前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[数据导出]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
ZooKeeper
...和维护分布式系统中的数据一致性。它通过提供诸如节点创建、删除、监听等功能,帮助应用程序在复杂的分布式环境下实现高效协作。文中提到,ZooKeeper内部存在一个请求队列,当队列满时会触发CommitQueueFullException。 异步API , ZooKeeper提供的两种API之一,允许客户端在发起请求后无需等待立即响应即可继续执行后续操作。这种方式可以减少请求等待时间,从而降低队列满的风险。文中举例说明了使用异步API创建节点的过程,展示了其与同步API的区别在于不阻塞主线程,适合高并发场景。
2025-03-16 15:37:44
10
林中小径
Redis
...你有个超大的储物间(数据库或者其他服务),里面塞满了各种好玩意儿(数据),想拿啥就能拿啥!嘿,想象一下,现在有一群小毛贼(服务实例)都盯上了你的那些值钱的小宝贝,可不能让他们随便进来顺手牵羊啊!所以呢,你就得准备一把“神奇的钥匙”(锁),谁要是想进去拿东西,就必须先拿到这把钥匙才行。没有钥匙?不好意思,请自觉退散吧! 为什么要用分布式锁呢?因为在线上系统里,多台机器可能会同时操作同一个资源,比如抢购商品这种场景。如果没有锁机制的话,就可能出现重复下单、库存超卖等问题。分布式锁嘛,简单说就是抢车位的游戏规则——在同一时间里,只能有一个家伙抢到那个“资源位”,别的家伙就只能乖乖排队等着轮到自己啦! 不过说起来容易做起来难啊,尤其是在分布式环境下,网络延迟、机器宕机等问题会带来各种意想不到的情况。嘿,今天咱们就来唠唠,在Redis这个超级工具箱里,怎么才能整出个靠谱的分布式锁! --- 2. Redis为什么适合用来做分布式锁? 嘿,说到Redis,相信很多小伙伴都对它不陌生吧?Redis是一个基于内存的高性能键值存储系统,速度贼快,而且支持多种数据结构,比如字符串、哈希表、列表等等。最重要的是,它提供了原子性的操作指令,比如SETNX(Set if Not Exists),这让我们能够轻松地实现分布式锁! 让我给你们讲个小故事:有一次我尝试用数据库来做分布式锁,结果发现性能特别差劲,查询锁状态的SQL语句每次都要扫描整个表,效率低得让人抓狂。换了Redis之后,简直像开了挂一样,整个系统都丝滑得不行!Redis这玩意儿不光跑得快,还自带一堆黑科技,像什么过期时间、消息订阅啥的,这些功能简直就是搞分布式锁的神器啊! 所以,如果你也在纠结选什么工具来做分布式锁,强烈推荐试试Redis!接下来我会结合实际案例给你们展示具体的操作步骤。 --- 3. 实现分布式锁的基本思路 首先,我们要明确分布式锁需要满足哪些条件: 1. 互斥性 同一时刻只能有一个客户端持有锁。 2. 可靠性 即使某个客户端崩溃了,锁也必须自动释放,避免死锁。 3. 公平性 排队等待的客户端应该按照请求顺序获取锁。 4. 可重入性(可选) 允许同一个客户端多次获取同一个锁。 现在我们就来一步步实现这些功能。 示例代码 1:最基本的分布式锁实现 python import redis import time def acquire_lock(redis_client, lock_key, timeout=10): 尝试加锁,设置过期时间为timeout秒 result = redis_client.set(lock_key, "locked", nx=True, ex=timeout) return bool(result) def release_lock(redis_client, lock_key): 使用Lua脚本来保证解锁的安全性 script = """ if redis.call("get", KEYS[1]) == ARGV[1] then return redis.call("del", KEYS[1]) else return 0 end """ redis_client.eval(script, keys=[lock_key], args=["locked"]) 这段代码展示了最基础的分布式锁实现方式。我们用set命令设置了两个参数:一个是NX,意思是“只在key不存在的时候才创建”,这样就能避免重复创建;另一个是EX,给这个锁加了个过期时间,相当于设了个倒计时,万一客户端挂了或者出问题了,锁也能自动释放,就不会一直卡在那里变成死锁啦。最后,解锁的时候我们用了Lua脚本,这样可以保证操作的原子性。 --- 4. 如何解决锁的隔离性问题? 诶,说到这里,问题来了——如果两个不同的业务逻辑都需要用到同一个锁怎么办?比如订单系统和积分系统都想操作同一个用户的数据,这时候就需要考虑锁的隔离性了。换句话说,我们需要确保不同业务逻辑之间的锁不会互相干扰。 示例代码 2:基于命名空间的隔离策略 python def acquire_namespace_lock(redis_client, namespace, lock_name, timeout=10): 构造带命名空间的锁名称 lock_key = f"{namespace}:{lock_name}" result = redis_client.set(lock_key, "locked", nx=True, ex=timeout) return bool(result) def release_namespace_lock(redis_client, namespace, lock_name): lock_key = f"{namespace}:{lock_name}" script = """ if redis.call("get", KEYS[1]) == ARGV[1] then return redis.call("del", KEYS[1]) else return 0 end """ redis_client.eval(script, keys=[lock_key], args=["locked"]) 在这个版本中,我们在锁的名字前面加上了命名空间前缀,比如orders:place_order和points:update_score。这样一来,不同业务逻辑就可以使用独立的锁,避免相互影响。 --- 5. 进阶 如何处理锁竞争与性能优化? 当然啦,现实中的分布式锁并不会总是那么顺利,有时候会出现大量请求同时争抢同一个锁的情况。这时我们可能需要引入队列机制或者批量处理的方式来降低系统的压力。 示例代码 3:使用Redis的List模拟队列 python def enqueue_request(redis_client, queue_key, request_data): redis_client.rpush(queue_key, request_data) def dequeue_request(redis_client, queue_key): return redis_client.lpop(queue_key) def process_queue(redis_client, lock_key, queue_key): while True: 先尝试获取锁 if not acquire_lock(redis_client, lock_key): time.sleep(0.1) 等待一段时间再重试 continue 获取队列中的第一个请求并处理 request = dequeue_request(redis_client, queue_key) if request: handle_request(request) 释放锁 release_lock(redis_client, lock_key) 这段代码展示了如何利用Redis的List结构来管理请求队列。