1,无法释放 刚柔并济:weak_ptr 正如上一章提到,使用shared_ptr过程中有可能会出现循环引用,关键原因是使用shared_ptr引用一个指针时会导致强引用计数+1,从此该指针的生命周期就会取决于该shared_ptr的生命周期,然而,有些情况我们一个类A里面只是想引用一下另外一个类B的对象,类B对象的创建不在类A,因此类A也无需管理类B对象的释放,这个时候weak_ptr就应运而生了,使用shared_ptr赋值给一个weak_ptr不会增加强引用计数(strong_count),取而代之的是增加一个弱引用计数(weak_count),而弱引用计数不会影响到指针的生命周期,这就解开了循环引用,上一章最后的代码使用weak_ptr可改造为如下代码。 class A {public:shared_ptr<B> b;};class B {public:weak_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb; //spb强引用计数为2,弱引用计数为1spb->a = spa; //spa强引用计数为1,弱引用计数为2return 0;} //main函数退出后,spa先释放,spb再释放,循环解开了使用weak_ptr也有需要注意的点,因为既然weak_ptr不负责裸指针的生命周期,那么weak_ptr也无法直接操作裸指针,我们需要先转化为shared_ptr,这就和OC的Strong-Weak Dance有点像了,具体操作如下:shared_ptr<int> spa = make_shared<int>(10);weak_ptr<int> spb = spa; //weak_ptr无法直接使用裸指针创建if (!spb.expired()) { //weak_ptr最好判断是否过期,使用expired或use_count方法,前者更快spb.lock() += 10; //调用weak_ptr转化为shared_ptr后再操作裸指针}cout << spa << endl; //20 智能指针原理 看到这里,智能指针的用法基本介绍完了,后面笔者来粗浅地分析一下为什么智能指针可以有效帮我们管理裸指针的生命周期。 使用栈对象管理堆对象 在C++中,内存会分为三部分,堆、栈和静态存储区,静态存储区会存放全局变量和静态变量,在程序加载时就初始化,而堆是由程序员自行分配,自行释放的,例如我们使用裸指针分配的内存;而最后栈是系统帮我们分配的,所以也会帮我们自动回收。因此,智能指针就是利用这一性质,通过一个栈上的对象(shared_ptr或unique_ptr)来管理一个堆上的对象(裸指针),在shared_ptr或unique_ptr的析构函数中判断当前裸指针的引用计数情况来决定是否释放裸指针。 shared_ptr引用计数的原理 一开始笔者以为引用计数是放在shared_ptr这个模板类中,但是细想了一下,如果这样将shared_ptr赋值给另一个shared_ptr时,是怎么做到两个shared_ptr的引用计数同时加1呢,让等号两边的shared_ptr中的引用计数同时加1?不对,如果还有第二个shared_ptr再赋值给第三个shared_ptr那怎么办呢?或许通过下面的类图便清楚个中奥秘。 [ boost中shared_ptr与weak_ptr类图 ] 我们重点关注shared_ptr<T>的类图,它就是我们可以直接操作的类,这里面包含裸指针T,还有一个shared_count的对象,而shared_count对象还不是最终的引用计数,它只是包含了一个指向sp_counted_base的指针,这应该就是真正存放引用计数的地方,包括强应用计数和弱引用计数,而且shared_count中包含的是sp_counted_base的指针,不是对象,这也就意味着假如shared_ptr<T> a = b,那么a和b底层pi_指针指向的是同一个sp_counted_base对象,这就很容易做到多个shared_ptr的引用计数永远保持一致了。 多线程安全 本章所说的线程安全有两种情况: 多个线程操作多个不同的shared_ptr对象 C++11中声明了shared_ptr的计数操作具有原子性,不管是赋值导致计数增加还是释放导致计数减少,都是原子性的,这个可以参考sp_counted_base的源码,因此,基于这个特性,假如有多个shared_ptr共同管理一个裸指针,那么多个线程分别通过不同的shared_ptr进行操作是线程安全的。 多个线程操作同一个shared_ptr对象 同样的道理,既然C++11只负责sp_counted_base的原子性,那么shared_ptr本身就没有保证线程安全了,加入两个线程同时访问同一个shared_ptr对象,一个进行释放(reset),另一个读取裸指针的值,那么最后的结果就不确定了,很有可能发生野指针访问crash。 作者:腾讯技术工程 https://mp.weixin.qq.com/s?__biz=MjM5ODYwMjI2MA==&mid=2649743462&idx=1&sn=c9d94ddc25449c6a0052dc48392a33c2&utm_source=tuicool&utm_medium=referralmp.weixin.qq.com 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_31467557/article/details/113049179。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-24 18:25:46
141
转载
转载文章
...ion 为了将零星的数据整合起来,我们提出了镜像层(image layer)这个概念。下面的这张图描述了一个镜像层,通过图片我们能够发现一个层并不仅仅包含文件系统的改变,它还能包含了其他重要信息。 元数据(metadata)就是关于这个层的额外信息,它不仅能够让Docker获取运行和构建时的信息,还包括父层的层次信息。需要注意,只读层和读写层都包含元数据。 除此之外,每一层都包括了一个指向父层的指针。如果一个层没有这个指针,说明它处于最底层。 Metadata Location: 我发现在我自己的主机上,镜像层(image layer)的元数据被保存在名为”json”的文件中,比如说: /var/lib/docker/graph/e809f156dc985.../json e809f156dc985...就是这层的id 一个容器的元数据好像是被分成了很多文件,但或多或少能够在/var/lib/docker/containers/<id>目录下找到,<id>就是一个可读层的id。这个目录下的文件大多是运行时的数据,比如说网络,日志等等。 全局理解(Tying It All Together) 现在,让我们结合上面提到的实现细节来理解Docker的命令。 docker create <image-id> docker create 命令为指定的镜像(image)添加了一个可读写层,构成了一个新的容器。注意,这个容器并没有运行。 docker start <container-id> Docker start命令为容器文件系统创建了一个进程隔离空间。注意,每一个容器只能够有一个进程隔离空间。 docker run <image-id> 看到这个命令,读者通常会有一个疑问:docker start 和 docker run命令有什么区别。 从图片可以看出,docker run 命令先是利用镜像创建了一个容器,然后运行这个容器。这个命令非常的方便,并且隐藏了两个命令的细节,但从另一方面来看,这容易让用户产生误解。 题外话:继续我们之前有关于Git的话题,我认为docker run命令类似于git pull命令。git pull命令就是git fetch 和 git merge两个命令的组合,同样的,docker run就是docker create和docker start两个命令的组合。 docker ps docker ps 命令会列出所有运行中的容器。这隐藏了非运行态容器的存在,如果想要找出这些容器,我们需要使用下面这个命令。 docker ps –a docker ps –a命令会列出所有的容器,不管是运行的,还是停止的。 docker images docker images命令会列出了所有顶层(top-level)镜像。实际上,在这里我们没有办法区分一个镜像和一个只读层,所以我们提出了top-level 镜像。只有创建容器时使用的镜像或者是直接pull下来的镜像能被称为顶层(top-level)镜像,并且每一个顶层镜像下面都隐藏了多个镜像层。 docker images –a docker images –a命令列出了所有的镜像,也可以说是列出了所有的可读层。如果你想要查看某一个image-id下的所有层,可以使用docker history来查看。 docker stop <container-id> docker stop命令会向运行中的容器发送一个SIGTERM的信号,然后停止所有的进程。 docker kill <container-id> docker kill 命令向所有运行在容器中的进程发送了一个不友好的SIGKILL信号。 docker pause <container-id> docker stop和docker kill命令会发送UNIX的信号给运行中的进程,docker pause命令则不一样,它利用了cgroups的特性将运行中的进程空间暂停。具体的内部原理你可以在这里找到:https://www.kernel.org/doc/Doc ... m.txt,但是这种方式的不足之处在于发送一个SIGTSTP信号对于进程来说不够简单易懂,以至于不能够让所有进程暂停。 docker rm <container-id> docker rm命令会移除构成容器的可读写层。注意,这个命令只能对非运行态容器执行。 docker rmi <image-id> docker rmi 命令会移除构成镜像的一个只读层。你只能够使用docker rmi来移除最顶层(top level layer)(也可以说是镜像),你也可以使用-f参数来强制删除中间的只读层。 docker commit <container-id> docker commit命令将容器的可读写层转换为一个只读层,这样就把一个容器转换成了不可变的镜像。 docker build docker build命令非常有趣,它会反复的执行多个命令。 我们从上图可以看到,build命令根据Dockerfile文件中的FROM指令获取到镜像,然后重复地1)run(create和start)、2)修改、3)commit。在循环中的每一步都会生成一个新的层,因此许多新的层会被创建。 docker exec <running-container-id> docker exec 命令会在运行中的容器执行一个新进程。 docker inspect <container-id> or <image-id> docker inspect命令会提取出容器或者镜像最顶层的元数据。 docker save <image-id> docker save命令会创建一个镜像的压缩文件,这个文件能够在另外一个主机的Docker上使用。和export命令不同,这个命令为每一个层都保存了它们的元数据。这个命令只能对镜像生效。 docker export <container-id> docker export命令创建一个tar文件,并且移除了元数据和不必要的层,将多个层整合成了一个层,只保存了当前统一视角看到的内容(译者注:expoxt后 的容器再import到Docker中,通过docker images –tree命令只能看到一个镜像;而save后的镜像则不同,它能够看到这个镜像的历史镜像)。 docker history <image-id> docker history命令递归地输出指定镜像的历史镜像。 参考: http://www.cnblogs.com/bethal/p/5942369.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/u010098331/article/details/53485539。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-26 15:47:20
538
转载
转载文章
...。 简介 学习编程,数据结构是你必须要掌握的基础知识,那么数据结构到底是什么呢? 根据百度百科的介绍,数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。 听听这是人话么,我帮你们翻译一下,其实数据结构就是用来描述计算机里存储数据的一种数学模型,因为计算机里要存储很多乱七八糟的数据,所以也需要不同的数据结构来描述。 本文思维导图 为什么要学数据结构 了解了基本概念之后,接下来我们再来看看,为什么我们要学习数据结构呢? 在许多类型的程序的设计中,数据结构的选择是一个基本的设计考虑因素。许多大型系统的构造经验表明,系统实现的困难程度和系统构造的质量都严重的依赖于是否选择了最优的数据结构。 许多时候,确定了数据结构后,算法就容易得到了。有些时候事情也会反过来,我们根据特定算法来选择数据结构与之适应。不论哪种情况,选择合适的数据结构都是非常重要的。 选择了数据结构,算法也随之确定,是数据而不是算法是系统构造的关键因素。这种洞见导致了许多种软件设计方法和程序设计语言的出现,面向对象的程序设计语言就是其中之一。 也就是说,选定数据结构往往是解决问题的核心,比如我们做一道算法题,往往就要先确定数据结构,再根据这个数据结构去思考怎么解题。 如果没有数据结构的基础知识,也就没有谈算法的意义了,很多时候即使你会使用一些封装好的编程api,但你却不知道其背后的实现原理,比如hashmap,linkedlist这些Java里的集合类,实际上都是JDK封装好的基础数据结构。 如何学习数据结构 第一次接触 我第一次接触数据结构这门课还是4年前,那这时候我在准备考研,专业课考的就是数据结构与算法,作为一个非科班的小白,对这个东西可以说是一窍不通。 这个时候的我只有一点点c语言的基础,基本上可以忽略不计,所以小白同学也可以按照这个思路进行学习。 数据结构基本上是考研的必考科目,所以我一开始使用的是考研的复习书籍,《天勤数据结构》和《王道数据结构》这两个家的书都是专门为计算机考研服务的,可以直接百度,这两本书对于我这种小白来说居然都是可以看懂的,所以,用来入门也是ok的。 入门学习阶段 最早的时候我并没有直接看书,而是先打算先看视频,因为视频更好理解呀,找视频的办法就是百度,于是当时找到的最好资源就是《郝斌的数据结构》这个视频应该是很早之前录制的了,但是对于小白来说是够用的,特别基础,讲的很仔细。 从最开始的数组、线性表,再讲到栈和队列,以及后面更复杂的二叉树、图、哈希表,大概有几十个视频,那个时候正值暑假,我按照每天一个视频的进度看完了,看的时候还得时不时地实践一下,更有助于理解。 看完了这个系列的视频之后,我又转战开始啃书了,视频里讲的都是数据结构的基础,而书上除了基础之外,还有一些算法题目,比如你学完了线性表和链表之后,书上就会有相关的算法题,比如数组的元素置换,链表的逆置等等,这些在日后看来很容易的题目,当时把我难哭了。 好在大部分题目是有讲解的,看完讲解之后还能安抚一下我受伤的心灵。 记住这本书,我在考研之前翻了至少有三四遍。 强化学习阶段 完成了第一波视频+书籍的学习之后,我们应该已经对数据结构有了初步的了解了,对一些简单的数据结构算法也应该有所了解了,比如栈的入栈和出栈,队列的进队和出队,二叉树的先序遍历和后续遍历、层次遍历,图的最短路径算法,深度优先遍历等等。 有了一定的基础之后,我们需要对哪方面进行强化学习呢? 那就要看你学习数据结构的目的是什么了,比如你学习数据结构是为了能做算法题,那么接下来你应该重点去学习算法方面的知识,后续我们也将有一篇新的文章来讲怎么学习算法,敬请期待。 当然,我当时主要是复习考研,所以还是针对专业课的历年真题来复习,像我们的卷子中就考察了很多关于哈希表、最短路径算法、KMP算法、赫夫曼算法以及最短路径算法的应用。 对于考卷上的一些知识点,我觉得掌握的并不是很好,于是又买了《王道数据结构》以及一些并没有什么卵用的书回来看,再次强化了基础。 并且,由于我们的复试通常会考察一些比较经典的算法问题,所以我又花了很多时间去学习这些算法题,这些题目并非数据结构的基础算法,所以在之前的书和视频中可能找不到答案。 于是我又在网上搜到了另一个系列视频《小甲鱼的数据结构视频》里面除了讲解数据结构之外,还讲解了更多经典的算法题,比如八皇后问题,汉诺塔问题,马踏棋盘,旅行商问题等,这些问题对于新手来说真的是很头大的,使用视频学习确实效果更佳。 实践阶段 纸上得来终觉浅,绝知此事要躬行。 众所周知,算法题和数学题一样,需要多加练习,而且考研的时候必须要手写算法,于是我就经常在纸上写(抄)算法,你还别说,就算是抄,多抄几次也有助于理解。 很多基础的算法,比如层次遍历,深度优先遍历和广度优先遍历,多写几遍更有助理解,再比如稍微复杂一点的迪杰斯特拉算法,不多写几遍你可真记不住。 除了在纸上写之外,更好的办法自然是在电脑上敲了,写Java的使用Java写,写C++ 的用C++ 写,总之用自己擅长的语言实现就好,尴尬的是我当时只会c,所以就只好老老实实地用devc++写简单的c语言程序了。 至此,我们也算是学会了数据结构的基础知识了,至少知道每个数据结构的特性,会写常见的数据结构算法,甚至偶尔还能掏出一个八皇后出来。 推荐资源 书籍 《天勤数据结构》 《王道数据结构》 如果你要考研的话,这两本书可不要错过 严蔚敏《数据结构C语言版》 这本书是大学本科计算机专业常用的教科书,年代久远,可以看看,官方也有配套的教学视频 《大话数据结构》 官方教材大家都懂的,比较不接地气,这本书对于很多新手来说是更适合入门的书籍。 《数据结构与算法Java版》 如果你是学Java的,想有一本Java语言描述的数据结构书籍,可以试试这本,但是这本书显然比较复杂,不适合入门使用。 视频 《郝斌数据结构》 这个视频上文有提到过,年代比较久远,但是入门足够了。 《小甲鱼数据结构与算法》 这个视频比较新,更加全面,有很多关于经典算法的教程,作者也入驻了B站,有兴趣也可以到B站看他的视频。 总结 关于数据结构的学习,我们就讲到这里了,如果还有什么疑问也可以到我公众号里找我探讨,虽然我们提到了算法,但是这里只关注一些基础的数据结构算法,后续会有关于“怎么学算法“的文章推出,敬请期待。 本篇文章为转载内容。原文链接:https://blog.csdn.net/a724888/article/details/104586757。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-12 23:35:52
134
转载
ZooKeeper
...和维护分布式系统中的数据一致性。它通过提供诸如节点创建、删除、监听等功能,帮助应用程序在复杂的分布式环境下实现高效协作。文中提到,ZooKeeper内部存在一个请求队列,当队列满时会触发CommitQueueFullException。 异步API , ZooKeeper提供的两种API之一,允许客户端在发起请求后无需等待立即响应即可继续执行后续操作。这种方式可以减少请求等待时间,从而降低队列满的风险。文中举例说明了使用异步API创建节点的过程,展示了其与同步API的区别在于不阻塞主线程,适合高并发场景。
2025-03-16 15:37:44
10
林中小径
转载文章
...别是在JavaScript中,二维数组是一种多维数据结构,用于存储表格形式的数据。在本文的上下文中,二维数组squareSet被用来存储消除类游戏中的方块信息,每个元素是一个子数组,代表一行方块,子数组中的每个元素则表示一个具体方块的信息,如颜色、行列位置等。通过使用二维数组,开发者能够方便地根据行列索引访问和操作每一个方块。 连通图算法 , 在计算机科学中,连通图算法是指处理图论问题的一种方法,通常用于确定图中的节点(或对象)是否通过边(或关系)彼此相连形成一个连通分量。在这篇文章中,作者应用了一个递归实现的连通图算法——checkLinked函数,当玩家鼠标移入某个方块时,该算法会遍历与其颜色相同的相邻方块,检查并收集所有可以消除的连通方块,以便进行后续的计分和动画效果展示。 定时器(Timer) , 定时器是浏览器提供的JavaScript特性之一,允许开发人员设置一段代码在特定时间间隔后执行。在这篇文章描述的游戏开发过程中,定时器被用来实现选中方块的闪烁特效。通过设置一个定时器(例如timer变量),每经过一定的时间间隔(如300毫秒),就改变选中方块的样式属性,使其产生连续的视觉变化,从而达到闪烁的效果。 绝对定位(Absolute Positioning) , 在CSS布局中,绝对定位是一种定位模式,它允许开发人员为元素指定精确的坐标值来决定其在页面上的确切位置,而不是遵循正常的文档流。文章中创建的小方块采用的就是绝对定位方式,确保它们可以根据行列位置准确地放置于游戏画布上,无论其他元素如何变化,这些方块的位置始终保持不变。
