前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[根据facet字段特性调整索引分片策略 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...新Mybatis版本特性解析:随着技术发展,Mybatis已更新至3.5.x版本,新版本引入了更多便捷的功能和优化,如支持Java 8时间API、动态SQL增强等。深入研究这些新特性将有助于开发者提升项目的性能与开发效率。 2. Spring Boot 2.X+Mybatis整合实践:Spring Boot以其简化配置、快速开发的特点广受欢迎,结合Mybatis能更高效地搭建企业级应用。阅读相关教程和案例分析,可以了解如何在Spring Boot环境中简化Mybatis的配置与集成过程。 3. Mybatis Plus:高效且强大的Mybatis工具库:作为Mybatis的增强工具,Mybatis Plus提供了众多自动化操作如CRUD、分页、性能优化等功能。关注此类资源,可帮助开发者简化繁琐工作,提高开发效率。 4. Spring Data JPA vs Mybatis:优缺点对比及适用场景探讨:在实际开发中,除了Mybatis之外,Spring Data JPA也是一个常见的持久层框架选择。通过对比两者的特性和适用场景,可以帮助开发者根据项目需求灵活选取最适合的持久层解决方案。 5. 云原生时代下的数据库服务化与ORM框架革新:随着云计算和微服务架构的普及,数据库访问方式也在不断演进。了解云数据库服务如何与ORM框架(如Mybatis)进行深度集成,以及未来可能的发展趋势,对于把握技术潮流、提升项目架构层次具有重要意义。 综上所述,通过对上述内容的学习和探索,不仅可以加深对Mybatis与Spring集成的理解和应用能力,还能紧跟技术前沿,适应不断变化的开发环境和业务需求。
2023-09-05 11:56:25
114
转载
Apache Atlas
...这个事件,包括表名、字段定义、所属数据库等信息。这么做的好处嘛,简直不要太明显!就好比给你的数据加上了一个“出生证”和“护照”,不仅能随时知道它是从哪儿来的、去过哪儿,还能记录下它一路上经历的所有变化。这样一来,管理起来就方便多了,也不用担心数据会“走丢”或者被搞砸啦! 然而,正因如此,Hook的部署显得尤为重要。要是Hook没装好,那Atlas就啥元数据也收不到啦,整个数据治理的工作就得卡在那里干瞪眼了。这也是为什么当我的Hook部署失败时,我会感到特别沮丧的原因。 --- 3. 部署失败 从错误日志中寻找线索 那么,Hook到底为什么会部署失败呢?为了找出答案,我打开了Atlas的日志文件,开始逐行分析那些晦涩难懂的错误信息。说实话,第一次看这些日志的时候,我直接傻眼了,那感觉就跟对着一堆乱码似的,完全摸不着头脑。 不过,经过一番耐心的研究,我发现了一些关键点。比如: - 依赖冲突:有些情况下,Hook可能会因为依赖的某些库版本不兼容而导致加载失败。 - 配置错误:有时候,我们可能在application.properties文件中漏掉了必要的参数设置。 - 权限不足:Hook需要访问目标系统的API接口,但如果权限配置不当,自然会报错。 为了验证我的猜测,我决定先从最简单的配置检查做起。打开atlas-application.properties文件,我仔细核对了以下内容: properties atlas.hook.kafka.enabled=true atlas.hook.kafka.consumer.group=atlas-kafka-group atlas.kafka.bootstrap.servers=localhost:9092 确认无误后,我又检查了Kafka服务是否正常运行,确保Atlas能够连接到它。虽然这一系列操作看起来很基础,但它们往往是排查问题的第一步。 --- 4. 实战演练 动手修复Hook部署失败 接下来,让我们一起动手试试如何修复Hook部署失败吧!首先,我们需要明确一点:问题的根源可能有很多,因此我们需要分步骤逐一排除。 Step 1: 检查依赖关系 假设我们的Hook是基于Hive的,那么首先需要确保Hive的客户端库已经正确添加到了项目中。例如,在Maven项目的pom.xml文件里,我们应该看到类似如下的配置: xml org.apache.hive hive-jdbc 3.1.2 如果版本不对,或者缺少了必要的依赖项,就需要更新或补充。记得每次修改完配置后都要重新构建项目哦! Step 2: 调试日志级别 为了让日志更加详细,帮助我们定位问题,可以在log4j.properties文件中将日志级别调整为DEBUG级别: properties log4j.rootLogger=DEBUG, console 这样做虽然会让日志输出变得冗长,但却能为我们提供更多有用的信息。 Step 3: 手动测试连接 有时候,Hook部署失败并不是代码本身的问题,而是网络或者环境配置出了差错。这时候,我们可以尝试手动测试一下Atlas与目标系统的连接情况。例如,对于Kafka Hook,可以用下面的命令检查是否能正常发送消息: bash kafka-console-producer.sh --broker-list localhost:9092 --topic test-topic 如果这条命令执行失败,那就可以确定是网络或者Kafka服务的问题了。 --- 5. 总结与反思 成长中的点滴收获 经过这次折腾,我对Apache Atlas有了更深的理解,同时也意识到,任何技术工具都不是万能的,都需要我们投入足够的时间和精力去学习和实践。 最后想说的是,尽管Hook部署失败的经历让我一度感到挫败,但它也教会了我很多宝贵的经验。比如: - 不要害怕出错,错误往往是进步的起点; - 日志是排查问题的重要工具,要学会善加利用; - 团队合作很重要,遇到难题时不妨寻求同事的帮助。 希望这篇文章对你有所帮助,如果你也有类似的经历或见解,欢迎随时交流讨论!我们一起探索技术的世界,共同进步!