想象一下,好多用户一起抢同一个东西,场面肯定乱哄哄的对吧?这时候,咱们就让他们老老实实排成一队,然后派一个专门的小哥挨个儿去处理他们的请求。这样一来,大家就不会互相“打架”了,事情也能更顺利地办妥。 --- 6. 总结与反思 兄弟们,通过今天的讨论,我相信大家都对如何在Redis中实现分布式锁有了更深刻的理解了吧?虽然Redis本身已经足够强大,但我们仍然需要根据实际需求对其进行适当的扩展和优化。比如刚才提到的命名空间隔离、队列机制等,这些都是非常实用的小技巧。 不过呢,我也希望大家能记住一点——技术永远不是一成不变的。业务越做越大,技术也日新月异的,咱们得不停地充电,学点新鲜玩意儿,试试新招数才行啊!就像今天的分布式锁一样,也许明天就会有更高效、更优雅的解决方案出现。所以,保持好奇心,勇于探索未知领域,这才是程序员最大的乐趣所在! 好了,今天就聊到这里啦,祝大家在编程的路上越走越远!如果有任何疑问或者想法,欢迎随时找我交流哦~
2025-04-22 16:00:29
59
寂静森林
ElasticSearch
...一切看起来都很顺利,数据导入、索引创建啥的都没问题。但当我尝试对某些节点进行操作时,突然蹦出了这么一行错误: org.elasticsearch.cluster.block.ClusterBlockException: blocked by: [SERVICE_UNAVAILABLE/2/no active shards]; 当时我心里那个急啊!赶紧去查文档,发现这是NodeNotActiveException的表现之一。简单说吧,就好比某个关键的小哥突然“罢工”了,可能是因为它内存不够用,或者网络断了啥的,结果整个团队的工作都乱套了,没法正常运转了。 我当时就纳闷了:“这不是应该自动恢复吗?为啥还要报错呢?”后来才明白,虽然ElasticSearch确实有自我修复机制,但有时候我们需要手动干预才能让它恢复正常。 --- 2. 理解背后的逻辑 为什么会出现这种问题? 在深入了解之前,我觉得有必要先搞清楚这个异常的根本原因。其实NodeNotActiveException并不是什么特别复杂的概念,它主要出现在以下几种情况: - 节点宕机:某个节点由于硬件故障或者网络问题离线了。 - 磁盘空间不足:如果某个节点的磁盘满了,ElasticSearch会自动将其标记为不可用。 - 配置错误:比如分配给节点的资源不够,导致其无法启动。 对于我来说,问题出在第二个点上——磁盘空间不足。我当时为了省钱,给服务器分配的空间少得可怜,结果没多久就发现磁盘直接爆满,把自己都吓了一跳!于是ElasticSearch很生气,直接把该节点踢出了集群。 --- 3. 解决方案一 扩容磁盘空间 既然问题找到了,那就动手解决吧!首先,我决定先扩展磁盘容量。这一步其实很简单,只要登录服务器,增加磁盘大小就行。具体步骤如下: bash 查看当前磁盘状态 df -h 扩展磁盘(假设你已经购买了额外的存储) sudo growpart /dev/xvda 1 sudo resize2fs /dev/xvda1 完成后记得重启ElasticSearch服务: bash sudo systemctl restart elasticsearch 重启之后,神奇的事情发生了——我的节点重新上线了!不过这里有个小技巧分享给大家:如果你不确定扩容是否成功,可以通过以下命令检查磁盘使用情况: bash df -h 看到磁盘空间变大了,心里顿时舒坦了不少。 --- 4. 解决方案二 调整ElasticSearch配置 当然啦,仅仅扩容还不够,还需要优化ElasticSearch的配置文件。特别是那些容易导致内存不足或磁盘占用过高的参数,比如indices.memory.index_buffer_size和indices.store.throttle.max_bytes_per_sec。修改后的配置文件大概长这样: yaml cluster.routing.allocation.disk.threshold_enabled: true cluster.routing.allocation.disk.watermark.low: 85% cluster.routing.allocation.disk.watermark.high: 90% cluster.routing.allocation.disk.watermark.flood_stage: 95% cluster.info.update.interval: 30s 这些设置的意思是告诉ElasticSearch,当磁盘使用率达到85%时开始警告,达到90%时限制写入,超过95%时完全停止操作。这样可以有效避免再次出现类似的问题。 --- 5. 实战演练 代码中的应对策略 除了调整配置,我们还可以通过编写脚本来监控和处理NodeNotActiveException。比如,下面这段Java代码展示了如何捕获异常并记录日志: java import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.client.RestClient; import org.elasticsearch.client.indices.CreateIndexRequest; import org.elasticsearch.client.indices.CreateIndexResponse; public class ElasticSearchExample { public static void main(String[] args) { RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("localhost", 9200, "http"))); try { CreateIndexRequest request = new CreateIndexRequest("test_index"); CreateIndexResponse response = client.indices().create(request, RequestOptions.DEFAULT); System.out.println("Index created: " + response.isAcknowledged()); } catch (Exception e) { if (e instanceof ClusterBlockException) { System.err.println("Cluster block detected: " + e.getMessage()); } else { System.err.println("Unexpected error: " + e.getMessage()); } } finally { try { client.close(); } catch (IOException ex) { System.err.println("Failed to close client: " + ex.getMessage()); } } } } 这段代码的作用是在创建索引时捕获可能发生的异常,并根据异常类型采取不同的处理方式。如果遇到ClusterBlockException,我们可以选择延迟重试或者其他补偿措施。 --- 6. 总结与反思 成长路上的一课 通过这次经历,我深刻体会到,作为一名开发者,不仅要掌握技术细节,还要学会从实际问题出发,找到最优解。NodeNotActiveException这个错误看着不起眼,但其实背后有不少门道呢!比如说,你的服务器硬件是不是有点吃不消了?集群那边有没有啥小毛病没及时发现?还有啊,咱们平时运维的时候是不是也有点松懈了?这些都是得好好琢磨的地方! 最后,我想说的是,技术学习的过程就像爬山一样,有时候会遇到陡峭的山坡,但只要坚持下去,总能看到美丽的风景。希望这篇文章能给大家带来一些启发和帮助!如果还有其他疑问,欢迎随时交流哦~