2023-06-08 15:26:34
516
转载
转载文章
...面我们强行将它变成了数据属性描述符 其次,如果我们想监听更加丰富的操作,比如新增属性、删除属性,那么 Object.defineProperty 是无能为力的 所以我们要知道,存储数据描述符设计的初衷并不是为了去监听一个完整的对象 Ps: 原来的对象是 数据属性描述符,通过 Object.defineProperty 变成了 访问属性描述符 2. Proxy基本使用 在ES6中,新增了一个Proxy类,这个类从名字就可以看出来,是用于帮助我们创建一个代理的: 也就是说,如果我们希望监听一个对象的相关操作,那么我们可以先创建一个代理对象(Proxy对象) 之后对该对象的所有操作,都通过代理对象来完成,代理对象可以监听我们想要对原对象进行哪些操作 将上面的案例用 Proxy 来实现一次: 首先,我们需要 new Proxy 对象,并且传入需要侦听的对象以及一个处理对象,可以称之为 handler; const p = new Proxy(target, handler) 其次,我们之后的操作都是直接对 Proxy 的操作,而不是原有的对象,因为我们需要在 handler 里面进行侦听 const obj = {name: 'why',age: 18}const objProxy = new Proxy(obj, {// 获取值时的捕获器get: function (target, key) {console.log(监听到obj对象的${key}属性被访问了)return target[key]},// 设置值时的捕获器set: function (target, key, newValue) {console.log(监听到obj对象的${key}属性被设置值)target[key] = newValue} })console.log(objProxy.name)console.log(objProxy.age)objProxy.name = 'kobe'objProxy.age = 30console.log(obj.name)console.log(obj.age)/ 监听到obj对象的name属性被访问了why监听到obj对象的age属性被访问了18监听到obj对象的name属性被设置值监听到obj对象的age属性被设置值kobe30/ 2.1 Proxy 的 set 和 get 捕获器 如果我们想要侦听某些具体的操作,那么就可以在 handler 中添加对应的捕捉器(Trap) set 和 get 分别对应的是函数类型 set 函数有四个参数: target:目标对象(侦听的对象) property:将被设置的属性 key value:新属性值 receiver:调用的代理对象 get 函数有三个参数 target:目标对象(侦听的对象) property:被获取的属性 key receiver:调用的代理对象 2.2 Proxy 所有捕获器 (13个) handler.getPrototypeOf() Object.getPrototypeOf 方法的捕捉器 handler.setPrototypeOf() Object.setPrototypeOf 方法的捕捉器 handler.isExtensible() Object.isExtensible 方法的捕捉器 handler.preventExtensions() Object.preventExtensions 方法的捕捉器 handler.getOwnPropertyDescriptor() Object.getOwnPropertyDescriptor 方法的捕捉器 handler.defineProperty() Object.defineProperty 方法的捕捉器 handler.ownKeys() Object.getOwnPropertyNames 方法和 Object.getOwnPropertySymbols 方法的捕捉器 handler.has() in 操作符的捕捉器 handler.get() 属性读取操作的捕捉器 handler.set() 属性设置操作的捕捉器 handler.deleteProperty() delete 操作符的捕捉器 handler.apply() 函数调用操作的捕捉器 handler.construct() new 操作符的捕捉器 const obj = {name: 'why',age: 18}const objProxy = new Proxy(obj, {// 获取值时的捕获器get: function (target, key) {console.log(监听到obj对象的${key}属性被访问了)return target[key]},// 设置值时的捕获器set: function (target, key, newValue) {console.log(监听到obj对象的${key}属性被设置值)target[key] = newValue},// 监听 in 的捕获器has: function (target, key) {console.log(监听到obj对象的${key}属性的in操作)return key in target},// 监听 delete 的捕获器deleteProperty: function (target, key) {console.log(监听到obj对象的${key}属性的delete操作)delete target[key]} })// in 操作符console.log('name' in objProxy)// delete 操作delete objProxy.name/ 监听到obj对象的name属性的in操作true监听到obj对象的name属性的delete操作/ 2.3 Proxy 的 construct 和 apply 到捕捉器中还有 construct 和 apply,它们是应用于函数对象的 function foo() {console.log('调用了 foo')}const fooProxy = new Proxy(foo, {apply: function (target, thisArg, argArray) {console.log(对 foo 函数进行了 apply 调用)target.apply(thisArg, argArray)},construct: function (target, argArray, newTarget) {console.log(对 foo 函数进行了 new 调用)return new target(...argArray)} })fooProxy.apply({}, ['abc', 'cba'])new fooProxy('abc', 'cba')/ 对 foo 函数进行了 apply 调用调用了 foo对 foo 函数进行了 new 调用调用了 foo/ 3. Reflect 3.1 Reflect 的作用 Reflect 也是 ES6 新增的一个 API,它是一个对象,字面的意思是反射 Reflect 的作用: 它主要提供了很多操作 JavaScript 对象的方法,有点像 Object 中操作对象的方法 比如 Reflect.getPrototypeOf(target) 类似于 Object.getPrototypeOf() 比如 Reflect.defineProperty(target, propertyKey, attributes) 类似于 Object.defineProperty() 如果我们有 Object 可以做这些操作,那么为什么还需要有Reflect这样的新增对象呢? 这是因为在早期的 ECMA 规范中没有考虑到这种对 对象本身 的操作如何设计会更加规范,所以将这些 API 放到了 Object上面 但是 Object 作为一个构造函数,这些操作实际上放到它身上并不合适 另外还包含一些类似于 in、delete 操作符,让 JS 看起来是会有一些奇怪的 所以在 ES6 中新增了 Reflect,让我们这些操作都集中到了 Reflect 对象上 那么 Object 和 Reflect 对象之间的 API 关系,可以参考 MDN 文档: 比较 Reflect 和 Object 方法 3.2 Reflect 的常见方法 Reflect中有哪些常见的方法呢?它和Proxy是一一对应的,也是13个 Reflect.getPrototypeOf(target) 类似于 Object.getPrototypeOf() Reflect.setPrototypeOf(target, prototype) 设置对象原型的函数. 返回一个 Boolean, 如果更新成功,则返回 true Reflect.isExtensible(target) 类似于 Object.isExtensible() Reflect.preventExtensions(target) 类似于 Object.preventExtensions() , 返回一个 Boolean Reflect.getOwnPropertyDescriptor(target, propertyKey) 类似于 Object.getOwnPropertyDescriptor() , 如果对象中存在该属性,则返回对应的属性描述符, 否则返回 undefined Reflect.defineProperty(target, propertyKey, attributes) 和 Object.defineProperty() 类似, 如果设置成功就会返回 true Reflect.ownKeys(target) 返回一个包含所有自身属性(不包含继承属性)的数组 (类似于 Object.keys(), 但不会受 enumerable 影响) Reflect.has(target, propertyKey) 判断一个对象是否存在某个属性,和 in 运算符 的功能完全相同 Reflect.get(target, propertyKey[, receiver]) 获取对象身上某个属性的值,类似于 target[name] Reflect.set(target, propertyKey, value[, receiver]) 将值分配给属性的函数,返回一个 Boolean,如果更新成功,则返回 true Reflect.deleteProperty(target, propertyKey) 作为函数的 delete 操作符,相当于执行 delete target[name] Reflect.apply(target, thisArgument, argumentsList) 对一个函数进行调用操作,同时可以传入一个数组作为调用参数。和 Function.prototype.apply() 功能类似 Reflect.construct(target, argumentsList[, newTarget]) 对构造函数进行 new 操作,相当于执行 new target(...args) 3.3 Reflect 的使用 那么我们可以将之前Proxy案例中对原对象的操作,都修改为Reflect来操作 const obj = {name: 'why',age: 18}const objProxy = new Proxy(obj, {get: function (target, key) {console.log(监听到obj对象的${key}属性被访问了)return Reflect.get(target, key)// return target[key] // 对原来对象进行了直接操作},set: function (target, key, newValue) {console.log(监听到obj对象的${key}属性被设置值)Reflect.set(target, key, newValue)// target[key] = newValue // 对原来对象进行了直接操作} })objProxy.name = 'kobe'console.log(objProxy.name)/ 监听到obj对象的name属性被设置值监听到obj对象的name属性被访问了kobe/ 3.4 Receiver的作用 我们发现在使用getter、setter的时候有一个receiver的参数,它的作用是什么呢? 如果我们的源对象(obj)有 setter 、getter 的访问器属性,那么可以通过 receiver 来改变里面的 this const obj = {_name: 'why',get name() {return this._name // 不使用receiver, _name属性的操作不会被objProxy代理,因为this指向obj},set name(newValue) {this._name = newValue} }const objProxy = new Proxy(obj, {get: function (target, key, receiver) {// receiver 是创建出来的代理对象console.log('get 方法被访问-------', key, receiver)console.log(objProxy === receiver) // truereturn Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)} })objProxy.name = 'kobe'console.log(objProxy.name) // kobe/ get 方法被访问------- name { _name: 'kobe', name: [Getter/Setter] }trueget 方法被访问------- _name { _name: 'kobe', name: [Getter/Setter] }truekobe/ 3.5 Reflect 的 construct function Student(name, age) {this.name = namethis.age = age}function Teacher() {}const stu = new Student('why', 18)console.log(stu)console.log(stu.__proto__ === Student.prototype)/ Student { name: 'why', age: 18 }true/// 执行 Student 函数中的内容,但是创建出来的对象是 Teacher 对象const teacher = Reflect.construct(Student, ['why', 18], Teacher)console.log(teacher)console.log(teacher.__proto__ === Teacher.prototype)/ Teacher { name: 'why', age: 18 }true/ 4. 响应式 4.1 什么是响应式? 先来看一下响应式意味着什么?我们来看一段代码: m 有一个初始化的值,有一段代码使用了这个值; 那么在 m 有一个新的值时,这段代码可以自动重新执行 let m = 0// 一段代码console.log(m)console.log(m 2)console.log(m 2)m = 200 上面的这样一种可以自动响应数据变量的代码机制,我们就称之为是响应式的 对象的响应式 4.2 响应式函数设计 首先,执行的代码中可能不止一行代码,所以我们可以将这些代码放到一个函数中: 那么问题就变成了,当数据发生变化时,自动去执行某一个函数; 但是有一个问题:在开发中是有很多的函数的,如何区分一个函数需要响应式,还是不需要响应式呢? 很明显,下面的函数中 foo 需要在 obj 的 name 发生变化时,重新执行,做出相应; bar 函数是一个完全独立于 obj 的函数,它不需要执行任何响应式的操作; // 对象的响应式const obj = {name: 'why',age: 18}function foo() {const newName = obj.nameconsole.log('你好啊,李银河')console.log('Hello World')console.log(obj.name)}function bar() {console.log('普通的其他函数')console.log('这个函数不需要有任何的响应式')}obj.name = 'kobe' // name 发生改变时候 foo 函数执行 响应式函数的实现 watchFn 如何区分响应式函数? 这个时候我们封装一个新的函数 watchFn 凡是传入到 watchFn 的函数,就是需要响应式的 其他默认定义的函数都是不需要响应式的 / 封装一个响应式的函数 /let reactiveFns = []function watchFn(fn) {reactiveFns.push(fn)}// 对象的响应式const obj = {name: 'why',age: 18}watchFn(function foo() {const newName = obj.nameconsole.log('你好啊,李银河')console.log('Hello World')console.log(obj.name)})watchFn(function demo() {console.log(obj.name, 'demo function ---------')})function bar() {console.log('普通的其他函数')console.log('这个函数不需要有任何的响应式')}obj.name = 'kobe' // name 发生改变时候 foo 函数执行reactiveFns.forEach((fn) => {fn()}) 4.3 响应式依赖的收集 目前收集的依赖是放到一个数组中来保存的,但是这里会存在数据管理的问题: 在实际开发中需要监听很多对象的响应式 这些对象需要监听的不只是一个属性,它们很多属性的变化,都会有对应的响应式函数 不可能在全局维护一大堆的数组来保存这些响应函数 所以要设计一个类,这个类用于管理某一个对象的某一个属性的所有响应式函数: 相当于替代了原来的简单 reactiveFns 的数组; class Depend {constructor() {this.reactiveFns = []}addDepend(reactiveFn) {this.reactiveFns.push(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }const depend = new Depend()function watchFn(fn) {depend.addDepend(fn)}// 对象的响应式const obj = {name: 'why', // depend 对象age: 18 // depend 对象}watchFn(function foo() {const newName = obj.nameconsole.log('你好啊,李银河')console.log('Hello World')console.log(obj.name)})watchFn(function demo() {console.log(obj.name, 'demo function ---------')})function bar() {console.log('普通的其他函数')console.log('这个函数不需要有任何的响应式')}obj.name = 'kobe'depend.notify() 4.4 监听对象的变化 那么接下来就可以通过之前的方式来监听对象的变化: 方式一:通过 Object.defineProperty 的方式(vue2采用的方式); 方式二:通过 new Proxy 的方式(vue3采用的方式); 我们这里先以Proxy的方式来监听 class Depend {constructor() {this.reactiveFns = []}addDepend(reactiveFn) {this.reactiveFns.push(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }const depend = new Depend()function watchFn(fn) {depend.addDepend(fn)}// 对象的响应式const obj = {name: 'why', // depend 对象age: 18 // depend 对象}// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)const objProxy = new Proxy(obj, {get: function (target, key, receiver) {return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)depend.notify()} })watchFn(function foo() {const newName = objProxy.nameconsole.log('你好啊,李银河')console.log('Hello World')console.log(objProxy.name)})watchFn(function demo() {console.log(objProxy.name, 'demo function ---------')})objProxy.name = 'kobe'objProxy.name = 'james'/ 你好啊,李银河Hello Worldkobekobe demo function ---------你好啊,李银河Hello Worldjamesjames demo function ---------/ 4.5 对象的依赖管理 目前是创建了一个 Depend 对象,用来管理对于 name 变化需要监听的响应函数: 但是实际开发中我们会有不同的对象,另外会有不同的属性需要管理; 如何可以使用一种数据结构来管理不同对象的不同依赖关系呢? 