前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[停止和移除Docker服务的系统操作步骤...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 你知道程序员、高级程序员、架构师、技术经理、技术总监之间有什么区别吗?他们的工作职责又是什么? 小编带大家了解一下,不同等级的程序员之间到底有什么差别。 程序员 程序员,英文名coder/programmer,大家常自嘲叫码农的阶段。这个角色职责是把需求或产品实现为用户可用的软件产品。 此职位为执行级别。另外因为经验较少,一般需要求助别人,或与别人一起完(ban)成(zhuan)一个任务。 此阶段大概要经历3年,程序员的职责如下: 1、对项目经理负责,负责软件项目的详细设计、编码和内部测试的组织实施。 2、协助项目经理和相关人员同客户进行沟通,保持良好的客户关系。 3、参与需求调研、项目可行性分析、技术可行性分析和需求分析。 4、熟悉并熟练掌握交付软件部开发的软件项目的相关软件技术。 5、负责向项目经理及时反馈软件开发中的情况,并根据实际情况提出改进建议。 6、负责对业务领域内的技术发展动态进行分析研究。 高级程序员 高级程序员学名,工程师。 到了这个level,英文名可改叫做 engineer 或 developer。此时你的功力开始增强,这与你平时的积累努力是分不开的,祝贺你~ 此时的你不仅可以完成任务,开始注重代码的质量,能够写出工业级的代码。你的经验可胜任模块级的系统设计,承担完成较为复杂的技术,能有效的自我管理,有帮助别人快速解决问题(trouble shooting)的能力。 此阶段你需要经历到7、8年左右的体验,中间要经历一段深刻自我历练的过程。 有时给人致命一击其实是心里的小蟊贼。一般人在5年前后遇到一个门槛,碰到天花板+彷徨期,或者你打心眼里不在喜欢编程,可尝试转为其它角色,如产品经理,售前售后支持等岗位,也不失为好选择。 当我们熬过这段儿,就会“山随平野尽,江入大荒流“,渐入佳境矣。 高级程序员定义软件功能、做开发计划推进和管理。可以带几个个帮手把产品规划的功能实现,你是团队中的”大手“,遇到难题也是你亲自攻艰克难。 所以,一个高级程序员,他的职责很清晰: 1、负责产品核心复杂功能的方案设计、编码实现 2、负责疑难BUG分析诊断、攻关解决 架构师 到了架构师级别,想必你已经学会降龙十八掌,可登堂入世,成为一位准(lao)专(you)家(tiao)。 我们大喊声:“单打独斗,老衲谁也不惧!“,遂开始领导一众技术高手,指点武功,来设计和完成一个系统,大多是分布式,高并发的系统架构平台。 架构师的任务是为公司产品的业务问题提供高质量技术解决方案,主要着眼于系统的"技术实现" 。 架构师的主要分类: 可能每条产品线都设置了架构师,也可能多条生产品线的的后端是由一个架构师设计的平台提供,所以架构师也是有所不同的,其分类如下: 软件架构师 信息架构师 网站架构师 其主要职责如下: 1、需求分析:“知彼”有时比“知已”还重要。管理市场,产品等的需求,确立关键需求。坚持技术上的优秀与需求的愿景统一,提升技术负债意识,提供技术选项,风险预判,工期等解决方案。 2、架构设计:在产品功能中抽取中非功能的需求,由关键需求变成概念型架构。列出功能树,分层治之,如用户界面层、系统交互层,数据管理层。达成高扩展,高可用,高性能,高安全,易运维,易部署,易接入等能力。 3、功能设计与实现:对架构设计的底层代码级别实现。如公共核心类,接口实现,应用发现规则、接口变更等。 技术经理 人生就是不断上升的过程,你已经到达经理的层次了。如今的你,需要不断提高领导力,需要定期召开团队会议讨论问题。 首先我们要更加自信,在工作中显示自己的功力,给讲话增添力量。如:“本次项目虽然有很大的困难,我们也需苦战到底。当然示先垂范,身先士卒,方能成功!” 技术经理有时候也可能叫系统分析员,一些小公司可能会整个公司或者部门有一个技术经理。技术经理承担的角色主要是系统分析、架构搭建、系统构建、代 码走查等工作,如果说项目经理是总统,那么技术经理就是总理。当然不是所有公司都是这样的,有些公司项目经理是不管技术团队的,只做需求、进度和同客户沟 通,那么这个时候的项目经理就好像工厂里的跟单人员了,这种情况在外包公司比较多。对于技术经理来说,着重于技术方面,你需要知道某种功能用哪些技术合 适,需要知道某项功能需要多长的开发时间等。同时,技术经理也应该承担提高团队整体技术水平的工作。 你需要和大家站在一起,因为人们也都有解决问题的能力,更需要有以下的能力与责任: 1、任务管理:开发工作量评估、定立开发流程、分配和追踪开发任务 2、质量管理:代码review、开发风险判断/报告/协调解决 3、效率提升:代码底层研发和培训、最佳代码实践规范总结与推广、自动化生产工具、自动化部署工具 4、技术能力提升:招聘面试、试题主拟、新人指导、项目复盘与改进 技术总监 如果一个研发团队超过20人,有多条产品线或业务量很大,这时已经有多个技术经理在负责每个业务,这时需要一位技术总监。 主要职责: 1、组建平台研发部,与架构师共建软件公共平台,方便各条产品业务线研发。 2、通过技术平台、通过高一层的职权,管理和协调公司各个部门与本部门各条线。现在每个产品线都应该有合格的技术经理和高级程序员。 结语:我们相信,每个人都能成为IT大神。现在开始,找个师兄带你入门,让你的学习之路不再迷茫。 这里推荐我们的前端学习交流圈:784783012,里面都是学习前端的从最基础的HTML+CSS+JS【炫酷特效,游戏,插件封装,设计模式】到移动端HTML5的项目实战的学习资料都有整理,送给每一位前端小伙伴。 最新技术,与企业需求同步。好友都在里面学习交流,每天都会有大牛定时讲解前端技术! 点击:前端技术分享 本篇文章为转载内容。原文链接:https://blog.csdn.net/webDk/article/details/88917912。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-05-10 13:13:48
756
转载
RabbitMQ
...作为一个刚接触分布式系统的菜鸟程序员,我第一次听说RabbitMQ的时候,内心是充满期待的。它可是鼎鼎大名的“全球最受欢迎的开源消息中介”,不仅稳得一批,还能用各种编程语言来玩转它。当时我觉得:“哇,这不就是传说中的‘消息传递神器’吗?” 于是,我开始着手研究如何搭建一个简单的RabbitMQ服务,并尝试用Python写了一个发送和接收消息的小程序。一切看起来都挺顺的,结果有一天,我突然发现代码竟然挂了!更气人的是,问题出在用的API版本太老旧,导致一些功能直接歇菜了。 我当时就懵了:“啥?API版本还能影响功能?这玩意儿不是应该兼容所有旧版本的嘛?”但事实告诉我,这个世界没有免费的午餐,尤其是涉及到软件开发的时候。 --- 2. 问题重现 为什么我的代码突然崩溃了? 事情要从几个月前说起。那时候,我刚刚完成了一个基于RabbitMQ的消息推送系统。为了赶紧把东西推出去,我就没太细看依赖库的版本,直接装了最新的 pika(就是 RabbitMQ 官方推荐的那个 Python 客户端库)。一切都很完美,测试通过后,我兴高采烈地部署到了生产环境。 然而好景不长,几天后同事反馈说,有些消息无法正常到达消费者端。我赶紧登录服务器检查日志,发现报错信息指向了channel.basic_publish()方法。具体错误是: AttributeError: 'Channel' object has no attribute 'basic_publish' 我当时的第一反应是:“卧槽,这是什么鬼?basic_publish明明在文档里写了啊!”于是我翻阅了官方文档,发现确实存在一个叫做basic_publish的方法,但它属于早期版本的API。 经过一番痛苦的排查,我才意识到问题出在了版本差异上。原来,在较新的pika版本中,basic_publish已经被替换成了basic_publish_exchange,并且参数顺序也发生了变化。而我的代码依然按照旧版本的写法来调用,自然就挂掉了。 --- 3. 深度剖析 过时API的危害与应对之道 这件事让我深刻认识到,RabbitMQ虽然强大,但也需要开发者时刻保持警惕。特别是当你依赖第三方库时,稍不留神就可能踩进“版本陷阱”。以下几点是我总结出来的教训: (1)永远不要忽视版本更新带来的变化 很多开发者习惯于直接复制粘贴网上的代码示例,却很少去验证这些代码是否适用于当前版本。你可能不知道,有时候就算方法名一样,背后的逻辑变了,结果可能会差很多。比如说啊,在RabbitMQ的3.x版本里,你用channel.queue_declare()这个方法的时候,它返回的东西就像是个装满数据的盒子,但这个盒子是那种普通的字典格式的。可到了4.x版本呢,这玩意儿就有点变了味儿,返回的不再是那个简单的字典盒子了,而是一个“高级定制版”的对象实例,感觉像是升级成了一个有专属身份的小家伙。 因此,每次引入新工具之前,一定要先查阅官方文档,确认其最新的API规范。要是不太确定,不妨试试跑一下官方给的例程代码,看看有没有啥奇怪的表现。 (2)版本锁定的重要性 为了避免类似的问题再次发生,我在后续项目中采取了严格的版本管理策略。例如,在requirements.txt文件中明确指定依赖库的具体版本号,而不是使用通配符(如>=)。这样做的好处是,即使未来出现了更高级别的版本,也不会意外破坏现有功能。 下面是一段示例代码,展示了如何在pip中固定pika的版本为1.2.0: python requirements.txt pika==1.2.0 当然,这种方法也有缺点,那就是升级依赖时可能会比较麻烦。不过嘛,要是咱们团队人不多,但手头的项目特别讲究稳当性,那这个方法绝对值得一试! --- 4. 实战演练 修复旧代码,拥抱新世界 既然明白了问题所在,接下来就是动手解决问题了。嘿,为了让大家更清楚地知道怎么把旧版的API换成新版的,我打算用一段代码来给大家做个示范,保证一看就懂! 假设我们有一个简单的RabbitMQ生产者程序,如下所示: python import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='hello') channel.basic_publish(exchange='', routing_key='hello', body='Hello World!') print(" [x] Sent 'Hello World!'") connection.close() 如果你直接运行这段代码,很可能会遇到如下警告: DeprecationWarning: This method will be removed in future releases. Please use the equivalent method on the Channel class. 这是因为queue_declare方法现在已经被重新设计为返回一个包含元数据的对象,而不是单纯的字典。我们需要将其修改为如下形式: python import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() result = channel.queue_declare(queue='', exclusive=True) queue_name = result.method.queue channel.basic_publish(exchange='', routing_key=queue_name, body='Hello World!') print(" [x] Sent 'Hello World!'") connection.close() 可以看到,这里新增了一行代码来获取队列名称,同时调整了routing_key参数的赋值方式。这种改动虽然简单,但却能显著提升程序的健壮性和可读性。 --- 5. 总结与展望 从失败中学习,向成功迈进 回想起这次经历,我既感到懊恼又觉得幸运。真后悔啊,当时要是多花点时间去了解API的新变化,就不会在这上面浪费那么多精力了。不过话说回来,这次小挫折也让我学到了教训,以后会更注意避免类似的错误,而且也会更加重视代码的质量。 最后想对大家说一句:技术的世界瞬息万变,没有人能够永远站在最前沿。但只要保持好奇心和学习热情,我们就一定能找到通往成功的道路。毕竟,正如那句经典的话所说:“失败乃成功之母。”只要勇敢面对挑战,总有一天你会发现,那些曾经让你头疼不已的问题,其实都是成长路上不可或缺的一部分。 希望这篇文章对你有所帮助!如果你也有类似的经历或者见解,欢迎随时交流哦~
2025-03-12 16:12:28
106
岁月如歌
ElasticSearch
...以很方面的做各种筛查操作。 这个流畅大概是这样的: 3.2 通用搜索场景 但是没有上图的beats、logstash、kibana,elasticsearch可以自己工作吗?完全可以的! elasticsearch也支持单机部署,数据规模不是很大的情况下,表现也是不错的。所以,你也不用担心因为自己机器资源不够而对elasticsearch望而却步。当然,单机部署的情况下,更多的适合自己玩,对于可靠性的要求就不能太苛刻了。 如果你在用宝塔,那你可以在宝塔面板,左侧“软件商店”中直接找到elasticsearch,并“没有痛苦”的安装。 本篇文章主要讨论选型,所以不涉及安装细节。 3.2.1 性能顾虑 上面提到了“表现”,其实性能只是elasticsearch的一个方面,主要你的机器资源足够(机器资源?对,包括你的机器个数,elasticsearch可以非常方便的横向扩展,以及单机的配置,cpu+内存,内存越高越好,elasticsearch比较吃内存!),它一定会给你很好的性能反应。试想,公司里的app打印线上日志的行数其实可比一般业务系统产生的订单数量要大很多很多,elasticsearch都可以常在日志的实时分析,所以如果你要做通用场景,而且机器资源不是问题,这是完全行得通的。 3.2.2 易用性和可玩性 此外,在使用elasticsearch的时候,会有很多的可玩性。这里不引经据典,呈现很多elasticsearch官方文章的列举优秀特性(当然,确实很优秀!)。 这里举几个例子: (1)中文分词:第一章提到的其它引擎几乎很难实现,elasticsearch对分词器的支持是原生的,因为elasticsearch天生就为全文索引而生,elasticsearch的汉语名字就是“弹性搜索”。这家伙可是专门搞搜索的! 有的朋友可能不了解分词器,比如你的一个字段里存储“今天我要吃冰激凌”,在分词器的加持下,es最终会存储为“今天|我|要|吃|冰激凌”,并且使用倒排索引的形式进行存储。当你搜索“冰激凌”的时候,可以很快的反馈回来。 关于elasticsearch的原理,这里不展开说明,分词器和倒排索引是elasticsearch的最基本的概念。如果有不了解的朋友,可以自行百度一下。而且这两个概念,与elasticsearch其实不挂钩,是搜索中的通用概念。 关于倒排索引,其核心表现如下图: 如果你要用mysql、mongo实现中文分词,这......其实挺麻烦的,可能在后面的版本支持中会实现的很好,但在当前的流行版本中,它们对中文分词是不够友好的。 mysql5.7之后支持外挂第三方分词器,支持中文分词。而在数据量较大的情况下,mysql的多机器部署几乎很难实现,elasticsearch可以很容易的水平扩展。 mongo支持西方语言的分词,但不支持中文、日语、汉语等东方语言,你需要在自己的逻辑代码中实现分词器。 ngram分词,你看看效果:依旧是“今天我要吃冰激凌”,ngram二元分词后即将得到结果“今天、天我、我要、要吃、吃冰、冰激、激凌”。这....,那你搜索冰激凌就搜不出来!咋办呢,当然可以使用三元分词。但是更好的解决方案还是中文分词器,但它们原生并不支持的。 (2)自定义排名场景:比如你的搜索“冰激凌”,结果中返回了有10条,这10条应该有你想对它指定的顺序。最简单的就是用默认的得分,但是如果你想人为干预这个得分怎么办? elasticsearch支持function_score功能(可以不用,这个是增强功能),es会在计算最终得分之前回调这个你指定的function_score回调函数,传入原始得分、行的原始数据,你可以在里面做计算,比如查询其它参考表、或查看是否是广告位,以得到新的score返回给用户。 function_scrore的功能不展开描述,是一个在自定义得分场景下十分有用又简单易用的功能!下面是一个使用示例,不仅如此,它是支持自定义函数的,自由度非常高。 (3)文本高亮:你用mysql或mongo也可以实现,比如用户搜索“冰激凌”,你只需要在逻辑代码中对“冰激凌”替换为“<span class='highlight-term'>冰激凌</span>”,然后前端做样式即可。但如果用户搜索了“好吃的冰激凌”咋办呢?还有就是英文大小写的场景,用户搜索"MAIN",那结果及时匹配到了“main”(小写的),这个单词是否应该高亮呢?也许这时候你会用业务代码实现toLowerCase下基于位置下标的匹配。 挺麻烦的吧,elasticsearch,自动可以返回高亮字段!并且可以自由指定高亮的html前后标签。 (4)实在太多了....这家伙天生为索引而生,而且版本还在不断地迭代。不差机器的话,用用吧! 4. 退而求其次 4.1 普通数据库 尽管elasticsearch在搜索场景下,是非常好用的利器!但是它比较消耗机器资源,如果你的数据规模并不大,而且想快速实现功能。你可以使用mysql或mongo来代替,完全没有问题。 技术是为了解决特定业务场景下的问题,结合当前手头的资源,适合自己的才是最好的。也许你搞了一个单机器的elasticsearch,单机器内存只有2G,它的表现并不会比mysql、mongo来的好。 当然,如果你为了使用上边提到的一些优秀的独有的特性,那elasticsearch一定还是最佳选择! 对于mysql(关系型数据库)和mongo(文档数据库)的区别这里不展开描述了,但对于搜索而言,两种都合适。有时候选型也不用很纠结,其实都是差不太多的东西,适合自己的、自己熟悉的、运维起来顺手的,就是最好的。 4.2 普通数据库实现中文分词搜索的原理 尽管mysql在5.7以后支持外挂第三方分词器,mongo在截止目前的版本中也不支持中文分词(你可能会看到一些文章中说可以指定language为chinese,但其实会报错的)。 其实当你选择普通数据库,你就不得不在逻辑代码中自己实现一套索引分词+搜索分词逻辑。 索引分词+搜索分词?为什么分开写,如果你有用过elasticsearch或solr,你会知道,在指定字段的时候,需要指定index分词器和search分词器。 下面以mongo为例做简要说明。 4.2.1 index分词器 意思是当数据“索引”截断如何分词。首先,这里必须要承认,数据之后存储了,才能被查询。在搜索中,这句话可以换成是“数据只有被索引了,才能被搜索”。 这时候请求打过来了,要索引一条数据,其中某字段是“今天我要吃冰激凌”,分词后得到“今天|我|要|吃|冰激凌”,这个就可以入库了。 如果你使用elasticsearch或solr,这个过程是自动的。如果你使用不支持外观分词器的常规数据库,这个过程你就要手动了,并把分词后的结果用空格分开(最好使用空格,因为西方语言的分词规则就是按空格拆分,以及逗号句号),存入数据库的一个待搜索的字段上。 效果如下图: 本站的其它博文中有介绍IKAnalyzer:https://www.52itw.com/java/6268.html 4.2.2 search分词器 当用户的查询请求打过来,用户输入了“好吃的冰激凌”,分词后得到“好吃|冰激凌”(“的”作为停用词stopwords,被自动忽略了,IKAnalyzer可以指定停用词表)。 于是这时候就回去上图的数据库表里面搜索“好吃 冰激凌”(与index分词器结果统一,还是用空格分隔)。 当然,对于mongo而言,你需要事先开启全文索引db.xxx.ensureIndex({content: "text"}),xxx是集合名,content是字段名,text是全文索引的标识。 mongo搜索的时候用这个语法:db.xxx.find( { $text: { $search: "好吃 冰激凌" } },{ score: { $meta: "textScore" } }).sort( { score: { $meta: "textScore" } } ) 4.2.3 索引库和存储库分开 为了减少单表的大小,为了让普通的列表查询、普通筛选可以跑的更快,你可以对原有的数据原封不动的做一张表。 然后对于搜索场景,再单独对需要被搜索的字段单独拎一张表出来! 然后二者之间做增量信号同步或定时差额同步,可能会有延迟,这个就看你能容忍多长时间(悄悄告诉你,elasticsearch也需要指定这个refresh时间,一般是1s到几秒、甚至分钟级。当然,二者的这个时间对饮的底层目的是不一样的)。 这样,搜索的时候先查询搜索库,拿到一个指针id的列表,然后拿到指针id的列表区存储里把数据一次性捞出来。当然,也是支持分页的,你查询搜索库其实也是普通的数据库查询嘛,支持分页参数的。 4.3 存储库和索引库的延伸阅读 很多有名的开源软件也是使用的存储库与索引库分离的技术方案,如apache atlas: apache atlas对于大数据领域的数据资产元数据管理、数据血缘上可谓是专家,也涉及资产搜索的特性,它的实现思路就是:从搜索库中做搜索、拿到key、再去存储库中做查询。 搜索库:上图右下角,可以看到使用的是elasticsearch、solr或lucene,多个选一个 存储库:上图左下角,可以看到使用的是Cassandra、HBase或BerkeleyDB,多个选一个 虽然apache atlas在只有搜索库或只有存储库的时候也可以很好的工作,但只针对于数据量并不大的场景。 搜索库,擅长搜索!存储库,擅长海量存储!搜索库多样化搜索,然后去存储库做点查。 当你的数据达到海量的时候,es+hbase也是一种很好的解决方案,不在这里展开说明了。