2025-03-14 15:40:13
64
林中小径
转载文章
...calhost',数据库地址'DB_NAME':'douyu',数据库名称''DB_TABLE':'douyu'数据库表}MongoDB初始化client = pymongo.MongoClient(config['DB_URL'])mango_db = client[config['DB_NAME']]MongoDB存储def save_to_mango(result):if mango_db[config['DB_TABLE']].insert_one({'vid':result}):print('成功存储到MangoDB')return Truereturn FalseMongoDB验证重复def check_to_mongo(vid):count = mango_db[config['DB_TABLE']].find({'vid':vid}).count()if count==0:return Falsereturn True删除文件def del_file(page):if os.path.exists(page): 删除文件,可使用以下两种方法。os.remove(page) os.unlink(my_file)else:print('no such file:%s' % page)循环列表删除文件def loop_del_file(arr):for item in arr:del_file(item)请求器def get_content_requests(url):headers = {}headers['user-agent']='Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.131 Safari/537.36'headers['cookie'] = 'dy_did=07f83a57d1d2e22942e0883200001501; acf_did=07f83a57d1d2e22942e0883200001501; Hm_lvt_e99aee90ec1b2106afe7ec3b199020a7=1556514266,1557050422,1557208315; acf_auth=; acf_auth_wl=; acf_uid=; acf_nickname=; acf_username=; acf_own_room=; acf_groupid=; acf_notification=; acf_phonestatus=; _dys_lastPageCode=page_video,page_video; Hm_lpvt_e99aee90ec1b2106afe7ec3b199020a7=1557209469; _dys_refer_action_code=click_author_video_cate2'try:req_content = requests.get(url,headers = headers)if req_content.status_code == 200:return req_contentprint('请求失败:',url)return Noneexcept:print('请求失败:', url)return None把时间换算成秒def str_to_int(time):try:time_array = time.split(':')time_int = (int(time_array[0])60)+int(time_array[1])return time_intexcept:print('~~~~~计算视频时间失败~~~~~')return None提取需要采集的数据def get_list(html,type = 1):data = []try:list_json = json.loads(str(html))for om in list_json['data']['list']:gtime = str_to_int(om['video_str_duration'])if gtime > config['TIME_START'] and gtime < config['TIME_ENT']:if type == 2:data.append({'title': om['title'], 'vid': om['url'].split('show/')[1]})else:data.append({'title': om['title'], 'vid': om['hash_id']})return dataexcept:print('~~~~~数据提取失败~~~~~')return None解析playlist.m3u8def get_ts_list(m3u8):data = []try:html_m3u8_json = json.loads(m3u8)m3u8_text = get_content_requests(html_m3u8_json['data']['video_url'])m3u8_vurl =html_m3u8_json['data']['video_url'].split('playlist.m3u8?')[0]if m3u8_text:get_text = re.findall(',\n(.?).ts(.?)\n',m3u8_text.text,re.S)for item in get_text:data.append(m3u8_vurl+item[0]+'.ts'+item[1])return datareturn Noneexcept:print('~~~~~解析playlist.m3u8失败~~~~~')return None 杀死moviepy产生的特定进程def killProcess(): 处理python程序在运行中出现的异常和错误try: pids方法查看系统全部进程pids = psutil.pids()for pid in pids: Process方法查看单个进程p = psutil.Process(pid) print('pid-%s,pname-%s' % (pid, p.name())) 进程名if p.name() == 'ffmpeg-win64-v4.1.exe': 关闭任务 /f是强制执行,/im对应程序名cmd = 'taskkill /f /im ffmpeg-win64-v4.1.exe 2>nul 1>null' python调用Shell脚本执行cmd命令os.system(cmd)except:pass下载.ts文件def download_ts(m3u8_list,name):try:if not os.path.exists(config['FILE_PATH']):os.makedirs(config['FILE_PATH'])if