在前面我们刚刚学习过 WeakMap,并且在学习 WeakMap 的时候我讲到了后面通过 WeakMap 如何管理这种响应式的数据依赖: 实现 可以写一个 getDepend 函数专门来管理这种依赖关系 / 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取mapconst map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象const depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)const objProxy = new Proxy(obj, {get: function (target, key, receiver) {return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} }) 正确的依赖收集 我们之前收集依赖的地方是在 watchFn 中: 但是这种收集依赖的方式我们根本不知道是哪一个 key 的哪一个 depend 需要收集依赖; 只能针对一个单独的 depend 对象来添加你的依赖对象; 那么正确的应该是在哪里收集呢?应该在我们调用了 Proxy 的 get 捕获器时 因为如果一个函数中使用了某个对象的 key,那么它应该被收集依赖 / 封装一个响应式函数 /let activeReactviceFn = nullfunction watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)const objProxy = new Proxy(obj, {get: function (target, key, receiver) {// 根据 target key 获取对应的 depnedconst depend = getDepend(target, key)// 给 depend 对象中添加响应式函数activeReactviceFn && depend.addDepend(activeReactviceFn)return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} }) 4.6 对 Depend 重构 两个问题: 问题一:如果函数中有用到两次 key,比如 name,那么这个函数会被收集两次 问题二:我们并不希望将添加 reactiveFn 放到 get 中,因为它是属于 Depend 的行为 所以我们需要对 Depend 类进行重构: 解决问题一的方法:不使用数组,而是使用 Set 解决问题二的方法:添加一个新的方法,用于收集依赖 // 保存当前需要收集的响应式函数let activeReactviceFn = nullclass Depend {constructor() {this.reactiveFns = new Set()}depend() {if (activeReactviceFn) {this.reactiveFns.add(activeReactviceFn)} }addDepend(reactiveFn) {this.reactiveFns.add(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }// 对象的响应式const obj = {name: 'why', // depend 对象age: 18 // depend 对象}/ 封装一个响应式函数 /function watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)const objProxy = new Proxy(obj, {get: function (target, key, receiver) {// 根据 target key 获取对应的 depnedconst depend = getDepend(target, key)// 给 depend 对象中添加响应式函数depend.depend()return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} })watchFn(function () {console.log(objProxy.name, '--------------')console.log(objProxy.name, '++++++++++++++')})objProxy.name = 'kobe'/ why --------------why ++++++++++++++kobe --------------kobe ++++++++++++++/ 4.7 创建响应式对象 目前的响应式是针对于obj一个对象的,我们可以创建出来一个函数,针对所有的对象都可以变成响应式对象 / 保存当前需要收集的响应式函数 /let activeReactviceFn = null/ 依赖收集类 /class Depend {constructor() {this.reactiveFns = new Set()}depend() {if (activeReactviceFn) {this.reactiveFns.add(activeReactviceFn)} }addDepend(reactiveFn) {this.reactiveFns.add(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }/ 封装一个响应式函数 /function watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}/ 创建响应式对象函数 /function reactive(obj) {// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)return new Proxy(obj, {get: function (target, key, receiver) {// 根据 target key 获取对应的 depnedconst depend = getDepend(target, key)// 给 depend 对象中添加响应式函数depend.depend()return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} })}const info = reactive({address: '广州市',height: 1.88})watchFn(() => {console.log(info.address, '---')})info.address = '北京市' 4.8 Vue2 响应式原理 前面所实现的响应式的代码,其实就是 Vue3 中的响应式原理: Vue3 主要是通过 Proxy 来监听数据的变化以及收集相关的依赖的 Vue2 中通过 Object.defineProerty的方式来实现对象属性的监听 可以将 reactive 函数进行如下的重构: 在传入对象时,我们可以遍历所有的 key,并且通过属性存储描述符来监听属性的获取和修改 在 setter 和 getter 方法中的逻辑和前面的 Proxy 是一致的 / 保存当前需要收集的响应式函数 /let activeReactviceFn = null/ 依赖收集类 /class Depend {constructor() {this.reactiveFns = new Set()}depend() {if (activeReactviceFn) {this.reactiveFns.add(activeReactviceFn)} }addDepend(reactiveFn) {this.reactiveFns.add(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }/ 封装一个响应式函数 /function watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}/ 创建响应式对象函数 /function reactive(obj) {Object.keys(obj).forEach((key) => {let value = obj[key]Object.defineProperty(obj, key, {get: function () {const dep = getDepend(obj, key)dep.depend()return value},set: function (newValue) {value = newValueconst dep = getDepend(obj, key)dep.notify()} })})return obj}const info = reactive({address: '广州市',height: 1.88})watchFn(() => {console.log(info.address, '---')})info.address = '北京市' 本篇文章为转载内容。原文链接:https://blog.csdn.net/wanghuan1020/article/details/126774033。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-11 12:37:47
679
转载
Ruby
...说啊,你正在倒腾一堆数据的时候,完全可以把它切成一小块一小块的,然后让每个线程去负责一块,这样一来,效率直接拉满,干活儿的速度蹭蹭往上涨! 但是,问题来了:并发编程虽然强大,但它并不是万能药。哎呀,经常会有这样的情况呢——自个儿辛辛苦苦改代码,还以为是在让程序变得更好,结果一不小心,又给它整出了新麻烦,真是“好心办坏事”的典型啊!接下来,我们来看几个具体的例子。 --- 3. 示例一 共享状态的混乱 场景描述: 假设你正在开发一个电商网站,需要统计用户的购买记录。你琢磨着干脆让多线程上阵,给这个任务提速,于是打算让每个线程各管一拨用户的活儿,分头行动效率肯定更高!看起来很合理对不对? 问题出现: 问题是,当你让多个线程共享同一个变量(比如一个全局计数器),事情就开始变得不可控了。Ruby 的线程可不是完全分开的,这就有点像几个人共用一个记事本,大家都能随便写东西上去。结果就是,这本子可能一会儿被这个写点,一会儿被那个划掉,最后你都不知道上面到底写了啥,数据就乱套了。 代码示例: ruby 错误的代码 counter = 0 threads = [] 5.times do |i| threads << Thread.new do 100_000.times { counter += 1 } end end threads.each(&:join) puts "Counter: {counter}" 分析: 这段代码看起来没什么问题,每个线程都只是简单地增加计数器。但实际情况却是,输出的结果经常不是期望的500_000,而是各种奇怪的数字。这就好比说,counter += 1 其实不是一步到位的简单操作,它得先“读一下当前的值”,再“给这个值加1”,最后再“把新的值存回去”。问题是,在这中间的每一个小动作,都可能被别的线程突然插队过来捣乱! 解决方案: 为了避免这种混乱,我们需要使用线程安全的操作,比如Mutex(互斥锁)。Mutex可以确保每次只有一个线程能够修改某个变量。 修正后的代码: ruby 正确的代码 require 'thread' counter = 0 mutex = Mutex.new threads = [] 5.times do |i| threads << Thread.new do 100_000.times do mutex.synchronize { counter += 1 } end end end threads.each(&:join) puts "Counter: {counter}" 总结: 这一段代码告诉我们,共享状态是一个雷区。如果你非要用共享变量,记得给它加上锁,不然后果不堪设想。 --- 4. 示例二 死锁的诅咒 场景描述: 有时候,我们会遇到更复杂的情况,比如两个线程互相等待对方释放资源。哎呀,这种情况就叫“死锁”,简直就像两只小猫抢一个玩具,谁都不肯让步,结果大家都卡在那里动弹不得,程序也就这样傻乎乎地停在原地,啥也干不了啦! 问题出现: 想象一下,你有两个线程,A线程需要获取锁X,B线程需要获取锁Y。想象一下,A和B两个人都想打开两把锁——A拿到了锁X,B拿到了锁Y。然后呢,A心想:“我得等B先把他的锁Y打开,我才能继续。”而B也在想:“等A先把她的锁X打开,我才能接着弄。”结果俩人就这么干等着,谁也不肯先放手,最后就成了“死锁”——就像两个人在拔河,谁都不松手,僵在那里啥也干不成。 代码示例: ruby 死锁的代码 lock_a = Mutex.new lock_b = Mutex.new thread_a = Thread.new do lock_a.synchronize do puts "Thread A acquired lock A" sleep(1) lock_b.synchronize do puts "Thread A acquired lock B" end end end thread_b = Thread.new do lock_b.synchronize do puts "Thread B acquired lock B" sleep(1) lock_a.synchronize do puts "Thread B acquired lock A" end end end thread_a.join thread_b.join 分析: 在这段代码中,两个线程都在尝试获取两个不同的锁,但由于它们的顺序不同,最终导致了死锁。运行这段代码时,你会发现程序卡住了,没有任何输出。 解决方案: 为了避免死锁,我们需要遵循“总是按照相同的顺序获取锁”的原则。比如,在上面的例子中,我们可以强制让所有线程都先获取锁A,再获取锁B。 修正后的代码: ruby 避免死锁的代码 lock_a = Mutex.new lock_b = Mutex.new thread_a = Thread.new do [lock_a, lock_b].each do |lock| lock.synchronize do puts "Thread A acquired lock {lock.object_id}" end end end thread_b = Thread.new do [lock_a, lock_b].each do |lock| lock.synchronize do puts "Thread B acquired lock {lock.object_id}" end end end thread_a.join thread_b.join 总结: 死锁就像一只隐形的手,随时可能掐住你的喉咙。记住,保持一致的锁顺序是关键! --- 5. 示例三 不恰当的线程池 场景描述: 线程池是一种管理线程的方式,它可以复用线程,减少频繁创建和销毁线程的开销。但在实际使用中,很多人会因为配置不当而导致性能下降甚至崩溃。 问题出现: 假设你创建了一个线程池,但线程池的大小设置得不合理。哎呀,这就好比做饭时锅不够大,菜都堆在那儿煮不熟,菜要是放太多呢,锅又会冒烟、潽得到处都是,最后饭也没做好。线程池也一样,太小了任务堆成山,程序半天没反应;太大了吧,电脑资源直接被榨干,啥事也干不成,还得收拾烂摊子! 代码示例: ruby 线程池的错误用法 require 'thread' pool = Concurrent::FixedThreadPool.new(2) 20.times do |i| pool.post do sleep(1) puts "Task {i} completed" end end pool.shutdown pool.wait_for_termination 分析: 在这个例子中,线程池的大小被设置为2,但有20个任务需要执行。哎呀,这就好比你请了个帮手,但他一次只能干两件事,其他事儿就得排队等着,得等前面那两件事儿干完了,才能轮到下一件呢!这种情况下,整个程序的执行时间会显著延长。 解决方案: 为了优化线程池的性能,我们需要根据系统的负载情况动态调整线程池的大小。可以使用Concurrent::CachedThreadPool,它会根据当前的任务数量自动调整线程的数量。 修正后的代码: ruby 使用缓存线程池 require 'concurrent' pool = Concurrent::CachedThreadPool.new 20.times do |i| pool.post do sleep(1) puts "Task {i} completed" end end sleep(10) 给线程池足够的时间完成任务 pool.shutdown pool.wait_for_termination 总结: 线程池就像一把双刃剑,用得好可以提升效率,用不好则会成为负担。记住,线程池的大小要根据实际情况灵活调整。 --- 6. 示例四 忽略异常的代价 场景描述: 并发编程的一个常见问题是,线程中的异常不容易被察觉。如果你没有妥善处理这些异常,程序可能会因为一个小错误而崩溃。 问题出现: 假设你有一个线程在执行某个操作时抛出了异常,但你没有捕获它,那么整个线程池可能会因此停止工作。 代码示例: ruby 忽略异常的代码 threads = [] 5.times do |i| threads << Thread.new do raise "Error in thread {i}" if i == 2 puts "Thread {i} completed" end end threads.each(&:join) 分析: 在这个例子中,当i == 2时,线程会抛出一个异常。哎呀糟糕!因为我们没抓住这个异常,程序直接就挂掉了,别的线程啥的也别想再跑了。 解决方案: 为了防止这种情况发生,我们应该在每个线程中添加异常捕获机制。比如,可以用begin-rescue-end结构来捕获异常并进行处理。 修正后的代码: ruby 捕获异常的代码 threads = [] 5.times do |i| threads << Thread.new do begin raise "Error in thread {i}" if i == 2 puts "Thread {i} completed" rescue => e puts "Thread {i} encountered an error: {e.message}" end end end threads.each(&:join) 总结: 异常就像隐藏在暗处的敌人,稍不注意就会让你措手不及。学会捕获和处理异常,是成为一个优秀的并发编程者的关键。 --- 7. 结语 好了,今天的分享就到这里啦!并发编程确实是一项强大的技能,但也需要谨慎对待。大家看看今天这个例子,是不是觉得有点隐患啊?希望能引起大家的注意,也学着怎么避开这些坑,别踩雷了! 最后,我想说的是,编程是一门艺术,也是一场冒险。每次遇到新挑战,我都觉得像打开一个神秘的盲盒,既兴奋又紧张。不过呢,光有好奇心还不够,还得有点儿耐心,就像种花一样,得一点点浇水施肥,不能急着看结果。相信只要我们不断学习、不断反思,就一定能写出更加优雅、高效的代码! 祝大家编码愉快!