2024-01-27 17:49:04
540
admin-tim
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 A. Déjà Vu A palindrome is a string that reads the same backward as forward. For example, the strings “z”, “aaa”, “aba”, and “abccba” are palindromes, but “codeforces” and “ab” are not. You hate palindromes because they give you déjà vu. There is a string s . You must insert exactly one character ‘a’ somewhere in s . If it is possible to create a string that is not a palindrome, you should find one example. Otherwise, you should report that it is impossible. For example, suppose s= “cbabc”. By inserting an ‘a’, you can create “acbabc”, “cababc”, “cbaabc”, “cbabac”, or “cbabca”. However “cbaabc” is a palindrome, so you must output one of the other options. Input The first line contains a single integer t (1≤t≤104 ) — the number of test cases. The only line of each test case contains a string s consisting of lowercase English letters. The total length of all strings does not exceed 3⋅105 . Output For each test case, if there is no solution, output “NO”. Otherwise, output “YES” followed by your constructed string of length |s|+1 on the next line. If there are multiple solutions, you may print any. You can print each letter of “YES” and “NO” in any case (upper or lower). Example Input Copy 6 cbabc ab zza ba a nutforajaroftuna Output Copy YES cbabac YES aab YES zaza YES baa NO YES nutforajarofatuna Note The first test case is described in the statement. In the second test case, we can make either “aab” or “aba”. But “aba” is a palindrome, so “aab” is the only correct answer. In the third test case, “zaza” and “zzaa” are correct answers, but not “azza”. In the fourth test case, “baa” is the only correct answer. In the fifth test case, we can only make “aa”, which is a palindrome. So the answer is “NO”. In the sixth test case, “anutforajaroftuna” is a palindrome, but inserting ‘a’ elsewhere is valid. 题意: 给你一个字符串,然后你可以通过在任意位置上+‘a’,然后让这个字符串不是回文字符串,如果实在无法让字符串变成非回文,则输出NO。 思路: 我们可以判断出只有全为a的回文字符串才会+‘a’后无法变成非回文串,其他的都可以在任意位置上“a”,使字符串变成非回文串,那我们可以直接在首或者尾“a”,然后循环判断是否为回文,输出非回文的那一种就可以了。 代码: include<bits/stdc++.h>using namespace std;bool judge(string p){for(int i=0,j=p.size()-1;i<j;i++,j--){if(p[i]!=p[j])return true;}return false;}int main (){int t;cin>>t;while(t--){string ch;cin>>ch;int f=0;for(int i=0;i<ch.size();i++){if(ch[i]!='a'){f=1;break;} }if(f==0){cout<<"NO"<<endl;}else{string ch1,ch2;ch1="a"+ch;ch2=ch+"a";if(judge(ch1)){cout<<"YES"<<endl;cout<<'a';for(int i=0;i<ch.size();i++) cout<<ch[i];cout<<endl;}else{if(judge(ch2)) {cout<<"YES"<<endl;for(int i=0;i<ch.size();i++) cout<<ch[i];cout<<'a';cout<<endl;}elsecout<<"NO"<<endl;} }}return 0;} B. Flip the Bits time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output There is a binary string a of length n. In one operation, you can select any prefix of a with an equal number of 0 and 1 symbols. Then all symbols in the prefix are inverted: each 0 becomes 1 and each 1 becomes 0 For example, suppose a=0111010000 since it has four 0’s and four 1’s: [01110100]00→[10001011]00 In the second operation, we can select the prefix of length 2 since it has one 0 and one 1: [10]00101100→[01]00101100 It is illegal to select the prefix of length 4 for the third operation, because it has three 0’s and one Can you transform the string a into the string b using some finite number of operations (possibly, none)? Input The first line contains a single integer t (1≤t≤104) — the number of test cases. The first line of each test case contains a single integer n (1≤n≤3⋅105) — the length of the strings a and b The following two lines contain strings a and b of length n, consisting of symbols 0 and 1 The sum of n across all test cases does not exceed 3⋅105 Output For each test case, output “YES” if it is possible to transform ainto b, or “NO” if it is impossible. You can print each letter in any case (upper or lower). Example Input Copy 5 10 0111010000 0100101100 4 0000 0000 3 001 000 12 010101010101 100110011010 6 000111 110100 Output Copy YES YES NO YES NO Note The first test case is shown in the statement. In the second test case, we transform a into b by using zero operations. In the third test case, there is no legal operation, so it is impossible to transform a into b . In the fourth test case, here is one such transformation: Select the length 2 prefix to get 100101010101 . Select the length 12 prefix to get 011010101010 . Select the length 8 prefix to get 100101011010 . Select the length 4 prefix to get 011001011010 . Select the length 6 prefix to get 100110011010 In the fifth test case, the only legal operation is to transform a into 111000. From there, the only legal operation is to return to the string we started with, so we cannot transform a into b 题意: 给你一个字符串a,b,由0,1组成,然后只有在字符串下标i前面的0,1个数相同时,你可以进行把0->1,1->0,然后看是否能进行一些操作把字符串a变成b。 思路: 这题思路有点难想,你看,它每次个数相同时,都可以进行操作,所以我们从后往前进行操作,因为如果从前往后,小区间会影响大区间的,所以从大区间向小区间进行,然后遍历字符串,将每一位的0,1的个数进行计算,然后将a,b不相同的下标进行标记为1,代表需要改变。 从后遍历,cnt进行次数,因为如果是奇数的话,才会变成不一样的数字,偶数的话,区间变化会使它变回去了,在判断当前位之前,我们先看之前的大区间的变化将当前第i位变成了什么,因为只有0,1,跟标记的0,1是代表他是否需要变化,假如说:原先为0,他后面的区间将它变化了奇数次,那么它就现在是需要变化的才能变成吧b。原先为1,它后面的区间将它变化了偶数次,就还是1。如果这个下标的标记为1,代表需要被变化,我们就判断当前位的0,1个数是否相同,相同的话就代表了一次变化cnt++,否则就退出无法变成b了,因为之后没有区间将它再次变化了。然后我们就可以判断了 代码: include<bits/stdc++.h>using namespace std;const int N=3e5+7;int s0[N],s1[N];int a[N],b[N],p[N];int main (){int t;cin>>t;while(t--){int n;cin>>n;string a,b;cin>>a>>b;memset(p,0,sizeof p);for(int i=0;i<n;i++){if(a[i]=='0'){s0[i]=s0[i-1]+1;s1[i]=s1[i-1];}else{s1[i]=s1[i-1]+1;s0[i]=s0[i-1];}if(a[i]!=b[i]){p[i]=1;//是否相同的标记} }int cnt=0;int f=0;for(int i=n-1;i>=0;i--){if(cnt%2==1){//奇数次才会被变化p[i]=1-p[i];}//而且必须在前面判这一步,因为你得先看后面的区间将这一位变成了什么if(p[i]){if(s0[i]==s1[i]) cnt++;//0,1相同时才可以进行一次变化else {f=1;break;} }}if(f==1){cout<<"NO"<<endl;}else{cout<<"YES"<<endl;} }return 0;}//这个就利用了一个标记来判断当前为被影响成了什么/01 01 01 01 01 0110 01 10 01 10 10100101010101011010101010100101011010011001011010100110011010Select the length 12prefix to get.Select the length 8prefix to get.Select the length 4prefix to get.Select the length 6prefix to get01 110100 0001 001011 00/ C. Balance the Bits time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output A sequence of brackets is called balanced if one can turn it into a valid math expression by adding characters ‘+’ and ‘1’. For example, sequences ‘(())()’, ‘()’, and ‘(()(()))’ are balanced, while ‘)(’, ‘(()’, and ‘(()))(’ are not. You are given a binary string s of length n. Construct two balanced bracket sequences a and b of length n such that for all 1≤i≤n if si=1, then ai=bi if si=0, then ai≠bi If it is impossible, you should report about it. Input The first line contains a single integer t (1≤t≤104) — the number of test cases. The first line of each test case contains a single integer n (2≤n≤2⋅105, nis even). The next line contains a string sof length n, consisting of characters 0 and 1.The sum of nacross all test cases does not exceed 2⋅105. Output If such two balanced bracked sequences exist, output “YES” on the first line, otherwise output “NO”. You can print each letter in any case (upper or lower). If the answer is “YES”, output the balanced bracket sequences a and b satisfying the conditions on the next two lines.If there are multiple solutions, you may print any. Example Input Copy 3 6 101101 10 1001101101 4 1100 Output Copy YES ()()() ((())) YES ()()((())) (())()()() NO Note In the first test case, a= “()()()” and b="((()))". The characters are equal in positions 1, 3, 4, and 6, which are the exact same positions where si=1 .In the second test case, a= “()()((()))” and b="(())()()()". The characters are equal in positions 1, 4, 5, 7, 8, 10, which are the exact same positions where si=1 In the third test case, there is no solution. 题意: 一个n代表01串的长度,构造两个长度为n的括号序列,给你一个01串,代表着a,b两个序列串字符不相同。然后你来判断是否有合理的a,b串。有的话输出。 思路: 这题想了很久想不明白,看了大佬的题解,迷迷糊糊差不多理解吧。这题是这样的,就是: (1)第一步得合法的字符串,所以首尾得是相同的且都为1 (2)第二步,因为01串长度为偶数,所以如果合法的话,得( 的个数= ) 的个数,然后你想呀,假如为 ()()()()吧,然后你有一个0破坏了一个括号,但如果合法的话,是不是得还有一个0再破坏一个括号,然后被破坏的这俩个进行分配才能合理,所以如果合法的话,01串得0的个数为偶数,1的个数自然而然为偶数吧。 (3)最后一步构造,既然1的个数为偶数,首尾又都为1,所以1的个数前sum1/2个1构造为‘( ’,后sum1/2个构造为‘)’,然后我们1的所有的目前是合法的,然后剩下的0也是偶数的,然后如果让他们合法进行分配就( )间接进行就可以了,然后我们根据01串将b构造出来。合法的核心就是当前位的(个数大于等于),所以我们在循环进行判断一下a,b串是否都满足,(其实我觉得这么构造出来,a必然合理呀,其实就判b就行了,我保险起见都判了)。 代码: include<bits/stdc++.h>using namespace std;const int N=3e5+7;char a[N],b[N];int main (){int t;cin>>t;while(t--){int n;cin>>n;string s;cin>>s;if(s[0]!=s[n-1]&&s[0]!='1'){cout<<"NO"<<endl;}else{int sum1=0,sum0=0;for(int i=0;i<s.size();i++){if(s[i]=='1') sum1++;else sum0++;}if(sum1%2!=0||sum0%2!=0){cout<<"NO"<<endl;}else{int cnt1=0,cnt0=1;for(int i=0;i<n;i++){if(s[i]=='1'&&cnt1<sum1/2){a[i]='(';cnt1++;}else if(s[i]=='1'&&cnt1>=sum1/2){a[i]=')';cnt1++;}else if(s[i]=='0'&&cnt0%2==1){a[i]='(';cnt0++;}else if(s[i]=='0'&&cnt0%2==0){a[i]=')';cnt0++;}//cout<<a[i]<<endl;}for(int i=0;i<n;i++){if(s[i]=='0'){if(a[i]=='(') b[i]=')';else b[i]='(';}else{b[i]=a[i];}//cout<<b[i]<<endl;}// cout<<"YES"<<endl;int f=0;int s0=0,s1=0;for(int i=0;i<n;i++){if(a[i]=='(') s0++;else if(a[i]==')') s1++;if(s0<s1) {f=1;break;} }s0=0,s1=0;for(int i=0;i<n;i++){if(b[i]=='(') s0++;else if(b[i]==')') s1++;if(s0<s1) {f=1;break;} }if(f==0){cout<<"YES"<<endl;for(int i=0;i<n;i++) cout<<a[i];cout<<endl;for(int i=0;i<n;i++) cout<<b[i];cout<<endl;}else{cout<<"NO"<<endl;} }} }return 0;}/01 01 01 01 01 0110 01 10 01 10 10100101010101011010101010100101011010011001011010100110011010Select the length 12prefix to get.Select the length 8prefix to get.Select the length 4prefix to get.Select the length 6prefix to get01 110100 0001 001011 00/ 本篇文章为转载内容。原文链接:https://blog.csdn.net/lvy_yu_ET/article/details/115575091。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-05 13:54:12