not os.path.exists(config['TS_PATH']):os.makedirs(config['TS_PATH'])if os.path.exists(config['FILE_PATH']+name+'.mp4'):name = name+'_'+str(int(time.time()))print('开始下载:',name)L = []R = []for p in m3u8_list:ts_find = get_content_requests(p)file_ts = '{0}{1}.ts'.format(config['TS_PATH'],md5(ts_find.content).hexdigest())with open(file_ts,'wb') as f:f.write(ts_find.content)R.append(file_ts)hebing = VideoFileClip(file_ts)L.append(hebing)killProcess()print('下载完成:',file_ts)mp4file = '{0}{1}.mp4'.format(config['FILE_PATH'],name)final_clip = concatenate_videoclips(L)final_clip.to_videofile(mp4file, fps=24, remove_temp=True)killProcess()loop_del_file(R)print('\n下载完成:',name)print('')return Trueexcept:print('~~~~~合成.ts文件失败~~~~~')return None下载视频列表def list_get_kong(list_json):for item in list_json:y = Trueif config['CHECKID']:if check_to_mongo(item['vid']):print('~~~~~检测到重复项~~~~~')y = Falseif y:get_show_html = get_content_requests('https://vmobile.douyu.com/video/getInfo?vid=' + item['vid'])if get_show_html:m3u8_list = get_ts_list(get_show_html.text)if m3u8_list:download = download_ts(m3u8_list, item['title'])if download: save_to_mango(item['vid'])time.sleep(config['TIME_GE'])控制器def main(page):if config['TYPE']==1:print('~~~~~按用户ID采集~~~~~')listurl = 'https://v.douyu.com/video/author/getAuthorVideoListByNew?up_id={0}&cate2_id=0&limit=30&page={1}'.format(config['UID'],page)get_list_html = get_content_requests(listurl)if get_list_html:list_json = get_list(get_list_html.text,1)if list_json:list_get_kong(list_json)else:print('~~~~~按列表ID采集~~~~~')listurl = 'https://v.douyu.com/video/video/listData?page={1}&cate2Id={0}&action=new'.format(config['CID'],page)get_list_html = get_content_requests(listurl)if get_list_html:list_json = get_list(get_list_html.text,2)if list_json:list_get_kong(list_json)初始化if __name__=='__main__':if config['POOL']:groups = [x for x in range(config['PAGE_START'],config['PAGE_END']+1)]pool = Pool()pool.map(main, groups)else:for item in range(config['PAGE_START'],config['PAGE_END']+1):main(item)print('~~~~~已经完成【所有操作】~~~~~') 总结:众所周知,BiliBili是一个学习的网站! 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_35875470/article/details/89857445。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-18 11:34:00
119
转载
转载文章
...m();// 1K的数据缓冲byte[] bs = new byte[1024];// 读取到的数据长度int len;// 输出的文件流File sf=new File(savePath);int randomNo=(int)(Math.random()1000000);String filename=urlPath.substring(urlPath.lastIndexOf("/")+1,urlPath.length());//获取服务器上图片的名称filename=new java.text.SimpleDateFormat("yyyy-MM-dd-HH-mm-ss").format(new Date())+randomNo+filename;//时间+随机数防止重复OutputStream os = new FileOutputStream(sf.getPath()+"\\"+filename);// 开始读取while ((len = is.read(bs)) != -1) {os.write(bs, 0, len);}// 完毕,关闭所有链接os.close();is.close();} 写好后,我们再完善一下JsouPic中的getPic方法。 