2025-04-03 16:11:35
61
醉卧沙场
Kotlin
...非法参数异常时的应对策略和最佳实践。 Kotlin的角色与优势 Kotlin的出现,旨在解决Java语言的一些局限性,如静态类型检查、更清晰的语法、以及更好的控制流处理。在现代软件开发中,Kotlin不仅被用于构建原生Android应用,还在企业级应用、Web服务、后端开发等领域找到了自己的位置。它的类型安全性有助于减少运行时错误,使得开发过程更加高效和可靠。 面对非法参数的挑战 尽管Kotlin在设计上注重类型安全,但在实际开发中,非法参数异常仍然可能因各种原因发生,如用户输入错误、配置文件解析错误、或数据传输过程中的数据类型不匹配等。这些问题不仅影响用户体验,还可能导致应用崩溃或产生不可预测的行为。 应对策略与最佳实践 1. 输入验证:在接收外部输入时,实施严格的数据验证,确保所有参数符合预期的类型和格式。使用Kotlin的类型系统和模式匹配特性,可以实现简洁而强大的验证逻辑。 2. 类型转换与异常处理:合理利用Kotlin的类型转换和异常处理机制,如as?操作符和try-catch块,优雅地处理类型不匹配或转换失败的情况。 3. 依赖注入:采用依赖注入(DI)模式可以降低组件间的耦合度,使得在不同环境中复用代码更加容易,同时也便于进行测试和调试。 4. 单元测试与集成测试:通过编写针对不同场景的单元测试和集成测试,可以在开发早期发现并修复非法参数相关的错误,提高代码质量和稳定性。 5. 代码审查与持续集成:引入代码审查流程和自动化持续集成/持续部署(CI/CD)工具,可以帮助团队成员及时发现潜在的代码问题,包括非法参数异常的处理。 结论 在面对非法参数异常等挑战时,Kotlin提供了丰富的工具和机制,帮助开发者构建健壮、可维护的应用。通过采用上述策略和最佳实践,不仅可以有效减少错误的发生,还能提升代码的可读性和可维护性。随着Kotlin在更多领域的广泛应用,未来在处理类似问题时,开发者将能够更好地利用语言特性,实现更高的开发效率和产品质量。
2024-09-18 16:04:27
114
追梦人
MySQL
...们的权限设置。你可以根据需要修改脚本中的用户名和密码。 七、总结与思考 通过这篇文章,我们学习了如何查看MySQL中所有表的权限。从最高级别的全局权限,到某个数据库的权限,再细化到某张表的权限,每个环节都有一套对应的命令和操作方法,就跟搭积木一样,一层层往下细分,但每一步都有章可循!MySQL的权限管理系统确实有点复杂,感觉像是个超级强大的工具箱,里面的东西又多又专业。不过别担心,只要你搞清楚了最基本的那些“钥匙”和“门道”,基本上就能搞定各种情况啦,就跟玩闯关游戏一样,熟悉了规则就没什么好怕的! 在这个过程中,我一直在思考一个问题:为什么MySQL要设计这么复杂的权限系统?其实答案很简单,因为安全永远是第一位的。无论是企业级应用还是个人项目,我们都不能忽视权限管理的重要性。希望能通过这篇文章,让你在实际操作中更轻松地搞懂MySQL的权限系统,用起来也更得心应手! 最后,如果你还有其他关于权限管理的问题,欢迎随时交流!咱们一起探索数据库的奥秘!
2025-03-18 16:17:13
50
半夏微凉
Groovy
...更新还优化了内存管理策略,减少了长时间运行流水线可能引发的资源消耗问题。 与此同时,另一项值得关注的趋势是Groovy在区块链技术中的应用探索。近期,某知名金融科技公司公开了一篇关于利用Groovy构建智能合约原型的研究报告。报告指出,由于Groovy具备良好的兼容性和扩展性,它可以作为连接传统金融系统与区块链生态的重要桥梁。研究人员通过实验验证了基于Groovy实现的智能合约能够在保证安全性的前提下大幅降低开发成本,并提高了系统的可维护性。 当然,任何技术都不是完美的。尽管Groovy拥有诸多优点,但其性能瓶颈始终是一个绕不开的话题。特别是在高并发环境下,Groovy相较于Java或其他编译型语言可能会显得力不从心。为此,一些创新企业正在尝试结合Groovy与Kotlin等现代化编程语言的优势,打造混合型解决方案。这种做法既保留了Groovy的灵活性,又弥补了其在性能上的不足。 总之,无论是作为CI/CD领域的中坚力量,还是新兴技术领域的探路者,Groovy都在不断适应新的挑战并展现出旺盛的生命力。对于希望提升开发效率、优化项目管理流程的技术人员而言,深入研究Groovy的最新发展无疑具有重要意义。
2025-03-13 16:20:58
62
笑傲江湖
转载文章
...FS) 的基础操作、特性及Windows环境下的配置后,读者可能对大数据存储与处理领域的最新进展和相关技术动态产生兴趣。实际上,随着数据量的持续增长和技术迭代,HDFS也在不断发展以适应更复杂的应用场景。 近期,Apache Hadoop 3.3.0版本发布,引入了一系列新功能和改进。例如,HDFS现在支持EC(Erasure Coding)策略的进一步优化,能够在保证数据可靠性的同时,显著降低存储开销。此外,NameNode的高可用性和故障切换机制得到增强,确保了大规模集群的稳定运行。 另一方面,为应对云原生时代的挑战,Hadoop社区正积极将HDFS与Kubernetes等容器编排平台进行整合。如Open Data Hub项目就提供了在Kubernetes上部署HDFS及整个Hadoop生态系统的解决方案,使企业能够更加灵活高效地构建和管理基于云的大数据服务。 同时,对于那些寻求超越HDFS局限性的用户,可以关注到像Apache Hudi、Iceberg这样的开源项目,它们在HDFS之上构建了事务性数据湖存储层,支持ACID事务、时间旅行查询等功能,极大地丰富了大数据处理的可能性。 总之,掌握HDFS是理解和使用大数据技术的基础,而关注其演进路径以及相关的创新技术和解决方案,则有助于我们在实际应用中更好地利用HDFS及其生态系统的力量,解决日益复杂的数据管理和分析需求。
2023-12-05 22:55:20
284
转载
MemCache
...- 3.2 调整超时时间 很多时候,“服务连接超时”是因为你设置的超时时间太短了。默认情况下,MemCache的超时时间可能比较保守,你需要根据实际情况调整它。 在Java中,可以这样设置超时时间: java import net.spy.memcached.AddrUtil; import net.spy.memcached.MemcachedClient; public class MemCacheExample { public static void main(String[] args) throws Exception { // 创建MemCache客户端,设置超时时间为5秒 MemcachedClient memcachedClient = new MemcachedClient(AddrUtil.getAddresses("localhost:11211"), 5000); System.out.println("成功连接到MemCache服务器!"); } } 这里的关键是5000,表示超时时间为5秒。你可以根据实际情况调整这个值,比如改成10秒或者20秒。 --- 3.3 使用重试机制 有时候,一次连接失败并不代表MemCache服务器真的挂了。在这种情况下,我们可以加入重试机制,让程序自动尝试重新连接。 下面是一个简单的Python示例: python import time from pymemcache.client.base import Client def connect_to_memcache(): attempts = 3 while attempts > 0: try: client = Client(('localhost', 11211)) print("成功连接到MemCache服务器!") return client except Exception as e: print(f"连接失败,重试中... ({attempts}次机会)") time.sleep(2) attempts -= 1 raise Exception("无法连接到MemCache服务器,请检查配置!") client = connect_to_memcache() 在这个例子中,程序会尝试三次连接MemCache服务器,每次失败后等待两秒钟再重试。如果三次都失败,就抛出异常提示用户。 --- 3.4 监控MemCache状态 最后,建议你定期监控MemCache服务器的状态。你可以通过工具(比如MemAdmin)查看服务器的健康状况,包括内存使用率、连接数等指标。 如果你发现服务器负载过高,可以考虑增加MemCache实例数量,或者优化业务逻辑减少不必要的请求。 --- 4. 总结 服务连接超时不可怕,可怕的是不去面对 好了,到这里,关于“服务连接超时”的问题基本就说完了。虽然MemCache确实容易让人踩坑,但只要我们用心去研究,总能找到解决方案。 最后想说的是,技术这条路没有捷径,遇到问题不要急躁,多思考、多实践才是王道。希望我的分享对你有所帮助,如果你还有什么疑问,欢迎随时来找我讨论!😄 祝大家编码愉快!