229
转载
Apache Solr
...们常常会遇到依赖外部服务的情况,例如使用第三方API、调用其他微服务或者从远程数据库获取数据。Apache Solr,这个家伙简直就是搜索界的超级英雄!它在处理各种信息查找任务时,那叫一个稳如泰山,快如闪电,简直是让人心头一暖。你想象一下,在海量数据中快速找到你需要的信息,那种感觉就像在迷宫中找到了出口,又或者是在茫茫人海中找到了失散多年的好友。这就是Apache Solr的魅力所在,它的性能和稳定性,就像是你的私人保镖,无论你面对多复杂的搜索挑战,都能给你最坚实的后盾。哎呀,你猜怎么着?要是咱们的网络慢了、断了或者提供的服务不给力了,那可就糟糕了。这种时候,咱们的Solr系统啊,可能就会变得特别吃力,运行起来就不那么顺畅了。就像是咱们在做一件大事儿,结果突然停电了,那事儿肯定就办不成啦!所以啊,保持网络稳定和外部服务正常运行,对咱们的Solr来说,真的超级重要!嘿,兄弟!你听说了吗?这篇文章可不是普通的报告,它可是要深入地挖一挖这个问题的根源,然后给你支点招儿,让你在面对网络连接的烦恼时,Solr这个大神级别的搜索神器,能发挥出它的最佳状态!想象一下,当你在茫茫信息海洋中寻找那根救命稻草时,Solr就像你的私人导航,带你直达目的地。但是,有时候,这艘船可能会遭遇颠簸的海浪——网络连接问题。别担心,这篇文章就是你的救生圈和指南针,告诉你如何调整Solr的设置,让它在波涛汹涌的网络环境中依然航行自如。所以,准备好,让我们一起探索如何优化Solr在网络挑战中的表现吧! 一、理解问题根源 在讨论解决方案之前,首先需要理解外部服务依赖导致的问题。哎呀,你知道不?咱们用的那个Solr啊,它查询东西的速度啊,有时候得看外部服务的脸色。如果外部服务反应慢或者干脆不给力,那Solr就得跟着慢慢腾腾,甚至有时候都查不到结果,让人急得像热锅上的蚂蚁。这可真是个头疼的问题呢!这不仅影响了用户体验,也可能导致Solr服务本身的负载增加,进一步加剧问题。 二、案例分析 使用Solr查询外部数据源 为了更好地理解这个问题,我们可以创建一个简单的案例。想象一下,我们有个叫Solr的小工具,专门负责在我们家里的文件堆里找东西。但是,它不是个孤军奋战的英雄,还需要借助外面的朋友——那个外部API,来给我们多提供一些额外的线索和细节,就像侦探在破案时需要咨询专家一样。这样,当我们用Solr搜索的时候,就能得到更丰富、更准确的结果了。我们使用Python和requests库来模拟这个过程: python import requests from solr import SolrClient solr_url = "http://localhost:8983/solr/core1" solr_client = SolrClient(solr_url) def search(query): results = solr_client.search(query) for result in results: 外部API请求 external_data = fetch_external_metadata(result['id']) result['additional_info'] = external_data return results def fetch_external_metadata(doc_id): url = f"https://example.com/api/{doc_id}" response = requests.get(url) if response.status_code == 200: return response.json() else: return None 在这个例子中,fetch_external_metadata函数尝试从外部API获取元数据,如果请求失败或API不可用,那么该结果将被标记为未获取到数据。当外部服务出现延迟或中断时,这将直接影响到Solr的查询效率。 三、优化策略 1. 缓存策略 为了避免频繁请求外部服务,可以引入缓存机制。对于频繁访问且数据变化不大的元数据,可以在本地缓存一段时间。当外部服务不可用时,可以回退使用缓存数据,直到服务恢复。 python class ExternalMetadataCache: def __init__(self, ttl=600): self.cache = {} self.ttl = ttl def get(self, doc_id): if doc_id not in self.cache or (self.cache[doc_id]['timestamp'] + self.ttl) < time.time(): self.cache[doc_id] = {'data': fetch_external_metadata(doc_id), 'timestamp': time.time()} return self.cache[doc_id]['data'] metadata_cache = ExternalMetadataCache() def fetch_external_metadata_safe(doc_id): return metadata_cache.get(doc_id) 2. 重试机制 在请求外部服务时添加重试逻辑,当第一次请求失败后,可以设置一定的时间间隔后再次尝试,直到成功或达到最大重试次数。 python def fetch_external_metadata_retriable(doc_id, max_retries=3, retry_delay=5): for i in range(max_retries): try: return fetch_external_metadata(doc_id) except Exception as e: print(f"Attempt {i+1} failed with error: {e}. Retrying in {retry_delay} seconds...") time.sleep(retry_delay) raise Exception("Max retries reached.") 四、结论与展望 通过上述策略,我们可以在一定程度上减轻外部服务依赖对Solr性能的影响。然而,重要的是要持续监控系统的运行状况,并根据实际情况调整优化措施。嘿,你听说了吗?科技这玩意儿啊,那可是越来越牛了!你看,现在就有人在琢磨怎么对付那些让人上瘾的东西。将来啊,说不定能搞出个既高效又结实的办法,帮咱们摆脱这个烦恼。想想都挺激动的,对吧?哎呀,兄弟!构建一个稳定又跑得快的搜索系统,那可得好好琢磨琢磨外部服务这事儿。你知道的,这些服务就像是你家里的电器,得选对了,用好了,整个家才能舒舒服服的。所以啊,咱们得先搞清楚这些服务都是干啥的,它们之间怎么配合,还有万一出了点小状况,咱们能不能快速应对。这样,咱们的搜索系统才能稳如泰山,嗖嗖地飞快,用户一搜就满意,那才叫真本事呢! --- 请注意,以上代码示例是基于Python和相关库编写的,实际应用时需要根据具体环境和技术栈进行相应的调整。
2024-09-21 16:30:17
40
风轻云淡
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 前言 投入同样的时间和精力,你使用不同的途径来成长,收获是不一样的。 关于721法则有两种不同的理解。 理解1: 通过实践,我们可以吸收其中的70%,通过与他人交流,我们可以吸收其中的20%,通过读书和培训,可以吸收其中的10%。 理解2: 一生而言,我们70%的经验来之实践,20%来之与他人交流,10%来之读书和培训。 【----帮助Python学习,以下所有学习资料文末免费领!----】 不管你如何理解,这个721法则都告诉我们:我们都要勇敢地去实践。 实践中我们可以出错,可以不满意,可以有失去,但那都是我们的财富。 不去实践,我们永远站在原地,实践了,那就是希望的开始。 下图是我百度所得: 下面是我用matplotlib画的: 我还有另外一种理解:如果你想有所产出,10%靠运气,20%靠自己,更多的是要靠团队。 我将70%赋予了灰色,这是一种冷色调,代表理性、努力和恒心。其它两种颜色为亮色,表示我们赤诚的心和坚定不移的方向。 如果你感兴趣,可以将下面代码复制到IDLE或者Spyder或者Pycharm,轻轻一点,属于你的图就成了。 第一个图from matplotlib import pyplot as plt 调节图形大小,宽,高plt.figure(figsize=(6,9))定义饼状图的标签,标签是列表labels = [ '实践与经验','交流与反馈','培训与学习']每个标签占多大,会自动去算百分比sizes = [70,20,10]colors = ['red','yellowgreen','lightskyblue']colors = ['gray','00FFFF','FF1493']灰、粉、蓝绿将某部分爆炸出来, 使用括号,将第一块分割出来,数值的大小是分割出来的与其他两块的间隙explode = (0.05,0.05,0)patches,l_text,p_text = plt.pie(sizes,explode=explode,labels=labels,colors=colors,labeldistance = 1.1,autopct = '%3.1f%%',shadow = False,startangle = 90,pctdistance = 0.6)labeldistance,文本的位置离远点有多远,1.1指1.1倍半径的位置autopct,圆里面的文本格式,%3.1f%%表示小数有三位,整数有一位的浮点数shadow,饼是否有阴影startangle,起始角度,0,表示从0开始逆时针转,为第一块。一般选择从90度开始比较好看pctdistance,百分比的text离圆心的距离patches, l_texts, p_texts,为了得到饼图的返回值,p_texts饼图内部文本的,l_texts饼图外label的文本改变文本的大小方法是把每一个text遍历。调用set_size方法设置它的属性for t in l_text:t.set_size(25)for t in p_text:t.set_size(20) 设置x,y轴刻度一致,这样饼图才能是圆的plt.axis('equal')plt.legend(loc="upper left",frameon=False,fontsize=20,borderaxespad=-5)plt.title('721法则', y=-0.1,fontsize=30,loc="center")plt.savefig("721法则.png")plt.show() 下图还是我画的,当然,没有上面那个美观。 第二个图import matplotlib.pyplot as pltplt.rcParams['font.family']='SimHei'plt.figure(figsize=(6, 9))labels = '实践与经验','交流与反馈','培训与学习'sizes = [70.0,20.0,10.0]explode = (0.1,0,0)colors = ['gray','00FFFF','FF1493']plt.pie(sizes,explode=explode,labels=labels,colors=colors,labeldistance=1.1,\autopct='%d%%',shadow=True,counterclock=False)plt.legend(loc="upper left",frameon=False,fontsize=18,borderaxespad=-5)plt.axis('equal')plt.title('721法则', y=-0.1,fontsize=18)plt.savefig("721法则.png")plt.show() 结论:我们不但要会画,还要学着画得尽可能美,实践是唯一的途径。 Python入门教程 如果你现在还是不会Python也没关系,下面我会给大家免费分享一份Python全套学习资料, 包含视频、源码、课件,希望能帮到那些不满现状,想提升自己却又没有方向的朋友,可以和我一起来学习交 流。 ① Python所有方向的学习路线图,清楚各个方向要学什么东西 ② 600多节Python课程视频,涵盖必备基础、爬虫和数据分析 ③ 100多个Python实战案例,含50个超大型项目详解,学习不再是只会理论 ④ 20款主流手游迫解 爬虫手游逆行迫解教程包 ⑤ 爬虫与反爬虫攻防教程包,含15个大型网站迫解 ⑥ 爬虫APP逆向实战教程包,含45项绝密技术详解 ⑦ 超300本Python电子好书,从入门到高阶应有尽有 ⑧ 华为出品独家Python漫画教程,手机也能学习 ⑨ 历年互联网企业Python面试真题,复习时非常方便 👉Python学习视频600合集👈 观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 👉实战案例👈 光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。 👉100道Python练习题👈 检查学习结果。 👉面试刷题👈 资料领取 上述这份完整版的Python全套学习资料已经上传CSDN官方,朋友们如果需要可以微信扫描下方CSDN官方认证二维码输入“领取资料” 即可领取 好文推荐 了解python的前景:https://blog.csdn.net/weixin_49891576/article/details/127187029 了解python的兼职:https://blog.csdn.net/weixin_49891576/article/details/127125308 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_49891576/article/details/130861900。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-04 23:38:21
107
转载
Kafka
...,一个开源的消息队列系统。Kafka这东西啊,最早是LinkedIn那边捣鼓出来的,后来觉得挺好,就把它送给了Apache基金会。没想到吧,就这么一送,它现在在大数据圈子里混得那叫一个风生水起,已经成了整个生态里头离不开的重要角色啦! 作为一个开发者,我对Kafka的第一印象是它超级可靠。无论是高吞吐量、低延迟还是容错能力,Kafka都表现得非常出色。大家有没有想过啊,“可靠”这个词到底是怎么来的?为啥说某个东西“靠谱”,我们就觉得它值得信赖呢?今天咱们就来聊聊这个事儿——比如说,你发出去的消息,咋就能保证它不会石沉大海、人间蒸发了呢?这可不是开玩笑的事儿,尤其是在大数据的世界里,丢一个消息可能就意味着丢了一笔订单或者错过了一次重要沟通。所以啊,今天我们就要揭开谜底,跟大家唠唠Kafka是怎么做到让消息“稳如老狗”的! 2. Kafka可靠性背后的秘密武器 Kafka的可靠性主要依赖于以下几个核心概念: 2.1 持久化与日志结构 Kafka将所有数据存储在日志文件中,并通过持久化机制确保数据不会因为服务器宕机而丢失。简单来说,就是把消息写入磁盘而不是内存。 java Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("acks", "all"); props.put("retries", 0); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); Producer producer = new KafkaProducer<>(props); producer.send(new ProducerRecord<>("my-topic", "my-key", "my-value")); producer.close(); 这段代码展示了如何发送一条消息到Kafka主题。其中acks="all"参数表示生产者会等待所有副本确认收到消息后才认为发送成功。 2.2 分区与副本机制 Kafka通过分区(Partition)来分摊负载,同时通过副本(Replica)机制来提高可用性和容错性。每个分区可以有多个副本,其中一个为主副本,其余为从副本。 java AdminClient adminClient = AdminClient.create(props); ListTopicsOptions options = new ListTopicsOptions(); options.listInternal(true); Set topics = adminClient.listTopics(options).names().get(); System.out.println("Topics: " + topics); 这段代码用于列出Kafka集群中的所有主题及其副本信息。通过这种方式,你可以检查每个主题的副本分布情况。 3. 生产者端的可靠性保障 作为生产者,我们需要确保发送出去的消息能够安全到达Kafka集群。这涉及到一些关键配置: - acks:控制生产者的确认级别。设置为"all"时,意味着必须等待所有副本确认。 - retries:指定重试次数。如果网络抖动导致消息未送达,Kafka会自动重试。 - linger.ms:控制批量发送的时间间隔。默认值为0毫秒,即立即发送。 java Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("acks", "all"); props.put("retries", 3); props.put("linger.ms", 5); props.put("batch.size", 16384); Producer producer = new KafkaProducer<>(props); for (int i = 0; i < 100; i++) { producer.send(new ProducerRecord<>("my-topic", Integer.toString(i), Integer.toString(i))); } producer.close(); 在这个例子中,我们设置了retries=3和linger.ms=5,这意味着即使遇到短暂的网络问题,Kafka也会尝试最多三次重试,并且会在5毫秒内累积多条消息一起发送。 4. 消费者端的可靠性保障 消费者端同样需要关注可靠性问题。Kafka 有两种消费模式,一个叫 earliest,一个叫 latest。简单来说,earliest 就是从头开始补作业,把之前没看过的消息全都读一遍;而 latest 则是直接从最新的消息开始看,相当于跳过之前的存档,直接进入直播频道。 java Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("group.id", "test-group"); props.put("enable.auto.commit", "true"); props.put("auto.commit.interval.ms", "1000"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); KafkaConsumer consumer = new KafkaConsumer<>(props); consumer.subscribe(Arrays.asList("my-topic")); while (true) { ConsumerRecords records = consumer.poll(Duration.ofMillis(100)); for (ConsumerRecord record : records) { System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value()); } } 这段代码展示了如何订阅一个主题并持续拉取消息。注意这里启用了自动提交功能,这样就不需要手动管理偏移量了。 5. 总结与反思 通过今天的讨论,我相信大家对Kafka的消息可靠性有了更深的理解。Kafka能从一堆消息队列系统里脱颖而出,靠的就是它在设计的时候就脑补了各种“灾难片”场景,比如数据爆炸、服务器宕机啥的,然后还给配齐了神器,专门对付这些麻烦事儿。 然而,正如任何技术一样,Kafka也不是万能的。在实际应用中,我们还需要结合具体的业务需求来调整配置参数。比如说啊,在那种超级忙、好多请求同时涌过来的场景下,就得调整一下每次处理的任务量,别一下子搞太多,慢慢来可能更稳。但要是你干的事特别讲究速度,晚一秒钟都不行的那种,那就得想办法把发东西的时间间隔调短点,越快越好! 总之,Kafka的强大之处在于它允许我们灵活地调整策略以适应不同的工作负载。希望这篇文章能帮助你在实践中更好地利用Kafka的优势!如果你有任何疑问或想法,欢迎随时交流哦~