2025-04-25 16:14:17
32
凌波微步
转载文章
...back:接收IMU数据,将IMU数据存到imu_msg_buffer中,这里只会利用开头200帧IMU数据进行静止初始化,不做其他处理。featureCallback:接收双目特征,进行后端处理。利用IMU进行EKF Propagation,利用双目特征进行EKF Update。静止初始化(initializeGravityAndBias):将前200帧加速度和角速度求平均, 平均加速度的模值g作为重力加速度, 平均角速度作为陀螺仪的bias, 计算重力向量(0,0,-g)和平均加速度之间的夹角(旋转四元数), 标定初始时刻IMU系与world系之间的夹角. 因此MSCKF要求前200帧IMU是静止不动的 sudo apt-get install libsuitesparse-devcd ~/catkin_ws/srcgit clone KumarRobotics/msckf_viocd ..catkin_make --pkg msckf_vio --cmake-args -DCMAKE_BUILD_TYPE=Release激活环境变量很关键source /devel/setup.bashroslaunch msckf_vio msckf_vio_euroc.launch注意文件路径rosrun rviz rviz -d rviz/rviz_euroc_config.rviz (改成你自己的rviz文件)rosbag play ~/data/euroc/MH_04_difficult.bag(改成你自己的rosbag文件) 可以看到,s_msckf的输出是没有轨迹的,可以增加如下脚本,将/odom存为/path,在rviz订阅即可可视化轨迹 脚本来自其issue:https://github.com/KumarRobotics/msckf_vio/issues/13 !/usr/bin/env pythonimport rospyfrom nav_msgs.msg import Odometry, Pathfrom geometry_msgs.msg import PoseStampedclass OdomToPath:def __init__(self):self.path_pub = rospy.Publisher('/slz_path', Path, latch=True, queue_size=10)self.odom_sub = rospy.Subscriber('/firefly_sbx/vio/odom', Odometry, self.odom_cb, queue_size=10)self.path = Path()def odom_cb(self, msg):cur_pose = PoseStamped()cur_pose.header = msg.headercur_pose.pose = msg.pose.poseself.path.header = msg.headerself.path.poses.append(cur_pose)self.path_pub.publish(self.path)if __name__ == '__main__':rospy.init_node('odom_to_path')odom_to_path = OdomToPath()rospy.spin() 或者增加一个draw_path的功能包: cpp为: include <stdio.h>include <stdlib.h>include <unistd.h>include <ros/ros.h>include <ros/console.h>include <nav_msgs/Path.h>include <std_msgs/String.h>include <nav_msgs/Odometry.h>include <geometry_msgs/Quaternion.h>include <geometry_msgs/PoseStamped.h>nav_msgs::Path path;ros::Publisher path_pub;ros::Subscriber odomSub;ros::Subscriber odom_raw_Sub;void odomCallback(const nav_msgs::Odometry::ConstPtr& odom){geometry_msgs::PoseStamped this_pose_stamped;this_pose_stamped.header= odom->header;this_pose_stamped.pose = odom->pose.pose;//this_pose_stamped.pose.position.x = odom->pose.pose.position.x;//this_pose_stamped.pose.position.y = odom->pose.pose.position.y;//this_pose_stamped.pose.orientation = odom->pose.pose.orientation;//this_pose_stamped.header.stamp = ros::Time::now();//this_pose_stamped.header.frame_id = "world";//frame_id 是消息中与数据相关联的参考系id,例如在在激光数据中,frame_id对应激光数据采集的参考系 path.header= this_pose_stamped.header;path.poses.push_back(this_pose_stamped);//path.header.stamp = ros::Time::now();//path.header.frame_id= "world";path_pub.publish(path);//printf("path_pub ");//printf("odom %.3lf %.3lf\n",odom->pose.pose.position.x,odom->pose.pose.position.y);}int main (int argc, char argv){ros::init (argc, argv, "showpath");ros::NodeHandle ph;path_pub = ph.advertise<nav_msgs::Path>("/trajectory",10, true);odomSub = ph.subscribe<nav_msgs::Odometry>("/firefly_sbx/vio/odom", 10, odomCallback);//ros::Rate loop_rate(50);while (ros::ok()){ros::spinOnce(); // check for incoming messages//loop_rate.sleep();}return 0;} cmakelists.txt cmake_minimum_required(VERSION 2.8.3)project(draw) Compile as C++11, supported in ROS Kinetic and newer add_compile_options(-std=c++11) Find catkin macros and libraries if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz) is used, also find other catkin packagesfind_package(catkin REQUIRED COMPONENTSgeometry_msgsroscpprospystd_msgsmessage_generation)catkin_package( INCLUDE_DIRS include LIBRARIES learning_communicationCATKIN_DEPENDS geometry_msgs roscpp rospy std_msgs message_runtime DEPENDS system_lib) Build include_directories(include${catkin_INCLUDE_DIRS})add_executable(draw_path draw.cpp)target_link_libraries(draw_path ${catkin_LIBRARIES}) package.xml <?xml version="1.0"?><package><name>draw</name><version>0.0.0</version><description>The learning_communication package</description><!-- One maintainer tag required, multiple allowed, one person per tag --><!-- Example: --><!-- <maintainer email="jane.doe@example.com">Jane Doe</maintainer> --><maintainer email="hcx@todo.todo">hcx</maintainer><!-- One license tag required, multiple allowed, one license per tag --><!-- Commonly used license strings: --><!-- BSD, MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1, LGPLv3 --><license>TODO</license><!-- Url tags are optional, but multiple are allowed, one per tag --><!-- Optional attribute type can be: website, bugtracker, or repository --><!-- Example: --><!-- <url type="website">http://wiki.ros.org/learning_communication</url> --><!-- Author tags are optional, multiple are allowed, one per tag --><!-- Authors do not have to be maintainers, but could be --><!-- Example: --><!-- <author email="jane.doe@example.com">Jane Doe</author> --><!-- The _depend tags are used to specify dependencies --><!-- Dependencies can be catkin packages or system dependencies --><!-- Examples: --><!-- Use build_depend for packages you need at compile time: --><!-- <build_depend>message_generation</build_depend> --><!-- Use buildtool_depend for build tool packages: --><!-- <buildtool_depend>catkin</buildtool_depend> --><!-- Use run_depend for packages you need at runtime: --><!-- <run_depend>message_runtime</run_depend> --><!-- Use test_depend for packages you need only for testing: --><!-- <test_depend>gtest</test_depend> --><buildtool_depend>catkin</buildtool_depend><build_depend>geometry_msgs</build_depend><build_depend>roscpp</build_depend><build_depend>rospy</build_depend><build_depend>std_msgs</build_depend><run_depend>geometry_msgs</run_depend><run_depend>roscpp</run_depend><run_depend>rospy</run_depend><run_depend>std_msgs</run_depend><build_depend>message_generation</build_depend><run_depend>message_runtime</run_depend><!-- The export tag contains other, unspecified, tags --><export><!-- Other tools can request additional information be placed here --></export></package> vins_fusion: 双目vio等多系统 mkdir -p vins-catkin_ws/srccd vins-catkin_ws/srcgit clone https://github.com/HKUST-Aerial-Robotics/VINS-Fusion.gitcd ..catkin_makesource devel/setup.bash按照readme 3.1 Monocualr camera + IMUroslaunch vins vins_rviz.launchrosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_mono_imu_config.yaml (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_mono_imu_config.yaml rosbag play YOUR_DATASET_FOLDER/MH_01_easy.bag 3.2 Stereo cameras + IMUroslaunch vins vins_rviz.launchrosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_imu_config.yaml (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_imu_config.yaml rosbag play YOUR_DATASET_FOLDER/MH_01_easy.bag 3.3 Stereo camerasroslaunch vins vins_rviz.launchrosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_config.yaml (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_config.yaml rosbag play YOUR_DATASET_FOLDER/MH_01_easy.bag<img src="https://github.com/HKUST-Aerial-Robotics/VINS-Fusion/blob/master/support_files/image/euroc.gif" width = 430 height = 240 /> 4. KITTI Example 4.1 KITTI Odometry (Stereo)Download [KITTI Odometry dataset](http://www.cvlibs.net/datasets/kitti/eval_odometry.php) to YOUR_DATASET_FOLDER. Take sequences 00 for example,Open two terminals, run vins and rviz respectively. (We evaluated odometry on KITTI benchmark without loop closure funtion)roslaunch vins vins_rviz.launch(optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/kitti_odom/kitti_config00-02.yamlrosrun vins kitti_odom_test ~/catkin_ws/src/VINS-Fusion/config/kitti_odom/kitti_config00-02.yaml YOUR_DATASET_FOLDER/sequences/00/ 4.2 KITTI GPS Fusion (Stereo + GPS)Download [KITTI raw dataset](http://www.cvlibs.net/datasets/kitti/raw_data.php) to YOUR_DATASET_FOLDER. Take [2011_10_03_drive_0027_synced](https://s3.eu-central-1.amazonaws.com/avg-kitti/raw_data/2011_10_03_drive_0027/2011_10_03_drive_0027_sync.zip) for example.Open three terminals, run vins, global fusion and rviz respectively. Green path is VIO odometry; blue path is odometry under GPS global fusion.roslaunch vins vins_rviz.launchrosrun vins kitti_gps_test ~/catkin_ws/src/VINS-Fusion/config/kitti_raw/kitti_10_03_config.yaml YOUR_DATASET_FOLDER/2011_10_03_drive_0027_sync/ rosrun global_fusion global_fusion_node<img src="https://github.com/HKUST-Aerial-Robotics/VINS-Fusion/blob/master/support_files/image/kitti.gif" width = 430 height = 240 /> 5. VINS-Fusion on car demonstrationDownload [car bag](https://drive.google.com/open?id=10t9H1u8pMGDOI6Q2w2uezEq5Ib-Z8tLz) to YOUR_DATASET_FOLDER.Open four terminals, run vins odometry, visual loop closure(optional), rviz and play the bag file respectively. Green path is VIO odometry; red path is odometry under visual loop closure.roslaunch vins vins_rviz.launchrosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/vi_car/vi_car.yaml (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/vi_car/vi_car.yaml rosbag play YOUR_DATASET_FOLDER/car.bag 本篇文章为转载内容。原文链接:https://blog.csdn.net/slzlincent/article/details/104364909。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-13 20:38:56
310
转载
转载文章
...ode来配置tvm的远程连接调试环境。 所需软硬件环境: 环境 版本 local system windows 10 service system ubuntu 18.04 tvm latest(0.9.dev0) python(conda) python 3.8.13 local IDE vscode 1. 安装TVM 1.1 下载源码 从github上拉取源码git clone --recursive https://github.com/apache/tvm tvm --recursive指令:由于tvm依赖了很多第三方的开源库(子模块) 加入该参数之后也将相应的子模块一起进行clone 或者直接下载源码https://tvm.apache.org/download 1.2 创建虚拟环境及安装依赖库 使用conda创建tvm的虚拟python环境,python版本为3.8,虚拟环境名为tvmenv: conda create -n tvmenv python=3.8 编辑tvm目录下的conda/build-environment.yaml文件: conda/build-environment.yaml Build environment that can be used to build tvm.name: tvmenv The conda channels to lookup the dependencieschannels:- anaconda- conda-forge 将name的值改为刚刚创建的虚拟环境名tvmenv 执行下面的指令,将构建tvm所需的环境依赖更新到当前虚拟环境中: conda env update -f conda/build-environment.yaml conda env update -n tvmenv -f conda/build-environment.yaml 设置完之后需要重新deactivate/activate对环境进行激活 如果上述命令执行较慢,可以将conda换成国内源(建议使用北京外国语大学的开源镜像站):参考连接 然后修改conda/build-environment.yaml文件: channels:- defaults - anaconda - conda-forge 安装python依赖库: pip install decorator tornado psutil 'xgboost<1.6.0' cloudpickle -i https://pypi.tuna.tsinghua.edu.cn/simple 如果使用onnx或者pytorch作为原始模型,则还需要安装相应的依赖库pip install onnx onnxruntime -i https://pypi.tuna.tsinghua.edu.cn/simplepip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 -i https://pypi.tuna.tsinghua.edu.cn/simple 在当前虚拟环境中添加用于tvm debug的环境变量: conda env config vars set TVM_LOG_DEBUG="ir/transform.cc=1,relay/ir/transform.cc=1" conda env config vars set TVM_LOG_DEBUG="ir/transform.cc=1,relay/ir/transform.cc=1" -n tvmenv 设置完之后需要重新deactivate/activate对环境进行激活是环境变量生效 使用这种方式设置环境变量的好处是:只有当前环境被激活(conda activate)时,自定义设置的环境变量才起作用,当conda deactivate后自定义的环境变量会自动清除。 当然,也可以更简单粗暴一些: export TVM_LOG_DEBUG="ir/transform.cc=1,relay/ir/transform.cc=1" 在当前虚拟环境中添加用于tvm python的环境变量: export TVM_HOME=your tvm pathexport PYTHONPATH=$TVM_HOME/python:${PYTHONPATH} 1.3 编译TVM源码 如果linux上没有安装C/C++的编译环境,需要进行安装: 更新软件apt-get update 安装apt-get install build-essential 安装cmakeapt-get install cmake 在tvm目录下创建build文件夹,并将cmake/config.cmake文件复制到此文件夹中: mkdir buildcp cmake/config.cmake build/ 编辑build/config.cmake进行相关配置: 本次是在cpu上进行测试,因此没有配置cudaset(USE_LLVM ON) line 136set(USE_RELAY_DEBUG ON) line 285(建议先 OFF) 在末尾添加一个cmake的编译宏,确保编译出来的是debug版本set(CMAKE_BUILD_TYPE Debug) 编译tvm,这里开启了16个线程: cd buildcmake ..make -j 16 建议开多个线程,否则编译速度很慢哦 大约5分钟,即可生成我们需要的两个共享链接库:libtvm.so 和 libtvm_runtime.so 1.4 验证安装是否成功 tvm版本验证: import tvmprint(tvm.