public static void getPic(String kind) throws Exception {//get请求方式进行请求Document root_doc = Jsoup.connect("http://www.netbian.com/" + kind + "/").get();//获取分页标签,用于获取总页数Elements els = root_doc.select("main .page a");Integer page = Integer.parseInt(els.eq(els.size() - 2).text());for (int i = 1; i < page; i++) {Document document = null;//这里判断的是当前页号是否为1,如果为1就不拼页号,否则拼上对应的页号if (i == 1) {document = Jsoup.connect("http://www.netbian.com/" + kind + "/index.htm").get();} else {document = Jsoup.connect("http://www.netbian.com/" + kind + "/index_" + i + ".htm").get();}File desktop = Download.getDesktop();Download.checkPath(desktop.getPath() + "\\images\\" + kind);//获取每个分页链接里面a标签的链接,进入链接页面获取当前图拼的大尺寸图片Elements elements = document.select("main .list li a");for (Element element : elements) {String href = element.attr("href");if (href.startsWith("/")) {String picUrl = "http://www.netbian.com" + href;Document document1 = Jsoup.connect(picUrl).get();Elements elements1 = document1.select(".endpage .pic p a img");Download.download(elements1.attr("src"), desktop.getPath() + "\\images\\" + kind);} }} } 在Download类中,我添加了checkPath方法,用于判断目录是否存在,不存在就创建一个。 public static void checkPath(String savePath) throws Exception {File file = new File(savePath);if (!file.exists()){file.mkdirs();} } 最后在mainapp包内创建PullPic类,并添加主方法。 package com.asahi.mainapp;import com.asahi.common.Kind;import com.asahi.common.PrintLog;import com.asahi.utils.JsoupPic;import java.util.Scanner;public class PullPic {public static void main(String[] args) throws Exception {new PullPic().downloadPic();}public void downloadPic() throws Exception {System.out.println("启动程序>>\n请输入所爬取的分类:");Scanner scanner = new Scanner(System.in);String kind = scanner.next();while(!Kind.contains(kind)){System.out.println("分类不存在,请重新输入:");kind = scanner.next();}System.out.println("分类输入正确!");System.out.println("开始下载>>");JsoupPic.getPic(kind);} } 三、成果展示 最终的运行结果如下: 最终的代码已上传到我的github中,点击“我的github”进行查看。 在学习Java爬虫的过程中,我收获了很多,一开始做的时候确实遇到了很多困难,这次写的获取图片也是最基础的,还可以继续深入。本来我想写一个通过多线程来获取图片来着,也尝试着去写了一下,越写越跑偏,暂时先放着不处理吧,等以后有时间再来弄,我想问题应该不大,只是考虑的东西有很多。希望大家多多指点不足,有哪些需要改进的地方,我也好多学习学习๑乛◡乛๑。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_39693281/article/details/108463868。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-12 10:26:04
130
转载
转载文章
...Hashmap原理 数据库分库分表 MQ相关,为什么kafka这么快,什么是零拷贝? 小算法题 http和https协议区别,具体原理 四面(Leader) 手画自己项目的架构图,并且针对架构和中间件提问 印象最深的一本技术书籍是什么? 五面(HR) 没什么过多的问题,主要就是聊了一下自己今后的职业规划,告知了薪资组成体系等等。 插播一条福利!!!最近整理了一套1000道面试题的文档(详细内容见文首推荐文章),以及大厂面试真题,和最近看的几本书。 需要刷题和跳槽的朋友,这些可以免费赠送给大家,帮忙转发文章,宣传一下,后台私信【面试】免费领取! 小天:好像问了两次看书的情况诶?现在面试还问这个? 程序员H:是啊,幸亏之前为了弄懂JVM还看了两本书,不然真不知道说啥了! 小天:看来,我也要找几本书去看了,感情没看过两本书都不敢跳槽了! 程序员H:对了,还有简历,告诉你一个捷径 简历尽量写好一些,项目经验突出: 1、自己的知识广度和深度 2、自身的优势 3、项目的复杂性和难度以及指标 4、自己对于项目做的贡献或者优化 程序员H:唉~这还不能走可怎么办呀!你说,我把主管打一顿,是不是马上就可以走了? 小天:... 查看全文 http://www.taodudu.cc/news/show-3387369.html 相关文章: 阿里菜鸟面经 Java后端开发 社招三年 已拿offer 阿里 菜鸟网络(一面) 2021年阿里菜鸟网络春招实习岗面试分享,简历+面试+面经全套资料! 阿里菜鸟国际Java研发面经(三面+总结):JVM+架构+MySQL+Redis等 2021年3月29日 阿里菜鸟实习面试(一面)(含部分总结) mongodb 子文档排序_猫鼬101:基础知识,子文档和人口简介 特征工程 计算方法Gauss-Jordan消去法求线性方程组的解 使用(VAE)生成建模,理解可变自动编码器背后的数学原理 视觉SLAM入门 -- 学习笔记 - Part2 带你入门nodejs第一天——node基础语法及使用 python3数据结构_Python3-数据结构 debezium-connect-oracle使用 相关数值分析多种算法代码 android iphone treeview,Android之IphoneTreeView带组指示器的ExpandableListView效果 nginx rewrite功能使用 3-3 OneHot编码 JavaWeb:shiro入门小案例 MySQL的定义、操作、控制、查询语言的用法 MongoDB入门学习(三):MongoDB的增删查改 赋值、浅复制和深复制解析 以及get/set应用 他是吴恩达导师,被马云聘为「达摩院」首座 Jordan 标准型定理 列主元的Gauss-Jordan消元法-python实现 Jordan 块的几何 若尔当型(The Jordan form) 第七章 其他神经网络类型 解决迁移系统后无法配置启用WindowsRE环境的问题 宝塔面板迁移系统盘/www到数据盘/home 使用vmware vconverter从物理机迁移系统到虚拟机P2V 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_62695120/article/details/124510157。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-08 20:01:49