2025-04-11 16:10:34
96
幽谷听泉
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 2021年8月16日,《2020年北京市外来新生代农民工监测报告》发布,为了进一步做好农民工服务工作,了解外来农民工在京工作、生活需要,国家统计局北京调查总队在全市范围开展了农民工市民化进程动态监测调查。 2020年监测数据显示,新生代农民工占比达到50.1%,男性占比高于女性。新生代农民工中男性占比为66.3%,比上年提高4.6个百分点;男性占比高于女性32.5个百分点,比上年提高9.1个百分点。 就业集中于劳动密集型行业,从事信息传输、软件和信息技术服务业的新生代农民工占比大幅提高。 2020年就业人数前五位的行业依次为居民服务、修理和其他服务业,制造业,建筑业,批发和零售业,住宿和餐饮业,共吸纳67.2%的新生代农民工就业。 2020年北京市外来新生代农民工监测报告 为了进一步做好农民工服务工作,了解外来农民工在京工作、生活需要,国家统计局北京调查总队在全市范围开展了农民工市民化进程动态监测调查,2020年监测数据显示,新生代农民工(出生于20世纪80年代以后,年龄在16周岁及以上,在异地以非农就业为主的农业户籍人口)占比达到50.1%,已经成为农民工的主体。 一、新生代农民工总体特征 男性占比高于女性,差距进一步加大。新生代农民工中男性占比为66.3%,比上年提高4.6个百分点;男性占比高于女性32.5个百分点,比上年提高9.1个百分点。 31-40岁农民工占比提高。新生代农民工平均年龄31.4岁,比上年增加0.4岁。其中,31-40岁的占比为57.9%,比上年提高3.2个百分点;21-30岁的占比为39.9%,16-20岁的占比为2.2%,分别比上年下降2.6个和0.6个百分点。 大学本科以上学历新生代农民工占比增加。新生代农民工中大学本科以上学历占比为21.2%,比上年提高7.9个百分点。其中,大学本科学历的占比为20.0%,研究生学历的占比为1.2%。 外来新生代农民工主要来自北京周边地区。其中,河北、河南两省占比最大,河北省占比为37.3%,比上年同期提高3.5个百分点,河南省占比为12.3%,比上年同期下降3.3个百分点。 二、新生代农民工就业情况 (一)就业集中于劳动密集型行业,从事信息传输、软件和信息技术服务业的新生代农民工占比大幅提高 调查样本中,2020年就业人数前五位的行业与上年一致,依次为居民服务、修理和其他服务业,制造业,建筑业,批发和零售业,住宿和餐饮业,共吸纳67.2%的新生代农民工就业。 除上述五大行业外,从事信息传输、软件和信息技术服务业的新生代农民工比例为7.9%,比上年提高3.7个百分点,在所有行业中增幅最大。 (二)收入水平整体提高,内部差距拉大 调查样本中,新生代农民工月均收入6214元,比上年增加364元,增长6.2%。其中,66.5%月均收入在5000元及以上,比上年高8.6个百分点。 1.不同行业差距较大 新生代农民工从业人数最多的七个行业按照收入水平排序依次为:信息传输、软件和信息技术服务业,建筑业,交通运输、 仓储和邮政业,制造业,批发零售业,住宿和餐饮业,居民服务、修理和其他服务业。月均收入分别为10571元、6587元、6489元、6017元、5888元、5668元和5195元。其中,收入最高的信息传输、软件和信息技术服务业从业人员月均收入比上年同期增长15.5%;从业人数最多、收入最低的居民服务、修理和其他服务业从业人员月均收入比上年同期降低2.6%。 2.不同收入段间收入差距加大 高收入段人员收入增速高于中低收入段。月均收入5000元及以上人员平均月收入为7507元,比上年同期提高2.8个百分点;月均收入4000-5000元人员平均月收入为4175元,比上年同期降低3.4个百分点;月均收入4000元以下人员平均月收入为3064元,比上年同期提高1.1个百分点。 (三)自营人员收入高,工作强度大 自营就业的新生代农民工月均收入6716元,比务工就业人员高568元;自营就业的新生代农民工平均每周工作6.5天,每天工作9.5小时,分别比务工就业人员多0.9天和0.7小时。 三、新生代农民工生活情况 (一)消费支出下降,吃穿住消费占新生代农民工总消费支出的7成以上 受疫情影响,未来收入的不确定性增加,新生代农民工户均消费支出降低。2020年,新生代农民工家庭户均生活消费支出42395元,比上年减少1833元,下降4.1%。 按照金额排序,新生代农民工消费支出排在前三位的依次为:食品烟酒、居住、衣着及其他日用品和服务,分别为14032元、10861元和5141元,前三位消费支出占总消费支出的70.8%。 (二)居住性质略有改变,居住满意度小幅提升 租赁私房人员占比减少,单位提供住房比例提升。从住房性质来看,新生代农民工主要以租赁私房为主,租赁私房的占60.5%,比上年同期降低3.2个百分点;单位提供住房的占33.1%,比上年同期提高4.7个百分点。 单位提供住房,居住消费支出减少,新生代农民工对现在居住条件表示满意的占66.5%,比上年提高3.0个百分点,其中,表示非常满意的占18.6%,比较满意的占47.9%。 (三)网络依赖增加,自我提升类活动减少 上网已经成为新生代农民工业余时间的主要休闲活动。新生代农民工业余时间的主要活动排在前三位的依次是:上网、休息和朋友聚会,其中上网占60.1%,比上年同期提高4.7个百分点。 自我提升类活动减少。业余时间参加学习培训、读书看报的新生代农民工占比分别为3.8%和7.6%,比上年同期分别下降2.5个和1.3个百分点。 四、“90后”农民工工作和生活特点 (一)“90后”农民工工作特点 1.“90后”农民工从事行业略有不同 “90后”农民工喜好略有不同,就业人数最多的七个行业依次为:制造业,建筑业,居民服务、修理和其他服务业,信息传输、软件和信息技术服务业,住宿和餐饮业,文化和娱乐服务业,批发和零售业。与新生代农民工群体差距最大的两个行业是信息传输、软件和信息技术服务业,批发和零售业,其中,从事信息传输、软件和信息技术服务业的占11.6%,比新生代农民工群体高3.7个百分点;从事批发和零售业的占5.8%,比新生代农民工群体低6.3个百分点。 2.“90后”农民工收入略高 调查样本中,“90后”农民工月均收入6424元,比新生代农民工群体平均水平高210元。其中,月均收入在5000元及以上的占68.4%,比新生代农民工群体高1.9个百分点。 3.自营人员占比较低 由于年纪尚轻,积累不够,“90后”农民工中的96.3%以受雇就业为主,自营就业人员仅占3.7%,低于新生代农民工群体7.9个百分点。 (二)“90后”农民工生活特点 1.消费支出略低,更偏重于衣着及教育文化娱乐方面 “90后”农民工家庭户均生活消费支出42009元,比新生代农民工群体低386元。其中,衣着及其他日常用品和服务、教育文化娱乐支出占总消费支出的比重分别为14.0%和5.9%,分别比新生代农民工群体高1.9个和1.0个百分点;居住和交通通信费支出占总消费支出的比重分别为23.9%和9.2%,分别比新生代农民工群体低1.8个和1.0个百分点。 2.业余生活更注重休息和自我提升 “90后”农民工业余时间的主要活动排在前三位的依旧是上网、休息和朋友聚会,但与整个新生代农民工群体不同的是,“90后”农民工更注重休息和自我提升,其中,业余时间休息的占34.5%,比新生代农民工群体高5.6个百分点;业余时间参加文娱体育活动、学习培训和读书看报的占27.5%,分别比新生代农民工群体、全部外来农民工整体高5.7个和11.8个百分点。 新生代农民工定义:出生于20世纪80年代以后,年龄在16周岁及以上,在异地以非农就业为主的农业户籍人口 推荐阅读: 世界的真实格局分析,地球人类社会底层运行原理 不是你需要中台,而是一名合格的架构师(附各大厂中台建设PPT) 企业IT技术架构规划方案 论数字化转型——转什么,如何转? 华为干部与人才发展手册(附PPT) 企业10大管理流程图,数字化转型从业者必备! 【中台实践】华为大数据中台架构分享.pdf 华为的数字化转型方法论 华为如何实施数字化转型(附PPT) 超详细280页Docker实战文档!开放下载 华为大数据解决方案(PPT) 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45727359/article/details/119745674。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-28 17:16:54
63
转载
.net
...些常见的配置错误,如服务注册遗漏或生命周期设置不当等问题。 此外,微软近期更新了其官方文档,新增了关于ASP.NET Core中DI容器高级特性的章节。这部分内容详细介绍了如何自定义DI容器的行为,包括拦截器机制、动态代理生成以及跨模块的依赖解析策略。这对于构建大型分布式系统尤其有用,因为它允许开发者在不影响现有业务逻辑的前提下,实现更复杂的依赖关系管理。 值得注意的是,谷歌也在其开源项目中大力推广依赖注入的理念。例如,Flutter团队推出了一套名为GetIt的新一代DI库,它不仅支持多种平台(Web、Mobile、Desktop),还提供了更为简洁的API设计。相比传统的Dagger或Hilt,GetIt更适合小型项目或快速原型开发,其轻量化的特点使得开发者能够迅速上手并提升生产力。 与此同时,国内的一些技术社区也开始关注这一领域的发展趋势。例如,InfoQ最近发表了一篇深度解读文章,分析了国内企业在采用DI模式时面临的挑战,特别是如何平衡灵活性与稳定性之间的关系。文章指出,尽管DI能够显著改善代码结构,但在实际落地过程中仍需谨慎权衡,尤其是在高并发场景下,不恰当的配置可能导致资源浪费甚至系统崩溃。 综上所述,无论是国际巨头还是本土企业,都在积极拥抱依赖注入技术,并探索适合自身需求的最佳实践。对于开发者而言,持续关注行业动态和技术演进,及时调整学习方向,无疑是保持竞争力的关键所在。
2025-05-07 15:53:50
44
夜色朦胧
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 判空 对于list和map使用CollectionUtils.isEmpty()判空(null和size=0) 对于对象使用ObjectUtils.isEmpty()判定,可以尝试使用Optional.ofNullable() 对于数组使用ArrayUtils.isEmpty()判空(null和length=0) 对于字符串使用 StringUtils.isBlank()判空(null和空字符串) 工具类 使用hutool可以方便的进行文件类型的判断、唯一id(uuid,Snowflake)的生成、数据加密解密、二维码生成、图片加水印、BASE64编码解码、图片验证码等操作 集合 使用Arrays.asList()返回的list为数组的内部list,只允许遍历不允许增删,可以使用Stream流转换为list Collection和map对于仅遍历可以使用增强for循环和,但如果有删除为避免错误必须使用迭代器 foreach遍历不允许改变变量的地址,java的参数是值传递,修改了形参的地址并不影响原来的参数,故即使你修改了值也不会同步到原变量中,故操作的变量都显式或者隐式的定义为final JSON fastjson parseArray(String text, Class<T> clazz) 解析List parseObject(String text, Class<T> clazz) 解析Object JSON对于null、空白字符串、“null”会返回nullif (text == null) {return null;} else {DefaultJSONParser parser = new DefaultJSONParser(text, ParserConfig.getGlobalInstance());JSONLexer lexer = parser.lexer;int token = lexer.token();ArrayList list;if (token == 8) {lexer.nextToken(); // nextToken() => ...if ("null".equalsIgnoreCase(ident)) this.token = 8;list = null;} } String toJSONString(Object object) 将对象转为String toJSONBytes(Object object, SerializerFeature... features) 将对象转为byte[] @JSONField() 可以忽略字段serialize ,别名映射name,日期格式化format等 jackson @JsonFormat(pattern = "yyyy-MM-dd HH:mm:ss") 设置Date到前台的格式 @JsonIgnore SpringMVC不会向前台传递该字段 ObjectMapper mapper = new ObjectMapper();String str = mapper.writeValueAsString(admin); // 对象转JSON字符串mapper.readValue(s,Admin.class ); // JSON字符串转对象 EasyExcel 官方API https://www.yuque.com/easyexcel/doc 使用类注解@ExcelIgnoreUnannotated配合@ExcelProperty操作 @ExcelProperty可以指定表头列名,列顺序和表头的合并 @ColumnWidth(10)可以指定列宽,其长度约为(中文length3+英文length1) @DateTimeFormat(value="yyyy-MM-dd HH:mm:ss")可以指定日期格式 自定义策略实现SheetWriteHandler工作表回调接口,在afterSheetCreate()工作表创建之后方法可以 设置列宽 自定义表头 新建单元格 自定义策略实现RowWriteHandler行回调接口,在afterRowDispose()行操作完之后方法可以 设置行高 设置行样式 自定义策略实现CustomerCellHandler单元格回调接口,在afterCellDispose()单元格操作完之后方法可以 根据行号,列宽甚至是单元格的值来设置单元格样式 可以对单元格的值获取和修改 样式通常包括内容格式、批注、背景色、自动换行、平和垂直居中、边框大小和颜色、字体实例(格式,颜色,大小,加粗等)等 自定义策略继承AbstractMergeStrategy单元格合并抽象类,在merge()方法中可以通过CellRangeAddress合并单元格 过于复杂的表格可以使用模板,配合写出write和填充fill一起使用 Mybatis 在mapper方法的@select中也是可以直接书写动态SQL的,但要使用<script></script>包裹,这样就不用在java文件和xml文件切换了,将@select中包裹的代码直接放到浏览器的控制台输出后会自动转义\n,\t,+,"等 动态sql中“<” 和 “>” 号要用转义字符 “<” 和 ”>“ (分号要带) 动态sql中test中表达式通常使用 test=“id != null and id != ‘’”,要注意的是字符串不能直接识别单引号,有两种方法使用id==“1001"或者id==‘1001’.toString(),另外参数如果是boolean,可以直接使用test=”!flag",如果判定集合的话可以使用 test=“list != null and list.size>0” 返回数据类型为Map只能接收一条记录,字段为键名,字段值为值,但通常是用实体类接收,或是使用注解@MapKey来进行每条记录的映射,效果等同于List用Stream流转Map foreach遍历list collection=“list” item=“vo” separator="," open="(" close=")"> {vo.id} foreach遍历map collection=“map” index=“key” item=“value”,{key}获取建,{value}获取值,$亦可 collection=“map.entrySet()” index=“key” item=“value”,同上 collection=“map.keys” item=“key”,{key}为键 不要使用where 1=1,使用动态where拼接,会自动剔除where后多余的and和or 单个参数时无论基本和引用并且未使用在动态SQL可以不加参数注解@Param,但一旦参数大于一个或者参数在动态SQL中使用就必须加@Param 并不是直接把参数加引号,而是变成?的形式交给prepareStatement处理,$直接使用值,当ORDER BY诸如此类不需要加引号的参数时,使用$代替,但为避免sql注入,该参数不能交由用户控制 Plus 官方API https://baomidou.com/guide/ @TableName 表名 @TableField(strategy = FieldStrategy.IGNORED) 更新不会忽略NULL值 @TableField(exist = false)表明该字段非数据字段,否则新增更新会报错 MybatisPlus对于单表的操作还是非常优秀的,在对单表进行新增或者更新的时候经常使用,但对于单表的查询业务上很少出现仅仅查询一张表的情况,但也会有,如果条件不大于3个还是可以使用的,多了倒没有直接写SQL来的方便了 MybatisPlus的批量插入也是通过for循环插入的,还是建议使用Mybatis的动态foreach进行批量插入 MybatisPlus的分页器会对方法中的参数判断,如果存在分页对象就先查询总数看是否大于0,然后拼接当前的数据库limit语句,所以如果我们分页对象为null,就可以实现不分页查询 Object paramObj = boundSql.getParameterObject();IPage page = null;if (paramObj instanceof IPage) { ……public static String getOriginalCountSql(String originalSql) {return String.format("SELECT COUNT(1) FROM ( %s ) TOTAL", originalSql);} ……originalSql = DialectFactory.buildPaginationSql(page, buildSql, dbType, this.dialectClazz); ……public String buildPaginationSql(String originalSql, long offset, long limit) {StringBuilder sql = new StringBuilder(originalSql);sql.append(" LIMIT ").append(offset).append(",").append(limit);return sql.toString();} IDEA 插件 Lombok : 快速生成getter、setter等 Alibaba Java Coding Guidelines :阿里规约扫描 Rainbow Brackets :彩色括号 HighlightBracketPair :高亮提示 MyBatisX :mabatisPlus提供的xml和mapper转换的插件,小鸟图标 CamelCase :大小写、驼峰、下划线、中划线转换插件 使用shift+Alt+u进行转换(很方便) 可以在Editor中设置CamelCase的转换,一般只保留下划线和驼峰两种 String Manipulation :字符串工具(未使用) RestfulToolkit http :Restful请求工具 打开idea,在右侧边栏会有一个标签(RestServices),打开可以看到里面是url路径 ctrl+\或者ctrl+alt+n会检索路径 Ctrl + Enter格式化json 没有记忆功能,也不能加token,只是查找请求路径使用 easycode :代码生成工具(个人觉得很好用,常用于生成实体类) 支持自定义模板 支持添加自定义列,不影响数据库 支持多表同时生成 支持自定义类型映射 支持配置导入导出 支持动态调试 支持自定义属性 Power Mode 11 :打字特效(纯属装逼) Nyan Progress Bar :漂亮的进度条(纯属装逼) Other Vo:数据持久化模型 Query:数据查询模型 Dto:数据传输模型 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_40910781/article/details/111416185。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-26 23:30:52