2025-04-08 15:44:16
88
雪落无痕
MemCache
...,缓存的一致性、失效策略、以及缓存穿透等问题日益凸显,成为影响系统稳定性和性能的关键因素。 Memcached在云原生环境中的应用 面对上述挑战,Memcached通过其轻量级的设计和高效的数据访问特性,在云原生环境中找到了新的应用场景和优化路径。例如,结合Kubernetes和Docker容器技术,Memcached可以被方便地部署到集群中,实现资源的动态扩展和负载均衡。通过使用Kubernetes的服务发现和自动缩放功能,可以确保Memcached服务在高并发场景下保持良好的性能和稳定性。 同时,借助现代云平台提供的监控和日志服务,如Prometheus和ELK Stack,可以实时监控Memcached的运行状态,及时发现并定位性能瓶颈,实现故障快速响应和自动化优化。此外,通过集成Redisson等开源库或自定义实现,Memcached可以支持更多高级特性,如事务、订阅/发布消息机制等,进一步增强其在复杂业务场景下的适用性。 结语:持续优化与技术创新 随着云原生技术的不断发展,对分布式缓存的需求也在不断演变。Memcached作为一款成熟且灵活的缓存工具,其在云原生环境中的应用与优化,是一个持续探索和创新的过程。通过结合最新的云原生技术栈,如无服务器计算、事件驱动架构等,可以进一步挖掘Memcached的潜力,为其在现代云原生应用中的角色注入新的活力。在这个过程中,不断积累实践经验,推动技术的迭代与创新,是实现系统高效、稳定运行的关键所在。 通过深入分析云原生环境下的分布式缓存需求,以及Memcached在此场景下的应用实践,我们可以看到,技术的融合与创新是推动系统性能优化、应对复杂业务挑战的重要驱动力。随着技术的不断进步和应用场景的不断丰富,Memcached在云原生架构中的角色将会变得更加重要,为构建高性能、高可用的云原生应用提供坚实的基础。
2024-09-02 15:38:39
39
人生如戏
转载文章
...nection); 根据MSDN的说法:如果创建了 SqlDataReader 并将 CommandBehavior 设置为 CloseConnection,则关闭 SqlDataReader 会自动关闭此连接。 参考网址:http://msdn.microsoft.com/zh-cn/library/y6wy5a0f(v=vs.80).aspx 版权所有©2012,WestGarden.欢迎转载,转载请注明出处.更多文章请参阅博客http://www.cnblogs.com/WestGarden/ 转载于:https://www.cnblogs.com/WestGarden/archive/2012/06/04/2533560.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_33697898/article/details/94471782。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-18 20:09:36
92
转载
转载文章
...对执行指令做一些优化调整,目的是提高代码的执行效率,但这样的优化,有时候会带来不期望的结果。如例: void foo_update( foo new_fp ){spin_lock(&foo_mutex);foo old_fp = gbl_foo;new_fp-》a = 1;new_fp-》b = ‘b’;new_fp-》c = 100;gbl_foo = new_fp;spin_unlock(&foo_mutex);synchronize_rcu();kfee(old_fp);} 这段代码中,我们期望的是6,7,8行的代码在第10行代码之前执行。但优化后的代码并不会对执行顺序做出保证。在这种情形下,一个读线程很可能读到 new_fp,但new_fp的成员赋值还没执行完成。单独线程执行dosomething(fp-》a, fp-》b , fp-》c ) 的 这个时候,就有不确定的参数传入到dosomething,极有可能造成不期望的结果,甚至程序崩溃。可以通过优化屏障来解决该问题,RCU机制对优化屏障做了包装,提供了专用的API来解决该问题。这时候,第十行不再是直接的指针赋值,而应该改为 : rcu_assign_pointer(gbl_foo,new_fp);rcu_assign_pointer的实现比较简单,如下:define rcu_assign_pointer(p, v) \__rcu_assign_pointer((p), (v), __rcu)define __rcu_assign_pointer(p, v, space) \do { \smp_wmb(); \(p) = (typeof(v) __force space )(v); \} while (0) 我们可以看到它的实现只是在赋值之前加了优化屏障 smp_wmb来确保代码的执行顺序。另外就是宏中用到的__rcu,只是作为编译过程的检测条件来使用的。 在DEC Alpha CPU机器上还有一种更强悍的优化,如下所示: void foo_read(void){rcu_read_lock();foo fp = gbl_foo;if ( fp != NULL )dosomething(fp-》a, fp-》b ,fp-》c);rcu_read_unlock();} 第六行的 fp-》a,fp-》b,fp-》c会在第3行还没执行的时候就预先判断运行,当他和foo_update同时运行的时候,可能导致传入dosomething的一部分属于旧的gbl_foo,而另外的属于新的。这样会导致运行结果的错误。为了避免该类问题,RCU还是提供了宏来解决该问题: define rcu_dereference(p) rcu_dereference_check(p, 0)define rcu_dereference_check(p, c) \__rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)define __rcu_dereference_check(p, c, space) \({ \typeof(p) _________p1 = (typeof(p)__force )ACCESS_ONCE(p); \rcu_lockdep_assert(c, “suspicious rcu_dereference_check()” \usage”); \rcu_dereference_sparse(p, space); \smp_read_barrier_depends(); \(typeof(p) __force __kernel )(_________p1)); \})staTIc inline int rcu_read_lock_held(void){if (!debug_lockdep_rcu_enabled())return 1;if (rcu_is_cpu_idle())return 0;if (!rcu_lockdep_current_cpu_online())return 0;return lock_is_held(&rcu_lock_map);} 这段代码中加入了调试信息,去除调试信息,可以是以下的形式(其实这也是旧版本中的代码): define rcu_dereference(p) ({ \typeof(p) _________p1 = p; \smp_read_barrier_depends(); \(_________p1); \}) 在赋值后加入优化屏障smp_read_barrier_depends()。