__version__) pytorch模型验证: from_pytorch.py https://tvm.apache.org/docs/how_to/compile_models/from_pytorch.html ps: TVM supports PyTorch 1.7 and 1.4. Other versions may be unstable.import tvmfrom tvm import relayfrom tvm.contrib.download import download_testdataimport numpy as np PyTorch importsimport torchimport torchvision Load a pretrained PyTorch model -------------------------------model_name = "resnet18"model = getattr(torchvision.models, model_name)(pretrained=True) or model = torchvision.models.resnet18(pretrained=True) or pth_file = 'resnet18-f37072fd.pth' model = torchvision.models.resnet18() ckpt = torch.load(pth_file) model.load_state_dict(ckpt)model = model.eval() We grab the TorchScripted model via tracinginput_shape = [1, 3, 224, 224]input_data = torch.randn(input_shape)scripted_model = torch.jit.trace(model, input_data).eval() Load a test image ----------------- Classic cat example!from PIL import Image img_url = "https://github.com/dmlc/mxnet.js/blob/main/data/cat.png?raw=true" img_path = download_testdata(img_url, "cat.png", module="data")img_path = 'cat.png'img = Image.open(img_path).resize((224, 224)) Preprocess the image and convert to tensorfrom torchvision import transformsmy_preprocess = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])img = my_preprocess(img)img = np.expand_dims(img, 0) Import the graph to Relay ------------------------- Convert PyTorch graph to Relay graph. The input name can be arbitrary.input_name = "input0"shape_list = [(input_name, img.shape)]mod, params = relay.frontend.from_pytorch(scripted_model, shape_list) Relay Build ----------- Compile the graph to llvm target with given input specification.target = tvm.target.Target("llvm", host="llvm")dev = tvm.cpu(0)with tvm.transform.PassContext(opt_level=3):lib = relay.build(mod, target=target, params=params) Execute the portable graph on TVM --------------------------------- Now we can try deploying the compiled model on target.from tvm.contrib import graph_executordtype = "float32"m = graph_executor.GraphModule(lib["default"](dev)) Set inputsm.set_input(input_name, tvm.nd.array(img.astype(dtype))) Executem.run() Get outputstvm_output = m.get_output(0) Look up synset name ------------------- Look up prediction top 1 index in 1000 class synset. synset_url = "".join( [ "https://raw.githubusercontent.com/Cadene/", "pretrained-models.pytorch/master/data/", "imagenet_synsets.txt", ] ) synset_name = "imagenet_synsets.txt" synset_path = download_testdata(synset_url, synset_name, module="data") https://raw.githubusercontent.com/Cadene/pretrained-models.pytorch/master/data/imagenet_synsets.txtsynset_path = 'imagenet_synsets.txt'with open(synset_path) as f:synsets = f.readlines()synsets = [x.strip() for x in synsets]splits = [line.split(" ") for line in synsets]key_to_classname = {spl[0]: " ".join(spl[1:]) for spl in splits} class_url = "".join( [ "https://raw.githubusercontent.com/Cadene/", "pretrained-models.pytorch/master/data/", "imagenet_classes.txt", ] ) class_name = "imagenet_classes.txt" class_path = download_testdata(class_url, class_name, module="data") https://raw.githubusercontent.com/Cadene/pretrained-models.pytorch/master/data/imagenet_classes.txtclass_path = 'imagenet_classes.txt'with open(class_path) as f:class_id_to_key = f.readlines()class_id_to_key = [x.strip() for x in class_id_to_key] Get top-1 result for TVMtop1_tvm = np.argmax(tvm_output.numpy()[0])tvm_class_key = class_id_to_key[top1_tvm] Convert input to PyTorch variable and get PyTorch result for comparisonwith torch.no_grad():torch_img = torch.from_numpy(img)output = model(torch_img) Get top-1 result for PyTorchtop1_torch = np.argmax(output.numpy())torch_class_key = class_id_to_key[top1_torch]print("Relay top-1 id: {}, class name: {}".format(top1_tvm, key_to_classname[tvm_class_key]))print("Torch top-1 id: {}, class name: {}".format(top1_torch, key_to_classname[torch_class_key])) 2. 配置vscode 安装两个vscode远程连接所需的两个插件,具体如下图所示: 安装完成之后,在左侧工具栏会出现一个图标,点击图标进行ssh配置: ssh yourname@yourip -A 然后右键选择在当前窗口进行连接: 除此之外,还可以设置免费登录,具体可参考这篇文章。 当然,也可以使用windows本地的WSL2,vscode连接WSL还需要安装WSL和Dev Containers这两个插件。 在服务器端执行code .会自动安装vscode server,安装位置在用户的根目录下: 3. 安装FFI Navigator 由于TVM是由Python和C++混合开发,且大多数的IDE仅支持在同一种语言中查找函数定义,因此对于跨语言的FFI 调用,即Python跳转到C++或者C++跳转到Python,vscode是做不到的。虽然解决这个问题在技术上可能非常具有挑战性,但我们可以通过构建一个与FFI注册码模式匹配并恢复必要信息的项目特定分析器来解决这个问题,FFI Navigator就这样诞生了,作者仍然是陈天奇博士。 安装方式如下: 建议使用源码安装git clone https://github.com/tqchen/ffi-navigator.git 安装python依赖cd ffi-navigator/pythonpython setyp.py install vscode需要安装FFI Navigator插件,直接搜索安装即可(安装到服务器端)。 最后需要在.vscode/setting.json进行配置,内容如下: {"python.analysis.extraPaths": ["${workspaceFolder}/python"], // 添加额外导入路径, 告诉pylance自定义的python库在哪里"ffi_navigator.pythonpath": "/home/liyanpeng/anaconda3/envs/tvmenv/bin/python", // 配置FFI Navigator"python.defaultInterpreterPath": "/home/liyanpeng/anaconda3/envs/tvmenv/bin/python","files.associations": {"type_traits": "cpp","fstream": "cpp","thread": "cpp",".tcc": "cpp"} } 更详细内容可以参考项目链接。 结束语 对于vscode的使用技巧及C/C++相关的配置,这里不再详细的介绍了,感兴趣的小伙伴们可以了解下。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_42730750/article/details/126723224。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-12 20:04:26
87
转载
转载文章
...一、建模背景及目的及数据源说明 二、描述性分析 2.1 连续自变量与连续因变量的相关性分析 2.2 二分类变量与连续变量的相关性分析 2.3 多分类变量与连续变量的相关性分析 三、模型建立与诊断 3.1 一元线形回归及模型解读 3.2 残差可视化分析 3.3 多元线性回归 一、建模背景及目的及数据源说明 本案例数据来源于常国珍等人的《Python数据科学》一书第7章中的信用卡公司客户申请信息(年龄、收入、地区等信息)以及已有开卡客户的申请信息和信用卡消费信息数据,案例希望通过对该数据的分析和建模,根据已有的开卡用户的用户信息和消费来线形回归模型,来预测未开卡用户的消费潜力。数据下载见如下链https://download.csdn.net/download/baidu_26137595/85101874 数据读入及示例: raw = pd.read_csv('./data/creditcard_exp.csv', skipinitialspace = True)raw.head() 数据字段及说明: Acc: 是否开卡, 为0说明未开卡,对应的 avg_exp 为NaN;为1说明已开卡,对应avg_exp有值 avg_exp: 月均信用卡支出 avg_exp_ln:月均信用卡支出的对熟 gender : 性别 Ownrent: 是否自有住房 Selfempl: 是否自谋职业 Income:收入 dist_home_val: 所住小区均价 w dist_avg_income: 当地人均收入 age2: 年龄的平方 high_avg: 高出当地平均收入 edu_class:教育等级,0、1、2、3 依次是小学、初中、高中、大学 二、描述性分析 首先可筛选Acc为1的数据,分别以avg_exp为因变量,其余变量为自变量进行数据探索,主要是发现自变量和因变量是否有线形关系。 raw_1 = raw[raw['Acc'] == 1] 2.1 连续自变量与连续因变量的相关性分析 首先对连续变量和目标变量进行相关性分析,因变量avg_exp为连续变量,一般可以用相关系数来看其线形相关性。 cons_vasr = ['avg_exp', 'avg_exp_ln', 'Age', 'Income', 'dist_home_val', 'dist_avg_income', 'age2', 'high_avg']raw_1[cons_vasr].corr()vg']].corr() 结果如下,可以看到收入 Income 和当地人均收入 dist_avg_income这两个变量和avg_exp月均信用卡支出有较强的相关性,同时观察自变量间的相关性可发现人均收入 Income 和当地人均收入 dist_avg_income 之间也有较强的相关性,相关系数为0.99,说明接下来我们可以把这两个变量加入模型,但要注意可能会存在多重共线性。 2.2 二分类变量与连续变量的相关性分析 分类变量和连续变量之间的相关性可以用t检验进行,接下来以是否自有住房 Ownrent 变量 和 月均收入之间进行相关性检验。首先查看Ownrent 不同取值的数量以及avg_exp均值分布情况如何: pd.pivot_table(raw_1, values = ['avg_exp'], index = ['Ownrent'], aggfunc = {'avg_exp': ['count', np.mean]}) 接着分别对 Ownrent 为0、1的 avg_exp 进行t检验: import scipy.stats as st 引入scipy.stats进行t检验 创建变量Ownrent_0 = raw_1[raw_1['Ownrent'] == 0]['avg_exp'].valuesOwnrent_1 = raw_1[raw_1['Ownrent'] == 1]['avg_exp'].valuesst.ttest_ind(Ownrent_0, Ownrent_1, equal_var = True) p值为0.01 < 0.05,可以拒绝原假设,即认为是否自有住房和月均信用卡支出是相关的。 2.3 多分类变量与连续变量的相关性分析 多分类变量和连续变量之间的相关性检验可以用多次t检验进行,但较为繁琐,用方差分析进行快速检验相关性,然后再运用多重检验查看具体是哪些处理之间存在差异。以教育水平edu_class为例进行分析,同理首先查看分布 raw_1.pivot_table(index = 'edu_class', values = ['avg_exp'], aggfunc={'avg_exp': ['count', np.mean]}) 可以看到不同教育水平之间消费水平有明显差异,接下来通过方差分析进行检验差异是否明显。 from statsmodels.stats.anova import anova_lm 引入anova_lm进行方差分析from ststsmodels.stats.formula import ols 引入ols进行线性回归建模lm = ols('avg_exp~C(edu_class)', data = raw_1).fit() C(edu_class) 将数值型的变量指定为分类型anova_lm(lm, typ = 2) 可以看到不同教育水平之间的月均消费支出之间的差异是显著的,继续用多重检验来看哪些处理之间是显著的。 from statsmodels.stats.multicomp import MultiComparison 引入MultiComparison进行tukey多重检验mc = MultiComparison(raw_1['avg_exp'],raw_1['edu_class'])tukey_result = mc.tukeyhsd(alpha = 0.5)print(tukey_result) 结果是每个处理之间因变量差异的显著性,最后一列reject都为True说明各组之间均存在显著差异。 三、模型建立与诊断 3.1 一元线性回归及模型解读 以Income为自变量,以avg_exp为因变量建立一元线形回归并对模型结果进行解释 lm_1 = ols('avg_exp ~ Income', data = raw_1).fit()print(lm_1.summary()) 首先从第一部分可以看到R^2为0.454,整个模型的F检验p值小于0.05,说明模型通过显著性检验。 其次模型结果的第二块也表明自变量和截距也通过显著性检验。 最后一部分主要是对残差进行检验,左侧Omnibus、Prob(Omnibus)主要是对偏度Skew和峰度Kurtosis进行检验,正态分布的偏度为0,峰度为3,模型的Prob(Omnibus)值为0.156大于0.05,说明不能拒绝残差符合正态分布。 右侧Durbin-Watson主要是对残差的自相关性进行检(改检验可表示为,为残差之间的相关系数),Durbin-Watson的取值范围是0-4,越接近2说明残差不存在自相关性,越接近0说明存在正相关,越接近4说明存在负相关性。 右侧Jarque-Bera (JB)、Prob(JB)是对残差正态性检验,可以用来判断残差是否符合正态分布,本案例中Prob(JB)值为0.173 > 0.05,基不能拒绝残差服从正态分布。 右侧Cond. No.是多重共线性检验,该值越大,共线性越严重。 整体上看模型虽然拟合效果没那么好,但是显著性通过了检验。接下来看一下模型具体的系数,Income的系数为97.7说明模型收入越高信用卡消费越高,是符合业务预期的。 3.2 残差可视化分析 接下来对残差进一步进行可视化分析,主要看残差是否满足以下几个假定,并尝试通过对自变量、因变量进行调整来优化模型。首先来回顾一下残差需要满足的几个假定: a.残差的要服从均值为0,方差为的正态分布; b.残差之间要相互独立 c.残差和自变量没有相关性 (1)通过残差图进行模型优化 模型avg_exp ~ Income的自变量与残差分布图、残差qq图、模型拟合情况图即自变量与因变量及其预测值的图像 lm_1 = ols('avg_exp ~ Income', data = raw_1).fit() 建模raw_1['resid_1'] = lm_1.resid 模型残差raw_1['resid_1_rank'] = raw_1['resid_1'].rank(ascending = False, pct = True) 计算残差的百分位数raw_1['pred_1'] = lm_1.predict() 添加预测值plt.figure(figsize = (20, 6)) 自变量与残差分布图ax1 = plt.subplot(131)ax1.scatter('Income', 'resid', data = raw_1)ax1.set_title('Income & resid') 残差的qq图ax2 = plt.subplot(132)stats.probplot(raw_1['resid_1_rank'], dist = 'norm', plot = ax2) 模型拟合情况图,自变量与因变量以及模型预测值ax3 = plt.subplot(133)ax3.scatter('Income', 'avg_exp', data = raw_1)ax3.plot('Income', 'pred_1', data = raw_1, color = 'red')ax3.legend()ax3.text(12, 1920, 'pred func R^2: %.2f'% lm_1.rsquared)ax3.set_title('Income & avg_exp') 从第一个自变量和残差散点图可以看出,残差基本符合对称分布,但随着自变量增大,残差也在变大,存在方差不齐的情况。第二个图残差的qq图可以看出,残差近似正态分布。第三个图可以看模型的拟合效果并不是很好,R^2只有0.45。对avg_exp取对数,能够改善预测值越大残差越大的情况,但由于只对因变量取对数导致模型不好解释,对自变量Income同时取对数,代码和以上类似,只是改变因变量和自变量形式而已,以下是残差图,可以看到残差的异方差现象被有效的抑制,并且R^2也得到了提高。 (2)通过残差图发现强影响点 仔细观察以上图像结果,左下侧有两个较为异常的数据,对模型的拟和效果有较大的影响, 对于这种影响较大的可将其进行删除并重新建模: 计算学生化残差raw_1['resid_t'] = (raw_1['resid_2'] - raw_1['resid_2'].mean())/raw_1['resid_2'].std() raw_1[abs(raw_1['resid_t']) > 2] 将残差大于2的筛选出来 将强影响点删除后,得到的结果如下,模型结果更稳定。 3.3 多元线性回归 上一篇文章有说到多重共线性会对模型产生致命的影响,用方差膨胀因子来处理的话会非常繁琐。通过正则化处理如Lasso回归,能够产生某些严格等于0的系数,从而达到变量筛选的目的。接下来以Lasso为例,首先用LassoCV来找到最优的alpha。由于statsmodels中的ols的fit_regularized方法没有很好的实现,所以用sklearn中linear_model模块来进行建模 from sklearn.preprocessing import StandardScaler sklearn进行线性回归前必须要进行标准化from sklearn.linear_model import LassoCV Lasso的交叉验证方法con_xcols = ['Age', 'Income', 'dist_home_val', 'dist_avg_income']scaler = StandardScaler()X = scaler.fit_transform(raw_1[con_xcols])y = raw_1['avg_exp_ln']lasso_alphas = np.logspace(-3, 0, 100, base = 10)lcv = LassoCV(alphas = lasso_alphas, cv = 10)lcv.fit(X, y)print('best alpha %.4f' % lcv.alpha_)print('the r-square %.4f' % lcv.score(X, y)) 接下来画出不同alpha下的岭迹图,来看alpha值对系数的影响 from sklearn.linear_model import Lassocoefs = []lasso = Lasso()for i in lasso_alphas:lasso.set_params(alpha = i)lasso.fit(X, y)coefs.append(lasso.coef_)ax = plt.gca()ax.plot(lasso_alphas, coefs)ax.set_xscale('log')ax.set_xlabel('$\\alpha$')ax.set_ylabel('coefs value') 从图中可以看到随着alpha的增大,系数不断在减小,有些系数会优先收缩为0,再继续增大时所欲系数都会为0,通过该特性从而达到变量筛选的目的。将LassoCV得到的系数打印出来,可以看到用户月均信用卡支出和当地小区均价、当地人均收入成正比,当地人均收入水平的影响更大。 以上就是线形回归在应用时的注意事项。 本篇文章为转载内容。原文链接:https://blog.csdn.net/baidu_26137595/article/details/123766191。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 15:52:56
106
转载
转载文章