68
转载
转载文章
...,二维数组是一种多维数据结构,用于存储表格形式的数据。在本文的上下文中,二维数组squareSet被用来存储消除类游戏中的方块信息,每个元素是一个子数组,代表一行方块,子数组中的每个元素则表示一个具体方块的信息,如颜色、行列位置等。通过使用二维数组,开发者能够方便地根据行列索引访问和操作每一个方块。 连通图算法 , 在计算机科学中,连通图算法是指处理图论问题的一种方法,通常用于确定图中的节点(或对象)是否通过边(或关系)彼此相连形成一个连通分量。在这篇文章中,作者应用了一个递归实现的连通图算法——checkLinked函数,当玩家鼠标移入某个方块时,该算法会遍历与其颜色相同的相邻方块,检查并收集所有可以消除的连通方块,以便进行后续的计分和动画效果展示。 定时器(Timer) , 定时器是浏览器提供的JavaScript特性之一,允许开发人员设置一段代码在特定时间间隔后执行。在这篇文章描述的游戏开发过程中,定时器被用来实现选中方块的闪烁特效。通过设置一个定时器(例如timer变量),每经过一定的时间间隔(如300毫秒),就改变选中方块的样式属性,使其产生连续的视觉变化,从而达到闪烁的效果。 绝对定位(Absolute Positioning) , 在CSS布局中,绝对定位是一种定位模式,它允许开发人员为元素指定精确的坐标值来决定其在页面上的确切位置,而不是遵循正常的文档流。文章中创建的小方块采用的就是绝对定位方式,确保它们可以根据行列位置准确地放置于游戏画布上,无论其他元素如何变化,这些方块的位置始终保持不变。
2023-06-08 15:26:34
516
转载
转载文章
...02 复习 显示所有数据 show databases; 创建新数据库,设置编码方式utf8 create database demo2 default charset utf8; 显示创建数据的语句 show create database demo2; 删除数据库 drop database demo2; 选择使用指定的数据库 use demo1; 查看库中所有表 show tables; 创建表 create table book(bid int(4) primary key comment '书id', bname varchar(50) comment '书名',pub varchar(50) comment '出版社',author varchar(50) comment '作者' )engine=myisam charset=utf8; 所有字段名,使用,所有的字符串使用''或者"" 查看建表语句 show create table book; 查看表结构 desc book; 修改表名 rename table book to book1; 修改表属性 ,引擎和字符集 alter table book1 engine=innodb charset=utf8; 添加字段 first after alter table book1 add(type varchar(20) comment '类型',numinput int(10) comment '进货量',numstore int(10) comment '库存量'); 修改字段名 bid bno alter table book1 change bid bno int(4); 修改顺序 pub 放到author后面 alter table book1 modify pub varchar(50) after author; 修改数据类型 bno int(4) -->int(10) alter table book1 modify bno int(10); 删除字段 alter table book1 drop 字段名; 删除表 drop table 表名; 插入语句 insert into book1(bno,bname,author,type) values(1001,'斗破苍穹','天蚕土豆','玄幻');insert into book1(bno,bname,author,type) values(1002,'全职高手','蝴蝶兰','网游竞技');insert into book1(bno,bname,author,type) values(1003,'鬼吹灯','天下霸唱','恐怖');insert into book1(bno,bname,author,type)values(1004,'西游记','吴承恩','4大名著');insert into book1(bno,bname,author,type)values(1005,'java基础','王克晶','达内学习手册'); update语句 把1005号书,修改成'天线宝宝',作者不详,类型少儿 把1004号书修改成'天龙八部',作者金庸,类型武侠 update book1 set bname="天线宝宝",author="作者不详",type="少儿" where bno=1005; 删除类型是'恐怖'的所有书籍 删除全表记录 删除表格 修改book名称为book_item rename table book to book_item; 在表格尾部添加字段price double(7,2) alter table book_item add price double(7,2); 把price字段的位置放到author之后 alter table book_item modify price double(7,2) after author; 把表中存在的数据添加价格,每本书都在100~1000之间,自定 update book_item set price=199 where bno=1001; 修改1001的价格为500元 把所有字段的null字段补全 update book_item set pub="达内出版社",numinput=500,numstore=100 where pub is null; 删除价格小于150的所有条目 删除所有数据 SQL分类 数据定义语言 DDL 重点 数据操纵语言 DML 重点 增 删 改 数据查询语言 DQL select 查 事务控制语言 TCL 数据库控制语言 DCL 数据定义语言 DDL - 负责数据结构定义,与创建数据库对象的语言- 常用create alter drop- DDL不支持事务,DDL语句执行之后,不能回滚 数据操纵语言 DML - 对数据库中更改数据操作的语句- select insert update delete--> CRUD 增删改查- 通常把select相关操作,单独出来,称之为DQL- DML支持事务,在非自动提交模式时,可以利用rollback回滚操作. 