我们之前的第四行代码改为 foo fp = rcu_dereference(gbl_foo);,就可以防止上述问题。 数据读取的完整性 还是通过例子来说明这个问题: 如图我们在原list中加入一个节点new到A之前,所要做的第一步是将new的指针指向A节点,第二步才是将Head的指针指向new。这样做的目的是当插入操作完成第一步的时候,对于链表的读取并不产生影响,而执行完第二步的时候,读线程如果读到new节点,也可以继续遍历链表。如果把这个过程反过来,第一步head指向new,而这时一个线程读到new,由于new的指针指向的是Null,这样将导致读线程无法读取到A,B等后续节点。从以上过程中,可以看出RCU并不保证读线程读取到new节点。如果该节点对程序产生影响,那么就需要外部调用来做相应的调整。如在文件系统中,通过RCU定位后,如果查找不到相应节点,就会进行其它形式的查找,相关内容等分析到文件系统的时候再进行叙述。 我们再看一下删除一个节点的例子: 如图我们希望删除B,这时候要做的就是将A的指针指向C,保持B的指针,然后删除程序将进入宽限期检测。由于B的内容并没有变更,读到B的线程仍然可以继续读取B的后续节点。B不能立即销毁,它必须等待宽限期结束后,才能进行相应销毁操作。由于A的节点已经指向了C,当宽限期开始之后所有的后续读操作通过A找到的是C,而B已经隐藏了,后续的读线程都不会读到它。这样就确保宽限期过后,删除B并不对系统造成影响。 小结 RCU的原理并不复杂,应用也很简单。但代码的实现确并不是那么容易,难点都集中在了宽限期的检测上,后续分析源代码的时候,我们可以看到一些极富技巧的实现方式。 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_50662680/article/details/128449401。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-25 09:31:10
106
转载
转载文章
...效的数据存储和安全性特性。文中提到的NTFSInfo工具就是用来查看详细的NTFS分区信息,包括主文件表(MFT)、MFT区域大小与位置,以及NTFS元数据文件大小等重要信息。 Active Directory , Active Directory是Microsoft Windows Server操作系统的一部分,提供网络环境中的中央身份认证、授权与目录服务功能。管理员可以利用Active Directory管理域内的用户账户、计算机、组策略、安全设置等资源。文章提及AdRestore工具能够恢复Server 2003 Active Directory对象,表明该工具在AD故障恢复场景中有重要作用。 登录会话(Logon Sessions) , 在多用户操作系统的环境中,登录会话是指用户通过验证后,在系统上创建的一个独立的工作环境,其中包含了用户的配置、权限和其他相关状态信息。Sysinternals工具集中的LogonSessions工具则能列出当前系统上的所有活动登录会话,帮助管理员监控和管理用户登录情况。 动态磁盘分区(Dynamic Disk Partitioning) , 动态磁盘是Windows操作系统中相对于基本磁盘而言的一种更为灵活的磁盘管理方式,它可以支持诸如跨多个物理磁盘的卷扩展等功能。LDMDump工具在文章中被提及,作用是倾倒逻辑磁盘管理器在Windows 2000动态磁盘分区上的数据库内容,从而让管理员了解和分析动态磁盘的详细配置信息。
2024-01-22 15:44:41
103
转载
Hadoop
...空间?”确实,多副本策略会占用更多的磁盘空间,但它的优点远远超过这一点。先说白了就是,它能让数据更好用、更靠谱啊!再说了,在那种超大的服务器集群里头,这样的备份机制还能帮着分散压力,不让某一个地方出问题就整个崩掉。 --- 3. 实战演示 如何使用Hadoop进行跨硬件复制? 接下来,让我们动手试试看!我会通过一些实际的例子来展示Hadoop是如何完成文件跨硬件复制的。 3.1 安装与配置Hadoop 首先,你需要确保自己的环境已经安装好了Hadoop。如果你还没有安装,可以参考官方文档一步步来配置。对新手来说,建议先试试伪分布式模式,相当于在一台电脑上“假装”有一个完整的集群,方便你熟悉环境又不用折腾多台机器。 3.2 创建一个简单的文本文件 我们先创建一个简单的文本文件,用来测试Hadoop的功能。你可以使用以下命令: bash echo "Hello, Hadoop!" > test.txt 然后,我们将这个文件上传到HDFS中: bash hadoop fs -put test.txt /user/hadoop/ 这里的/user/hadoop/是HDFS上的一个目录路径。 3.3 查看文件的副本分布 上传完成后,我们可以检查一下这个文件的副本分布情况。使用以下命令: bash hadoop fsck /user/hadoop/test.txt -files -blocks -locations 这段命令会输出类似如下的结果: /user/hadoop/test.txt 128 bytes, 1 block(s): OK 0. BP-123456789-192.168.1.1:50010 file:/path/to/local/file 1. BP-123456789-192.168.1.2:50010 file:/path/to/local/file 2. BP-123456789-192.168.1.3:50010 file:/path/to/local/file 从这里可以看到,我们的文件已经被复制到了三台不同的服务器上。 --- 4. 深度解读 Hadoop的副本策略 在前面的步骤中,我们已经看到了Hadoop是如何将文件复制到不同节点上的。但是,你知道吗?Hadoop的副本策略其实是非常灵活的。它可以根据网络拓扑结构来决定副本的位置。 例如,默认情况下,第一个副本会放在与客户端最近的节点上,第二个副本会放在另一个机架上,而第三个副本则会放在同一个机架的不同节点上。这样的策略可以最大限度地减少网络延迟,提高读取效率。 当然,如果你对默认的副本策略不满意,也可以自己定制。比如,如果你想让所有副本都放在同一个机架内,可以通过修改dfs.replication.policy参数来实现。 --- 5. 总结与展望 通过今天的讨论,我们了解了Hadoop是如何通过HDFS实现文件的跨硬件复制的。虽然这个功能看似简单,但它背后蕴含着复杂的设计理念和技术细节。正是这些设计,才使得Hadoop成为了一个强大的大数据处理工具。 最后,我想说的是,学习新技术的过程就像探险一样,充满了未知和挑战。嘿,谁还没遇到过点麻烦事儿呢?有时候一头雾水,感觉前路茫茫,但这不正是探索的开始嘛!别急着放弃,熬过去你会发现,那些让人头疼的问题其实藏着不少小惊喜,等你拨开云雾时,成就感绝对让你觉得值了!希望这篇文章能给你带来一些启发,也希望你能亲自尝试一下Hadoop的实际操作,感受一下它的魅力! 好了,今天的分享就到这里啦!如果你有任何疑问或者想法,欢迎随时留言交流。让我们一起探索更多有趣的技术吧!