...定 JDBC 事务的数据源、全局作业和/或触发器侦听器、插件、线程池,以及更多)配置 Quartz,但它根本没有与应用程序服务器的上下文或引用集成在一起。结果就是作业不能访问 Web 服务器的内部函数;例如,在使用 WebSphere 应用服务器时,由 Quartz 调度的作业并不能影响服务器的动态缓存和数据源。 二、java中实现定时任务分类 从实现的技术上来分类,目前主要有三种技术(或者说有三种产品): Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务。使用这种方式可以让你的程序按照某一个频度执行,但不能在指定时间运行。一般用的较少,这篇文章将不做详细介绍。 使用Quartz,这是一个功能比较强大的的调度器,可以让你的程序在指定时间执行,也可以按照某一个频度执行,配置起来稍显复杂,稍后会详细介绍。 Spring3.0以后自带的task,可以将它看成一个轻量级的Quartz,而且使用起来比Quartz简单许多,稍后会介绍。 从作业类的继承方式来讲,可以分为两类: 作业类需要继承自特定的作业类基类,如Quartz中需要继承自org.springframework.scheduling.quartz.QuartzJobBean;java.util.Timer中需要继承自java.util.TimerTask。 作业类即普通的java类,不需要继承自任何基类。 注:个人推荐使用第二种方式,因为这样所以的类都是普通类,不需要事先区别对待。 从任务调度的触发时机来分,这里主要是针对作业使用的触发器,主要有以下两种: 每隔指定时间则触发一次,在Quartz中对应的触发器为:org.springframework.scheduling.quartz.SimpleTriggerBean 每到指定时间则触发一次,在Quartz中对应的调度器为:org.springframework.scheduling.quartz.CronTriggerBean 注:并非每种任务都可以使用这两种触发器,如java.util.TimerTask任务就只能使用第一种。Quartz和spring task都可以支持这两种触发条件。 三、Quartz与Spring的集成 第一种,作业类继承自特定的基类:org.springframework.scheduling.quartz.QuartzJobBean。 第一步:定义作业类 Java代码 import org.quartz.JobExecutionContext; import org.quartz.JobExecutionException; import org.springframework.scheduling.quartz.QuartzJobBean; public class Job1 extends QuartzJobBean { private int timeout; private static int i = 0; //调度工厂实例化后,经过timeout时间开始执行调度 public void setTimeout(int timeout) { this.timeout = timeout; } / 要调度的具体任务 / @Override protected void executeInternal(JobExecutionContext context) throws JobExecutionException { System.out.println("定时任务执行中…"); } } 第二步:spring配置文件中配置作业类JobDetailBean Xml代码 <bean name="job1" class="org.springframework.scheduling.quartz.JobDetailBean"> <property name="jobClass" value="com.gy.Job1" /> <property name="jobDataAsMap"> <map> <entry key="timeout" value="0" /> </map> </property> </bean> 说明:org.springframework.scheduling.quartz.JobDetailBean有两个属性,jobClass属性即我们在java代码中定义的任务类,jobDataAsMap属性即该任务类中需要注入的属性值。 第三步:配置作业调度的触发方式(触发器) Quartz的作业触发器有两种,分别是 org.springframework.scheduling.quartz.SimpleTriggerBean org.springframework.scheduling.quartz.CronTriggerBean 第一种SimpleTriggerBean,只支持按照一定频度调用任务,如每隔30分钟运行一次。 配置方式如下: Xml代码 <bean id="simpleTrigger" class="org.springframework.scheduling.quartz.SimpleTriggerBean"> <property name="jobDetail" ref="job1" /> <property name="startDelay" value="0" /><!-- 调度工厂实例化后,经过0秒开始执行调度 --> <property name="repeatInterval" value="2000" /><!-- 每2秒调度一次 --> </bean> 第二种CronTriggerBean,支持到指定时间运行一次,如每天12:00运行一次等。 配置方式如下: Xml代码 <bean id="cronTrigger" class="org.springframework.scheduling.quartz.CronTriggerBean"> <property name="jobDetail" ref="job1" /> <!—每天12:00运行一次 --> <property name="cronExpression" value="0 0 12 ?" /> </bean> 关于cronExpression表达式的语法参见附录。 第四步:配置调度工厂 Xml代码 <bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean"> <property name="triggers"> <list> <ref bean="cronTrigger" /> </list> </property> </bean> 说明:该参数指定的就是之前配置的触发器的名字。 第五步:启动你的应用即可,即将工程部署至tomcat或其他容器。 第二种,作业类不继承特定基类。 Spring能够支持这种方式,归功于两个类: org.springframework.scheduling.timer.MethodInvokingTimerTaskFactoryBean org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean 这两个类分别对应spring支持的两种实现任务调度的方式,即前文提到到java自带的timer task方式和Quartz方式。这里我只写MethodInvokingJobDetailFactoryBean的用法,使用该类的好处是,我们的任务类不再需要继承自任何类,而是普通的pojo。 第一步:编写任务类 Java代码 public class Job2 { public void doJob2() { System.out.println("不继承QuartzJobBean方式-调度进行中..."); } } 可以看出,这就是一个普通的类,并且有一个方法。 第二步:配置作业类 Xml代码 <bean id="job2" class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean"> <property name="targetObject"> <bean class="com.gy.Job2" /> </property> <property name="targetMethod" value="doJob2" /> <property name="concurrent" value="false" /><!-- 作业不并发调度 --> </bean> 说明:这一步是关键步骤,声明一个MethodInvokingJobDetailFactoryBean,有两个关键属性:targetObject指定任务类,targetMethod指定运行的方法。往下的步骤就与方法一相同了,为了完整,同样贴出。 第三步:配置作业调度的触发方式(触发器) Quartz的作业触发器有两种,分别是 org.springframework.scheduling.quartz.SimpleTriggerBean org.springframework.scheduling.quartz.CronTriggerBean 第一种SimpleTriggerBean,只支持按照一定频度调用任务,如每隔30分钟运行一次。 配置方式如下: Xml代码 <bean id="simpleTrigger" class="org.springframework.scheduling.quartz.SimpleTriggerBean"> <property name="jobDetail" ref="job2" /> <property name="startDelay" value="0" /><!-- 调度工厂实例化后,经过0秒开始执行调度 --> <property name="repeatInterval" value="2000" /><!-- 每2秒调度一次 --> </bean> 第二种CronTriggerBean,支持到指定时间运行一次,如每天12:00运行一次等。 配置方式如下: Xml代码 <bean id="cronTrigger" class="org.springframework.scheduling.quartz.CronTriggerBean"> <property name="jobDetail" ref="job2" /> <!—每天12:00运行一次 --> <property name="cronExpression" value="0 0 12 ?" /> </bean> 以上两种调度方式根据实际情况,任选一种即可。 第四步:配置调度工厂 Xml代码 <bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean"> <property name="triggers"> <list> <ref bean="cronTrigger" /> </list> </property> </bean> 说明:该参数指定的就是之前配置的触发器的名字。 第五步:启动你的应用即可,即将工程部署至tomcat或其他容器。 到此,spring中Quartz的基本配置就介绍完了,当然了,使用之前,要导入相应的spring的包与Quartz的包,这些就不消多说了。 其实可以看出Quartz的配置看上去还是挺复杂的,没有办法,因为Quartz其实是个重量级的工具,如果我们只是想简单的执行几个简单的定时任务,有没有更简单的工具,有! 四、Spring-Task 上节介绍了在Spring 中使用Quartz,本文介绍Spring3.0以后自主开发的定时任务工具,spring task,可以将它比作一个轻量级的Quartz,而且使用起来很简单,除spring相关的包外不需要额外的包,而且支持注解和配置文件两种 形式,下面将分别介绍这两种方式。 第一种:配置文件方式 第一步:编写作业类 即普通的pojo,如下: Java代码 import org.springframework.stereotype.Service; @Service public class TaskJob { public void job1() { System.out.println(“任务进行中。。。”); } } 第二步:在spring配置文件头中添加命名空间及描述 Xml代码 <beans xmlns="http://www.springframework.org/schema/beans" xmlns:task="http://www.springframework.org/schema/task" 。。。。。。 xsi:schemaLocation="http://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task-3.0.xsd"> 第三步:spring配置文件中设置具体的任务 Xml代码 <task:scheduled-tasks> <task:scheduled ref="taskJob" method="job1" cron="0 ?"/> </task:scheduled-tasks> <context:component-scan base-package=" com.gy.mytask " /> 说明:ref参数指定的即任务类,method指定的即需要运行的方法,cron及cronExpression表达式,具体写法这里不介绍了,详情见上篇文章附录。 <context:component-scan base-package="com.gy.mytask" />这个配置不消多说了,spring扫描注解用的。 到这里配置就完成了,是不是很简单。 第二种:使用注解形式 也许我们不想每写一个任务类还要在xml文件中配置下,我们可以使用注解@Scheduled,我们看看源文件中该注解的定义: Java代码 @Target({java.lang.annotation.ElementType.METHOD, java.lang.annotation.ElementType.ANNOTATION_TYPE}) @Retention(RetentionPolicy.RUNTIME) @Documented public @interface Scheduled { public abstract String cron(); public abstract long fixedDelay(); public abstract long fixedRate(); } 可以看出该注解有三个方法或者叫参数,分别表示的意思是: cron:指定cron表达式 fixedDelay:官方文档解释:An interval-based trigger where the interval is measured from the completion time of the previous task. The time unit value is measured in milliseconds.即表示从上一个任务完成开始到下一个任务开始的间隔,单位是毫秒。 fixedRate:官方文档解释:An interval-based trigger where the interval is measured from the start time of the previous task. The time unit value is measured in milliseconds.即从上一个任务开始到下一个任务开始的间隔,单位是毫秒。 下面我来配置一下。 第一步:编写pojo Java代码 import org.springframework.scheduling.annotation.Scheduled; import org.springframework.stereotype.Component; @Component(“taskJob”) public class TaskJob { @Scheduled(cron = "0 0 3 ?") public void job1() { System.out.println(“任务进行中。。。”); } } 第二步:添加task相关的配置: Xml代码 <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:context="http://www.springframework.org/schema/context" xmlns:tx="http://www.springframework.org/schema/tx" xmlns:task="http://www.springframework.org/schema/task" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-3.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/jdbc/spring-jdbc-3.0.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-3.0.xsd http://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task-3.0.xsd" default-lazy-init="false"> <context:annotation-config /> <!—spring扫描注解的配置 --> <context:component-scan base-package="com.gy.mytask" /> <!—开启这个配置,spring才能识别@Scheduled注解 --> <task:annotation-driven scheduler="qbScheduler" mode="proxy"/> <task:scheduler id="qbScheduler" pool-size="10"/> 说明:理论上只需要加上<task:annotation-driven />这句配置就可以了,这些参数都不是必须的。 Ok配置完毕,当然spring task还有很多参数,我就不一一解释了,具体参考xsd文档http://www.springframework.org/schema/task/spring-task-3.0.xsd。 附录: cronExpression的配置说明,具体使用以及参数请百度google 字段 允许值 允许的特殊字符 秒 0-59 , - / 分 0-59 , - / 小时 0-23 , - / 日期 1-31 , - ? / L W C 月份 1-12 或者 JAN-DEC , - / 星期 1-7 或者 SUN-SAT , - ? / L C 年(可选) 留空, 1970-2099 , - / - 区间 通配符 ? 你不想设置那个字段 下面只例出几个式子 CRON表达式 含义 "0 0 12 ?" 每天中午十二点触发 "0 15 10 ? " 每天早上10:15触发 "0 15 10 ?" 每天早上10:15触发 "0 15 10 ? " 每天早上10:15触发 "0 15 10 ? 2005" 2005年的每天早上10:15触发 "0 14 ?" 每天从下午2点开始到2点59分每分钟一次触发 "0 0/5 14 ?" 每天从下午2点开始到2:55分结束每5分钟一次触发 "0 0/5 14,18 ?" 每天的下午2点至2:55和6点至6点55分两个时间段内每5分钟一次触发 "0 0-5 14 ?" 每天14:00至14:05每分钟一次触发 "0 10,44 14 ? 3 WED" 三月的每周三的14:10和14:44触发 "0 15 10 ? MON-FRI" 每个周一、周二、周三、周四、周五的10:15触发 Cron 表达式包括以下 7 个字段: 秒 分 小时 月内日期 月 周内日期 年(可选字段) 特殊字符 Cron 触发器利用一系列特殊字符,如下所示: 反斜线(/)字符表示增量值。例如,在秒字段中“5/15”代表从第 5 秒开始,每 15 秒一次。 问号(?)字符和字母 L 字符只有在月内日期和周内日期字段中可用。问号表示这个字段不包含具体值。所以,如果指定月内日期,可以在周内日期字段中插入“?”,表示周内日期值无关紧要。字母 L 字符是 last 的缩写。放在月内日期字段中,表示安排在当月最后一天执行。在周内日期字段中,如果“L”单独存在,就等于“7”,否则代表当月内周内日期的最后一个实例。所以“0L”表示安排在当月的最后一个星期日执行。 在月内日期字段中的字母(W)字符把执行安排在最靠近指定值的工作日。把“1W”放在月内日期字段中,表示把执行安排在当月的第一个工作日内。 井号()字符为给定月份指定具体的工作日实例。把“MON2”放在周内日期字段中,表示把任务安排在当月的第二个星期一。 星号()字符是通配字符,表示该字段可以接受任何可能的值。 字段 允许值 允许的特殊字符 秒 0-59 , - / 分 0-59 , - / 小时 0-23 , - / 日期 1-31 , - ? / L W C 月份 1-12 或者 JAN-DEC , - / 星期 1-7 或者 SUN-SAT , - ? / L C 年(可选) 留空, 1970-2099 , - / 表达式意义 "0 0 12 ?" 每天中午12点触发 "0 15 10 ? " 每天上午10:15触发 "0 15 10 ?" 每天上午10:15触发 "0 15 10 ? " 每天上午10:15触发 "0 15 10 ? 2005" 2005年的每天上午10:15触发 "0 14 ?" 在每天下午2点到下午2:59期间的每1分钟触发 "0 0/5 14 ?" 在每天下午2点到下午2:55期间的每5分钟触发 "0 0/5 14,18 ?" 在每天下午2点到2:55期间和下午6点到6:55期间的每5分钟触发 "0 0-5 14 ?" 在每天下午2点到下午2:05期间的每1分钟触发 "0 10,44 14 ? 3 WED" 每年三月的星期三的下午2:10和2:44触发 "0 15 10 ? MON-FRI" 周一至周五的上午10:15触发 "0 15 10 15 ?" 每月15日上午10:15触发 "0 15 10 L ?" 每月最后一日的上午10:15触发 "0 15 10 ? 6L" 每月的最后一个星期五上午10:15触发 "0 15 10 ? 6L 2002-2005" 2002年至2005年的每月的最后一个星期五上午10:15触发 "0 15 10 ? 63" 每月的第三个星期五上午10:15触发 每天早上6点 0 6 每两个小时 0 /2 晚上11点到早上8点之间每两个小时,早上八点 0 23-7/2,8 每个月的4号和每个礼拜的礼拜一到礼拜三的早上11点 0 11 4 1-3 1月1日早上4点 0 4 1 1 本篇文章为转载内容。原文链接:https://zhanghaiyang.blog.csdn.net/article/details/51397459。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-27 18:50:19
344
转载
转载文章
