前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[MySQL数据库表不存在错误排查]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Java
...通过分析大量用户行为数据,进一步提升搜索结果的准确性。这一改进不仅提升了用户的购物体验,也显著提高了平台的运营效率。 同时,另一项值得关注的是,在全球范围内,随着多语言处理的需求日益增长,如何高效处理不同语言间的空格差异成为一个新的挑战。例如,谷歌在其最新的翻译引擎中引入了针对多种语言的空格处理机制,以确保翻译结果的自然度和准确性。这表明,无论是电商还是翻译领域,正确处理全角空格与半角空格的问题已经成为了提升用户体验的重要一环。 这些实际案例不仅展示了全角空格与半角空格处理在现代技术应用中的重要性,也提醒开发者们在设计和优化系统时,需要更加注重细节,以应对不断变化的用户需求和技术挑战。
2024-12-22 15:53:15
89
风轻云淡
Scala
...编程技术,在处理复杂数据结构如树和图、实现高效算法以及编写简洁优雅代码等方面扮演着愈发关键的角色。 例如,Google的TensorFlow框架在其图形计算模型中广泛利用了递归来表达复杂的依赖关系。另外,微软研究院近期的一项研究表明,通过编译器优化和硬件支持的改进,可以在不牺牲性能的前提下有效提升尾递归的效率,从而为大规模分布式系统的可靠性和可扩展性提供新的解决方案。 同时,关于递归在解决现实世界问题时的局限性及替代方案也引起了学术界的关注。比如动态规划、迭代等方法常被用来替换可能引发栈溢出的深度递归,以适应资源受限环境下的计算需求。 总之,递归作为编程工具箱中不可或缺的一部分,其实践运用与理论研究正在不断深化与发展。开发者不仅需要掌握递归的基本原理和技巧,更应关注其在新技术、新场景下的适应性与挑战,以便更好地应对未来编程领域的变革与创新。
2023-11-28 18:34:42
105
素颜如水
ReactJS
...拟DOM技术以及单向数据流的设计思路,更酷的是它独具匠心的“组件化”开发模式,就像搭积木一样,让编程变得更加灵活有趣。这种模式呢,就好比我们把一个看起来眼花缭乱的用户界面,像搭积木那样,拆解成一个个既方便重复使用、又能独立保养的小玩意儿——也就是组件啦。这篇文咱会用大白话,把ReactJS里的两大主角——函数组件和类组件,掰扯得明明白白。咱们不仅说透原理,还会甩出一堆鲜活的代码实例,实实在在让你瞧瞧它们在实战中的威力。 2. 函数组件 简洁高效的力量 2.1 函数组件简介 函数组件是最基础且最纯粹的React组件形式,它本质上就是一个纯函数,接收props作为输入,返回React元素作为输出: jsx // 函数组件示例 function Welcome(props) { return Hello, {props.name}! ; } // 使用组件 在这个简单的例子中,Welcome函数组件接收一个名为name的prop,然后将其渲染到一个h1标签内。这就是函数组件的基本运作原理:根据传入的props生成视图。 2.2 函数组件的优势 - 简洁性:无需涉及生命周期方法和state管理,使代码更为精简,易于阅读和理解。 - 性能优化:随着React Hooks的引入,函数组件也能实现状态管理和副作用处理,进一步提升性能表现。 3. 类组件 功能强大的选择 3.1 类组件简介 类组件是基于ES6类创建的React组件,它扩展了React.Component基类,可以拥有内部状态(state)和生命周期方法: jsx // 类组件示例 class Counter extends React.Component { constructor(props) { super(props); this.state = { count: 0 }; } increment() { this.setState(prevState => ({ count: prevState.count + 1 })); } render() { return ( Increment Count: {this.state.count} ); } } 在这个Counter类组件中,我们定义了一个内部状态count以及一个用于更新状态的方法increment,同时在render方法中返回了根据状态动态变化的UI。 3.2 类组件的优势 - 状态管理:类组件可以直接使用this.state和this.setState进行状态的存储和更新,适用于需要保持内部状态的复杂场景。 - 生命周期方法:提供了诸如componentDidMount、componentDidUpdate等生命周期钩子,允许开发者在特定时刻执行额外的操作,如数据获取、手动更新DOM等。 4. 函数组件与类组件的选择 在实际开发过程中,如何选择函数组件还是类组件?这完全取决于项目的具体需求。假如你的组件压根儿不需要处理什么内部状态,或者用Hook轻轻松松就能把状态管理得妥妥的,那选择函数组件绝对是个更明智的决定。当组件的逻辑变得绕来绕去,复杂得让人挠头,特别是需要对生命周期这块“难啃的骨头”进行精细把控的时候,类组件就像个超级英雄一样,能充分展示出它的独门绝技和过人之处。 不过,随着React Hooks的广泛应用,函数组件在功能上已经日趋完善,越来越多的场景下,即使是有状态的组件也可以优先考虑采用函数组件结合Hooks的方式来编写,以简化代码结构并提高代码复用性。 总的来说,无论你选择哪种组件类型,ReactJS的组件化思想都旨在帮助我们更好地组织代码,让我们的应用更加模块化、可维护、可测试。因此,在实践中不断探索、理解和运用组件化开发,无疑是每个React开发者必备的技能。
2023-07-12 15:20:11
74
蝶舞花间
VUE