269
转载
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 A: 颜色叠加 题目描述 热爱科学的Kimi这段时间在研究各种颜色,今天他打算做一个关于颜色叠加的小实验。 Kimi有很多张蓝色和黄色的长方形透明塑料卡片。众所周知,如果把蓝色和黄色混合在一起就会变成绿色。因此,Kimi对着光观察蓝色透明卡片和黄色透明卡片的叠加部分也就可以看到绿色啦。 假设在一个二维平面中,一张蓝色的透明卡片和一张黄色的透明卡片都与坐标轴平行放置,即卡片的横边与X轴平行,竖边与Y轴平行。 现在给出一张蓝色卡片和一张黄色卡片的左上角坐标(均为整数)以及两张卡片的长和宽(均为正整数)。 【注意:此处定义与X轴平行的那组边为长边,与Y轴平行的那组边为宽边】 请编写一个程序计算这两张卡片叠加后所形成的绿色区域的面积。 输入 单组输入。 第1行输入四个整数,分别表示蓝色长方形透明卡片的左上角坐标(X坐标和Y坐标)、长和宽。两两之间用英文空格隔开。 第2行输入四个整数,分别表示黄色长方形透明卡片的左上角坐标(X坐标和Y坐标)、长和宽。两两之间用英文空格隔开。 两张长方形透明卡片的X坐标和Y坐标的取值范围为[-1000, 1000],长和宽的取值范围为[1,200]。 输出 输出一个非负整数,表示两张卡片叠加后所形成的绿色区域的面积。 思维题 画个图自己推公式就行,我这不是最简做法 给出下图,可以参考我的做法 include <bits/stdc++.h>using namespace std;int main(){int x,y,xx,yy,a,b,aa,bb;int i,j;scanf("%d%d%d%d",&x,&y,&a,&b);scanf("%d%d%d%d",&xx,&yy,&aa,&bb);int dx=abs(x-xx);int dy=abs(y-yy);if(x<=xx){i=min(aa,a-dx);}else i=min(a,aa-dx);if(y>=yy){j=min(bb,b-dy);}else j=min(b,bb-dy);if(i<=0||j<=0)puts("0");else printf("%d\n",ij);return 0;} B: 勤劳的老杨 题目描述 勤劳的老杨最近收到了一个任务清单,在这个清单上有N项不同的工作任务。对于每一项任务都给出了两个时间[X, Y],其中X表示任务的起始时间(任务从第X天开始,包含第X天),Y表示任务的结束时间(任务到第Y天结束,包含第Y天)。 认真的老杨对待每一项任务都是一心一意的。一旦他决定做某一项任务,在该任务没有完成之前他不会同时再做另一项任务,也就是说在任意时刻老杨手头最多只有一项任务。 假设完成每一项任务所获得的报酬都是相等的。那么,老杨应该如何来安排自己的时间才可以得到最多的报酬呢? 请你编写一个程序帮老杨计算出他最多可以完成的任务数量。保证至少能完成一项任务。 输入 单组输入。 第1行输入一个正整数N表示任务清单上任务的总数。(N<=1000) 第2行到第N行每一行包含两个正整数,分别表示每一项任务的开始时间和结束时间,两个正整数之间用空格隔开。 输出 输出老杨最多可以完成的任务数量。 贪心 include<bits/stdc++.h>using namespace std;struct node{int a;int b;}ans[1005];bool cmp(const node q,const node p){return q.b<p.b;}int main(){int n;cin>>n;for(int i=0;i<n;i++){cin>>ans[i].a;cin>>ans[i].b;}sort(ans,ans+n,cmp);//按结束时间从小到大大排序int cou=0;int end=-1;for(int i=0;i<n;i++)if(ans[i].a>end){//注意时间不能重叠cou++;end=ans[i].b;}cout<<cou<<endl;return 0;} C: 秘密大厦的访客 题目描述 Kimi最近在负责一栋秘密大厦的安保工作,他的工作是记录大厦的来访者情况。 每个来访者都有一个与之对应的唯一编号,在每一条到访记录中记录了该来访者的编号。 现在Kimi需要统计每一条记录中的来访者是第几次光临秘密大厦。 输入 单组输入,每组两行。 第1行包含一个正整数n,表示记录的条数,n不超过1000; 第2行包含n个正整数,依次表示Kimi的记录中每位来访者的编号,两两之间用空格隔开。 输出 输出1行,包含n个正整数,两两之间用空格隔开,依次表示每条记录中的来访者编号是第几次出现。 签到题 直接模拟,做法很多 include<bits/stdc++.h>using namespace std;define ll long longint main(){int n,m;scanf("%d",&n);map<int,int>mp;for(int i=1;i<=n;i++){scanf("%d",&m);mp[m]++;printf("%d%c",mp[m],i==n ? '\n':' ');}return 0;} D: 最大能量 题目描述 一年一度的宇宙超级运动会在宇宙奥特英雄体育场隆重举行。X星人为这场运动会准备了很长时间,他大显身手的时刻终于到了! 为了保持良好的竞技状态和充沛的体能,X星人准备了N种不同的能量包。 虽然每种能量包都有无限个,但是因为同一种能量包使用太多会带来副作用,因此同样的能量包不能同时使用超过两个,也就是说最多同时可以使用两个相同的能量包。 每种能量包都有一个重量值和能量值。由于这些能量包的特殊性,必须要完整地使用一个能量包才能够发挥功效,否则将失去对应的能量值。 考虑到竞赛的公平性,竞赛组委会规定每个人赛前补充的能量包的总重量不能超过W。 现在需要你编写一个程序计算出X星人能够拥有的最大能量值是多少? 输入 单组输入。 第1行包含两个正整数N和W,其中N<=10^ 3,W<=10^ 3。 第2行到第N+1行,每一行包含两个正整数,分别表示每一种能量包的重量和能量值,两个正整数之间用空格隔开。每一种能量包的重量和能量值都是小于等于100的正整数。 输出 输出X星人能够拥有的最大能量值。 背包 可以看成每个物品个数为2的多重背包,用多重背包的方法做;也可以看成总共有2n个物品,用一般背包的方法做 //方法1include <bits/stdc++.h>using namespace std;int c[1005],w[1005];//重量 能量int f[10005];int main(){int n,m;cin>>n>>m;for(int i=1;i<=n;i++)cin>>c[i]>>w[i];for(int i=1;i<=n;i++)for(int j=m;j>=c[i];--j){for(int k=1;k<=2&&kc[i]<=j;k++){f[j]=max(f[j],f[j-c[i]k]+w[i]k);} }cout<<f[m]<<endl;return 0;}//方法2include<bits/stdc++.h>using namespace std;const int N=1e3+5;int a[2N],b[2N],dp[N],n,m;int main(){cin>>n>>m;for(int i=1;i<=n;i++){cin>>a[i]>>b[i];a[i+n]=a[i],b[i+n]=b[i];}for(int i=1;i<=2n;i++){for(int j=m;j>=a[i];j--){dp[j]=max(dp[j],dp[j-a[i]]+b[i]);} }cout<<dp[m]<<'\n';return 0;} E: 最大素数 题目描述 输入一个数字字符串,从中删除若干个(包含0个)数字后可以得到一个素数,请编写一个程序求解删除部分数字之后能够得到的最大素数。 例如,输入“1234”,删除1和4,可以得到的最大素数为23。 输入 输入一个数字字符串,从中删除若干个(包含0个)数字后可以得到一个素数,请编写一个程序求解删除部分数字之后能够得到的最大素数。 例如,输入“1234”,删除1和4,可以得到的最大素数为23。 输出 输入一个数字字符串,从中删除若干个(包含0个)数字后可以得到一个素数,请编写一个程序求解删除部分数字之后能够得到的最大素数。 例如,输入“1234”,删除1和4,可以得到的最大素数为23。 搜索 这里用的bfs,优先搜索当前最大的数,如果这个数已经是素数那么就是答案 我说不清楚,参考代码吧 include <bits/stdc++.h>using namespace std;bool isprime(int n){//素数判断if(n<2)return 0;for(int i=2;i<=(int)sqrt(n);++i)if(n%i==0)return 0;return 1;}struct node {string s;int len;bool operator<(const node &q)const{if(len!=q.len)return len<q.len;return s<q.s;} };bool check(string str){int m=0;for(int i=0;i<str.size();i++){m=m10+str[i]-'0';}return isprime(m);}bool flag;map<string,bool>vis;string s;void bfs(){priority_queue<node>q;q.push({s,s.size()});while(!q.empty()){node k=q.top();q.pop();if(vis[k.s])continue;vis[k.s]=1;if(check(k.s)){cout<<k.s<<endl;flag=1;return ;}for(int i=0;i<k.s.size();i++){//去掉第i个字符string s1=k.s.substr(0,i)+k.s.substr(i+1);q.push({s1,s1.size()});} }}int main(){cin>>s;bfs();if(!flag)puts("No result.");return 0;} F: 最大计分 题目描述 小米和小花在玩一个删除数字的游戏。 游戏规则如下: 首先随机写下N个正整数,然后任选一个数字作为起始点,从起始点开始从左往右每次可以删除一个数字,但是必须满足下一个删除的数字要小于上一个删除的数字。每成功删除一个数字计1分。 请问对于给定的N个正整数,一局游戏过后可以得到的最大计分是多少? 输入 单组输入。 第1行输入一个正整数N表示数字的个数(N<=10^3)。 第2行输入N个正整数,两两之间用空格隔开。 输出 对于给定的N个正整数,一局游戏过后可以得到的最大计分值。 最长下降子序列 将数组逆转就等价于求最长上升子序列长度 include <bits/stdc++.h>using namespace std;int arr[1005];int main(){int n;cin>>n;for(int i=0;i<n;i++)cin>>arr[i];reverse(arr,arr+n);vector<int>stk;stk.push_back(arr[0]);for (int i = 1; i < n; ++i) {if (arr[i] > stk.back())stk.push_back(arr[i]);elselower_bound(stk.begin(), stk.end(), arr[i]) = arr[i];}cout << stk.size() << endl;return 0;} G: 密钥 题目描述 X星人又截获了Y星人的一段密文。 破解这段密文需要使用一个密钥,而这个密钥存在于一个正整数N中。 聪明的X星人终于找到了获取密钥的方法:这个正整数的最后一位是一个非零数K(K>=2),需要将正整数N切分成K个小的整数,并且要使得这K个较小整数的乘积达到最大。而所得到的最大乘积就是破解密文所需的密钥。 你能否帮X星人编写一段程序来得到密钥呢? 输入 X星人又截获了Y星人的一段密文。 破解这段密文需要使用一个密钥,而这个密钥存在于一个正整数N中。 聪明的X星人终于找到了获取密钥的方法:这个正整数的最后一位是一个非零数K(K>=2),需要将正整数N切分成K个小的整数,并且要使得这K个较小整数的乘积达到最大。而所得到的最大乘积就是破解密文所需的密钥。 你能否帮X星人编写一段程序来得到密钥呢? 输出 将N划分为K个整数后的最大乘积。 搜索 include <bits/stdc++.h>using namespace std;define ll long longll n;ll ans;void dfs(ll sum,ll m,int res){if(res==1){ans=max(ans,summ);return ;}int num=(int)log10(m)+1;//m的位数int k=10;for(int i=1;i<=num-res+1;i++){//保证剩余的数至少还有res-1位dfs(sum(m%k),m/k,res-1);k=10;}return ;}int main(){cin>>n;dfs(1ll,n,n%10);cout<<ans<<endl;return 0;} H: X星大学 题目描述 X星大学新校区终于建成啦! 新校区一共有N栋教学楼和办公楼。现在需要用光纤把这N栋连接起来,保证任意两栋楼之间都有一条有线网络通讯链路。 已知任意两栋楼之间的直线距离(单位:千米)。为了降低成本,要求两栋楼之间都用直线光纤连接。 光纤的单位成本C已知(单位:X星币/千米),请问最少需要多少X星币才能保证任意两栋楼之间都有光纤直接或者间接相连? 注意:如果1号楼和2号楼相连,2号楼和3号楼相连,则1号楼和3号楼间接相连。 输入 单组输入。 第1行输入两个正整数N和C,分别表示楼栋的数量和光纤的单位成本(单位:X星币/千米),N<=100,C<=100。两者之间用英文空格隔开。 接下来N(N-1)/2行,每行包含三个正整数,第1个正整数和第2个正整数表示楼栋的编号(从1开始一直到N),编号小的在前,编号大的在后,第3个正整数为两栋楼之间的直线距离(单位:千米)。 输出 输出最少需要多少X星币才能保证任意两栋楼之间都有光纤直接或者间接相连。 最小生成树模板题 //prim()最小生成树include <bits/stdc++.h>using namespace std;define ll long longdefine INF 0x3f3f3f3fint n,c;int dist[105];bool vis[105];int a[105][105];ll prim(int pos){memset(dist,INF,sizeof(dist));dist[pos]=0;ll sum=0;for(int i=1;i<=n;i++){int cur=-1;for(int j=1;j<=n;j++){if(!vis[j]&&(cur==-1||dist[j]<dist[cur]))cur=j;}if(dist[cur]>=INF)return INF;sum+=dist[cur];vis[cur]=1;for(int l=1;l<=n;l++)if(!vis[l])dist[l]=min(dist[l],a[cur][l]);}return sum;}int main() {scanf("%d%d",&n,&c);int x,y,z;memset(a,INF,sizeof(a));for(int i=1;i<=n;i++)a[i][i]=0;for(int i=1;i<=n(n-1)/2;i++){scanf("%d%d%d",&x,&y,&z);a[x][y]=min(a[x][y],z);a[y][x]=a[x][y];}printf("%lld\n",prim(1)c);return 0;}//Kruskal()最小生成树include<bits/stdc++.h>using namespace std;struct node {int x,y,z;}edge[10005];bool cmp(node a,node b) {return a.z < b.z;}int fa[105];int n,m,c;long long sum;int get(int x) {return x == fa[x] ? x : fa[x] = get(fa[x]);}int main() {scanf("%d%d",&n,&c);m=n(n-1)/2;for(int i = 1; i <= m; i ++) {scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].z);}for(int i = 0; i <= n; i ++) {fa[i] = i;}sort(edge + 1,edge + 1 + m,cmp);// 每次加入一条最短的边for(int i = 1; i <= m; i ++) {int x = get(edge[i].x);int y = get(edge[i].y);if(x == y) continue;fa[y] = x;sum += edge[i].z;}printf("%lld\n",sumc);return 0;} 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_52139055/article/details/123284091。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-20 16:20:26
469
转载