数据查询语言 DQL - 筛选,分组,连表查询 面试重点 TCL 和 DCL - 事务控制语句TCL- 负责实现数据库中事务支持的语言,commit rollback savepoint等指令- DCL数据库控制语言- 管理数据库的授权,角色控制等,grant(授权),revoke(取消授权) 练习: 案例:创建一张表customer(顾客) create table customer(cid int(4) primary key comment '顾客编号',cname varchar(50) comment '顾客姓名',sex char(5) comment '顾客性别',address varchar(50) comment '地址',phone varchar(11) comment '手机',email varchar(50) comment '邮箱'); show create table customer; 插入5条数据 insert into customer values(1001,'小明','男','楼上18号','123','123@163.com');insert into customer values(1002,'小红','女','楼上17号','1234','1234@163.com');insert into customer values(1003,'老王','男','楼上18号隔壁','1234','1234@163.com');insert into customer values(1004,'老宋','男','楼上17号隔壁','1234','1234@163.com');insert into customer values(1005,'小马','女','楼上17号隔壁','1234','1234@163.com'); -1 修改一条数据的姓名 小红的姓名 -2 修改一条数据的性别 老王的性别 -3 修改一条数据的电话 1001号的电话 -4 修改一条数据的邮箱 邮箱为123@163.com,改成323@163.com -5 查询性别为 男的所有数据 select from customer where sex="男"; -6 自定义DDL操作的需求,5道题,可以同上面book表的操作 数据库数据类型 主要包括5大类 整数类型 int, big int 浮点数类型 double decimal 字符串类型 char varchar text 日期类型 date datetime timestamp time year... 其他数据类型 set.... 字符串 - char(固定长度) 定长字符串 最多255个字节- 定多少长度,就占用多少长度- 多了放不进去,少了用空格补全- 不认识内容尾部的空格- varchar(最大长度) 变长字符串 最大65535字节,但是使用一般不超过255- 只要不超过定的长度,都可以放进去- 以内容真实长度为准- 认识内容尾部的空格- text 最大65535字节- blob 大数据对象,以二进制(字节)的方式存储 整数 tinyint 1字节 smallint 2字节 int 4字节 bigint 8字节 int(6)影响的是查询时显示长度(zerofill)不影响数据的保存长度 create table t1(id1 int,id2 int(5)); insert into t1 values(111111,111111); alter table t1 modify id1 int zerofill; alter table t1 modify id2 int(5) zerofill; insert into t1 values (1,1); float 4字节 double 8字节 double(8,2) 可能会产生精度的缺失 10.0/3 3.3333333336 decimal 不会缺失精度,但是使用的时候需要指定总长度和小数位数 日期 - date 年月日- time 时分秒- datetime 年月日时分秒,到9999年,而且需要手动输入,如果没有手动输入,就显示null.- timestamp 年月日时分秒,在没有数据手动插入时,自动填入当前时间.最大值2038- bigint 1970-1-1 0:0:0 格林威治时间 案例:创建表t,字段d1 date,d2 time,d3 datetime,d4 timestamp create table t(id int,d1 date,d2 time,d3 datetime,d4 timestamp);insert into t (d1,d2) values ('1910-01-10','12:32:12');insert into t values(1,'2018-12-21','15:12:00','1995-02-10 12:08:12','2030-10-10 15:19:32');insert into t values(2,'3018-01-25','15:12:34','9234-12-31 12:12:12','2030-12-31 12:12:12');insert into t values(2,'3018-01-25','15:12:34','9999-12-31 23:59:59','2030-12-31 12:12:12'); 练习 创建人物表,插入,修改,查询 create table person(id int(4) primary key,name varchar(50),age int(3));insert into person values(1,"梅超风",36);insert into person values(2,"洪七公",96);insert into person values(3,"杨过",40);insert into person values(4,"令狐冲",28);insert into person values(5,"张三丰",100);insert into person values(6,"张翠山",27);insert into person values(7,"张无忌",27);insert into person values(8,"赵敏",18);insert into person values(9,"独孤求败",250);insert into person values(10,"楚留香",36);1.案例:修改张三丰的name为刘备,id为11update person set name="刘备",id=11 where name="张三丰";2.案例:修改2号人物的的name为夏侯渊update person set name="夏侯渊" where id=2;3.案例:根据条件修改person表中的数据,修改id是6的数据中,姓名改为'任我行', 年龄改为39update person set name="任我行",age=39 where id=6;4.案例:修改姓名是‘楚留香'的数据,把id改为20,年龄改为19update person set id=20,age=19 where name="楚留香";5.案例:把person所有的数据的年龄全部改为20 update person set age=20;6.案例:修改id为7的数据,把id改为100,姓名改为杨过,年龄改为21update person set id=100,name="杨过",age=21 where id=7;7.案例:修改姓名是独孤求败,把年龄改为35update person set age=35 where name="独孤求败";8.案例:修改id=8的信息,把姓名改为房玄龄update person set name="房玄龄" where id=8;9.