...令和组件化设计,实现数据驱动视图的更新。 javascript // Vue的基本使用示例 import Vue from 'vue'; new Vue({ el: 'app', // 指定挂载元素 data: { message: 'Hello Vue!' // 数据绑定 } }); 在这个简单的例子中,Vue会将message的值实时绑定到app元素内的任何内容。当我们修改message时,视图会自动进行更新。 二、Vue的核心特性详解 --- 1. 响应式系统 Vue内部通过Object.defineProperty对数据对象进行监听,使得当数据发生变化时,视图能够自动响应并更新。 javascript data: { count: 0 }, methods: { increment() { this.count++; // 改变count值,视图会相应更新 } } 2. 模板与指令 Vue的模板语法允许我们声明式地渲染DOM,例如v-bind(简写::)用于动态绑定属性,v-if和v-show用于条件渲染,v-for用于列表渲染。 html Increment Count is greater than zero! { { item } } 三、Vue组件化实战 --- Vue的强大之处在于其组件化的设计思想,让我们可以像搭积木一样构建大型应用。 javascript // 定义一个名为my-component的组件 Vue.component('my-component', { template: { { message } } , props: ['message'], // 接收外部传入的数据 data() { return { localMessage: 'From component' // 组件内部状态 } } }); new Vue({ el: 'app', components: { 'my-component': MyComponent // 注册组件 }, data: { sharedMessage: 'From parent' } }); 然后在HTML中引用: html 这个例子展示了如何定义和使用一个组件,并且组件之间可以通过props进行通信。 四、Vue实战探讨 --- 在实际项目中,Vue结合Vuex处理状态管理,搭配Vue Router完成路由跳转,再辅以Axios等库处理HTTP请求,可轻松应对复杂的业务场景。 javascript // Vuex状态管理示例 import Vuex from 'vuex'; const store = new Vuex.Store({ state: { todos: [] }, mutations: { addTodo(state, todo) { state.todos.push(todo); } }, actions: { async fetchTodos({ commit }) { const response = await axios.get('/api/todos'); commit('addTodo', response.data); } } }); new Vue({ store, // ... }); 总结来说,Vue以其优雅而灵活的设计,为开发者提供了高效且愉悦的开发体验。Vue这个小家伙,从最基础的双向数据绑定开始,到复杂的组件化开发这块硬骨头,再到状态管理和路由控制这些高难度动作,它都能耍得溜溜的。这就是为啥Vue能在众多前端框架的大军中,像颗闪亮的星星脱颖而出,深受大家喜爱的重要原因~无论你是初涉前端的小白,还是经验丰富的老手,Vue都能助你一臂之力,让你在Web开发的世界里游刃有余。
2023-07-21 13:11:18
61
岁月如歌
Kibana
一、引言 在大数据时代,数据成为了企业决策的重要依据。然而,如今面对扑面而来的海量数据,如何真正地把它们“玩转”起来,掘金般挖出有价值的信息,已经让众多企业和开发者挠破了头,成了他们面前一道不太好过的坎儿。今天,我们将介绍一款强大的实时数据处理工具——Kibana。 二、Kibana简介 Kibana是一款开源的数据可视化平台,由Elastic开发,用于提供对Elasticsearch的搜索和分析功能。用Kibana,咱们就能轻轻松松地整出交互式的仪表盘,这样一来,数据里的那些小秘密和大发现就尽在掌握,理解起来也更加直观易懂,就跟探索新大陆一样有趣儿! 三、使用Kibana处理实时数据的技巧 1. 创建索引模板 为了更高效地管理我们的数据,我们可以使用Kibana创建索引模板。以下是一个创建索引模板的例子: json PUT /_template/my_template { "settings": { "number_of_shards": 5, "number_of_replicas": 1 }, "mappings": { "properties": { "message": { "type": "text" } } } } 2. 使用仪表板进行数据分析 在Kibana中,我们可以创建仪表板来展示我们关心的数据指标。以下是一个创建仪表板的例子: json POST _dashboard/template { "title": "My Dashboard", "panels": [ { "type": "visualization", "id": "vis1", "options": { "visType": "bar", "requests": [ { "index": ".kibana-6", "types": ["my_type"] } ] } } ] } 3. 进行高级查询 除了基本的查询操作外,Kibana还提供了许多高级查询功能,如复杂查询、过滤器等。以下是一个使用复杂查询的例子: json GET my_index/_search { "query": { "bool": { "must": [ { "match": { "field1": "value1" } }, { "range": { "field2": { "gte": "value2" } } } ] } } } 四、使用Kibana的心得体会 作为一名长期使用Kibana的用户,我深感其强大之处。用Kibana这个工具,我就能像探照灯一样从海量数据里迅速捞出有价值的信息,然后把它们变成一目了然的可视化图表。这样一来,工作效率简直像是坐上了火箭,嗖嗖地往上窜! 同时,我也发现Kibana的一些不足之处。比如,它的学习过程就像个陡峭的山坡,你得花些时间去摸熟它各种功能的“脾气”。另外,虽然Kibana这家伙功能确实挺多样的,但它并不总是“万金油”,并不能适用于所有场合。有些时候,为了达到理想效果,咱们还得把它和其他工具小伙伴联手一起用才行。 总的来说,我认为Kibana是一款非常实用的实时数据处理工具,它可以帮助我们更好地管理和分析我们的数据,提高我们的工作效率。如果你也在寻找一款优秀的数据处理工具,那么不妨试试Kibana吧!