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 相关阅读: 阿里云Redis开发规范 千万级规模高性能、高并发的网络架构经验分享 互联网技术(java框架、分布式、集群)干货视频大全,不看后悔!(免费下载) 本文转自:公众号老板思维与智库(ID:laobanzhiku88),欢迎大家关注 笔者搬家前有个邻居,两口子典型的中年夫妻。 时不时由着一些鸡毛蒜皮的小事突然爆发争吵,但为了孩子老人和自己的颜面又要在人前假装和睦。 吵架的内容无非几样,孩子学业、老人赡养... 以及,丈夫人到中年,却还只是个普普通通的员工,业绩上不高不低,不至于垫底,也不足以升迁,家庭经济压力不小。 老话说,贫贱夫妻百事衰,一点没错。 一生压力最大的时期无非上有老下有小的中年。 事业上年纪已经失去了竞争力,脑力体力精力都比不过后来的年轻人。 无数的争吵、矛盾、压力,说明白点,大都来自于经济上的缺乏。 这样的家庭在中国并不少见。 扪心自问,兢兢业业十几年,没有功劳也有苦劳,为什么现在还只是个普通员工? 甚至比自己晚入行几年的新人都早早升迁小有成就了。 无目标无计划 大部分到了中年仍旧一事无成的人多在年轻时对自己的人生没有长远的规划。 年纪轻轻就失去梦想,只想当咸鱼。 做一天和尚撞一天钟,不知不觉,最适合奋斗的那几年都在这种平淡中弹指一挥间,回过神来人已经不惑之年。 普通员工不可怕,可怕的是你是个没有自己“小目标”的普通员工。 过度满足于现状只会增加你的职场生存隐患,很可能老板没有开除你单单念在你勤恳付出多年的三分情面上。 但是仅仅不犯过错不应该成为工作的准则。 都说学如逆水行舟,只要处在不断前进的社会里,人就要努力向前,才不至于被抛在人后。 原地停留,不过是变相的倒退罢了。 无论青年还是中年,当着手当下,给自己定下前行的目标,不断寻求突破与进展。 人要做的,是永远比昨天的自己更优秀。 实际行动力差 笔者接触到的中年人,大部分实际行动力都不强。 说起人生道理、励志格言他们如数家珍,一说一箩筐,分分钟能登台做演讲。 但真真切切落实到实际行动里,完全又是另外一回事。 具体到某一件事的时候,他们会有各种各样的理由来拒绝改变和行动。 好似他们的境况永远特殊,永远比别人更加糟糕,旁人永远难以体会。 常听朋友抱怨起他的父亲,说父亲年轻时喜欢钓鱼,偶尔也会在周末带他出去垂钓。 这本是极好的一项爱好,修身养性还能给餐桌添些鲜味。 但随着他的长大,父亲步入中年,钓鱼这项活动就只存在于父亲和外人的谈天说地里。 当他邀请父亲一同出门垂钓的时候,总是被各种理由拒绝。 那可能是伯父真的有重要的事情要做嘛,笔者笑道。 朋友无奈直摇头,他给我的理由无非几样。 要么是嫌钓鱼地方不好,找到了好地方又嫌路途远,两者都不错的又说天气不适合,林林总总说起来无非就三个字,不想动。 一件自己喜欢的事都不愿意花时间去享受,更不用说繁琐的工作了。 再高的思想觉悟、再充分的理论知识,没有实战,终究不过是纸上谈兵,虚吹一场,没有任何实际效用。 脚踏实地,踏踏实实做实事,才可能有收获。 不懂得投资自己 股神巴菲特在《福布斯》杂志的采访中说道,有一种投资好过其他所有的投资,那就是投资自己。 没有人能夺走你自身学到的东西,每个人都有这样的投资潜力。 无论处在什么阶段,保持学习都是十分重要的一件事。 工作的十几年间,为什么别人都升职了自己却留在原地? 常常会疑惑,刚进公司的时候也是优秀的潜力股一枚,升职的时候老板怎么就看不见我? 很简单,因为潜力股要经过挖掘投资才能成为优质股。 人就像一方活水,有源源不断的补给才能保持自身不干涸,才能掀得起浪花。 不断增加自己的学识、磨练出过硬的技能,在职场中你的综合考察才会不断加分! 不懂的投资自己,提升能力,只会让你被淘汰的更快。 心态老得比身体快 明明还是个中年人,精神面貌看着还不如小区里跳广场舞的大妈大爷们。 整个人的心态衰老程度已经远远超过身体的衰老程度。 从内里散发出消极颓废的负能量。 试想谁会把重要的工作交给一个丧气满满的人呢? 职场上的中年人在做事的时候难免受家庭、他人眼光、年龄的牵绊,畏手畏脚,瞻前顾后。 他们总在想,我这样做,会显得自己过于出彩,会畏惧别人“一把年纪还想出风头”的闲言碎语和轻信别人“老了老了,都是年轻人的天下”的衰言败语。 妈妈常教导我,让我养成良好习惯。这样长大才能成为一个有用的人。良好的习惯是尊敬师长这样长大才能成为一个有用的人。良好的习惯是尊敬师长,爱护同学,对人有礼貌;是不粗心,做事情不拖拉;还是爱护公物,不浪费粮食。为什么呢?因为拥有良好习惯,做一个品德高尚的人,懂得尊重别人,才会得到别人的尊重。我要努力地做到这些。我有一些坏习惯,有时候学习很粗心,把一些会做的题做错。在生活上,也很粗心,有一次早上起床居然穿反了衣服。我吃饭很慢,有的时候还剩饭。我还起床磨蹭,本来应该迅速地穿好衣服,但是,我总是磨磨蹭蹭地,速度很慢。“我打算在这学期里,改掉这些坏习惯。早上起来,迅速地穿好衣服,不拖拉。学习不粗心,仔细完成每一道题。吃饭的时候,要很快的把饭吃完,不剩饭。我要从一点一滴做起,逐渐养成良好习惯。我相信自己一定能成为一名品学兼优的好学生!我打算在这学期里,改掉这些坏习惯。早上起来,迅速地穿好衣服,不拖拉。学习不粗心,仔细完成每一道题。吃饭的时候,要很快的把饭吃完,不剩饭。我要从一点一滴做起,逐渐养成良好习惯。我相信自己一定能成为一名品学兼优的好学生!” 在上幼儿园以前,我什么也不会干,就连穿衣服也是妈妈给我穿好,就要上幼儿园了,这样可不行,妈妈锻炼我要学会自己穿衣服。 有一天,妈妈把衣服摆在我面前,开始让我自己穿。一开始。我又哭又叫就是不穿,还把衣服扔的满地都是,然后坐在地上开始大哭,等了好长时间,妈妈还是不理我,我只好自己乖乖的把衣服穿好, 一出了房间门,妈妈就笑了起来,再看看我的衣服,毛衣和裤子都穿反了,我赶紧回房间又重新穿了一遍,这次穿好了,拿起外套,可是外套的扣子又扣不上了,扣子可调皮了,好像故意和我作对,我把扣子往扣眼——人类邪恶的根源;爱情——幸福和光明的源泉。我一直在这些思想的舞台上徘徊。突然我发现两个身影从我面前经过,坐在不远的草地上。这是一对从农田那边走过来的青年男女。农田那边有农民的茅舍。在一阵令人伤心的沉默之后,随着一声长叹,我听见从一个肺痨病人的嘴里说出了这样的话:幸福和光明的源泉。我一直在这些思想的舞台上徘徊。突然我发现两个身影从我面前经过,坐在不远的草地上。这是一对从农田那边走过来的青年男女。农田那边有农民的茅舍。在一阵令人伤心的沉默之后,随着一声长叹,我听见从一个肺痨病人的嘴里说出了这样的话幸福和光明的源泉。我一直在这些思想的舞台上徘徊。突然我发现两个身影从我面前经过,坐在不远的草地上。这是一对从农田那边走过来的青年男女。农田那边有农民的茅舍。在一阵令人伤心的沉默之后,随着一声长叹,我听见从一个肺痨病人的嘴里说出了这样的话幸福和光明的源泉。我一直在这些思想的舞台上徘徊。突然我发现两个身影从我面前经过,坐在不远的草地上。这是一对从农田那边走过来的青年男女。农田那边有农民的茅舍。在一阵令人伤心的沉默之后,随着一声长叹,我听见从一个肺痨病人的嘴里说出了这样的话幸福和光明的源泉。我一直在这些思想的舞台上徘徊。突然我发现两个身影从我面前经过,坐在不远的草地上。这是一对从农田那边走过来的青年男女。农田那边有农民的茅舍。在一阵令人伤心的沉默之后,随着一声长叹,我听见从一个肺痨病人的嘴里说出了这样的话幸福和光明的源泉。我一直在这些思想的舞台上徘徊。突然我发现两个身影从我面前经过,坐在不远的草地上。这是一对从农田那边走过来的青年男女。农田那边有农民的茅舍。在一阵令人伤心的沉默之后,随着一声长叹,我听见从一个肺痨病人的嘴里说出了这样的话幸福和光明的源泉。我一直在这些思想的舞台上徘徊。突然我发现两个身影从我面前经过,坐在不远的草地上。这是一对从农田那边走过来的青年男女。农田那边有农民的茅舍。在一阵令人伤心的沉默之后,随着一声长叹,我听见从一个肺痨病人的嘴里说出了这样的话幸福和光明的源泉。我一直在这些思想的舞台上徘徊。突然我发现两个身影从我面前经过,坐在不远的草地上。这是一对从农田那边走过来的青年男女。农田那边有农民的茅舍。在一阵令人伤心的沉默之后,随着一声长叹,我听见从一个肺痨病人的嘴里说出了这样的话幸福和光明的源泉。我一直在这些思想的舞台上徘徊。突然我发现两个身影从我面前经过,坐在不远的草地上。这是一对从农田那边走过来的青年男女。农田那边有农民的茅舍。在一阵令人伤心的沉默之后,随着一声长叹,我听见从一个肺痨病人的嘴里说出了这样的话“亲爱的!擦干你的眼泪,至高无上的爱情已经打开了我们的眼界,使我们成了它的崇拜者。是它, 妈妈常教导我,让我养成良好习惯。这样长大才能成为一个有用的人。良好的习惯是尊敬师长这样长大才能成为一个有用的人。良好的习惯是尊敬师长,爱护同学,对人有礼貌;是不粗心,做事情不拖拉;还是爱护公物,不浪费粮食。为什么呢?因为拥有良好习惯,做一个品德高尚的人,懂得尊重别人,才会得到别人的尊重。我要努力地做到这些。我有一些坏习惯,有时候学习很粗心,把一些会做的题做错。在生活上,也很粗心,有一次早上起床居然穿反了衣服。我吃饭很慢,有的时候还剩饭。我还起床磨蹭,本来应该迅速地穿好衣服,但是,我总是磨磨蹭蹭地,速度很慢。“我打算在这学期里,改掉这些坏习惯。早上起来,迅速地穿好衣服,不拖拉。学习不粗心,仔细完成每一道题。吃饭的时候,要很快的把饭吃完,不剩饭。我要从一点一滴做起,逐渐养成良好习惯。我相信自己一定能成为一名品学兼优的好学生!我打算在这学期里,改掉这些坏习惯。早上起来,迅速地穿好衣服,不拖拉。学习不粗心,仔细完成每一道题。吃饭的时候,要很快的把饭吃完,不剩饭。我要从一点一滴做起,逐渐养成良好习惯。我相信自己一定能成为一名品学兼优的好学生!” 在上幼儿园以前,我什么也不会干,就连穿衣服也是妈妈给我穿好,就要上幼儿园了,这样可不行,妈妈锻炼我要学会自己穿衣服。 有一天,妈妈把衣服摆在我面前,开始让我自己穿。一开始。我又哭又叫就是不穿,还把衣服扔的满地都是,然后坐在地上开始大哭,等了好长时间,妈妈还是不理我,我只好自己乖乖的把衣服穿好, 一出了房间门,妈妈就笑了起来,再看看我的衣服,毛衣和裤子都穿反了,我赶紧回房间又重新穿了一遍,这次穿好了,拿起外套,可是外套的扣子又扣不上了,扣子可调皮了,好像故意和我作对,我把扣子往扣眼——人类邪恶的根源;爱情——幸福和光明的源泉。我一直在这些思想的舞台上徘徊。突然我发现两个身影从我面前经过,坐在不远的草地上。这是一对从农田那边走过来的青年男女。农田那边有农民的茅舍。在一阵令人伤心的沉默之后,随着一声长叹,我听见从一个肺痨病人的嘴里说出了这样的话:“亲爱的!擦干你的眼泪,至高无上的爱情已经打开了我们的眼界,使我们成了它的崇拜者。是它, 每一个碌碌无为的中年人都改明白的一个道理是,职场所谓的新人老人,取决于你的成就,而不是入行时间。 入行十余年还不如别人入行三五年来的专业,所谓老人不过是虚谈。 只要一天还出成绩,对待工作就当保持一个新人该有的拼劲和争上游的心态,抛开顾虑,努力向前便是! -END- 声明:本文属于老板思维与智库(ID:laobanzhiku88),图片来源于网络 看完本文有收获?请转发分享给更多人 欢迎关注“互联网架构师”,我们分享最有价值的互联网技术干货文章,助力您成为有思想的全栈架构师,我们只聊互联网、只聊架构,不聊其他!打造最有价值的架构师圈子和社区。 本公众号覆盖中国主要首席架构师、高级架构师、CTO、技术总监、技术负责人等人 群。分享最有价值的架构思想和内容。打造中国互联网圈最有价值的架构师圈子。 长按下方的二维码可以快速关注我们 如想加群讨论学习,请点击右下角的“加群学习”菜单入群 本篇文章为转载内容。原文链接:https://blog.csdn.net/emprere/article/details/98859913。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-29 14:16:29
120
转载
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 饿了么:云端调度,饭来张口 “云栖奖”获奖人:饿了么CTO 张雪峰 作者:阿里云研究中心 田丰 外卖送餐市场近几年都保持了超过200%的高增长速度。有如团购市场、共享出行市场的“百团大战”,网络订餐经历了低门槛遍地开花、砸钱补贴吸引用户量、精益运营降本增效三个重要阶段。据比达咨询市场分析数据显示,2016年中国第三方餐饮外卖市场格局中,饿了么位居第一,市场份额为34.6%,美团外卖(33.6%)、百度外卖(18.5%)紧随其后,在“白领市场”、“社区市场”、“校园市场”的细分领域中,饿了么均占据榜首位置。截至2016年12月,饿了么业务覆盖1400多个城市,用户超过1亿,各地加盟餐厅超过100万家,日订单量突破900万,旗下“蜂鸟配送”日配送单量超过450万。 在 “独角兽”的成长道路上,饿了么面对人工成本高制约业务快速扩张、人工派单速度慢导致高峰期积压订单严重、人工派单随机性强引起订单配送时效性差等现实问题,而阿里云通过智能派单系统,基于海量历史订单数据、餐厅数据、骑手数据、用户数据等信息实现智能派单,逐步替代调度员的大部分工作。智能派单系统整体全面上线后将释放90%以上人工派单的人力,每年节省人力支出预计超过亿元。 饿了么的IT系统架构伴随业务量飙升,进行了三次重大升级。 1)起步期(2009至2013年):饿了么由上海交通大学创始团队起家,发展至35人规模,日订单量维持在十万量级,由“IDC+Python”技术组合支撑业务运营,但面临Python人才难觅等困扰。 2)成长期(2014年至2015年):14年8至9月短短2个月内日均订单量增长10倍,从10万迅猛飙升至100万,业务规模主攻全国200个城市,原有IT系统架构压力极大,依靠人肉运维举步维艰,故障波动影响业务,创始人与核心技术团队坚守机房运维一线,才勉强扛住100万量级业务订单。开始借鉴阿里淘宝架构模式,人员团队也涨至500人,技术生态从Python扩展至“Java+Python”开发体系,从“人肉”支撑百万订单运营到自动化运维,并筹备同城异地容灾体系。 3)规模期(2015年至2017年):2015年7至8月,日均订单量从200万翻倍,以往积压的问题都暴露出来,技术架构面临大考验,坚定了架构上云的方案,团队扩展至1000人,架构要承载数百万量级业务时,出现峰值成本、灾备切换、IDC远程运维等种种挑战,全面战略转型采用“IDC+云计算”的混合云架构。在2016年12月25日圣诞节日订单量迎来前所未有的900万单,因此在技术架构上探索多活部署等创新性研发。 为什么选择架构转型上云?据饿了么CTO张雪峰先生所说,技术架构从IDC经典模式发展至混合云模式,主要原因是三个关键因素让管理层下定决心上云: 1) 脉冲计算:从技术架构配套业务发展分析,网络订餐业务具有明显的“脉冲计算”特征,在每日上午10:00至13:00、晚间16:00至19:00业务高峰值出现,而其他时间则业务量很低,暑假是业务高峰季,2016年5.17大促,饿了么第一次做“秒杀”,一秒订单15000笔,巨大的波峰波谷计算差异,引发了自建数据中心容量不可调和的两难处境,如果大规模投入服务器满足6小时的高峰业务量,则其余18个小时的业务低谷计算资源闲置,若满足平均业务量,则无法跟上业务快速发展节奏,落后于竞争对手;搞电商大促时,计算资源投入巨大,大促之后计算峰值下降,采用自建机房利用率仅10%,所以技术团队摸索出用云计算扛营销大促峰值的新模式,采用混合云架构满足 “潮汐业务”峰值计算,阿里云海量云计算资源弹性随需满足巨大的脉冲计算力缺口,这与每年“双11” 淘宝引入阿里云形成全球最大混合云架构具有异曲同工的创新价值。 2) 数据量爆炸:伴随饿了么近五年业务量呈几何级数的爆发式发展,数据量增速更加令人吃惊,是业务量增速的5倍,每日增量数据接近100TB,2015年短短2个月内业务量增长10倍,数据量增长了50倍,上海主生产机房不堪重负。30GB的DDoS攻击对业务系统造成较大风险,上云成为承载大数据、抗网络攻击的好方法。 3) 高可用性挑战:众所周知,IDC自建系统运维要承担从底层硬件到上层应用的“全栈运维”运营能力与维修能力,当2015年夏天上海数据中心故障发生,主核心交换机宕机时,备核心交换机Bug同时被触发,从事故发生到硬件厂商携维修设备打车赶往现场维修的整个过程中,饥饿的消费者无法订餐吃饭,技术团队第一次经历业务中断而束手无策,才下定决心大笔投入混合云灾备的建设,“吃一堑,长一智”,持续向淘宝学习电商云生产与灾备架构,以自动化运维替代人肉运维,从灾备向多活演进,成为饿了么企业架构转型的必经之路。 4) 大数据精益运营:不论网络打车还是网络订餐,共享服务平台脱颖而出的关键成功要素是智能调度算法,以大数据训练算法提升调度效率,饿了么在高峰时段内让百万“骑士”(送餐快递员)完成更多订单是算法持续优化的目标,而这背后隐藏着诸多复杂因素,包括考虑餐厅、骑士、消费者三者的实时动态位置关系,把新订单插入现有“骑士”的行进路线中,估计每家餐厅出餐时间,每个骑手的行进速度、道路熟悉程度各不相同,新老消费者获客成本、高价低价订单的优先级皆不相同。种种考量因素合并到一起,对于人类调度员来说,每天中午和晚上的高峰都是巨大的挑战。以上海商城路配送站为例,一个调度员每6秒钟就要调度1单,他需要考虑骑手已有订单量、路线熟悉度等。因此可以说,这份工作已经完全不适合人类。但对人工智能而言,阿里云ET则非常擅长处理这类超复杂、大规模、实时性要求高的“非人”问题。 饿了么是中国最大的在线外卖和即时配送平台,日订单量900万单、180万骑手、100万家餐饮店,既是史无前例的计算存储挑战,又是人无我有的战略发展机遇。饿了么携手阿里云人工智能团队,通过海量数据训练优化全球最大实时智能调度系统。在基础架构层,云计算解决弹性支撑业务量波动的基础生存问题,在数据智能层,利用大数据训练核心调度算法、提升餐饮店的商业价值,才是业务决胜的“技术神器”。 在针对大数据资源的“专家+机器”运营分析中,不断发现新的特征: 1) 区域差异性:饿了么与阿里云联合研发小组测试中发现有2个配送站点出现严重超时问题。后来才知道:2个站点均在成都,当地人民喜欢早、中餐一起吃,高峰从11点就开始了。习惯了北上广节奏的ET到成都就懵了。据阿里云人工智能专家闵万里分析:“不存在一套通用的算法可以适配所有站点,所以我们需要让ET自己学习或者向人类运营专家请教当地的风土人情、饮食习惯”。除此之外,饿了么覆盖的餐厅不仅有高大上的连锁店,还有大街小巷的各类难以琢磨的特色小吃,难度是其他智能调度业务的数倍。 2) 复杂路径规划:吃一口热饭有多难?送餐路径规划比驾车出行路径规划难度更高,要考虑“骑士”地图熟悉程度、天气状况、拼单效率、送餐顺序、时间对客户满意度影响、送达写字楼电梯等待时间等各种实际情况,究竟ET是如何实现智能派单并确保效率最优的呢?简单来说,ET会将配送站新接订单插入到每个骑手已有的任务中,重新规划一轮最短配送路径,对比哪个骑手新增时间最短。为了能够准确预估新增时间,ET需要知道全国100万家餐厅的出餐速度、超过180万骑手各自的骑行速度、每个顾客坐电梯下楼取餐的时间。一般来说,餐厅出餐等待时间占到了整个送餐时间的三分之一。ET要想提高骑手效率,必须准确预估出餐时间以减少骑手等待,但又不能让餐等人,最后饭凉了。饿了么旗下蜂鸟配送“准时达”服务单均配送时长缩短至30分钟以内。 3) 天气特殊影响:天气等环境因素对送餐响应时间影响显著,要想计算骑手的送餐路程时间,ET需要知道每个骑手在不同区域、不同天气下的送餐速度。如果北京雾霾,ET能看见吗?双方研发团队为ET内置了恶劣天气的算法模型。通常情况下,每逢恶劣天气,外卖订单将出现大涨,对应的餐厅出餐速度和骑手骑行速度都将受到影响,这些ET都会考虑在内。如果顾客在下雪天点个火锅呢?ET也知道,将自动识别其为大单,锁定某一个骑手专门完成配送。 4) 餐饮营销顾问:饿了么整体业务涉及C端(消费者)、B端(餐饮商户)、D端(物流配送)、BD端(地推营销),以往区域业务开拓考核新店数量,现在会重点关注餐饮外卖“健康度”,对于营业额忽高忽低、在线排名变化的餐饮店,都需要BD专家根据大数据帮助餐饮店经营者找出原因并给出解决建议,避免新店外卖刚开始就淹没在区域竞争中,销量平平的新店会离开平台,通过机器学习把餐饮运营专家的经验、以及人看不到的隐含规律固化下来,以数据决策来发现餐饮店经营问题、产品差异定位,让餐饮商户尝到甜头,才愿意继续经营。举个例子,饿了么员工都喜欢楼下一家鸡排店的午餐,但大数据发现这家店的外卖营收并不如实体店那么火爆,9元“鸡排+酸梅汁”是所有人都喜欢的爆款产品,可为什么同样菜品遭遇“线下火、线上冷”呢?数据预警后,BD顾问指出线上外卖鸡排产品没有写明“含免费酸梅汁一杯”的关键促销内容,导致大多数外卖消费者订一份鸡排一杯酸梅汁,却收到一份鸡排两杯酸梅汁,体验自然不好。 饿了么是数据驱动、智能算法调度的自动化生活服务平台,通过O2O数据的在线实时分析,与阿里云人工智能团队不断改进算法,以“全局最优”取代“局部最优”,保证平台上所有餐饮商户都能享受到数据智能的科技红利。 “上云用数”的外部价值诸多,从饿了么内部反馈来看,上云不仅没有让运维团队失去价值,反而带来了“云原生应用”(Cloud Native Application)、“云上多活”、“CDN云端压测”、“安全风控一体化”等创新路径与方案,通过敏捷基础设施(IaaS)、微服务架构(PaaS和SaaS)、持续交付管理、DevOps等云最佳实践,摆脱“人肉”支撑的种种困境,进而实现更快的上线速度、细致的故障探测和发现、故障时能自动隔离、故障时能够自动恢复、方便的水平扩容。饿了么CTO张雪峰先生说:“互联网平台型组织,业务量涨数倍,企业人数稳定降低,才是技术驱动的正确商业模式。” 在不久的将来,你每天订餐、出行、娱乐、工作留下的大数据,会“驯养”出无处不在、无所不能的智能机器人管家,家庭助理帮你点菜,无人机为你送餐,聊天机器人接受你的投诉……当然这个无比美妙的“未来世界”背后,皆有阿里云的数据智能母体“ET”。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34126557/article/details/90592502。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-31 14:48:26
344
转载