2025-03-26 16:15:40
98
冬日暖阳
NodeJS
...,但只要一点点尝试和调整,总会找到答案。希望这篇文章能给你带来灵感,也欢迎你在评论区分享你的想法和经验! 最后,如果你觉得这篇文章对你有帮助,记得点个赞哦!😄 --- 完
2025-05-06 16:24:48
82
清风徐来
转载文章
...服务器)进行通信,并根据接收到的时间信息调整自身系统时钟,从而在没有硬件时钟精确度限制的情况下实现高精度的时间同步。 硬件时间与系统时间 , 硬件时间是指计算机主板上实时时钟芯片(RTC)所记录的时间,即使在断电状态下,由于由主板上的电池供电,硬件时间也能持续计时。系统时间则是指操作系统内核运行时维护的时间,当系统启动时会从硬件时间获取初始值,之后以CPU时钟为基础独立运行。两者可通过特定命令(如hwclock和date)相互同步。 NTP服务 , NTP服务代表网络时间协议服务,它负责提供时间同步功能给网络中的客户端。在一个组织的局域网环境中,通常需要部署一台或多台NTP服务器来作为整个网络的时间基准源。这些服务器定期与其他更高级别的权威时间源同步,并为网络内的其他计算机、服务器和设备提供时间同步服务,以确保整个网络环境中的所有设备时间保持一致,这对于分布式计算、日志分析、事务处理等场景至关重要。在本文的语境下,由于机器只能访问局域网,所以必须确保局域网内部有可用的NTP服务器以供各设备校准时间使用。
2023-03-01 12:56:47
114
转载
Hadoop
...解决方案: 可以通过调整副本策略来改善数据本地性。比如说,默认设置下,HDFS会把文件的备份分散存到集群里的不同机器上。不过呢,如果你想让这个过程变得更高效或者更适合自己的需求,完全可以去调整那个叫dfs.replication的参数! xml dfs.replication 3 3. 磁盘I/O瓶颈 磁盘读写速度是影响HDFS性能的一个重要因素。要是你的服务器用的是那些老掉牙的机械硬盘,那读文件的速度肯定就慢得像乌龟爬了。 实验验证: 为了测试磁盘I/O的影响,可以尝试将一部分数据迁移到SSD上进行对比实验。好啦,想象一下,你手头有一堆日志文件要对付。先把它们丢到普通的老硬盘(HDD)里待着,然后又挪到固态硬盘(SSD)上,看看读取速度变了多少。是不是感觉像在玩拼图游戏,只不过这次是在折腾文件呢? 三、进阶优化技巧 经过前面的分析,我们可以得出结论:要提高HDFS的读取速度,不仅仅需要关注硬件层面的问题,还需要从软件配置上下功夫。以下是一些更高级别的优化建议: 1. 增加带宽 带宽就像是高速公路的车道数量,车道越多,车辆通行就越顺畅。对于HDFS来说,增加带宽意味着可以同时传输更多的数据块。 实际操作: 联系你的网络管理员,询问是否有可能升级现有的网络基础设施,比如更换更快的交换机或者部署新的光纤线路。 2. 调整副本策略 默认情况下,HDFS会将每个文件的三个副本均匀分布在整个集群中。然而,在某些特殊场景下,这种做法并不一定是最优解。比如说,你家APP平时就爱扎堆在那几个服务器节点上干活儿,那就可以把副本都放一块儿,这样它们串门聊天、传文件啥的就方便多了,也不用跑太远浪费时间啦! 配置修改: xml dfs.block.local-path-access.enabled true 3. 使用缓存机制 缓存就像冰箱里的剩饭,拿出来就能直接吃,不用重新加热。HDFS也有类似的机制,叫做“DataNode Cache”。打开这个功能之后啊,那些经常用到的数据就会被暂时存到内存里,这样下次再用的时候就嗖的一下快多了! 启用步骤: bash hadoop dfsadmin -setSpaceQuota 100g /cachedir hadoop dfs -cache /inputfile /cachedir 四、总结与展望 通过今天的讨论,我相信大家都对HDFS读取速度慢的原因有了更深的理解。其实,无论是网络延迟、数据本地性还是磁盘I/O瓶颈,都不是不可克服的障碍。其实吧,只要咱们肯花点心思去琢磨、去试试,肯定能找出个适合自己情况的办法。 最后,我想说的是,作为一名技术人员,我们应该始终保持好奇心和探索精神。不要害怕失败,也不要急于求成,因为每一次挫折都是一次成长的机会。希望这篇文章能给大家带来启发,让我们一起努力,让Hadoop变得更加高效可靠吧! --- 以上就是我对“HDFS读取速度慢”的全部看法和建议。如果你还有其他想法或者遇到类似的问题,请随时留言交流。咱们共同进步,一起探索大数据世界的奥秘!