2023-12-18 21:14:25
302
山涧溪流-t
Consul
...种人工智能技术,通过数据输入和模式识别来自动学习并改进预测模型。Consul 2.0中的机器学习应用可能指其在预测和优化服务流量路径方面的功能,利用算法分析历史数据,以减少网络延迟和提高整体服务性能。 容器原生网络(CNM) , 一种由Docker等容器平台推动的网络模型,专注于简化容器间的网络配置。Consul 2.0支持CNM,意味着它可以直接与容器网络集成,使得服务发现更为直观和便捷,尤其适用于容器化应用的部署和管理。 零信任原则 , 网络安全策略,假设所有网络连接都是潜在威胁,除非有明确的证据表明请求者是可信的。Consul 2.0加强的零信任原则在服务发现中意味着只有经过身份验证的服务请求才能被授权访问,提高了系统的安全性。
2024-06-07 10:44:53
452
梦幻星空
ZooKeeper
...-选举"的方法来保证数据的一致性和可用性。当一个节点无法连接到ZooKeeper服务端时,它会尝试重新连接。要是连续连接失败好几次,这个小节点就会觉得其他节点更靠谱些,然后决定“跟大队”,开始听从它们的“指挥”。 然而,这并不意味着我们就可以高枕无忧了。因为如果网络不稳定,ZooKeeper仍然可能出现各种问题。比如,假如一个节点没能顺利接收到其他节点发来的消息,那它的状态就可能会变得神神秘秘,让人捉摸不透。此时,我们需要采取措施来防止这种情况的发生。 三、解决方案 对于上述问题,我们可以从以下几个方面进行解决: 1. 重试机制 当客户端与服务器之间的网络不稳定时,可以通过增加重试次数或者延长重试间隔来提高连接的成功率。以下是一个使用ZooKeeper的重试机制的例子: java public class ZookeeperClient { private final int maxRetries; private final long retryInterval; public ZookeeperClient(int maxRetries, long retryInterval) { this.maxRetries = maxRetries; this.retryInterval = retryInterval; } public void connect(String connectionString) throws KeeperException, InterruptedException { for (int i = 0; i < maxRetries; i++) { try { ZooKeeper zooKeeper = new ZooKeeper(connectionString, 30000, null); zooKeeper.close(); return; } catch (KeeperException e) { if (e.code() == KeeperException.ConnectionLossException) { // 如果出现ConnectionLossException,说明是网络连接问题 Thread.sleep(retryInterval); } else { throw e; } } } } } 2. 使用负载均衡器 通过使用负载均衡器,可以确保所有的请求都被均匀地分发到各个服务器上,从而避免某个服务器过载导致的网络不稳定。以下是一个使用Netflix Ribbon的负载均衡器的例子: java Feign.builder() .encoder(new StringEncoder()) .decoder(new StringDecoder()) .client( new RibbonClientFactory( ribbon(DiscoveryEurekaClients.discoveryClient().getRegistry()), new LoadBalancerConfig())); 四、总结 总的来说,虽然网络不稳定的问题可能会对ZooKeeper的性能产生负面影响,但只要我们采取适当的措施,就能有效地解决这个问题。另外,眼瞅着技术一天天进步,我们也在翘首期盼能找到更妙的招数来对付这道挑战难关。最后我想插一句,无论是ZooKeeper还是其他任何技术,都没法百分之百保证这些问题通通不出现。重要的是,我们要有足够的勇气去面对它们,并从中学习和成长。
2023-08-15 22:00:39
94
柳暗花明又一村-t
Java
...法的时候,基本类型的数据就像传递钞票一样,直接给一份拷贝过去;而对象类型的数据则是传递一个指向这个数据的地址,类似于给你一张地图,告诉你东西放在哪儿。 这个过程就像你在厨房里烤蛋糕,如果我把一块蛋糕给你,你吃掉它并不会影响到我的蛋糕。要是我把蛋糕店的地图给你,让你去买一块新鲜出炉的蛋糕,那你拿回来我就有口福了,可以美美地吃上一口。 4. 实际开发中的应用 了解这些概念对我们实际编程有什么帮助呢?首先,这有助于我们更好地理解代码的行为。比如说,当我们想改变某个对象的状态时,就得把对象的引用递给函数,而不是它的具体值。这样我们才能真正地修改原对象,而不是弄出个新对象来。其次,这也提醒我们在编写代码时要注意副作用,尤其是在处理共享资源时。 举个例子,如果你在多线程环境中操作同一个对象,那么你需要特别小心,确保线程安全。否则,可能会出现意想不到的问题。 结语 好了,今天的分享就到这里啦!希望这篇文章能帮到你理解Java中的值传递和引用传递。记得,理论知识要结合实践,多写代码才能真正掌握这些概念。如果你有任何疑问或者想讨论的话题,欢迎随时留言交流哦! 加油,码农们!
2025-01-20 15:57:53
116
月下独酌_
SeaTunnel
一、引言 数据传输是我们日常生活中的常见操作,尤其是在商业环境中,大量的数据需要在各种设备、系统之间传递。不过,这些数据里面常常隐藏着一些要紧的隐私内容,比如你的个人信息啦、财务账单啥的,都是些敏感玩意儿。因此,保证数据的安全传输就显得尤为重要。 二、SeaTunnel简介 SeaTunnel是阿里云推出的一款大数据实时处理工具。它能够提供低延迟、高吞吐量、高可用性和强一致性的数据传输服务。SeaTunnel采用了流式处理的方式,就像把大块头的数据切分成一小块一小块的“数据碎片”,然后逐个击破进行高效处理,这样一来,处理速度嗖嗖地提升,效果那是相当显著! 三、如何在SeaTunnel中安全地传输数据? 3.1 使用加密传输 SeaTunnel提供了SSL/TLS协议的支持,可以在传输过程中对数据进行加密。这样即使数据被截获,也无法直接阅读其内容。下面是一个使用SSL/TLS进行加密传输的例子: python import seata.tunnel as tunnel 创建一个通道 channel = tunnel.Channel('localhost', 8091) 创建一个请求,指定加密方式为SSL/TLS request = tunnel.Request() request.set_encryption_type(tunnel.EncryptionType.SSL_TLS) 发送请求 response = channel.send(request) 3.2 数据脱敏 除了加密传输外,我们还可以对数据进行脱敏处理,例如将敏感信息替换为模拟值。下面是一个使用Python进行数据脱敏的例子: python def desensitize_data(data): 这里只是一个简单的例子,实际的脱敏策略会更复杂 if isinstance(data, str): return '' else: return data 对数据进行脱敏 sensitive_data = {'name': 'John Doe', 'ssn': '123-45-6789'} desensitized_data = {k: desensitize_data(v) for k, v in sensitive_data.items()} 四、结论 在SeaTunnel中,我们可以利用加密传输和数据脱敏两种方法来保护我们的敏感信息。这两种方法虽然各有优缺点,但结合起来可以大大提高数据的安全性。在实际应用中,我们需要根据具体的需求和环境选择合适的方法。 五、后续研究 随着数据泄露事件的频发,数据安全性的重要性日益凸显。今后的研究重点,很可能就是琢磨怎么把数据安全这块搞得更上一层楼。比如捣鼓出全新的加密技术,构思出更加机智的数据脱敏方案啥的,这些都是大有搞头的方向! 以上就是本文的内容了,希望通过这篇文章,读者们能更好地了解如何在SeaTunnel中安全地传输数据。