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 本文来源于今日头条: 本次分享将主要介绍今日头条推荐系统概览以及内容分析、用户标签、评估分析,内容安全等原理。 一、系统概览 推荐系统,如果用形式化的方式去描述实际上是拟合一个用户对内容满意度的函数,这个函数需要输入三个维度的变量。 第一个维度是内容。头条现在已经是一个综合内容平台,图文、视频、UGC小视频、问答、微头条,每种内容有很多自己的特征,需要考虑怎样提取不同内容类型的特征做好推荐。 第二个维度是用户特征。包括各种兴趣标签,职业、年龄、性别等,还有很多模型刻划出的隐式用户兴趣等。 第三个维度是环境特征。这是移动互联网时代推荐的特点,用户随时随地移动,在工作场合、通勤、旅游等不同的场景,信息偏好有所偏移。 结合三方面的维度,模型会给出一个预估,即推测推荐内容在这一场景下对这一用户是否合适。 这里还有一个问题,如何引入无法直接衡量的目标? 推荐模型中,点击率、阅读时间、点赞、评论、转发包括点赞都是可以量化的目标,能够用模型直接拟合做预估,看线上提升情况可以知道做的好不好。 但一个大体量的推荐系统,服务用户众多,不能完全由指标评估,引入数据指标以外的要素也很重要。 比如广告和特型内容频控。像问答卡片就是比较特殊的内容形式,其推荐的目标不完全是让用户浏览,还要考虑吸引用户回答为社区贡献内容。这些内容和普通内容如何混排,怎样控制频控都需要考虑。 此外,平台出于内容生态和社会责任的考量,像低俗内容的打压,标题党、低质内容的打压,重要新闻的置顶、加权、强插,低级别账号内容降权都是算法本身无法完成,需要进一步对内容进行干预。 下面我将简单介绍在上述算法目标的基础上如何对其实现。 前面提到的公式y = F(Xi ,Xu ,Xc),是一个很经典的监督学习问题。可实现的方法有很多,比如传统的协同过滤模型,监督学习算法Logistic Regression模型,基于深度学习的模型,Factorization Machine和GBDT等。 一个优秀的工业级推荐系统需要非常灵活的算法实验平台,可以支持多种算法组合,包括模型结构调整。因为很难有一套通用的模型架构适用于所有的推荐场景。 现在很流行将LR和DNN结合,前几年Facebook也将LR和GBDT算法做结合。今日头条旗下几款产品都在沿用同一套强大的算法推荐系统,但根据业务场景不同,模型架构会有所调整。 模型之后再看一下典型的推荐特征,主要有四类特征会对推荐起到比较重要的作用。 第一类是相关性特征,就是评估内容的属性和与用户是否匹配。显性的匹配包括关键词匹配、分类匹配、来源匹配、主题匹配等。像FM模型中也有一些隐性匹配,从用户向量与内容向量的距离可以得出。 第二类是环境特征,包括地理位置、时间。这些既是bias特征,也能以此构建一些匹配特征。 第三类是热度特征。包括全局热度、分类热度,主题热度,以及关键词热度等。内容热度信息在大的推荐系统特别在用户冷启动的时候非常有效。 第四类是协同特征,它可以在部分程度上帮助解决所谓算法越推越窄的问题。 协同特征并非考虑用户已有历史。而是通过用户行为分析不同用户间相似性,比如点击相似、兴趣分类相似、主题相似、兴趣词相似,甚至向量相似,从而扩展模型的探索能力。 模型的训练上,头条系大部分推荐产品采用实时训练。实时训练省资源并且反馈快,这对信息流产品非常重要。用户需要行为信息可以被模型快速捕捉并反馈至下一刷的推荐效果。 我们线上目前基于storm集群实时处理样本数据,包括点击、展现、收藏、分享等动作类型。 模型参数服务器是内部开发的一套高性能的系统,因为头条数据规模增长太快,类似的开源系统稳定性和性能无法满足,而我们自研的系统底层做了很多针对性的优化,提供了完善运维工具,更适配现有的业务场景。 目前,头条的推荐算法模型在世界范围内也是比较大的,包含几百亿原始特征和数十亿向量特征。 整体的训练过程是线上服务器记录实时特征,导入到Kafka文件队列中,然后进一步导入Storm集群消费Kafka数据,客户端回传推荐的label构造训练样本,随后根据最新样本进行在线训练更新模型参数,最终线上模型得到更新。 这个过程中主要的延迟在用户的动作反馈延时,因为文章推荐后用户不一定马上看,不考虑这部分时间,整个系统是几乎实时的。 但因为头条目前的内容量非常大,加上小视频内容有千万级别,推荐系统不可能所有内容全部由模型预估。 所以需要设计一些召回策略,每次推荐时从海量内容中筛选出千级别的内容库。召回策略最重要的要求是性能要极致,一般超时不能超过50毫秒。 召回策略种类有很多,我们主要用的是倒排的思路。离线维护一个倒排,这个倒排的key可以是分类,topic,实体,来源等。 排序考虑热度、新鲜度、动作等。线上召回可以迅速从倒排中根据用户兴趣标签对内容做截断,高效的从很大的内容库中筛选比较靠谱的一小部分内容。 二、内容分析 内容分析包括文本分析,图片分析和视频分析。头条一开始主要做资讯,今天我们主要讲一下文本分析。文本分析在推荐系统中一个很重要的作用是用户兴趣建模。 没有内容及文本标签,无法得到用户兴趣标签。举个例子,只有知道文章标签是互联网,用户看了互联网标签的文章,才能知道用户有互联网标签,其他关键词也一样。 另一方面,文本内容的标签可以直接帮助推荐特征,比如魅族的内容可以推荐给关注魅族的用户,这是用户标签的匹配。 如果某段时间推荐主频道效果不理想,出现推荐窄化,用户会发现到具体的频道推荐(如科技、体育、娱乐、军事等)中阅读后,再回主feed,推荐效果会更好。 因为整个模型是打通的,子频道探索空间较小,更容易满足用户需求。只通过单一信道反馈提高推荐准确率难度会比较大,子频道做的好很重要。而这也需要好的内容分析。 上图是今日头条的一个实际文本case。可以看到,这篇文章有分类、关键词、topic、实体词等文本特征。 当然不是没有文本特征,推荐系统就不能工作,推荐系统最早期应用在Amazon,甚至沃尔玛时代就有,包括Netfilx做视频推荐也没有文本特征直接协同过滤推荐。 但对资讯类产品而言,大部分是消费当天内容,没有文本特征新内容冷启动非常困难,协同类特征无法解决文章冷启动问题。 今日头条推荐系统主要抽取的文本特征包括以下几类。首先是语义标签类特征,显式为文章打上语义标签。 这部分标签是由人定义的特征,每个标签有明确的意义,标签体系是预定义的。 此外还有隐式语义特征,主要是topic特征和关键词特征,其中topic特征是对于词概率分布的描述,无明确意义;而关键词特征会基于一些统一特征描述,无明确集合。 另外文本相似度特征也非常重要。在头条,曾经用户反馈最大的问题之一就是为什么总推荐重复的内容。这个问题的难点在于,每个人对重复的定义不一样。 举个例子,有人觉得这篇讲皇马和巴萨的文章,昨天已经看过类似内容,今天还说这两个队那就是重复。 但对于一个重度球迷而言,尤其是巴萨的球迷,恨不得所有报道都看一遍。解决这一问题需要根据判断相似文章的主题、行文、主体等内容,根据这些特征做线上策略。 同样,还有时空特征,分析内容的发生地点以及时效性。比如武汉限行的事情推给北京用户可能就没有意义。 最后还要考虑质量相关特征,判断内容是否低俗,色情,是否是软文,鸡汤? 上图是头条语义标签的特征和使用场景。他们之间层级不同,要求不同。 分类的目标是覆盖全面,希望每篇内容每段视频都有分类;而实体体系要求精准,相同名字或内容要能明确区分究竟指代哪一个人或物,但不用覆盖很全。 概念体系则负责解决比较精确又属于抽象概念的语义。这是我们最初的分类,实践中发现分类和概念在技术上能互用,后来统一用了一套技术架构。 目前,隐式语义特征已经可以很好的帮助推荐,而语义标签需要持续标注,新名词新概念不断出现,标注也要不断迭代。其做好的难度和资源投入要远大于隐式语义特征,那为什么还需要语义标签? 有一些产品上的需要,比如频道需要有明确定义的分类内容和容易理解的文本标签体系。语义标签的效果是检查一个公司NLP技术水平的试金石。 今日头条推荐系统的线上分类采用典型的层次化文本分类算法。 最上面Root,下面第一层的分类是像科技、体育、财经、娱乐,体育这样的大类,再下面细分足球、篮球、乒乓球、网球、田径、游泳…,足球再细分国际足球、中国足球,中国足球又细分中甲、中超、国家队…,相比单独的分类器,利用层次化文本分类算法能更好地解决数据倾斜的问题。 有一些例外是,如果要提高召回,可以看到我们连接了一些飞线。这套架构通用,但根据不同的问题难度,每个元分类器可以异构,像有些分类SVM效果很好,有些要结合CNN,有些要结合RNN再处理一下。 上图是一个实体词识别算法的case。基于分词结果和词性标注选取候选,期间可能需要根据知识库做一些拼接,有些实体是几个词的组合,要确定哪几个词结合在一起能映射实体的描述。 如果结果映射多个实体还要通过词向量、topic分布甚至词频本身等去歧,最后计算一个相关性模型。 三、用户标签 内容分析和用户标签是推荐系统的两大基石。内容分析涉及到机器学习的内容多一些,相比而言,用户标签工程挑战更大。 今日头条常用的用户标签包括用户感兴趣的类别和主题、关键词、来源、基于兴趣的用户聚类以及各种垂直兴趣特征(车型,体育球队,股票等)。还有性别、年龄、地点等信息。 性别信息通过用户第三方社交账号登录得到。年龄信息通常由模型预测,通过机型、阅读时间分布等预估。 常驻地点来自用户授权访问位置信息,在位置信息的基础上通过传统聚类的方法拿到常驻点。 常驻点结合其他信息,可以推测用户的工作地点、出差地点、旅游地点。这些用户标签非常有助于推荐。 当然最简单的用户标签是浏览过的内容标签。但这里涉及到一些数据处理策略。 主要包括: 一、过滤噪声。通过停留时间短的点击,过滤标题党。 二、热点惩罚。对用户在一些热门文章(如前段时间PG One的新闻)上的动作做降权处理。理论上,传播范围较大的内容,置信度会下降。 三、时间衰减。用户兴趣会发生偏移,因此策略更偏向新的用户行为。因此,随着用户动作的增加,老的特征权重会随时间衰减,新动作贡献的特征权重会更大。 四、惩罚展现。如果一篇推荐给用户的文章没有被点击,相关特征(类别,关键词,来源)权重会被惩罚。当 然同时,也要考虑全局背景,是不是相关内容推送比较多,以及相关的关闭和dislike信号等。 用户标签挖掘总体比较简单,主要还是刚刚提到的工程挑战。头条用户标签第一版是批量计算框架,流程比较简单,每天抽取昨天的日活用户过去两个月的动作数据,在Hadoop集群上批量计算结果。 但问题在于,随着用户高速增长,兴趣模型种类和其他批量处理任务都在增加,涉及到的计算量太大。 2014年,批量处理任务几百万用户标签更新的Hadoop任务,当天完成已经开始勉强。集群计算资源紧张很容易影响其它工作,集中写入分布式存储系统的压力也开始增大,并且用户兴趣标签更新延迟越来越高。 面对这些挑战。2014年底今日头条上线了用户标签Storm集群流式计算系统。改成流式之后,只要有用户动作更新就更新标签,CPU代价比较小,可以节省80%的CPU时间,大大降低了计算资源开销。 同时,只需几十台机器就可以支撑每天数千万用户的兴趣模型更新,并且特征更新速度非常快,基本可以做到准实时。这套系统从上线一直使用至今。 当然,我们也发现并非所有用户标签都需要流式系统。像用户的性别、年龄、常驻地点这些信息,不需要实时重复计算,就仍然保留daily更新。 四、评估分析 上面介绍了推荐系统的整体架构,那么如何评估推荐效果好不好? 有一句我认为非常有智慧的话,“一个事情没法评估就没法优化”。对推荐系统也是一样。 事实上,很多因素都会影响推荐效果。比如侯选集合变化,召回模块的改进或增加,推荐特征的增加,模型架构的改进在,算法参数的优化等等,不一一举例。 评估的意义就在于,很多优化最终可能是负向效果,并不是优化上线后效果就会改进。 全面的评估推荐系统,需要完备的评估体系、强大的实验平台以及易用的经验分析工具。 所谓完备的体系就是并非单一指标衡量,不能只看点击率或者停留时长等,需要综合评估。 很多公司算法做的不好,并非是工程师能力不够,而是需要一个强大的实验平台,还有便捷的实验分析工具,可以智能分析数据指标的置信度。 一个良好的评估体系建立需要遵循几个原则,首先是兼顾短期指标与长期指标。我在之前公司负责电商方向的时候观察到,很多策略调整短期内用户觉得新鲜,但是长期看其实没有任何助益。 其次,要兼顾用户指标和生态指标。既要为内容创作者提供价值,让他更有尊严的创作,也有义务满足用户,这两者要平衡。 还有广告主利益也要考虑,这是多方博弈和平衡的过程。 另外,要注意协同效应的影响。实验中严格的流量隔离很难做到,要注意外部效应。 强大的实验平台非常直接的优点是,当同时在线的实验比较多时,可以由平台自动分配流量,无需人工沟通,并且实验结束流量立即回收,提高管理效率。 这能帮助公司降低分析成本,加快算法迭代效应,使整个系统的算法优化工作能够快速往前推进。 这是头条A/B Test实验系统的基本原理。首先我们会做在离线状态下做好用户分桶,然后线上分配实验流量,将桶里用户打上标签,分给实验组。 举个例子,开一个10%流量的实验,两个实验组各5%,一个5%是基线,策略和线上大盘一样,另外一个是新的策略。 实验过程中用户动作会被搜集,基本上是准实时,每小时都可以看到。但因为小时数据有波动,通常是以天为时间节点来看。动作搜集后会有日志处理、分布式统计、写入数据库,非常便捷。 在这个系统下工程师只需要设置流量需求、实验时间、定义特殊过滤条件,自定义实验组ID。系统可以自动生成:实验数据对比、实验数据置信度、实验结论总结以及实验优化建议。 当然,只有实验平台是远远不够的。线上实验平台只能通过数据指标变化推测用户体验的变化,但数据指标和用户体验存在差异,很多指标不能完全量化。 很多改进仍然要通过人工分析,重大改进需要人工评估二次确认。 五、内容安全 最后要介绍今日头条在内容安全上的一些举措。头条现在已经是国内最大的内容创作与分发凭条,必须越来越重视社会责任和行业领导者的责任。如果1%的推荐内容出现问题,就会产生较大的影响。 现在,今日头条的内容主要来源于两部分,一是具有成熟内容生产能力的PGC平台 一是UGC用户内容,如问答、用户评论、微头条。这两部分内容需要通过统一的审核机制。如果是数量相对少的PGC内容,会直接进行风险审核,没有问题会大范围推荐。 UGC内容需要经过一个风险模型的过滤,有问题的会进入二次风险审核。审核通过后,内容会被真正进行推荐。这时如果收到一定量以上的评论或者举报负向反馈,还会再回到复审环节,有问题直接下架。 整个机制相对而言比较健全,作为行业领先者,在内容安全上,今日头条一直用最高的标准要求自己。 分享内容识别技术主要鉴黄模型,谩骂模型以及低俗模型。今日头条的低俗模型通过深度学习算法训练,样本库非常大,图片、文本同时分析。 这部分模型更注重召回率,准确率甚至可以牺牲一些。谩骂模型的样本库同样超过百万,召回率高达95%+,准确率80%+。如果用户经常出言不讳或者不当的评论,我们有一些惩罚机制。 泛低质识别涉及的情况非常多,像假新闻、黑稿、题文不符、标题党、内容质量低等等,这部分内容由机器理解是非常难的,需要大量反馈信息,包括其他样本信息比对。 目前低质模型的准确率和召回率都不是特别高,还需要结合人工复审,将阈值提高。目前最终的召回已达到95%,这部分其实还有非常多的工作可以做。别平台。 如果需要机器学习视频,可以在公众号后台聊天框回复【机器学习】,可以免费获取编程视频 。 你可能还喜欢 数学在机器学习中到底有多重要? AI 新手学习路线,附上最详细的资源整理! 提升机器学习数学基础,推荐7本书 酷爆了!围观2020年十大科技趋势 机器学习该如何入门,听听过来人的经验! 长按加入T圈,接触人工智能 觉得内容还不错的话,给我点个“在看”呗 本篇文章为转载内容。原文链接:https://blog.csdn.net/itcodexy/article/details/109574173。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-13 09:21:23
324
转载
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 ◆男性占97%,人均月薪3500元 ◆58%的软件人在25岁以下,48%在本领域工作不满3年 ◆重点院校、本科、计算机专业开发者,占据着这个行业的主流 ◆c/c++、java使用人数最多,c居二,delphi位列第三 ◆企业信息化、通领域为人气最旺的两大热点 ◆31%的中小民营软件公司容纳了52%的开发者 ◆北京、上海、广州、深圳四地成为中国开发人员的聚集地 …… 时间进入2004年的尾声,作为本刊主角的软件人,今年收入几何?发展态势怎样?为了全面解析2004年中国程序员的收入与发展状况,本刊特别策划了这期专题。 按照整个社会的普遍共识,软件开发者是一个高薪的职业。事实情况何?高薪高到什么程度?究竟是什么人在赚取这些高薪?影响收入的决定性因素又是什么?为了取得真实数据,本刊用了2个月的时间进行深入调查与采访,希望这篇文章能在岁末年初之际,为大家带来深入的思考。 细分市场,其实软件从业人员除了程序员外,还囊括了很多的相关职业和角色,例如技术推广人、项目负责人、技术总监等,因此,凡与软件技术相关的工作或职业,都属于本专题关注之列。 程序员薪资调查报告 “软件人,今天薪资值多少?”大型网络调查活动从2004年10月初开始,在各大软件门户站点都开展了热点调查,截止11月底,在两个月的时间里,有近13000人参与并积极讨论了这个话题。 2004年,软件业人员结构处于什么分层? 2004年,开发人员实际收入多少? 2004年,开发人员使用最多的技术是什么? 2004年,影响收入的决定性因素到底是什么? …… 围绕以上种种问题,本刊设计了相关的调查与采访题目,在分析与统计开发者基本薪资情况下,还针对被调查者的专业背景、技术、软技能、公司福利以及影响薪资的关键因素做了相应的调查。 下面就让我们进入此次调查的数据现场。 2004年中国开发者平均月薪3500元 49%的开发者月薪不足3000,54%年薪不足4万(见表1、表2)。经历软件泡沫的投资家、管理者在对待员工的薪水上更为谨慎,但对开发者而言心理上却产生比较大的落差,在大环境如此的情况下,处于弱势的开发群体需要学会如何去适应环境,调整心态。 程序员占据大壁江山,升任技术总监者凤毛麟角 从本次的调查数据来看,程序员在所有调查者中占据主流,人数为一半还多,高级程序员也占了20%,这也是为什么开发者薪资普遍不高的主要原因之一。曾经业界大为盛行的国内缺乏高层次的软件人才的说法,这里似乎可以提供实在而有力的数据支持(见表3、表4)。 另外,从本次调查还得到了一个趋势:在做了3-5年的程序开发工作后,开始产生一定的人员分流现象。从有一定技术能力的程序员开始,到根据自己兴趣与爱好的二次择业,有相当部分的人员脱离编码一线,开始跨入技术主管、项目经理、技术支持、市场推广等角色。 不满者过半,普遍认为薪水太低 调查显示只有4%的人对薪水比较满意,近64%的人认为自己的薪水与社会同等能力开发人员相比偏低,这可以看出软件泡沫对开发人员造成的心理落差依然存在。人们普遍认为,软件业比较浮燥,所处其中的人也比较浮燥,但现在软件产业的发展越来越趋于理性和平和,只有先调整好自己的心态,平和地从基本功练起,薪水的价值才可能越来越得到不断提升。 软件开发,让女性走开 表5数据表明,开发者世界是一块绝对属于男性的天地,被调查者中有97%的人员属于男性。记者在采访中不止一次地发现,在软件公司中工作的女性很少,而从事一线编码工作的女性则是少之更少。一方面,软件开发这种技术创新与高挑战性、高压力的工作,男性更易于取得成果。另一方面,也有一部分中小企业对女性程序员不重视,甚至同工不同酬,也让一些希望就职此行业的女性永远地离开了这块阵地。 北京、上海、深圳、杭州成为程序员的最爱 地域对软件人员的薪资有很大的影响。北京以其政治、文化的优势集中了近19%的软件开发者,上海、深圳各占13%、10%,而杭州,以其良好的自然环境、人文环境及政府环境也吸引了5%的软件人才(见表6)。数据表明,拥有高校资源的城市先天性地占据着开发人才的绝对优势。而且,各项调查数据显示,地域也已不再是限制开发者流动的主要因素,尤其对于技术高手,他们几乎可以自由地在各大城市间来来往往。 情人虽好,糟糠之妻难下堂 哪些人在投资it企业,被调查者所在公司的规模如何?根据采访,几乎绝大多数的被调查者都将外企列在了第一选择,青睐之情溢于言表,但毕竟高高的门坎以及各种复杂因素,致使这些意愿大部分都难以实现。反而是那些遭到诸多抱怨的民营企业,尤其是占据31%的最高市场份额、员工数不足50人、管理不规范的中小软件公司,容纳了52%的开发者队伍。 c/c++、java成为翘楚,c实力强劲 调查显示,c/c++、java已是中国开发者的最爱,delphi依然延续着它的传奇之路,而c表现出了强大的后劲,相信这个微软公司推崇备至的开发利器在未来几年会如vb一样赢得开发者的信赖。 人气最旺的2大领域——企业信息化、通信 企业信息化、通信、通用软件开发、系统集成四大领域集中了目前开发者的大多数。加入wto之后,中国企业要与世界接轨,e化是必然的趋势,况且通信这个新兴行业以其门槛高、薪水高也吸引了许多开发者。企业信息化作为传统行业向网络化迈进的必然过程,容纳着很多软件人。另外,从市场角度看,移动、游戏开发、信息全三大热点领域对开发者也同样有极强诱惑力。 本科、计算机专业、部属院校大学毕业者成为中流砥柱 软件开发,并非只有计算机专业的人才能胜任,调查显示,有近40%的开发者是从其它相关或无关专业转行而来,但不可否认的是,占据60%者仍然为科班出身者。另外,尽管从来就崇尚高中毕业生就能成为软件天才,但这样的神话毕竟只是少数,支撑中国软件业的仍然是大学教育程度以上者。参与调查者中86%具有大专以上学历,另有8%的人具有硕士学历,数据表明中国开发者的整体教育水平较高。 