2025-05-04 16:24:39
108
月影清风
Sqoop
...p的工作原理,并通过调整分隔符、换行符等参数来优化配置。 透明性 , 透明性是指Sqoop能否准确理解用户需求并按照预期方式执行任务的能力。文章中指出,当涉及多列且某些列包含复杂数据类型时,Sqoop可能无法正确识别这些数据类型而导致作业失败。此外,它不会给出明确提示,而是默默报错,让用户感到困惑。为了提高透明性,作者建议在操作前使用describe命令查看表结构,并通过指定检查列等方式确认所有字段都被正确识别。 增量作业 , 增量作业是一种通过定期更新目标目录中的数据来避免一次性加载过多数据造成性能瓶颈的方法。文章中展示了一个创建增量作业的例子,使用sqoop job命令定义了一个名为my_job的作业,用于从MySQL数据库的employees表中导入数据到HDFS的目标目录中。该作业通过指定--check-column参数检查是否有重复记录,并使用--incremental append模式追加新数据,从而实现了高效的增量数据迁移。这种方法特别适合于需要持续更新的大规模数据集。
2025-03-22 15:39:31
94
风中飘零
Redis
...:基于命名空间的隔离策略 python def acquire_namespace_lock(redis_client, namespace, lock_name, timeout=10): 构造带命名空间的锁名称 lock_key = f"{namespace}:{lock_name}" result = redis_client.set(lock_key, "locked", nx=True, ex=timeout) return bool(result) def release_namespace_lock(redis_client, namespace, lock_name): lock_key = f"{namespace}:{lock_name}" script = """ if redis.call("get", KEYS[1]) == ARGV[1] then return redis.call("del", KEYS[1]) else return 0 end """ redis_client.eval(script, keys=[lock_key], args=["locked"]) 在这个版本中,我们在锁的名字前面加上了命名空间前缀,比如orders:place_order和points:update_score。这样一来,不同业务逻辑就可以使用独立的锁,避免相互影响。 --- 5. 进阶 如何处理锁竞争与性能优化? 当然啦,现实中的分布式锁并不会总是那么顺利,有时候会出现大量请求同时争抢同一个锁的情况。这时我们可能需要引入队列机制或者批量处理的方式来降低系统的压力。 示例代码 3:使用Redis的List模拟队列 python def enqueue_request(redis_client, queue_key, request_data): redis_client.rpush(queue_key, request_data) def dequeue_request(redis_client, queue_key): return redis_client.lpop(queue_key) def process_queue(redis_client, lock_key, queue_key): while True: 先尝试获取锁 if not acquire_lock(redis_client, lock_key): time.sleep(0.1) 等待一段时间再重试 continue 获取队列中的第一个请求并处理 request = dequeue_request(redis_client, queue_key) if request: handle_request(request) 释放锁 release_lock(redis_client, lock_key) 这段代码展示了如何利用Redis的List结构来管理请求队列。想象一下,好多用户一起抢同一个东西,场面肯定乱哄哄的对吧?这时候,咱们就让他们老老实实排成一队,然后派一个专门的小哥挨个儿去处理他们的请求。这样一来,大家就不会互相“打架”了,事情也能更顺利地办妥。 --- 6. 总结与反思 兄弟们,通过今天的讨论,我相信大家都对如何在Redis中实现分布式锁有了更深刻的理解了吧?虽然Redis本身已经足够强大,但我们仍然需要根据实际需求对其进行适当的扩展和优化。比如刚才提到的命名空间隔离、队列机制等,这些都是非常实用的小技巧。 不过呢,我也希望大家能记住一点——技术永远不是一成不变的。业务越做越大,技术也日新月异的,咱们得不停地充电,学点新鲜玩意儿,试试新招数才行啊!就像今天的分布式锁一样,也许明天就会有更高效、更优雅的解决方案出现。所以,保持好奇心,勇于探索未知领域,这才是程序员最大的乐趣所在! 好了,今天就聊到这里啦,祝大家在编程的路上越走越远!如果有任何疑问或者想法,欢迎随时找我交流哦~
2025-04-22 16:00:29
59
寂静森林
转载文章
...以适应日益严格的反爬策略。例如,“Streamlink”是一款跨平台的命令行实用程序,能够从各种受保护的流媒体网站中提取并播放视频流,为研究人员提供了合法获取和处理流媒体数据的新思路。 此外,国家版权局近年来也加大了对网络侵权盗版行为的打击力度,并呼吁广大网民自觉抵制非法下载和传播他人作品的行为,倡导尊重原创、保护版权的社会风尚。在实际操作中,开发者应关注《信息网络传播权保护条例》等相关法规,确保个人或团队的研究活动既满足学术探究需求,又符合法律规定。 总之,面对流媒体视频下载与处理这一领域,我们既要掌握先进的技术方法以适应日新月异的网络环境,又要时刻保持对法律边界的敬畏之心,做到技术发展与法制建设相得益彰。
2023-12-18 11:34:00
120
转载
转载文章
...了一系列性能优化和新特性,如原生支持Temporal Tables、JSONTABLES等,对于数据库开发者和管理员来说,熟悉这些新功能将有助于提升数据管理效率并保障业务系统的稳定运行。 此外,随着云服务的普及与发展,越来越多的企业选择将数据库部署在云端,阿里云等服务商也推出了针对MariaDB的高可用集群解决方案,用户不仅可以享受到一键部署、自动备份恢复、弹性伸缩等便捷服务,还能通过精细权限管理和日志审计等功能确保数据安全合规。因此,了解和研究云环境下的数据库运维策略,对于提升企业IT基础设施水平至关重要。 同时,在数据库主从复制领域,MySQL 8.0及MariaDB的新版本中增强了GTID(全局事务标识符)功能,简化了主从配置流程,并提高了数据同步的一致性和可靠性。结合最新的数据库监控工具如Prometheus和Grafana,可以实时监测主从复制状态,及时发现并解决潜在问题,这对于构建高性能、高可用的分布式数据库架构具有重要意义。 综上所述,紧跟数据库技术发展潮流,关注MariaDB等开源数据库软件的更新动态,探索云端数据库运维实践与高可用性设计,无疑将助力企业在数字化转型过程中更好地利用数据库这一关键基础设施,以支撑更加复杂多变的业务场景需求。
2023-07-12 10:11:01
311
转载
转载文章
...racle AQ的新特性及其在微服务架构中的应用》的文章,详细解读了Oracle 19C及更高版本中AQ的改进之处,如支持JSON格式的消息负载、更灵活的多租户管理和跨数据库的分布式队列功能等。这些新特性使得AQ能够更好地适应当前流行的微服务架构,实现不同服务间高效可靠的数据传输与同步。 此外,在开源社区层面,Apache ActiveMQ Artemis作为一款广泛采用的消息中间件,也在持续演进以满足不断变化的企业需求。其与Oracle AQ的兼容性有所提升,用户现在可以在多种场景下根据实际业务需求选择适合的消息队列解决方案。 同时,对于Java开发者而言,《Java Message Service (JMS)实战》一书提供了大量关于利用JMS进行消息传递的实战案例和最佳实践,有助于读者在实际项目中更加熟练地运用JMS与Oracle AQ结合,构建高性能、高可用的消息驱动系统。 综上所述,无论是紧跟Oracle AQ的最新发展动态,还是探究开源替代方案与相关技术书籍的学习,都将帮助开发者更好地掌握消息队列技术,并将其应用于实际工作中,以提升系统的整体性能与稳定性。
2023-12-17 14:22:22
140
转载
转载文章
... key) {// 根据target对象获取mapconst map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象const depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)const objProxy = new Proxy(obj, {get: function (target, key, receiver) {return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} }) 正确的依赖收集 我们之前收集依赖的地方是在 watchFn 中: 但是这种收集依赖的方式我们根本不知道是哪一个 key 的哪一个 depend 需要收集依赖; 只能针对一个单独的 depend 对象来添加你的依赖对象; 那么正确的应该是在哪里收集呢?