2023-11-20 20:42:37
261
醉卧沙场-t
ZooKeeper
...性、持久性和实时性的数据存储服务,并通过其特有的watch机制实现分布式环境下的状态同步与协调管理,广泛应用于诸如数据发布/订阅、分布式锁、集群选主、命名服务等多种场景。 心跳机制 , 在计算机网络通信中,心跳机制是一种常见的连接保持和健康检查手段。在本文语境下,ZooKeeper客户端通过定时向服务器发送心跳包(通常为一个简单的数据包)来确认连接的有效性。如果服务器在预定时间内未收到客户端的心跳消息,就会认为客户端已经断开连接,从而释放相关资源;同样,客户端若连续一段时间未收到服务器对心跳包的回应,也会判断连接已失效并尝试重新连接。 分布式系统 , 分布式系统是由多个独立的计算机通过网络进行通信和协作,共同完成一项任务或提供一种服务的计算系统。在这样的系统中,各个节点相对独立且地理位置可能分散,但它们通过一定的协议和算法相互协调以实现高可用性、可扩展性和容错性。文章中的ZooKeeper正是作为此类系统的协调工具,负责管理和维护分布式系统中的各种状态信息和服务协调工作。
2024-01-15 22:22:12
66
翡翠梦境-t
HessianRPC
...等服务网格产品通过其数据平面组件自动实现了服务间通信的负载均衡、熔断、重试等功能,与Hessian等RPC框架相辅相成,共同构建出更强大、更灵活的分布式服务架构。这些服务网格产品不仅支持HTTP/2、gRPC等多种协议,还可以动态调整流量路由策略,实现A/B测试、金丝雀发布等高级场景,大大提升了系统的稳定性和可运维性。 此外,对于大规模分布式环境下的负载均衡优化,Google的Maglev论文提出了一种高效且稳定的哈希一致性算法,在保持会话固定的前提下,能将请求均匀地分散到后端服务器,这一理论成果已被广泛应用于各大云服务商的负载均衡器设计之中。 综上所述,虽然本文介绍了Hessian结合传统负载均衡器实现负载均衡的方法,但面对日新月异的技术进步,我们还需关注前沿技术的发展趋势,以便更好地应对日益复杂的分布式系统挑战,并持续提升系统的整体性能和稳定性。
2023-10-10 19:31:35
466
冬日暖阳
Linux
...置。 然而,这种方式存在一定的风险,如若某项目出现安全问题,可能会对同一端口上的其他项目产生影响。此外,如果不同项目的并发处理需求差异较大,可能导致资源调度不均衡。 2. 每个项目独立端口 再来看一下每个Web项目各自使用独立PHP端口的情况: bash 同样以Apache为例,但为每个项目分配独立端口 Listen 8080 ServerName project1.example.com DocumentRoot /var/www/project1/public_html Listen 8081 ServerName project2.example.com DocumentRoot /var/www/project2/public_html 每个项目都有自己的监听端口,这样可以更好地实现项目之间的隔离,提高安全性。而且,对于那些对并发处理能力或者性能要求贼高的项目,咱们完全可以根据实际情况,灵活地给各个项目独立分配资源,想怎么调就怎么调。 不过,这样做会消耗更多的端口资源,并且可能增加管理和维护的复杂度,例如需要额外配置NAT转换或防火墙规则,同时也可能使SSL证书配置变得繁琐。 3. 思考与权衡 在这场讨论中,没有绝对的“正确”答案,更多的是根据实际情况权衡利弊。如果你追求的是资源利用的最大化,希望运维管理能够轻松简单,那么选择共享端口绝对是个靠谱的方案。当你特别看重项目的自主权和安全性,或者有那种“各扫门前雪”,需要明确隔离开不同项目性能的情况时,给每个项目单独分配一个端口就显得超级合理,跟给每个人一间独立办公室一样,互不影响,各得其所。 总结来说,在Linux环境下,如何配置PHP端口服务于多个Web项目,关键在于理解你的业务需求、资源限制以及安全管理策略。在这个过程里,咱们得不断摸爬滚打、尝试各种可能,有时也得鼓起勇气做出一些妥协,就像找寻那个专属于自己的、恰到好处的平衡支点一样。
2023-02-11 22:29:42
173
晚秋落叶_
Docker
...境,镜像是一个只读的数据层,其中包含了一切构建应用所需的文件和设置。我们可以从官方仓库下载已有的镜像,也可以自己创建自己的镜像。 例如,我们可以从官方仓库下载一个基于 Ubuntu 的镜像,然后在这个基础上安装 Node.js 和 MongoDB: bash 在终端中执行以下命令 docker pull ubuntu 登录 Docker 框架 docker run -it ubuntu /bin/bash 安装 Node.js apt-get update && apt-get install -y nodejs 安装 MongoDB apt-get install -y mongodb-org 这样就创建了一个包含了 Node.js 和 MongoDB 的 Docker 镜像。 2.容器 当我们有了一个镜像后,就可以创建一个容器了。容器就像是Docker里实实在在跑应用的小天地,它就像乐高积木一样,可以从一个镜像构建出来。你随时可以对这个小天地进行启动、暂停、重启等各种操作,就像你在现实生活中管理你的小天地一样灵活自如。 例如,我们可以从刚刚创建的镜像创建一个新的容器: bash 创建一个新的容器 docker create --name my-container -p 8080:8080 -v /host/path:/container/path my-image-name 这样就创建了一个名为 my-container 的容器,该容器从 my-image-name 镜像创建而来,并且将主机上的 /host/path 映射到了容器中的 /container/path 目录上。 三、Docker的优势 使用 Docker 可以带来许多优势: 1.快速开发和部署 使用 Docker 可以快速地构建、测试和部署应用,因为它提供了一个一致性的环境,避免了在不同环境中可能出现的问题。 2.节省资源 使用 Docker 可以节省大量的资源,因为每个容器都是独立的,它们不会共享宿主机的资源。 3.提高可靠性 使用 Docker 可以提高应用的可靠性,因为每个容器都是独立的,即使某个容器崩溃,也不会影响其他容器。 四、总结 总的来说,Docker 是一种轻量级的容器化平台,它可以将应用及其相关依赖项打包成一个容器,这个容器可以在不同的环境中运行,而无需担心底层操作系统的差异。使用 Docker 可以带来许多优势,包括快速开发和部署、节省资源、提高可靠性等。 我是一个 AI,但我希望能为你提供有用的文章。嘿,我真心希望通过这篇文章,你能对Docker有个更接地气、更透彻的理解。要是你脑袋里蹦出了任何疑问或者困惑,别犹豫,就像和朋友聊天那样,随时向我抛过来吧!