综合实力的三大法宝:阅历、技术与沟通 59%的开发者从业期间做过的项目不超过5个,61%的人沟通能力较差,而近76%的开发者对自己比较自信,认为自己能力不弱于公司其它人员甚至更强。根据调查,在影响软件人薪资的因素中,阅历、技术强弱是决定性因素。另外,信息化时代普遍重视团队与项目整体实力,沟通能力成为影响程序员个人发展的一个重要因素。 软件人主体正处青春期 “程序员是吃青春饭的”,这个论断在本次调查中从另外一个角度得到验证。58%的软件开发者年龄不到25岁,48%的人在本领域工作时间不到3年,这些软件生力军未来5年必将成为引导中国软件发展潮流的主力军(见表18、表19)。另外,根据调查与采访,年龄在35岁左右的第二代软件人,现在已经成长为企业或项目的管理者,在各大软件公司担当着成熟、理性、有主见的软件开发带头人的角色。 待遇与福利走向正规化 有63%的公司会根据员工表现主动加薪(见表20),近80%的公司会为员工提供基本福利,如养老、医疗保险、住房补助、午餐补助等(见表21)。培训作为提升开发人员专业技能和实力的直接手段,越来越得到更多公司的重视。根据调查,项目奖金和固定假期基本成为以项目方式运作的公司的固定法宝,以鼓励和保障员工的士气和工作积极性。越来越多的中国软件企业,开始迈向规范化管理之路。 技术与眼光是决定薪水的至关要素 绝大部分被调查者都认为技术能力是决定薪资的最关键因素。但在采访过程中,却有更多的技术总监甚至公司总经理一级,认为短期内决定一个开发者薪水的因素中技术能力确实非常关键,但从长期来看,能对开发者的薪水带来长期且持久影响的,却不只是技术能力,更多的则是他本人对业界的了解度,即眼光是否开阔。这是一个很重要的信号,如果只在技术点上打转的人,除非是技术天才型,决大多数必须从综合能力等各方面来加强,而绝非技术这一点。可以说,在加强自身技术实力的前提下,开阔的视野、一定的沟通能力、自我管理与团队管理能力都对个人的发展起到至关重要的作用。(见表22) 现状解析:五维度立体定位开发者的薪资水平 结合以上调查结果以及本刊记者的深入采访,从宏观角度来看,有五个要素立体性地将软件人定位在了一定的薪资水平上。 这五个要素分别是:眼光技术、角色定位、公司性质、行业领域、地域因素。除第一、二要素是以个体原因占主体外,其他三个关键要素都取决于社会、产业、企业或公司本身的发展情况,但这些要素也不是一成不变的,在一定程度上,都是双向选择。 眼光技术是关键 一级:眼光与阅历 二级:核心技术 三级:专业与沟通 眼光开阔者得高薪 被采访者:王永刚 个人背景:软件公司cto 对于“决定薪资的最关键因素是什么”这个问题,王永刚用“是否适合职位”来回答,这一点与很多认为技术能力强就可以拿高薪的观点很不一样。他认为,多数职位分工不同,即便技术能力强但不适合职位,一样拿不到理想的薪水。他们公司在给员工定职定薪时,会与权威的咨询公司合作,从分析职位工作职责,到该职位所要求的人员素质,再到应聘员工对该职位的理解以及实际的工作情况,进行综合考虑。 专业与技术产生核心竞争力 被采访者:孙勇 个人背景:高级程序员,linux下c/c++开发 工作四年来,孙勇一直从事linux下使用c/c++进行的嵌入式开发,四年中跳过两次槽。跳槽前后的薪水变化很有意思,跳槽前月薪低年薪高,跳槽后月薪高但年薪却降了很多,原因是第一家公司项目奖金、年终分红很多,而第二家公司却没有其他方面的奖励机制。 孙勇自认为跳槽太过频繁,这样对自己技术能力的发展会产生较多的负面影响。在他看来,一个人薪资的高低终究取决于自己技术的核心竞争力,变动太大可能会造成技术上的不连续。所以孙勇说,未来五年内自己会沉浸于技术不考虑其它,目的只有一个,就是让自己更专业、更核心! 专家分析:眼光专业与核心竞争力是定位软件人层级的第一法码,其包含着很多的综合因素:专业背景、阅历、经验值、能力高下等等。趋势全球研发及资讯执行副总裁国屏认为,“技术很重要,但更重要的是市场和文化的配合。在个人的发展过程中,学习也会起到重要的作用。此外,还必须认同企业文化,具备技术、对工作、对解决问题的热情”。此外,学习能力和沟通能力也是专家们认为重要度很高的2个要素。当然,这其中,作为前提“最重要的还是兴趣,缘于自身对程序开发的热爱”,8848公司cto张研如是说。 角色大挪移 一级指标:cto、项目承包人 二级指标:架构师、部门主管/项目主管 三级指标:普通开发人员 从个人发展的角度和过程来看,这个指标应该是倒向。但从业界普遍的认识,无论是能力、阅历还是收入待遇,人们普遍对一级指标中的人员更多持赞赏态度。 被采访者:张齐生 个人背景:技术总监 起初,我只是在一家软件公司作java程序员,后来随着项目的进展以及工作时间的推移,自己的技术能力、项目管理能力也逐步加强,从最初的开发人员做到项目主管,2003年底的时候做到技术总监,工资范围也从最初的4000元到8000元,再到技术总监的万元,角色的改变确实带来了很多附加价值,当然,这个职位要求你带来的价值也会更多。 专家分析:出现这种工资结构是正常的。因为架构师、cto一般都是从普通开发人员过来的,具有深厚的业界开发经验和背景。联合信息集团移动应用开发部总经理熊军认为,开发人员必须“对自己能力的认识有一个准确的职业定位。认识自己,才能准确地职业定位,有了准确的职业定位,才能有短期、中期和长期的发展方向和动力。” 8848公司cto张研表示反对“学而优则士”、“不想当将军的士兵就不是好士兵”此类说法。同样,csdn网站、《程序员》杂志社总经理蒋涛也不建议所有程序员都向管理道路发展,因为相比之下,项目经理和cto必定具有一些独特的素质,比如沟通能力、项目管理能力,组织能力、计划能力以及产品和技术的眼光等,这些素质并不是每一个人都具备的。 公司对对碰 一级指标:外资、合资、民营大型it公司 二级指标:合资、中小软件公司 三级指标:国企、事业单位 采访中,有位叫王岩的资深开发人员一再强调,如果可能,一定要进外企。本次调查中,微软亚洲研究院,ibm研究院等外企几乎成了大部分开发人员所向往的圣地。 外企是我第一选择 被采访者:李文山 个人背景:技术支持 上海交大毕业的李文山,在校时就已经参与了很多社团活动,因此也见识了不少各种企业人员的做事风格与思想状态。外企大公司前沿的技术科研、严谨负责的处事态度都给他留下了深刻的印象。当然,丰富的培训、优厚的待遇、放心的福利也是必须考虑的因素。用他的话说,“身边全是一级的牛人,自己的发展自然就有了保障”。 中小软件企业机会多 被采访者:刘洋 个人背景:项目经理+程序员 天天加班加点,见到刘洋时他一脸的菜色,但心情不错。毕业不到一年,他就凭技术能力与管理能力当上了项目经理。虽然下面员工流动率高,但刘洋的薪水却是老板亲自钦点,比起毕业的同班同学绰绰有余。从项目最初的客户谈判、到中间执行,再到最后的交工,刘洋什么都做过,因此也锻炼得几乎成了全能手。对于未来,他希望公司业务做大后,能再规范一些,当然,随着公司的成长,自己上升的空间也很大。 三企走遍 被采访者:阿蒙(vchome.net) 个人背景:6年,通信行业,珠海 我很幸运,毕业时就进了美资软件公司,从事系统软件的开发工作,主要应用c/c++、x86汇编、mips汇编、ddk、sdk等技术,年薪四万多。在这家外企工作两年后,技术与处事能力大有提高,但开始心生厌倦,总觉得外面的世界很精彩。后来有一家从事通信软件产品开发的公司,答应年薪翻倍,一年后可走上管理层,怦然心动后就去新公司报到了。一年后,如愿以偿地走上管理层,两年后,技术管理能力以及行业业务能力有了质的飞跃,也越来越发现这个行业有前途,于是与朋友开始策划开公司,资金融到后就轰轰烈烈地创业了。没日没干了一年,由于资金与市场的原因,公司over,只好灰溜溜地去一家香港合资公司继续打工,仍做管理层。 我的感觉是,外企有一整套规章制度,薪金制度也较为完善,工作考评有客观的数值:月工作计划与总结、季度工作考核、上司的总体评价等,这些考核都很详细,细到完成的代码量、文档数、提过什么建议等等。国内企业也有计划与考核,但更多的是主观态度,而对工作的效果与过程并不具体细化,人际关系、表达能力等往往起着很微妙的关键作用。当然国内企业也有很多优点,比如制度灵活。 专家点评:人才的争夺,一方面是卯足了劲准备抢占有利地势和环境的个人开发者,另一方面,企业间的人才争夺战越演越烈。在此情况下,为了吸引国内的高素质人才,不少外企纷纷在中国开设研究院,走“曲线救国”道路。根据一份猎头资料,摩托罗拉研发中心、松下电器中国研究开发公司、ibm中国研究中心、朗讯公司贝尔实验室、微软中国研究院都是猎取高级科研、管理人才的大头。外企与外企、外企与国企、国企与民企,这个三角关系,虽然在早几年优劣非常明显,但现在,这种差距正在明显缩小。具体适合哪个企业,围城内外其实也并不是三重天(见下页表23)。 热点行业易淘金 一级推荐:移动开发、游戏开发 二级推荐:安全领域、企业信息化 三级推荐:通用软件、系统平台、项目开发等 专家点评:出现这种趋势主要是由市场对软件人才的供求决定的,因为目前在移动和游戏领域开发人员确实比较少,所以相对而言,他们的薪资较高,这就是所谓的“奇货可居”。但是,目前市场在成长,这些新兴或热点领域的开发人员数量也在逐渐增加,当达到一个平衡点时,他们的工资也会随之下降,这主要由市场对人才的供求关系决定。不建议开发人员轻易放弃自己原有的开发领域花大量时间和精力投向自己不熟悉的领域。 所以,熊军认为:这两个行业方向的长线发展看好,也需要更多的开发人员,但是年轻人都要根据自己的兴趣爱好、思维模式、技术能力选择更适合自己的行业方向,而且也有很多更有潜力的方向,建议年轻人从长远考虑。 地域火拼 一级指标:北京、上海 二级指标:深圳、杭州、广州 三级指标:成都、武汉、大连等 绝大多数的软件从业人员集中在北京、上海、广州和深圳四大城市,其中尤以北京的人数最为集中,但在另一项相关的调查中,上海却是程序员最向往的城市。在本次收入调查中,北京、上海的工资较高。武汉稍低于成都。 地域不同,薪资有别 被采访者:青润 个人背景:5年,电信行业、软件企业服务 我本人在北京、上海、深圳、成都四地都曾工作过。我基本上这样认为,对于刚刚大学毕业的软件人员,工资情况是这样:成都1500-2000元/月,上海2000元/月,深圳2000-2500元/月,北京2000-2500元/月。工作几年后,以成都系数为1来计,上海和其他地方为1.3-1.5倍于成都的收入。差异主要也是因为生活成本造成的。 相比而言,北京具有王者气氛,有着俯瞰全国的实力和影响力。上海是经济驱动的城市。深圳对人的友好度最好,它的优点是有各种各样的新技术公司,缺点是缺乏大公司的支撑。好山好水的成都,虽起步了很多软件公司,但大都在出川后倒下了,或者只是长居四川,足少出户,感觉比较舒适和懒散。 安逸的成都竞争的北京 被采访者:夏桅 个人背景:。net开发人员 夏桅毕业之后就来到北京从事软件开发工作。但他时常怀念起成都的生活,那里的山,那里的水,还有怡然自得的成都人都给他留下了深刻的印象。 但夏桅还是不后悔。一方面,安逸的环境对自己发展不利,适度的竞争可以发掘自身的潜力。而且,眼界开阔了,薪水也高不少。当然,在北京的生活绝对说不上舒服,但机会多,可有多种选择,极大地改观了自己的现状。 一眼可以看到头的武汉,但我喜欢 被采访者:刘如宁 个人背景:大学教师、项目主管 在武汉工作了10多年,刘如宁感觉还是比较惬意。比收入,武汉可能还不如成都,更别提北京和上海,但武汉的生活成本比较低,几块钱就够一天的伙食了。在高校担当大学教师的刘如宁,科研任务不重,而且还有足够的时间去外面承接项目,用自己喜欢的软件开发技术赚取外快。“我不是一个特别喜欢接受挑战的人,这种做自己喜欢的事情、宁静而富裕的生活,我还是比较满足”,有房、有车,生活安定富足的刘如宁如是说。 专家点评:比“营利”,必须是一个闭环。有收入比较,还得有支出比较,两者对比后才是最终收获。在地域这个问题上,大城市,确实收入比较高,但相对的,生活成本也较高。 趋势全球研发及资讯执行副总裁梁国屏表示,趋势的薪资结构体系在全世界都是一样的,具体数值要根据各地的市场来调整。比如一个经理,他的等级可能是10,那么不论在中国、日本还是美国,他的等级都是10.但这个等级的薪水具体是多少,就要看当地的市场了,趋势会和当地的薪资调查单位合作,来确定系数,然后计算出具体的薪水。 除薪水外,地域的附加价值会更重要一些。第一,对于技术发展比较迅速的it业,在大城市,整体的环境和氛围相对会好一些,例如在北京和上海等地,几乎每天都会有技术论坛、开发者大会、大厂商的开发日、各领域大师的巡回讲座等。其次,作的机会也会比较多,因为集中了各种类型的公司和企业,总会找到适合你条件的合适职位和选择。第三,可以参与比较大的技术团体,形成独特的生活与社交圈。用8848公司cto张研的话来说,“如果周围都是高手,你不是高手也难”,所以地域对人影响最大的是提供了一个环境,其次才是机会和薪水。 对此,telelogic公司北方区总经理任群力建议说,“如果开发人员能够善于利用互联网,并有决心多学习,这种地域差异会得到弱化。” 我拿青春赌明天 在本次专题组织中,大部分被采访人都明确表示,自己会在软件业领域一直奋斗下去,因为从中得到了很多的快乐与激情。但明天是否一定会更好,这需要从两个角度去考虑:一是从个人角度讲,年轻的软件人一定要有个人职业的规划,而且这种规划要从自己特点或专长出发,与当前业界相适应。另外,更重要的是,个人发展到什么程度,还需要同整个软件大环境和社会环境挂钩。 个人职业要规划 现在广州做了4年delphi/c行业开发、年薪10万的王旋说,“工作后所得到的收获就是,学习和工作要有相对明确的目标,不能因为一时心动而去学习某一技术。在真正下决定之前,我通常会考虑更多因素,包括长期的发展、个人路线的规划、需要付出的代价、可能遇到的困难以及解决的办法等等,在决定后还会制定更加明确的计划,包括短期、中期和长期的,身边可以利用到的资源,以及每一个阶段是怎么过渡到更高阶段的计划。” 现在,越来越多的在职人员意识到,未来的职业细分市场中,只有在某一领域确实比较深入、具有专长和资源的人会得到企业的重视,浪里淘沙勇者胜。 中国软件业面临困境 中国的软件业发展目前面临两难境地。上至国家,下至各城市都给予了相当的政策优惠,但整体软件业的发展却一直雷声大,雨点小。对此,北航软件学院院长孙伟忧心忡忡,“很多人从心里看不起印度,但印度的软件业却有数家2万、3万员工规模的大企业,放眼中国,规模最大的东软集团、用友公司,真正的软件开发者也不过两、三千人,这种差别太巨大了,我们一定要好好思考,中国的软件业究竟出了什么问题?” 对此,很多专家认为,中国软件业已经面临一个新的转折点,随着信息化在各行各业的深入运用,软件业有机会深度专业化,由边缘而进入核心,从而形成以深度专业化为特征的核心竞争力。无论个人还是公司,我们都有幸在第一时间站在了软件业这块前沿阵地,但明天是否会更好,还有待于中国软件业的整体发展,在这颇为沉闷的时刻,我们期望“让暴风雨来得更猛烈些吧”! 参考资料:http://www.w-training.com/viewc.asp?id=23922 ====================================================== 在最后,我邀请大家参加新浪APP,就是新浪免费送大家的一个空间,支持PHP+MySql,免费二级域名,免费域名绑定 这个是我邀请的地址,您通过这个链接注册即为我的好友,并获赠云豆500个,价值5元哦!短网址是http://t.cn/SXOiLh我创建的小站每天访客已经达到2000+了,每天挂广告赚50+元哦,呵呵,饭钱不愁了,\(^o^)/ 本篇文章为转载内容。原文链接:https://blog.csdn.net/javazhuanzai/article/details/7189396。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-24 09:01:26
287
转载
转载文章
...上建立加密连接并验证服务器身份。在HTTPS协议中,SSL证书能够确保客户端与服务器之间传输数据的安全性,防止信息被窃取或篡改。在本文的语境中,当网络爬虫遇到未安装有效SSL证书的网站时,会触发SSLError,此时可以通过设置requests库中的verify参数为False来忽略证书验证,从而继续爬取数据。 cookie , Cookie是一种由服务器发送到用户浏览器并存储在用户本地的小型文本文件。它通常包含识别用户会话或持久化用户状态的信息,如登录凭证、用户偏好等。在网络爬虫应用中,模拟用户登录状态常需要利用cookie,通过在HTTP请求头中携带已登录用户的cookie信息,使得爬虫可以像真实用户那样访问受权限保护的内容。 session , Session是指在一次用户会话过程中,服务器为该用户维护的状态信息集合。与cookie不同的是,session数据存储在服务器端,而客户端仅存储一个会话标识符(session ID),通常也以cookie的形式存在。在网络爬虫中使用session对象(如requests库中的requests.session()方法创建的对象),可以帮助爬虫维持与服务器之间的状态信息,实现连续操作间的关联和认证,这对于处理需要保持登录状态或进行多次交互的网页抓取任务尤为关键。
2023-03-01 12:40:55
565
转载
Docker
Docker是一种容器化方法,为了方便操控和安置Docker容器,我们可以使用Docker文件夹。Docker文件夹中包含了用来制作Docker镜像的Dockerfile文件,以及其他必要的文件。 在Dockerfile文件中,我们需要设定一系列程序用来制作Docker镜像。这些程序包括基础镜像、装置所需、粘贴文件等等。以下是一个范例Dockerfile: FROM ubuntu:latest RUN apt-get update && apt-get install -y python3 COPY . /应用 WORKDIR /应用 CMD ["python3", "app.py"] 可以看到,这个Dockerfile首先从ubuntu:latest镜像作为出发点,然后装置了Python 3,接着粘贴了此刻文件夹下的所有文件到/应用目录,并且设置/应用目录为工作目录。最后,运行了一个Python 3应用程序。这个Dockerfile是一个简单的范例,你可以根据自己的需求进行修改。 除了Dockerfile之外,Docker文件夹中还包含了其他必要的文件,比如.dockerignore文件,用来指定哪些文件不需要被粘贴到Docker容器中;以及docker-compose.yml文件,用来设定多个Docker容器之间的关系。 总的来说,Docker文件夹是Docker应用程序的重要组成部分,它能够帮助我们快速制作、操控和安置Docker容器。
2024-04-07 16:13:15
555
电脑达人
建站模板下载
...站模板,提供便捷下载服务。适用于创建展示型或信息化的软件企业官网,具有科技感与现代风格,支持灵活布局和内容定制,帮助用户快速搭建专业且富有特色的公司网站。 点我下载 文件大小:8.46 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-02-10 14:19:57
127
本站
建站模板下载
...建设,提供一站式下载服务,包含智能、工业、设备类元素,满足各类机械设备企业对前端界面的高端需求,助力打造专业且富有科技感的智能工业设备设计类网站。 点我下载 文件大小:11.96 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-10-03 19:54:37
88
本站
建站模板下载
...模板”专为汽车后市场服务,集成了汽车售后服务、改装、配件零售、维修保养等多种场景功能模块。用户可便捷下载并快速构建专业的汽车相关网站,适用于汽车售后官网、维修站点、配件电商等平台搭建,实现一站式汽车服务解决方案,提升品牌形象与用户体验。 点我下载 文件大小:6.08 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-07-16 16:03:18
116
本站
建站模板下载
...速了解医疗团队资质与服务内容。模板内含外科医生详细介绍页面,方便下载后自定义编辑,是构建专业医疗介绍网站的理想选择。 点我下载 文件大小:6.81 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-02-24 18:15:21
102
本站
建站模板下载
...于同时经营狗类商品及服务的宠物商店。模板兼顾宠物医疗与托运业务展示,提供一站式宠物生活解决方案。用户可便捷下载安装,打造既专业又温馨的宠物店线上门户。 点我下载 文件大小:1013.21 KB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-02-29 18:22:04
331
本站
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
rm -rf dir/*
- 删除目录下所有文件(慎用)。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"