...);通常用在设置不变数据类型的子类。 C.__del__(self) 解构器 C.__str__(self) 可打印的字符输出;内建str()及print 语句 C.__repr__(self) 运行时的字符串输出;内建repr() 和操作符 C.__unicode__(self) Unicode 字符串输出;内建unicode() C.__call__(self, args) 表示可调用的实例 C.__nonzero__(self) 为object 定义False 值;内建bool() (从2.2 版开始) C.__len__(self) “长度”(可用于类);内建len() 对象(值)比较 C.__cmp__(self, obj) 对象比较;内建cmp() C.__lt__(self, obj) C.__le__(self, obj) 小于/小于或等于;对应 C.__gt__(self, obj) C.__ge__(self, obj) 大于/大于或等于;对应>及>=操作符 C.__eq__(self, obj) C.__ne__(self, obj) 等于/不等于;对应==,!=及<>操作符 属性 C.__getattr__(self, attr) 获取属性;内建getattr();仅当属性没有找到时调用 C.__setattr__(self, attr, val) 设置属性 C.__delattr__(self, attr) 删除属性 C.__getattribute__(self, attr) 获取属性;内建getattr();总是被调用 C.__get__(self, attr) (描述符)获取属性 C.__set__(self, attr, val) (描述符)设置属性 C.__delete__(self, attr) (描述符)删除属性 数值类型:二进制操作符 C.__add__(self, obj) 加;+操作符 C.__sub__(self, obj) 减;-操作符 C.__mul__(self, obj) 乘;操作符 C.__div__(self, obj) 除;/操作符 C.__truediv__(self, obj) True 除;/操作符 C.__floordiv__(self, obj) Floor 除;//操作符 C.__mod__(self, obj) 取模/取余;%操作符 C.__divmod__(self, obj) 除和取模;内建divmod() C.__pow__(self, obj[, mod]) 乘幂;内建pow();操作符 C.__lshift__(self, obj) 左移位;< 数值类型:二进制操作符 C.__rshift__(self, obj) 右移;>>操作符 C.__and__(self, obj) 按位与;&操作符 C.__or__(self, obj) 按位或;|操作符 C.__xor__(self, obj) 按位与或;^操作符 数值类型:一元操作符 C.__neg__(self) 一元负 C.__pos__(self) 一元正 C.__abs__(self) 绝对值;内建abs() C.__invert__(self) 按位求反;~操作符 数值类型:数值转换 C.__complex__(self, com) 转为complex(复数);内建complex() C.__int__(self) 转为int;内建int() C.__long__(self) 转 .long;内建long() C.__float__(self) 转为float;内建float() 数值类型:基本表示法(String) C.__oct__(self) 八进制表示;内建oct() C.__hex__(self) 十六进制表示;内建hex() 数值类型:数值压缩 C.__coerce__(self, num) 压缩成同样的数值类型;内建coerce() C.__index__(self) 在有必要时,压缩可选的数值类型为整型(比如:用于切片索引等等) 序列类型 C.__len__(self) 序列中项的数目 C.__getitem__(self, ind) 得到单个序列元素 C.__setitem__(self, ind,val) 设置单个序列元素 C.__delitem__(self, ind) 删除单个序列元素 C.__getslice__(self, ind1,ind2) 得到序列片断 C.__setslice__(self, i1, i2,val) 设置序列片断 C.__delslice__(self, ind1,ind2) 删除序列片断 C.__contains__(self, val) 测试序列成员;内建in 关键字 C.__add__(self,obj) 串连;+操作符 C.__mul__(self,obj) 重复;操作符 C.__iter__(self) 创建迭代类;内建iter() 映射类型 C.__len__(self) mapping 中的项的数目 C.__hash__(self) 散列(hash)函数值 C.__getitem__(self,key) 得到给定键(key)的值 C.__setitem__(self,key,val) 设置给定键(key)的值 C.__delitem__(self,key) 删除给定键(key)的值 C.__missing__(self,key) 给定键如果不存在字典中,则提供一个默认值 一:简单定制 classRoundFloatManual(object):def __init__(self, val):assert isinstance(val, float), "Value must be a float!"self.value= round(val, 2)>>> rfm =RoundFloatManual(42) Traceback (mostrecent call last): File"", line 1, in? File"roundFloat2.py", line 5, in __init__assertisinstance(val, float), \ AssertionError: Value must be a float!>>> rfm =RoundFloatManual(4.2)>>>rfm >>> printrfm 它因输入非法而异常,但如果输入正确时,就没有任何输出了。在解释器中,我们得到一些信息,却不是我们想要的。print(使用str())和真正的字符串对象表示(使用repr())都没能显示更多有关我们对象的信息。这就需要实现__str__()和__repr__()二者之一,或者两者都实现。加入下面的方法: def __str__(self):return str(self.value) 现在我们得到下面的: >>> rfm = RoundFloatManual(5.590464)>>>rfm >>> printrfm5.59 >>> rfm = RoundFloatManual(5.5964)>>> printrfm5.6 但是在解释器中转储(dump)对象时,仍然显示的是默认对象符号,要修复它,只需要覆盖__repr__()。可以让__repr__()和__str__()具有相同的代码,但最好的方案是:__repr__ = __str__ 在带参数5.5964的第二个例子中,我们看到它舍入值刚好为5.6,但我们还是想显示带两位小数的数。可以这样修改: def __str__(self):return '%.2f' % self.value 这里就同时具备str()和repr()的输出了: >>> rfm =RoundFloatManual(5.5964)>>>rfm5.60 >>>printrfm5.60 所有代码如下: classRoundFloatManual(object):def __init__(self,val):assert isinstance(val, float), "Valuemust be a float!"self.value= round(val, 2)def __str__(self):return '%.2f' %self.value__repr__ = __str__ 二:数值定制 定义一个Time60,其中,将整数的小时和分钟作为输入传给构造器: classTime60(object):def __init__(self, hr, min): self.hr=hr self.min= min 1:显示 需要在显示实例的时候,得到一个有意义的输出,那么就要覆盖__str__()(如果有必要的话,__repr__()也要覆盖): def __str__(self):return '%d:%d' % (self.hr, self.min) 比如: >>> mon =Time60(10, 30)>>> tue =Time60(11, 15)>>> >>> printmon, tue10:30 11:15 2:加法 Python中的重载操作符很简单。像加号(+),只需要重载__add__()方法,如果合适,还可以用__radd__()及__iadd__()。注意,实现__add__()的时候,必须认识到它返回另一个Time60对象,而不修改原mon或tue: def __add__(self, other):return self.__class__(self.hr + other.hr, self.min + other.min) 在类中,一般不直接调用类名,而是使用self 的__class__属性,即实例化self 的那个类,并调用它。调用self.__class__()与调用Time60()是一回事。但self.__class__()的方式更好。 >>> mon = Time60(10, 30)>>> tue = Time60(11, 15)>>> mon +tue >>> print mon +tue21:45 如果没有定义相对应的特殊方法,但是却使用了该方法对应的运算,则会引起一个TypeError异常: >>> mon -tue Traceback (mostrecent call last): File"", line 1, in? TypeError:unsupported operand type(s)for -: 'Time60' and 'Time60' 3:原位加法 __iadd__(),是用来支持像mon += tue 这样的操作符,并把正确的结果赋给mon。重载一个__i__()方法的唯一秘密是它必须返回self: def __iadd__(self, other): self.hr+=other.hr self.min+=other.minreturn self 下面是结果输出: >>> mon = Time60(10,30)>>> tue = Time60(11,15)>>>mon10:30 >>>id(mon)401872 >>> mon +=tue>>>id(mon)401872 >>>mon21:45 下面是Time60的类的完全定义: classTime60(object):'Time60 - track hours and minutes' def __init__(self,hr, min):'Time60 constructor - takes hours andminutes'self.hr=hr self.min=mindef __str__(self):'Time60 - string representation' return '%d:%d' %(self.hr, self.min)__repr__ = __str__ def __add__(self, other):'Time60 - overloading the additionoperator' return self.__class__(self.hr + other.hr,self.min +other.min)def __iadd__(self,other):'Time60 - overloading in-place addition'self.hr+=other.hr self.min+=other.minreturn self 4:升华 在这个类中,还有很多需要优化和改良的地方。首先看下面的例子: >>> wed =Time60(12, 5)>>>wed12:5 正确的显示应该是:“12:05” >>> thu =Time60(10, 30)>>> fri =Time60(8, 45)>>> thu +fri18:75 正确的显示应该是:19:15 可以做出如下修改: def __str__(self):return '%02d:%02d'%(self.hr, self.min)__repr__ = __str__ def __add__(self, othertime): tmin= self.min +othertime.min thr= self.hr +othertime.hrreturn self.__class__(thr + tmin/60, tmin%60)def __iadd__(self, othertime): self.min+=othertime.min self.hr+=othertime.hr self.hr+= self.min/60self.min%= 60 return self 三:迭代器 迭代器对象本身需要支持以下两种方法,它们组合在一起形成迭代器协议: iterator.__iter__() 返回迭代器对象本身。 iterator.next() 从容器中返回下一个元素。 实现了__iter__()和next()方法的类就是一个迭代器。自定义迭代器的例子如下: RandSeq(Random Sequence),传入一个初始序列,__init__()方法执行前述的赋值操作。__iter__()仅返回self,这就是如何将一个对象声明为迭代器的方式,最后,调用next()来得到迭代器中连续的值。这个迭代器唯一的亮点是它没有终点。代码如下: classRandSeq(object):def __init__(self, seq): self.data=seqdef __iter__(self):returnselfdefnext(self):return choice(self.data) 运行它,将会看到下面的输出: >>> from randseq importRandSeq>>> for eachItem in RandSeq(('rock', 'paper', 'scissors')): ...printeachItem ... scissors scissors rock paper paper scissors ...... 四:多类型定制 现在创建另一个新类,NumStr,由一个数字-字符对组成,记为n和s,数值类型使用整型(integer)。用[n::s]来表示它,这两个数据元素构成一个整体。NumStr有下面的特征: 初始化: 类应当对数字和字符串进行初始化;如果其中一个(或两)没有初始化,则使用0和空字符串,也就是, n=0 且s=''作为默认。 加法: 定义加法操作符,功能是把数字加起来,把字符连在一起;比如,NumStr1=[n1::s1]且NumStr2=[n2::s2]。则NumStr1+NumStr2 表示[n1+n2::s1+s2],其中,+代表数字相加及字符相连接。 乘法: 类似的, 定义乘法操作符的功能为, 数字相乘,字符累积相连, 也就是,NumStr1NumStr2=[n1n::s1n]。 False 值:当数字的数值为 0 且字符串为空时,也就是当NumStr=[0::'']时,这个实体即有一个false值。 比较: 比较一对NumStr对象,比如,[n1::s1] vs. [n2::s2],有九种不同的组合。对数字和字符串,按照标准的数值和字典顺序的进行比较。 如果obj1< obj2,则cmp(obj1, obj2)的返回值是一个小于0 的整数, 当obj1 > obj2 时,比较的返回值大于0, 当两个对象有相同的值时, 比较的返回值等于0。 我们的类的解决方案是把这些值相加,然后返回结果。为了能够正确的比较对象,我们需要让__cmp__()在 (n1>n2) 且 (s1>s2)时,返回 1,在(n1s2),或相反),返回0. 反之亦然。代码如下: classNumStr(object):def __init__(self, num=0, string=''): self.__num =num self.__string =stringdef __str__(self):return '[%d :: %r]' % (self.__num, self.__string)__repr__ = __str__ def __add__(self, other):ifisinstance(other, NumStr):return self.__class__(self.__num + other.__num, self.__string + other.__string)else:raise TypeError, 'Illegal argument type for built-in operation' def __mul__(self, num):ifisinstance(num, int):return self.__class__(self.__num num, self.__string num)else:raise TypeError, 'Illegal argument type for built-inoperation' def __nonzero__(self):return self.__num or len(self.__string)def __norm_cval(self, cmpres):returncmp(cmpres, 0)def __cmp__(self, other):return self.__norm_cval(cmp(self.__num, other.__num))+\ self.__norm_cval(cmp(self.__string,other.__string)) 执行一些例子: >>> a =NumStr(3, 'foo')>>> b =NumStr(3, 'goo')>>> c =NumStr(2, 'foo')>>> d =NumStr()>>> e =NumStr(string='boo')>>> f =NumStr(1)>>>a [3 :: 'foo']>>>b [3 :: 'goo']>>>c [2 :: 'foo']>>>d [0 ::'']>>>e [0 ::'boo']>>>f [1 :: '']>>> a True>>> b False>>> a ==a True>>> b 2[6 :: 'googoo']>>> a 3[9 :: 'foofoofoo']>>> b +e [3 :: 'gooboo']>>> e +b [3 :: 'boogoo']>>> if d: 'not false'...>>> if e: 'not false'...'not false' >>>cmp(a, b)-1 >>>cmp(a, c)1 >>>cmp(a, a) 0 如果在__str__中使用“%s”,将导致字符串没有引号: return '[%d :: %s]' % (self.__num, self.__string)>>> printa [3 :: foo] 第二个元素是一个字符串,如果用户看到由引号标记的字符串时,会更加直观。要做到这点,使用“repr()”表示法对代码进行转换,把“%s”替换成“%r”。这相当于调用repr()或者使用单反引号来给出字符串的可求值版本--可求值版本的确要有引号: >>> printa [3 :: 'foo'] __norm_cval()不是一个特殊方法。它是一个帮助我们重载__cmp__()的助手函数:唯一的目的就是把cmp()返回的正值转为1,负值转为-1。cmp()基于比较的结果,通常返回任意的正数或负数(或0),但为了我们的目的,需要严格规定返回值为-1,0 和1。 对整数调用cmp()及与 0 比较,结果即是我们所需要的,相当于如下代码片断: def __norm_cval(self, cmpres):if cmpres<0:return -1 elif cmpres>0:return 1 else:return 0 两个相似对象的实际比较是比较数字,比较字符串,然后返回这两个比较结果的和。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30849865/article/details/112989450。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-19 14:30:42
132
转载
转载文章
...va 源代码的语法元数据。类、方法、变量、参数、包都可以被注解,可用来将信息元数据与程序元素进行关联。目前很多开源库都使用到了注解,最熟悉的ButtonKnife中的@ViewInject(R.id.x)就可以替代findViewId,不懂这一块技术的同学第一眼看上去肯定会一脸懵逼,下面会手把手带大家写出ButtonKnife的注解使用。使用注解可以简化代码,提高开发效率。本文简单介绍下注解的使用,并对几个 Android 开源库的注解使用原理进行简析。 1、作用 标记,用于告诉编译器一些信息 ; 编译时动态处理,如动态生成代码 ; 运行时动态处理,如得到注解信息。 2、分类 标准 Annotation, 包括 Override, Deprecated, SuppressWarnings。也都是Java自带的几个 Annotation,上面三个分别表示重写函数,不鼓励使用(有更好方式、使用有风险或已不在维护),忽略某项 Warning; 元 Annotation ,@Retention, @Target, @Inherited, @Documented。元 Annotation 是指用来定义 Annotation 的 Annotation,在后面 Annotation 自定义部分会详细介绍含义; 自定义 Annotation , 表示自己根据需要定义的 Annotation,定义时需要用到上面的元 Annotation 这里只是一种分类而已,也可以根据作用域分为源码时、编译时、运行时 Annotation。通过 @interface 定义,注解名即为自定义注解名。 一、自定义注解 例如,注解@MethodInfo: @Documented@Retention(RetentionPolicy.RUNTIME)@Target(ElementType.METHOD)@Inheritedpublic @interface MethodInfo {String author() default "annotation@gmail.com";String date();int version() default 1;} 使用到了元Annotation: @Documented 是否会保存到 Javadoc 文档中 ; @Retention 保留时间,可选值 SOURCE(源码时),CLASS(编译时),RUNTIME(运行时),默认为 CLASS,值为 SOURCE 大都为 Mark Annotation,这类 Annotation 大都用来校验,比如 Override, Deprecated, SuppressWarnings ; @Target 用来指定修饰的元素,如 CONSTRUCTOR:用于描述构造器、FIELD:用于描述域、LOCAL_VARIABLE:用于描述局部变量、METHOD:用于描述方法、PACKAGE:用于描述包、PARAMETER:用于描述参数、TYPE:用于描述类、接口(包括注解类型) 或enum声明。 @Inherited 是否可以被继承,默认为 false。 注解的参数名为注解类的方法名,且: 所有方法没有方法体,没有参数没有修饰符,实际只允许 public & abstract 修饰符,默认为 public ,不允许抛异常; 方法返回值只能是基本类型,String, Class, annotation, enumeration 或者是他们的一维数组; 若只有一个默认属性,可直接用 value() 函数。一个属性都没有表示该 Annotation 为 Mark Annotation。 public class App {@MethodInfo(author = “annotation.cn+android@gmail.com”,date = "2011/01/11",version = 2)public String getAppName() {return "appname";} } 调用自定义MethodInfo 的示例,这里注解的作用实际是给方法添加相关信息: author、date、version 。 二、实战注解Butter Knife 首先,先定义一个ViewInject注解。 public @interface ViewInject { int value() default -1;} 紧接着,为刚自定义注解添加元注解。 @Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.METHOD})@Retention(RetentionPolicy.RUNTIME)public @interface ViewInject {int value() default -1;} 再定义一个注解LayoutInject @Target(ElementType.TYPE)@Retention(RetentionPolicy.RUNTIME)public @interface LayoutInject {int value() default -1;} 定义一个基础的Activity。 package cn.wsy.myretrofit.annotation;import android.os.Bundle;import android.support.v7.app.AppCompatActivity;import android.util.Log;import java.lang.reflect.Field;public class InjectActivity extends AppCompatActivity {private int mLayoutId = -1;@Overrideprotected void onCreate(Bundle savedInstanceState) {super.onCreate(savedInstanceState);displayInjectLayout();displayInjectView();}/ 解析注解view id/private void displayInjectView() {if (mLayoutId <=0){return ;}Class<?> clazz = this.getClass();Field[] fields = clazz.getDeclaredFields();//获得声明的成员变量for (Field field : fields) {//判断是否有注解try {if (field.getAnnotations() != null) {if (field.isAnnotationPresent(ViewInject.class)) {//如果属于这个注解//为这个控件设置属性field.setAccessible(true);//允许修改反射属性ViewInject inject = field.getAnnotation(ViewInject.class);field.set(this, this.findViewById(inject.value()));} }} catch (Exception e) {Log.e("wusy", "not found view id!");} }}/ 注解布局Layout id/private void displayInjectLayout() {Class<?> clazz = this.getClass();if (clazz.getAnnotations() != null){if (clazz.isAnnotationPresent(LayouyInject.class)){LayouyInject inject = clazz.getAnnotation(LayouyInject.class);mLayoutId = inject.value();setContentView(mLayoutId);} }} } 首先,这里是根据映射实现设置控件的注解,java中使用反射的机制效率性能并不高。这里只是举例子实现注解。ButterKnife官方申明不是通过反射机制,因此效率会高点。 