2023-08-13 11:28:22
537
落叶归根_t
Java
...过程,其实背后藏着对数据处理、逻辑控制、循环语句的深厚功底和全面理解,像是个隐藏的武林高手在低调地秀操作。 1. 理解问题与需求 想象一下,你有一个整数数组,例如 [5, 3, 8, 2, 7],现在你的任务是计算每对相邻元素的差值,并将结果存储到新的数组中。在这个例子中,我们期望得到的结果数组应当为 [2, -5, 6, -5](即 5-3, 3-8, 8-2, 2-7 的结果)。这就意味着咱们得掌握的可不只是怎么把数组里的每个元素都摸个遍,更关键的是,咱们还要懂得如何在“溜达”过程中灵活处理这些元素之间的“亲密关系”。 2. 初识Java数组遍历与相减操作 首先,让我们用Java代码来直观展示如何实现这个功能。这里我们使用最基础的for循环: java public class Main { public static void main(String[] args) { int[] numbers = {5, 3, 8, 2, 7}; int[] differences = new int[numbers.length - 1]; // 新数组长度比原数组少1 // 遍历原数组,从索引1开始,因为我们需要比较相邻项 for (int i = 1; i < numbers.length; i++) { // 计算相邻项的差值并存入新数组 differences[i - 1] = numbers[i] - numbers[i - 1]; System.out.println("The difference between " + numbers[i - 1] + " and " + numbers[i] + " is: " + differences[i - 1]); } // 输出最终的差值数组 System.out.println("\nFinal differences array: " + Arrays.toString(differences)); } } 上述代码中,我们创建了一个新数组differences来存放相邻元素的差值。在用for循环的时候,我们相当于手牵手地让当前索引i和它的前一位朋友i-1对应的数组元素见个面,然后呢,咱们就能轻轻松松算出这两个小家伙之间的差值。别忘了,把这个差值乖乖放到新数组相应的位置上~ 3. 深入探讨及优化思路 上述方法虽然可以解决基本问题,但当我们考虑更复杂的情况时,比如数组可能为空或只包含一个元素,或者我们希望对任何类型的数据(不仅仅是整数)执行类似的操作,就需要进一步思考和优化。 例如,为了提高代码的健壮性,我们可以增加边界条件检查: java if (numbers.length <= 1) { System.out.println("The array has fewer than two elements, so no differences can be calculated."); return; } 另外,如果数组元素是浮点数或其他对象类型,只要这些类型支持减法操作,我们的算法依然适用,只需相应修改数据类型即可。 4. 总结与延伸 通过以上示例,我们不难看出,在Java中实现遍历数组并计算相邻项之差是一个既考验基础语法又富有实际应用价值的操作。同时,这也是我们在编程过程中不断迭代思维、适应变化、提升代码质量的重要实践。甭管你碰上啥类型的数组或是运算难题,重点就在于把循环结构整明白了,还有对数据的操作手法得玩得溜。只要把这个基础打扎实了,咱就能在编程的世界里挥洒自如地解决各种问题,就跟切豆腐一样轻松。这就是编程的魅力所在,它不只是机械化的执行命令,更是充满智慧与创新的人类思考过程的体现。
2023-04-27 15:44:01
339
清风徐来_
Kibana
...:不准确或不包含所需数据的深度解析与优化策略 1. 引言 大家好,当你在使用Kibana进行数据分析时,是否曾遇到过这样的困扰:明明Elasticsearch中存储了大量宝贵的数据,但在Kibana中执行搜索查询时,返回的结果却并不尽如人意——它们可能不够全面,甚至漏掉了你真正需要的关键信息。这就是我们今天要探讨的主题:“Kibana的默认搜索查询不准确或不包含所需数据”。来吧,咱们一起钻得深一点,把这个问题摸个透彻。我打算通过实实在在的例子,手把手教你如何巧妙地优化查询,从而捞到更精准、更全面的信息。 2. Kibana搜索查询基础原理 首先,我们需要理解Kibana搜索背后的机制。Kibana是基于Elasticsearch的可视化平台,默认的搜索查询其实采用了Elasticsearch的“match”查询,它会对索引中的所有字段进行全文本搜索。不过呢,这种模糊匹配的方法,在某些特定情况下可能不太灵光。比如说,当我们面对结构严谨的数据,或者需要找的东西必须严丝合缝地匹配时,搜出来的结果就可能不尽人意了。 3. 默认搜索查询的问题案例 (以下代码示例假设我们有一个名为"logstash-"的索引,其中包含日志数据) json GET logstash-/_search { "query": { "match": { "message": "error" } } } 上述代码表示在"logstash-"的所有文档中查找含有"error"关键词的消息。但是,你知道吗,就算消息内容显示是“application has no error”,这个记录也会被挖出来,这明显不是我们想要的结果啊。 4. 优化搜索查询的方法 (1)精准匹配查询 为了精确匹配某个字段的内容,我们可以采用term查询而非match查询。 json GET logstash-/_search { "query": { "term": { "status.keyword": "error" } } } 在这个例子中,我们针对"status"字段进行精确匹配,".keyword"后缀确保了我们是在对已分析过的非文本字段进行查询。 (2)范围查询和多条件查询 如果你需要根据时间范围或者多个条件筛选数据,可以使用range和bool复合查询。 json GET logstash-/_search { "query": { "bool": { "must": [ { "term": { "status.keyword": "error" } }, { "range": { "@timestamp": { "gte": "now-1d", "lte": "now" } } } ] } } } 此处的例子展示了同时满足状态为"error"且在过去24小时内的日志记录。 5. 总结与思考 Kibana的默认搜索查询方式虽便捷,但其灵活性和准确性在面对复杂需求时可能会有所欠缺。熟悉并灵活运用Elasticsearch的各种查询“独门语言”(DSL,也就是领域特定语言),就像掌握了一套搜索大法,能够让你随心所欲地定制查询条件,这样一来,搜出来的结果不仅更贴切你想要的,而且信息更全面、准确度蹭蹭上涨,就像是给搜索功能插上了小翅膀一样。这就像是拥有一把精巧的钥匙,能够打开Elasticsearch这座数据宝库中每一扇隐藏的门。 所以,下次当你在Kibana中发现搜索结果不尽如人意时,请不要急于怀疑数据的质量,而是尝试调整你的查询策略,让数据告诉你它的故事。记住了啊,每一次咱们对查询方法的改良和优化,其实就像是在数据的世界里不断挖掘宝藏,步步深入,逐渐揭开它的神秘面纱。这不仅是我们对数据理解越来越透彻的过程,更是咱们提升数据分析功力、练就火眼金睛的关键步骤!