应该在我们调用了 Proxy 的 get 捕获器时 因为如果一个函数中使用了某个对象的 key,那么它应该被收集依赖 / 封装一个响应式函数 /let activeReactviceFn = nullfunction watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)const objProxy = new Proxy(obj, {get: function (target, key, receiver) {// 根据 target key 获取对应的 depnedconst depend = getDepend(target, key)// 给 depend 对象中添加响应式函数activeReactviceFn && depend.addDepend(activeReactviceFn)return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} }) 4.6 对 Depend 重构 两个问题: 问题一:如果函数中有用到两次 key,比如 name,那么这个函数会被收集两次 问题二:我们并不希望将添加 reactiveFn 放到 get 中,因为它是属于 Depend 的行为 所以我们需要对 Depend 类进行重构: 解决问题一的方法:不使用数组,而是使用 Set 解决问题二的方法:添加一个新的方法,用于收集依赖 // 保存当前需要收集的响应式函数let activeReactviceFn = nullclass Depend {constructor() {this.reactiveFns = new Set()}depend() {if (activeReactviceFn) {this.reactiveFns.add(activeReactviceFn)} }addDepend(reactiveFn) {this.reactiveFns.add(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }// 对象的响应式const obj = {name: 'why', // depend 对象age: 18 // depend 对象}/ 封装一个响应式函数 /function watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)const objProxy = new Proxy(obj, {get: function (target, key, receiver) {// 根据 target key 获取对应的 depnedconst depend = getDepend(target, key)// 给 depend 对象中添加响应式函数depend.depend()return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} })watchFn(function () {console.log(objProxy.name, '--------------')console.log(objProxy.name, '++++++++++++++')})objProxy.name = 'kobe'/ why --------------why ++++++++++++++kobe --------------kobe ++++++++++++++/ 4.7 创建响应式对象 目前的响应式是针对于obj一个对象的,我们可以创建出来一个函数,针对所有的对象都可以变成响应式对象 / 保存当前需要收集的响应式函数 /let activeReactviceFn = null/ 依赖收集类 /class Depend {constructor() {this.reactiveFns = new Set()}depend() {if (activeReactviceFn) {this.reactiveFns.add(activeReactviceFn)} }addDepend(reactiveFn) {this.reactiveFns.add(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }/ 封装一个响应式函数 /function watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}/ 创建响应式对象函数 /function reactive(obj) {// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)return new Proxy(obj, {get: function (target, key, receiver) {// 根据 target key 获取对应的 depnedconst depend = getDepend(target, key)// 给 depend 对象中添加响应式函数depend.depend()return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} })}const info = reactive({address: '广州市',height: 1.88})watchFn(() => {console.log(info.address, '---')})info.address = '北京市' 4.8 Vue2 响应式原理 前面所实现的响应式的代码,其实就是 Vue3 中的响应式原理: Vue3 主要是通过 Proxy 来监听数据的变化以及收集相关的依赖的 Vue2 中通过 Object.defineProerty的方式来实现对象属性的监听 可以将 reactive 函数进行如下的重构: 在传入对象时,我们可以遍历所有的 key,并且通过属性存储描述符来监听属性的获取和修改 在 setter 和 getter 方法中的逻辑和前面的 Proxy 是一致的 / 保存当前需要收集的响应式函数 /let activeReactviceFn = null/ 依赖收集类 /class Depend {constructor() {this.reactiveFns = new Set()}depend() {if (activeReactviceFn) {this.reactiveFns.add(activeReactviceFn)} }addDepend(reactiveFn) {this.reactiveFns.add(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }/ 封装一个响应式函数 /function watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}/ 创建响应式对象函数 /function reactive(obj) {Object.keys(obj).forEach((key) => {let value = obj[key]Object.defineProperty(obj, key, {get: function () {const dep = getDepend(obj, key)dep.depend()return value},set: function (newValue) {value = newValueconst dep = getDepend(obj, key)dep.notify()} })})return obj}const info = reactive({address: '广州市',height: 1.88})watchFn(() => {console.log(info.address, '---')})info.address = '北京市' 本篇文章为转载内容。原文链接:https://blog.csdn.net/wanghuan1020/article/details/126774033。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-11 12:37:47
680
转载
转载文章
...作系统必须具备的根本特性。我们的系统发展到现在,安全性能上当然不可能与专业系统同日而语,但该做到的,系统内核都应该努力完善。前几期课程,我们给系统内核增加了中断处理,于是当应用程序妄图执行特权指令,想要染指内核运行时,中断会把程序强行切断,内核从中断中重新获得CPU的执行权限。 虽说恶意用户程序难以攻击内核,但是系统当前还存在一个漏洞,使得恶意程序能取攻击另一个程序,我们看看这个问题到底是怎么实现的。我们先在内核C语言部分做简单修改,把原来的cmd_hlt函数改为cmd_execute_program: nt show_pos = 179;void cmd_execute_program(char file) {io_cli();struct Buffer appBuffer = (struct Buffer)memman_alloc(memman, 16);struct TASK task = task_now();task->pTaskBuffer = appBuffer;file_loadfile(file, appBuffer);struct SEGMENT_DESCRIPTOR gdt =(struct SEGMENT_DESCRIPTOR )get_addr_gdt();//select is multiply of 8, divided by 8 get the original valueint code_seg = 21 + (task->sel - first_task_cons_selector) / 8;//change hereint mem_seg = 30 + (task->sel - first_task_cons_selector) / 8;//22;char p = intToHexStr(mem_seg);showString(shtctl, sht_back, 0, show_pos, COL8_FFFFFF, p); show_pos += 16;set_segmdesc(gdt + code_seg, 0xfffff, (int) appBuffer->pBuffer, 0x409a + 0x60);//new memory char q = (char ) memman_alloc_4k(memman, 641024);appBuffer->pDataSeg = (unsigned char)q;set_segmdesc(gdt + mem_seg, 64 1024 - 1,(int) q ,0x4092 + 0x60);task->tss.esp0 = 0;io_sti();start_app(0, code_seg8,641024, mem_seg8, &(task->tss.esp0));io_cli();memman_free_4k(memman,(unsigned int) appBuffer->pBuffer, appBuffer->length);memman_free_4k(memman, (unsigned int) q, 64 1024);memman_free(memman,(unsigned int)appBuffer, 16);task->pTaskBuffer = 0;io_sti();}void console_task(struct SHEET sheet, int memtotal) {....for(;;) { ....else if (i == KEY_RETURN) {....