package cn.wsy.myretrofit;import android.os.Bundle;import android.widget.TextView;import cn.wsy.myretrofit.annotation.InjectActivity;import cn.wsy.myretrofit.annotation.LayouyInject;import cn.wsy.myretrofit.annotation.ViewInject;@LayoutInject(R.layout.activity_main)public class MainActivity extends InjectActivity {@ViewInject(R.id.textview)private TextView textView;@ViewInject(R.id.textview1)private TextView textview1;@ViewInject(R.id.textview2)private TextView textview2;@ViewInject(R.id.textview3)private TextView textview3;@ViewInject(R.id.textview4)private TextView textview4;@ViewInject(R.id.textview5)private TextView textview5;@Overrideprotected void onCreate(Bundle savedInstanceState) {super.onCreate(savedInstanceState);//设置属性textView.setText("OK");textview1.setText("OK1");textview2.setText("OK2");textview3.setText("OK3");textview4.setText("OK4");textview5.setText("OK5");} } 上面直接继承InjectActivity即可,文章上面也有说过:LayouyInject为什么作用域是TYPE,首先在加载view的时候,肯定是优先加载布局啊,ButterKnife也不例外。因此选择作用域在描述类,并且存在运行时。 二、解析Annotation原理 1、运行时 Annotation 解析 (1) 运行时 Annotation 指 @Retention 为 RUNTIME 的 Annotation,可手动调用下面常用 API 解析 method.getAnnotation(AnnotationName.class);method.getAnnotations();method.isAnnotationPresent(AnnotationName.class); 其他 @Target 如 Field,Class 方法类似 。 getAnnotation(AnnotationName.class) 表示得到该 Target 某个 Annotation 的信息,一个 Target 可以被多个 Annotation 修饰; getAnnotations() 则表示得到该 Target 所有 Annotation ; isAnnotationPresent(AnnotationName.class) 表示该 Target 是否被某个 Annotation 修饰; (2) 解析示例如下: public static void main(String[] args) {try {Class cls = Class.forName("cn.trinea.java.test.annotation.App");for (Method method : cls.getMethods()) {MethodInfo methodInfo = method.getAnnotation(MethodInfo.class);if (methodInfo != null) {System.out.println("method name:" + method.getName());System.out.println("method author:" + methodInfo.author());System.out.println("method version:" + methodInfo.version());System.out.println("method date:" + methodInfo.date());} }} catch (ClassNotFoundException e) {e.printStackTrace();} } 以之前自定义的 MethodInfo 为例,利用 Target(这里是 Method)getAnnotation 函数得到 Annotation 信息,然后就可以调用 Annotation 的方法得到响应属性值 。 2、编译时 Annotation 解析 (1) 编译时 Annotation 指 @Retention 为 CLASS 的 Annotation,甴 apt(Annotation Processing Tool) 解析自动解析。 使用方法: 自定义类集成自 AbstractProcessor; 重写其中的 process 函数 这块很多同学不理解,实际是 apt(Annotation Processing Tool) 在编译时自动查找所有继承自 AbstractProcessor 的类,然后调用他们的 process 方法去处理。 (2) 假设之前自定义的 MethodInfo 的 @Retention 为 CLASS,解析示例如下: @SupportedAnnotationTypes({ "cn.trinea.java.test.annotation.MethodInfo" })public class MethodInfoProcessor extends AbstractProcessor {@Overridepublic boolean process(Set<? extends TypeElement> annotations, RoundEnvironment env) {HashMap<String, String> map = new HashMap<String, String>();for (TypeElement te : annotations) {for (Element element : env.getElementsAnnotatedWith(te)) {MethodInfo methodInfo = element.getAnnotation(MethodInfo.class);map.put(element.getEnclosingElement().toString(), methodInfo.author());} }return false;} } SupportedAnnotationTypes 表示这个 Processor 要处理的 Annotation 名字。 process 函数中参数 annotations 表示待处理的 Annotations,参数 env 表示当前或是之前的运行环境 process 函数返回值表示这组 annotations 是否被这个 Processor 接受,如果接受后续子的 rocessor 不会再对这个 Annotations 进行处理 三、几个 Android 开源库 Annotation 原理简析 1、Retrofit (1) 调用 @GET("/users/{username}")User getUser(@Path("username") String username); (2) 定义 @Documented@Target(METHOD)@Retention(RUNTIME)@RestMethod("GET")public @interface GET {String value();} 从定义可看出 Retrofit 的 Get Annotation 是运行时 Annotation,并且只能用于修饰 Method (3) 原理 private void parseMethodAnnotations() {for (Annotation methodAnnotation : method.getAnnotations()) {Class<? extends Annotation> annotationType = methodAnnotation.annotationType();RestMethod methodInfo = null;for (Annotation innerAnnotation : annotationType.getAnnotations()) {if (RestMethod.class == innerAnnotation.annotationType()) {methodInfo = (RestMethod) innerAnnotation;break;} }……} } RestMethodInfo.java 的 parseMethodAnnotations 方法如上,会检查每个方法的每个 Annotation, 看是否被 RestMethod 这个 Annotation 修饰的 Annotation 修饰,这个有点绕,就是是否被 GET、DELETE、POST、PUT、HEAD、PATCH 这些 Annotation 修饰,然后得到 Annotation 信息,在对接口进行动态代理时会掉用到这些 Annotation 信息从而完成调用。 因为 Retrofit 原理设计到动态代理,这里只介绍 Annotation。 2、Butter Knife (1) 调用 @InjectView(R.id.user) EditText username; (2) 定义 @Retention(CLASS) @Target(FIELD)public @interface InjectView {int value();} 可看出 Butter Knife 的 InjectView Annotation 是编译时 Annotation,并且只能用于修饰属性 (3) 原理 @Override public boolean process(Set<? extends TypeElement> elements, RoundEnvironment env) {Map<TypeElement, ViewInjector> targetClassMap = findAndParseTargets(env);for (Map.Entry<TypeElement, ViewInjector> entry : targetClassMap.entrySet()) {TypeElement typeElement = entry.getKey();ViewInjector viewInjector = entry.getValue();try {JavaFileObject jfo = filer.createSourceFile(viewInjector.getFqcn(), typeElement);Writer writer = jfo.openWriter();writer.write(viewInjector.brewJava());writer.flush();writer.close();} catch (IOException e) {error(typeElement, "Unable to write injector for type %s: %s", typeElement, e.getMessage());} }return true;} ButterKnifeProcessor.java 的 process 方法如上,编译时,在此方法中过滤 InjectView 这个 Annotation 到 targetClassMap 后,会根据 targetClassMap 中元素生成不同的 class 文件到最终的 APK 中,然后在运行时调用 ButterKnife.inject(x) 函数时会到之前编译时生成的类中去找。 3、ActiveAndroid (1) 调用 @Column(name = “Name") public String name; (2) 定义 @Target(ElementType.FIELD)@Retention(RetentionPolicy.RUNTIME)public @interface Column {……} 可看出 ActiveAndroid 的 Column Annotation 是运行时 Annotation,并且只能用于修饰属性 (3) 原理 Field idField = getIdField(type);mColumnNames.put(idField, mIdName);List<Field> fields = new LinkedList<Field>(ReflectionUtils.getDeclaredColumnFields(type));Collections.reverse(fields);for (Field field : fields) {if (field.isAnnotationPresent(Column.class)) {final Column columnAnnotation = field.getAnnotation(Column.class);String columnName = columnAnnotation.name();if (TextUtils.isEmpty(columnName)) {columnName = field.getName();}mColumnNames.put(field, columnName);} } TableInfo.java 的构造函数如上,运行时,得到所有行信息并存储起来用来构件表信息。 ———————————————————————— 最后一个问题,看看这段代码最后运行结果: public class Person {private int id;private String name;public Person(int id, String name) {this.id = id;this.name = name;}public boolean equals(Person person) {return person.id == id;}public int hashCode() {return id;}public static void main(String[] args) {Set<Person> set = new HashSet<Person>();for (int i = 0; i < 10; i++) {set.add(new Person(i, "Jim"));}System.out.println(set.size());} } 答案:示例代码运行结果应该是 10 而不是 1,这个示例代码程序实际想说明的是标记型注解 Override 的作用,为 equals 方法加上 Override 注解就知道 equals 方法的重载是错误的,参数不对。 本篇文章为转载内容。原文链接:https://blog.csdn.net/csdn_aiyang/article/details/81564408。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-28 22:30:35
104
转载
Netty
Netty与大数据流处理平台的优化 1. Netty是什么?为什么它这么重要? 嗨,大家好!我是你们的老朋友,今天我们要聊聊一个超级厉害的技术——Netty。嘿,要是你对分布式系统、高能网络编程或者大数据流处理这些酷炫的东西感兴趣,那Netty可就太值得一试了!它就像是个隐藏的宝藏,能让你在这些领域玩得更溜。 首先,Netty是什么?简单来说,Netty是一个基于Java的异步事件驱动网络应用框架。它可以帮助开发者快速构建可扩展的服务器端应用程序。想象一下,你正在开发一个需要处理海量数据的大数据流处理平台,这时候Netty就显得尤为重要了。它不仅能够帮助我们高效地管理网络连接,还能让我们轻松应对高并发场景。 我第一次接触Netty的时候,真的被它的灵活性震撼到了。哎,说到程序员的烦心事,那肯定得提一提怎么让程序在被成千上万的人同时戳的时候还能稳如老狗啊!这事儿真心让人头大,尤其是看着服务器指标噌噌往上涨,心里直打鼓,生怕哪一秒就崩了。而Netty通过非阻塞I/O模型,完美解决了这个问题。这就像是一个超级能干的服务员,能够在同一时间同时服务上万个客人,而且就算有个客人纠结半天点菜(也就是某个请求拖拉),也不会耽误其他客人的服务,更不会让整个餐厅都停下来等他。 举个栗子: java EventLoopGroup bossGroup = new NioEventLoopGroup(); // 主线程组 EventLoopGroup workerGroup = new NioEventLoopGroup(); // 工作线程组 try { ServerBootstrap b = new ServerBootstrap(); // 启动辅助类 b.group(bossGroup, workerGroup) .channel(NioServerSocketChannel.class) // 使用NIO通道 .childHandler(new ChannelInitializer() { // 子处理器 @Override protected void initChannel(SocketChannel ch) throws Exception { ch.pipeline().addLast(new StringDecoder()); // 解码器 ch.pipeline().addLast(new StringEncoder()); // 编码器 ch.pipeline().addLast(new SimpleChannelInboundHandler() { @Override protected void channelRead0(ChannelHandlerContext ctx, String msg) throws Exception { System.out.println("Received message: " + msg); ctx.writeAndFlush("Echo: " + msg); // 回显消息 } }); } }); ChannelFuture f = b.bind(8080).sync(); // 绑定端口并同步等待完成 f.channel().closeFuture().sync(); // 等待服务关闭 } finally { workerGroup.shutdownGracefully(); bossGroup.shutdownGracefully(); } 这段代码展示了如何用Netty创建一个简单的TCP服务器。话说回来,Netty这家伙简直太贴心了,它的API设计得特别直观,想设置啥处理器或者监听事件都超简单,用起来完全没压力,感觉开发效率直接拉满! 2. 大数据流处理平台中的挑战 接下来,我们聊聊大数据流处理平台面临的挑战。在这个领域,我们通常会遇到以下几个问题: - 高吞吐量:我们需要处理每秒数百万条甚至更多的数据记录。 - 低延迟:对于某些实时应用场景(如股票交易),毫秒级的延迟都是不可接受的。 - 可靠性:数据不能丢失,必须保证至少一次投递。 - 扩展性:随着业务增长,系统需要能够无缝扩容。 这些问题听起来是不是很让人头大?但别担心,Netty正是为此而生的! 让我分享一个小故事吧。嘿,有次我正忙着弄个日志收集系统,结果一测试才发现,这传统的阻塞式I/O模型简直是“人形瓶颈”啊!流量一大就直接崩溃,完全hold不住那个高峰时刻,简直让人头大!于是,我开始研究Netty,并将其引入到项目中。哈哈,结果怎么样?系统的性能直接翻了三倍!这下我可真服了,选对工具真的太重要了,感觉像是找到了开挂的装备一样爽。 为了更好地理解这些挑战,我们可以看看下面这段代码,这是Netty中用来实现高性能读写的示例: java public class HighThroughputHandler extends ChannelInboundHandlerAdapter { private final ByteBuf buffer; public HighThroughputHandler() { buffer = Unpooled.buffer(1024); } @Override public void channelActive(ChannelHandlerContext ctx) throws Exception { for (int i = 0; i < 1024; i++) { buffer.writeByte((byte) i); } ctx.writeAndFlush(buffer.retain()); } @Override public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception { ctx.write(msg); } @Override public void channelReadComplete(ChannelHandlerContext ctx) throws Exception { ctx.flush(); } @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception { cause.printStackTrace(); ctx.close(); } } 在这段代码中,我们创建了一个自定义的处理器HighThroughputHandler,它能够在每次接收到数据后立即转发出去,从而实现高吞吐量的传输。 3. Netty如何优化大数据流处理平台? 现在,让我们进入正题——Netty是如何具体优化大数据流处理平台的呢? 3.1 异步非阻塞I/O Netty的核心优势在于其异步非阻塞I/O模型。这就相当于,当有请求进来的时候,Netty可不会给每个连接都专门安排一个“服务员”,而是让这些连接共用一个“服务团队”。这样既能节省人手,又能高效处理各种任务,多划算啊!这样做的好处是显著减少了内存占用和上下文切换开销。 假设你的大数据流处理平台每天要处理数十亿条数据记录,采用传统的阻塞式I/O模型,很可能早就崩溃了。而Netty则可以通过单线程处理数千个连接,极大地提高了资源利用率。 3.2 零拷贝技术 另一个让Netty脱颖而出的特点是零拷贝技术。嘿,咱们就拿快递打个比方吧!想象一下,你在家里等着收快递,但这个快递特别麻烦——它得先从仓库(相当于内核空间)送到快递员手里(用户空间),然后快递员再把东西送回到你家(又回到内核空间)。这就像是数据在网络通信里来回折腾了好几趟,一会儿在系统深处待着,一会儿又被搬出来给应用用,真是费劲啊!这种操作不仅耗时,还会消耗大量CPU资源。 Netty通过ZeroCopy机制,直接将数据从文件系统传递到网络套接字,避免了不必要的内存拷贝。这种做法不仅加快了数据传输速度,还降低了系统的整体负载。 这里有一个实际的例子: java FileRegion region = new DefaultFileRegion(fileChannel, 0, fileSize); ctx.write(region); 上述代码展示了如何利用Netty的零拷贝功能发送大文件,无需手动加载整个文件到内存中。 3.3 灵活的消息编解码 在大数据流处理平台中,数据格式多种多样,可能包括JSON、Protobuf、Avro等。Netty提供了一套强大的消息编解码框架,允许开发者根据需求自由定制解码逻辑。 例如,如果你的数据是以Protobuf格式传输的,可以这样做: java public class ProtobufDecoder extends MessageToMessageDecoder { @Override protected void decode(ChannelHandlerContext ctx, ByteBuf in, List out) throws Exception { byte[] data = new byte[in.readableBytes()]; in.readBytes(data); MyProtoMessage message = MyProtoMessage.parseFrom(data); out.add(message); } } 通过这种方式,我们可以轻松解析复杂的数据结构,同时保持代码的整洁性和可维护性。 3.4 容错与重试机制 最后但同样重要的是,Netty内置了强大的容错与重试机制。在网上聊天或者传输文件的时候,有时候会出现消息没发出去、对方迟迟收不到的情况,就像快递丢了或者送慢了。Netty这个小助手可机灵了,它会赶紧发现这些问题,然后试着帮咱们把没送到的消息重新发一遍,就像是给快递员多派一个人手,保证咱们的信息能安全顺利地到达目的地。 java RetryHandler retryHandler = new RetryHandler(maxRetries); ctx.pipeline().addFirst(retryHandler); 上面这段代码展示了如何添加一个重试处理器到Netty的管道中,让它在遇到错误时自动重试。 4. 总结与展望 经过这一番探讨,相信大家已经对Netty及其在大数据流处理平台中的应用有了更深入的理解。Netty可不只是个工具库啊,它更像是个靠谱的小伙伴,陪着咱们一起在高性能网络编程的大海里劈波斩浪、寻宝探险! 当然,Netty也有它的局限性。比如说啊,遇到那种超级复杂的业务场景,你可能就得绞尽脑汁写一堆专门定制的代码,不然根本搞不定。还有呢,这门技术的学习难度有点大,刚上手的小白很容易觉得晕头转向,不知道该怎么下手。但我相信,只要坚持实践,总有一天你会爱上它。 未来,随着5G、物联网等新技术的发展,大数据流处理的需求将会更加旺盛。而Netty凭借其卓越的性能和灵活性,必将在这一领域继续发光发热。所以,不妨大胆拥抱Netty吧,它会让你的开发之旅变得更加精彩! 好了,今天的分享就到这里啦!如果你有任何疑问或者想法,欢迎随时交流。记住,编程之路没有终点,只有不断前进的脚步。加油,朋友们!
2025-04-26 15:51:26
46
青山绿水
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
uptime
- 查看系统运行时间及负载信息。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"