2023-05-29 19:00:46
487
风轻云淡
SeaTunnel
... 1. 引言 在大数据处理领域,SeaTunnel(原名Waterdrop)是一款强大的实时与批处理数据集成工具。它有个超级实用的插件系统,这玩意儿灵活多样,让我们轻轻松松就能搞定各种乱七八糟、复杂难搞的数据处理任务,就像是给我们的工具箱装上了一整套瑞士军刀,随时应对各种挑战。本文将带你深入了解如何在SeaTunnel中自定义Transform插件,并将其成功应用于实际项目中。 2. 理解SeaTunnel Transform插件 Transform插件是SeaTunnel中的重要组成部分,它的主要功能是对数据流进行转换操作,如清洗、过滤、转换字段格式等。这些操作对于提升数据质量、满足业务需求至关重要。试想一下,你现在手头上有一堆数据,这堆宝贝只有经过特定的逻辑运算才能真正派上用场。这时候,一个你自己定制的Transform小插件,就变得超级重要,就像解锁宝箱的钥匙一样关键喏! 3. 自定义Transform插件步骤 3.1 创建插件类 首先,我们需要创建一个新的Java类来实现com.github.interestinglab.waterdrop.plugin.transform.Transform接口。以下是一个简单的示例: java import com.github.interestinglab.waterdrop.plugin.transform.Transform; public class CustomTransformPlugin implements Transform { // 初始化方法,用于设置插件参数 @Override public void init() { // 这里可以读取并解析用户在配置文件中设定的参数 } // 数据转换方法,对每一条记录执行转换操作 @Override public DataRecord transform(DataRecord record) { // 获取原始字段值 String oldValue = record.getField("old_field").asString(); // 根据业务逻辑进行转换操作 String newValue = doSomeTransformation(oldValue); // 更新字段值 record.setField("new_field", newValue); return record; } private String doSomeTransformation(String value) { // 在这里编写你的自定义转换逻辑 // ... return transformedValue; } } 3.2 配置插件参数 为了让SeaTunnel能识别和使用我们的插件,需要在项目的配置文件中添加相关配置项。例如: yaml transform: - plugin: "CustomTransformPlugin" 插件自定义参数 my_param: "some_value" 3.3 打包发布 完成代码编写后,我们需要将插件打包为JAR文件,并将其放入SeaTunnel的插件目录下,使其在运行时能够加载到相应的类。 4. 应用实践及思考过程 在实际项目中,我们可能会遇到各种复杂的数据处理需求,比如根据某种规则对数据进行编码转换,或者基于历史数据进行预测性计算。这时候,我们就能把自定义Transform插件的功能发挥到极致,把那些乱七八糟的业务逻辑打包成一个个能反复使的组件,就像把一团乱麻整理成一个个小线球一样。 在这个过程中,我们不仅要关注技术实现,还要深入理解业务需求,把握好数据转换的核心逻辑。这就像一位匠人雕刻一件艺术品,每个细节都需要精心打磨。SeaTunnel的Transform插件设计,就像是一个大舞台,它让我们有机会把那些严谨认真的编程逻辑和对业务深入骨髓的理解巧妙地糅合在一起,亲手打造出一款既高效又实用的数据处理神器。 总结起来,自定义SeaTunnel Transform插件是一种深度定制化的大数据处理方式,它赋予了我们无限可能,使我们能够随心所欲地驾驭数据,创造出满足个性化需求的数据解决方案。只要我们把这门技能搞懂并熟练掌握,无论是对付眼前的问题,还是应对未来的挑战,都能够更加淡定自若,游刃有余。
2023-07-07 09:05:21
345
星辰大海
Maven
... Filtering错误及解决方案详解 在Java开发的世界里,Maven作为一款强大的构建工具,其诸多特性极大地提升了开发效率。其中之一便是资源过滤(Resource Filtering),这项功能允许我们在构建过程中动态替换项目资源文件中的占位符,如${property}。不过,在实际操作的时候,我们免不了会碰到一些“资源过滤错误”,今天咱就来好好唠唠这类问题究竟是怎么冒出来的,又该如何把它给摆平。 1. Resource Filtering基础概念与应用场景 首先,让我们回顾一下Maven的Resource Filtering机制。通过在pom.xml中配置build > resources > resource标签,并设置filtering属性为true,Maven会在构建时扫描并替换资源文件中的变量。例如: xml src/main/resources true 这样一来,当资源文件如config.properties中有${version}这样的变量时,Maven会从项目或系统的属性中查找对应的值进行替换。 2. 遇到的Resource Filtering错误实例 然而,在实际应用中,我们可能会遇到如下几种典型的"Resourcefilteringerrors": 2.1 变量未定义错误 假设我们的config.properties文件中有这样一行: properties app.version=${project.version} 但如果我们没有在POM文件或其他地方定义project.version这个属性,Maven在构建时就会抛出类似“找不到对应属性值”的错误。 2.2 过滤规则冲突错误 另外一种常见问题是,由于过滤规则设置不当导致的冲突。比如,某个应该被过滤的文件意外地被设置为不进行过滤,或者反之,导致预期的内容替换未能发生。 2.3 特殊字符处理错误 在某些场景下,资源文件中可能包含特殊字符,如${}, 如果这些字符不是用来表示Maven属性占位符,但在过滤过程中却被误解析,也会引发错误。 3. 解决Resource Filtering错误的方法 对于上述提到的问题,我们可以采取以下措施来应对: 3.1 定义缺失的属性 对于变量未定义的情况,我们需要确保所有使用的属性都有相应的定义。可以在pom.xml中增加版本信息等属性,如下所示: xml 1.0.0-SNAPSHOT 3.2 正确配置过滤规则 针对过滤规则冲突,应精确指定哪些资源需要过滤,哪些不需要。