} else if (strcmp(cmdline, "hlt") == 1) {//change herecmd_execute_program("abc.exe");}....}...} 原来的cmd_hlt函数默认加载并执行软盘中的abc.exe程序,现在我们把cmd_hlt改名为cmd_execute_program,并且函数需要传入一个字符串,用于表明要加载执行的程序名字。在该函数的代码实现中,我们使用showString函数把被加载执行的用户进程数据段所对应的全局描述符号给显示到桌面上,上面代码执行后情况如下: 我们看到,在控制台中执行hlt命令后,内核加载了用户进程,同时在控制台下方输出了一个字符串,也就是0x1E,这个数值对应的就是当前运行用户进程其数据段对应的全局描述符号。一旦有这个信息之后,另一个进程就可以有机可乘了。 接着我们在本地目录创建一个新文件叫crack.c,其内容如下: void main() {char p = (char)0x123;p[0] = 'c';p[1] = 'r';p[2] = 'a';p[3] = 'c';p[4] = 'k';p[5] = 0;} 它的目的简单,就是针对内存地址0x123处写入字符串”crack”.接着我们修改一下makefile,使得内核编译时,能把crack.c编译成二进制文件: CFLAGS=-fno-stack-protectorckernel : ckernel_u.asm app_u.asm crack_u.asm cp ckernel_u.asm win_sheet.h win_sheet.c mem_util.h mem_util.c write_vga_desktop.c timer.c timer.h global_define.h global_define.c multi_task.c multi_task.h app_u.asm app.c crack_u.asm crack.c makefile '/media/psf/Home/Documents/操作系统/文档/19/OS-kernel-win-sheet/'ckernel_u.asm : ckernel.o....crack_u.asm : crack.o./objconv -fnasm crack.o crack_u.asmcrack.o : crack.cgcc -m32 -fno-stack-protector -fno-asynchronous-unwind-tables -s -c -o crack.o crack.c 然后我们在本地目录下,把api_call.asm拷贝一份,并命名为crack_call.asm,后者内容与前者完全相同,只不过稍微有那么一点点改变,例如: BITS 32mov AX, 30 8mov DS, axcall mainmov edx, 4 ;返回内核int 02Dh.... 这里需要注意,语句: mov AX, 30 8mov DS, ax 其中30对应的就是前面显示的0x1E,这两句汇编的作用是,把程序crack的数据段设置成下标为30的全局描述符所指向的内存段一致。这就意味着crack进程所使用的数据段就跟hlt启动的进程所使用的数据段一致了!于是在crack.c中,它对内存地址为0x123的地方写入字符串”crack”,那就意味着对hlt加载用户进程的内存空间写入对应字符串! 完成上面代码后,我们在java项目中,增加代码,一是用来编译crack进程,而是把crack代码写入虚拟磁盘。在OperatingSystem.java中,将代码做如下添加: public void makeFllopy() {writeFileToFloppy("kernel.bat", false, 1, 1);....header = new FileHeader();header.setFileName("crack");header.setFileExt("exe");file = new File("crack.bat");in = null;try {in = new FileInputStream(file);long len = file.length();int count = 0;while (count < file.length()) {bbuf[count] = (byte) in.read();count++;}in.close();}catch(IOException e) {e.printStackTrace();return;}header.setFileContent(bbuf);fileSys.addHeader(header);....}public static void main(String[] args) {CKernelAsmPrecessor kernelPrecessor = new CKernelAsmPrecessor();kernelPrecessor.process();kernelPrecessor.createKernelBinary();CKernelAsmPrecessor appPrecessor = new CKernelAsmPrecessor("hlt.bat", "app_u.asm", "app.asm", "api_call.asm");appPrecessor.process();appPrecessor.createKernelBinary();CKernelAsmPrecessor crackPrecessor = new CKernelAsmPrecessor("crack.bat", "crack_u.asm", "crack.asm", "crack_call.asm");crackPrecessor.process();crackPrecessor.createKernelBinary();OperatingSystem op = new OperatingSystem("boot.bat");op.makeFllopy();} 在main函数中,我们把crack.c及其附属汇编文件结合在一起,编译成二进制文件crack.bat,在makeFllopy中,我们把编译后的crack.bat二进制数据读入,并把它写入到虚拟磁盘中,当系统运行起来后,可以把crack.bat二进制内容作为进程加载执行。 完成上面代码后,回到内核的C语言部分,也就是write_vga_desktop.c做一些修改,在kernel_api函数中,修改如下: int kernel_api(int edi, int esi, int ebp, int esp,int ebx, int edx, int ecx, int eax) {....else if (edx == 14) {sheet_free(shtctl, (struct SHEET)ebx);//change herecons_putstr((char)(task->pTaskBuffer->pDataSeg + 0x123));}....}void console_task(struct SHEET sheet, int memtotal) {....for(;;) {....else if (i == KEY_RETURN) {....else if (strcmp(cmdline, "crack") == 1) {cmd_execute_program("crack.exe");}....}....} 在kernel_api中,if(edx == 14)对应的api调用是api_closewin,也就是当用户进程关闭窗口时,我们把进程数据偏移0x123处的数据当做字符串打印到控制台窗口上,在console_task控制台进程主函数中,我们增加了对命令crack的响应,当用户在控制台上输入命令”crack”时,将crack代码加载到内核中运行。上面代码完成后,编译内核,然后用虚拟机将内核加载,系统启动后,我们现在一个控制台中输入hlt,先启动用户进程。然后点击”shift + w”,启动另一个控制台窗口,在其中输入crack,运行crack程序: 接着把点击tab键,把焦点恢复到窗口task_a,然后用鼠标点击运行hlt命令的窗口,把输入焦点切换到该控制台,然后再次点击tab键,把执行权限提交给运行hlt命令的控制台,此时点击回车,介绍用户进程启动的窗口,结果情况如下: 此时我们可以看到,运行hlt命令,执行用户进程的控制台窗口居然输出了字符串”crack”,而这个字符串正是crack.c在执行时,写入地址0x123的字符串。这就意味着一个恶意进程成功修改了另一个进程的内存数据,也相当于一个流氓程序把一只咸猪手伸到其他用户进程的裙底,蹂躏一番后留下了猥琐的证据。 那么如何防范恶意进程对其他程序的非法入侵呢,这就得使用CPU提供的LDT机制,也就是局部描述符表,该机制的使用,我们将在下一节详细讲解。更详细的讲解和代码演示调试,请参看视频: 更详细的讲解和代码调试演示过程,请参看视频 Linux kernel Hacker, 从零构建自己的内核 更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号: 本篇文章为转载内容。原文链接:https://blog.csdn.net/tyler_download/article/details/78731905。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-14 19:08:07
256
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
mount /dev/sda1 /mnt
- 挂载设备到指定目录。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"