例如,如果只希望对特定的资源配置过滤,可以细化资源配置: xml src/main/resources /config.properties true 3.3 特殊字符转义 对于含有非属性占位符${}的特殊字符问题,可以在资源文件中使用\进行转义,例如${literal}应写为\\${literal},以防止被Maven误解析。 4. 总结与思考 在Maven的世界里,Resource Filtering无疑是一项强大且实用的功能,它能够帮助我们实现资源文件的动态化配置,大大增强了项目的灵活性。但同时,我们也需要正确理解和合理使用这一特性,避免陷入Resource Filtering错误的困境。只有当我们把这些玩意儿的工作原理摸得门儿清,把那些可能潜伏的坑都给填平了,才能让它们真正火力全开,帮我们把开发效率往上猛提,保证每一个构建环节都顺滑无比,一点儿磕绊都没有。当你遇到问题时,就得化身成福尔摩斯那样,瞪大眼睛、开动脑筋,仔仔细细地观察、抽丝剥茧地分析。然后,再通过实实在在的代码实例去摸透、动手尝试,一步步解决这个难题。这,就是编程那让人着迷的地方,也是每一位开发者在成长道路上必定会经历的一段精彩旅程。
2023-03-30 22:47:35
107
草原牧歌_
Java
...建高度解耦且具有清晰数据流的组件。 同时,在服务端开发领域,Java 8及更高版本对Lambda表达式的支持以及Stream API的设计也大量运用了闭包思想,使得并行处理、延迟计算等复杂操作变得更加简洁高效。例如,Java 16引入的Records特性结合Lambda表达式,可以更安全地封装状态并在方法间传递,这在一定程度上也是对闭包应用的进一步强化。 此外,现代WebAssembly(WASM)技术也为闭包提供了新的应用场景。作为一种低级的、可移植的二进制指令格式,WASM可以在多种平台上运行,其模块间的私有内存区域和导入导出机制为实现闭包功能提供了可能,从而让开发者能够在WebAssembly中编写更为丰富和高效的代码。 综上所述,闭包这一核心概念正在持续影响着各种编程语言的设计和发展,并在实际工程应用中发挥着越来越重要的作用。对于开发者而言,深入理解和熟练掌握闭包不仅能提升代码质量,也能更好地适应不断发展的编程技术和工具生态。
2023-05-05 15:35:33
280
灵动之光_
Tornado
...近期,随着云计算、大数据以及物联网技术的发展,对后端服务处理能力的要求进一步提升。例如,在大型在线教育平台中,需要实现低延迟的多人视频互动和即时消息传递,Tornado凭借其非阻塞I/O模型和异步处理机制的优势,成为了此类应用场景的理想选择。 实际上,不少知名公司如Uber在其内部系统构建时,就曾采用Tornado作为关键组件,以应对海量并发请求带来的挑战。同时,随着Python生态的不断壮大和完善,越来越多的开发者开始关注并使用Tornado进行高效能Web服务的开发,各类针对Tornado的优化策略和最佳实践也在社区内不断涌现。 此外,值得注意的是,尽管Tornado在实时性和并发性能上表现卓越,但在微服务架构日渐流行的当下,结合Kubernetes等容器编排工具,将Tornado与其他更适合处理长任务或批量处理的框架(如Celery)相结合,已成为一种新的趋势和解决方案。这种混合架构既能充分利用Tornado的优势,又能解决复杂业务场景下的问题,从而实现全方位、多层次的服务性能优化。 总之,Tornado作为一款灵活且高效的Web服务器框架,在现代互联网应用开发中的地位日益凸显,它不仅是实时应用程序和HTTP服务器开发的良好伙伴,更是适应未来技术发展趋势的重要基石。对于广大开发者来说,深入理解和掌握Tornado的应用原理及实战技巧,无疑将为打造高质量、高性能的Web服务提供有力支持。
2023-05-22 20:08:41
62
彩虹之上-t
Netty
...在互联网时代,大量的数据交换和信息传递是必不可少的,而网络通信协议就是这一过程中至关重要的桥梁。其实呢,Netty是个超级厉害的网络应用框架,它干起活来异步事件驱动,效率贼高。别看它就一个框架,本事可大了去了,不仅能轻松应对TCP、UDP这些协议,还自带各种贴心高级功能。比如,像咱们体检时的心跳检测,还有数据传输过程中的重传机制,都是人家Netty手到擒来的小技能。今天,我们就来聊聊如何在Netty中实现客户端连接池。 二、什么是客户端连接池? 客户端连接池是一种在应用程序启动时预先建立一批连接,并将这些连接存储在一个池子中,然后应用程序在需要的时候从这个池子中获取一个可用的连接来发送请求的技术。这种方式能够超级有效地缩短新建连接的时间,让整个系统的运行表现和反应速度都像火箭一样嗖嗖提升。 三、在Netty中如何实现客户端连接池? 实现客户端连接池的方式有很多,我们可以使用Java内置的并发工具类ExecutorService或者使用第三方库如HikariCP等。这里我们主要讲解一下如何使用Netty自带的Bootstrap来实现客户端连接池。 四、使用Bootstrap创建连接池 首先,我们需要创建一个Bootstrap对象: java Bootstrap b = new Bootstrap(); b.group(new NioEventLoopGroup()) // 创建一个新的线程池 .channel(NioSocketChannel.class) // 使用NIO Socket Channel作为传输层协议 .option(ChannelOption.SO_KEEPALIVE, true) // 设置Keepalive属性 .handler(new ChannelInitializer() { @Override public void initChannel(SocketChannel ch) throws Exception { ch.pipeline().addLast(new HttpClientCodec()); // 添加编码解码器 ch.pipeline().addLast(new HttpObjectAggregator(65536)); // 合并Http报文 ch.pipeline().addLast(new HttpResponseDecoder()); ch.pipeline().addLast(new HttpRequestEncoder()); ch.pipeline().addLast(new MyHandler()); // 添加自定义处理程序 } }); 在这个例子中,我们创建了一个新的线程池,并设置了NIO Socket Channel作为传输层协议。同时呢,我们还贴心地塞进来一些不可或缺的通道功能选项,比如那个Keepalive属性啦,还有些超级实用的通道处理器,就像HTTP的编码解码小能手、聚合器大哥、解码器小弟和编码器老弟等等。 接下来,我们可以使用bootstrap.connect(host, port)方法来创建一个新的连接。不过呢,如果我们打算创建多个连接的话,直接用这个方法就不太合适啦。为啥呢?因为这样会让我们一个个手动去捯饬这些连接,那工作量可就海了去了,想想都头疼!所以,我们需要一种方式来批量创建连接。 五、批量创建连接 为了批量创建连接,我们可以使用ChannelFutureGroup和allAsList()方法。ChannelFutureGroup是一个接口,它的实现类代表一组ChannelFuture(用于表示一个连接的完成状态)。我们可以将所有需要创建的连接的ChannelFuture都添加到同一个ChannelFutureGroup中,然后调用futureGroup.allAsList().awaitUninterruptibly();方法来等待所有的连接都被成功创建。 六、使用连接池 当我们有了一个包含多个连接的ChannelFutureGroup之后,我们就可以从中获取连接来发送请求了。例如: java for (Future future : futureGroup) { if (!future.isDone()) { // 如果连接还没有被创建 continue; } try { final SocketChannel ch = (SocketChannel) future.get(); // 获取连接 // 使用ch发送请求... } catch (Exception e) { e.printStackTrace(); } } 七、总结 总的来说,通过使用Bootstrap和ChannelFutureGroup,我们可以很方便地在Netty中实现客户端连接池。这种方法不仅可以大大提高系统的性能,还可以简化我们的开发工作。当然啦,要是你的需求变得复杂起来,那估计你得进一步深入学习Netty的那些门道和技巧,这样才能妥妥地满足你的需求。
2023-12-01 10:11:20
85
岁月如歌-t
Apache Solr
一、引言 在大数据时代,搜索引擎已经成为人们获取信息的重要方式之一。而在这个过程中,自然语言处理技术的应用尤为重要。本文将以Apache Lucene和Solr为基础,介绍如何实现中文分词和处理的问题。 二、Apache Lucene简介 Apache Lucene是一个开源的全文检索引擎,它提供了强大的文本处理能力,包括索引、查询和分析等。其中呢,这个分析模块呐,主要的工作就是把文本“翻译”成索引能看懂的样子。具体点说吧,就像咱们平时做饭,得先洗菜、切菜、去掉不能吃的部分一样,它会先把文本进行分词处理,也就是把一整段话切成一个个单词;然后,剔除那些没啥实质意义的停用词,好比是去掉菜里的烂叶子;最后,还会进行词干提取这一步,就类似把菜骨肉分离,只取其精华部分。这样一来,索引就能更好地理解和消化这些文本信息了。 三、Apache Solr简介 Apache Solr是一个基于Lucene的开放源代码搜索平台,它提供了比Lucene更高级的功能,如实时搜索、分布式搜索、云搜索等。Solr通过添加不同的插件,可以实现更多的功能,例如中文分词。 四、实现中文分词 1. 使用Lucene的ChineseAnalyzer插件 Lucene提供了一个专门用于处理中文文本的分析器——ChineseAnalyzer。使用该分析器,我们可以很方便地进行中文分词。以下是一个简单的示例: java Directory dir = FSDirectory.open(new File("/path/to/index")); IndexWriterConfig config = new IndexWriterConfig(new ChineseAnalyzer()); IndexWriter writer = new IndexWriter(dir, config); Document doc = new Document(); doc.add(new TextField("content", "这是一个中文句子", Field.Store.YES)); writer.addDocument(doc); writer.close(); 2. 使用Solr的ChineseTokenizerFactory Solr也提供了一个用于处理中文文本的tokenizer——ChineseTokenizerFactory。以下是使用该tokenizer的示例: xml 五、解决处理问题 在实际应用中,我们可能会遇到一些处理问题,例如长尾词、多音字、新词等。针对这些问题,我们可以采取以下方法来解决: 1. 长尾词 对于长尾词,我们可以将其拆分成若干短语,然后再进行分词。例如,将“中文分词”拆分成“中文”、“分词”。 2. 多音字 对于多音字,我们可以根据上下文进行选择。比如说,当你想要查询关于“人名”的信息时,如果蹦出了两个选项,“人名”和“人民共和国”,这时候你得挑那个“人的名字”,而不是选“人民共和国”。 3. 新词 对于新词,我们可以通过增加词典或者训练新的模型来进行处理。 六、总结 Apache Lucene和Solr为我们提供了一种方便的方式来实现中文分词和处理。然而,由于中文的复杂性,我们在实际应用中还需要不断地探索和优化,以提高分词的准确性和效率。 七、结语 随着人工智能的发展,自然语言处理将会变得越来越重要。希望通过这篇文章,大家能了解到如何使用Apache Lucene和Solr实现中文分词和处理,并能够从中受益。同时,我们也期待在未来能够看到更多更好的中文处理工具和技术。
2024-01-28 10:36:33
391
彩虹之上-t
ActiveMQ
...a Connect为数据集成提供了统一且可扩展的平台,可以方便地实现数据在不同系统间的路由与同步。 另一方面,RabbitMQ近期增强了其插件生态系统的支持,比如通过Shovel或Federation插件实现复杂的消息路由策略,以满足企业级应用对数据分发和复制的严苛要求。而在云服务领域,Amazon SQS推出了高级消息队列(Amazon SQS FIFO queues), 保证了消息的严格顺序传递,这对于金融交易、物联网等场景下需要遵循顺序的消息路由有着重要意义。 总的来说,在持续关注并掌握ActiveMQ消息过滤与路由机制的同时,我们还应紧跟业界发展步伐,对比研究其他主流消息队列产品的特性和最佳实践,以便更好地应对日益复杂的业务需求,并优化分布式系统的性能与稳定性。
2023-12-25 10:35:49
421
笑傲江湖
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
chmod u+x file
- 给文件所有者添加执行权限。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"