案例 :修改id为20并且年龄为20的人的姓名为刘德华(郑少秋也行)提示 where...and...update person set name="郑少秋" where id=20 and age=20; 查询 没有条件的简单查询 select from 表名;查询表中所有的数据 select from person; select from t; select from emp; select from dept; 查询某些列中的值 select name as '姓名' from person; select name as '姓名',age as '年龄' from person; select id as '编号',name as '姓名',age as '年龄' from person; 学习过程的编程习惯select from 表; 工作中的编程习惯select id,name,age from person; 查询emp表中所有员工的姓名,上级领导的编号,职位,工资 select ename,mgr,job,sal from emp; 查询emp表中所有员工的编号,姓名,所属部门编号,工资 select empno,ename,deptno,sal from emp; 查询dept表中所有部门的名称和地址 select dname,loc from dept; 如果忘记了mysql的用户名和密码怎么办 卸载重新装 不重装软件如何修改密码 1.停止mysql服务 2.cmd中输入一个命令 mysqld --skip-grant-tables; -通过控制台,开启了一个mysql服务 3.开启一个新的cmd -mysql -u root -p 可以不使用密码进入数据库 show databases;----mysql 5. use mysql; 6. update user set password=password('新密码') where user="root"; 7. 关闭mysqld这个服务/进程 8. 重启mysql服务 作业 mysql02,一天的代码重新敲一遍,熟悉emp和dept列名 本篇文章为转载内容。原文链接:https://blog.csdn.net/sinat_41915844/article/details/79770973。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-02-16 12:44:07
544
转载
转载文章
...‘表示用户,例如如果数据库用户叫kevin,则登陆时使用Ckevin进行登陆。 一、Oracle高级消息队列AQ Oracle AQ是Oracle中的消息队列,是Oracle中的一种高级应用,每个版本都在不断的加强,使用DBMS_AQ系统包进行相应的操作,是Oracle的默认组件,只要安装了Oracle数据库就可以使用。使用AQ可以在多个Oracle数据库、Oracle与Java、C等系统中进行数据传输。 下面分步骤说明如何创建Oracle AQ 1. 创建消息负荷payload Oracle AQ中传递的消息被称为有效负荷(payloads),格式可以是用户自定义对象或XMLType或ANYDATA。本例中我们创建一个简单的对象类型用于传递消息。 create type demo_queue_payload_type as object (message varchar2(4000)); 2. 创建队列表 队列表用于存储消息,在入队时自动存入表中,出队时自动删除。使用DBMS_AQADM包进行数据表的创建,只需要写表名,同时设置相应的属性。对于队列需要设置multiple_consumers为false,如果使用发布/订阅模式需要设置为true。 begin dbms_aqadm.create_queue_table( queue_table => 'demo_queue_table', queue_payload_type => 'demo_queue_payload_type', multiple_consumers => false ); end; 执行完后可以查看oracle表中自动生成了demo_queue_table表,可以查看影响子段(含义比较清晰)。 3. 创建队列并启动 创建队列并启动队列: begin dbms_aqadm.create_queue ( queue_name => 'demo_queue', queue_table => 'demo_queue_table' ); dbms_aqadm.start_queue( queue_name => 'demo_queue' ); end; 至此,我们已经创建了队列有效负荷,队列表和队列。可以查看以下系统创建了哪些相关的对象: SELECT object_name, object_type FROM user_objects WHERE object_name != 'DEMO_QUEUE_PAYLOAD_TYPE'; OBJECT_NAME OBJECT_TYPE ------------------------------ --------------- DEMO_QUEUE_TABLE TABLE SYS_C009392 INDEX SYS_LOB0000060502C00030$$ LOB AQ$_DEMO_QUEUE_TABLE_T INDEX AQ$_DEMO_QUEUE_TABLE_I INDEX AQ$_DEMO_QUEUE_TABLE_E QUEUE AQ$DEMO_QUEUE_TABLE VIEW DEMO_QUEUE QUEUE 我们看到一个队列带出了一系列自动生成对象,有些是被后面直接用到的。不过有趣的是,创建了第二个队列。这就是所谓的异常队列(exception queue)。如果AQ无法从我们的队列接收消息,将记录在该异常队列中。 消息多次处理出错等情况会自动转移到异常的队列,对于异常队列如何处理目前笔者还没有找到相应的写法,因为我使用的场景并不要求消息必须一对一的被处理,只要起到通知的作用即可。所以如果消息转移到异常队列,可以执行清空队列表中的数据 delete from demo_queue_table; 4. 队列的停止和删除 如果需要删除或重建可以使用下面的方法进行操作: BEGIN DBMS_AQADM.STOP_QUEUE( queue_name => 'demo_queue' ); DBMS_AQADM.DROP_QUEUE( queue_name => 'demo_queue' ); DBMS_AQADM.DROP_QUEUE_TABLE( queue_table => 'demo_queue_table' ); END; 5. 入队消息 入列操作是一个基本的事务操作(就像往队列表Insert),因此我们需要提交。 declare r_enqueue_options DBMS_AQ.ENQUEUE_OPTIONS_T; r_message_properties DBMS_AQ.MESSAGE_PROPERTIES_T; v_message_handle RAW(16); o_payload demo_queue_payload_type; begin o_payload := demo_queue_payload_type('what is you name ?'); dbms_aq.enqueue( queue_name => 'demo_queue', enqueue_options => r_enqueue_options, message_properties => r_message_properties, payload => o_payload, msgid => v_message_handle ); commit; end; 通过SQL语句查看消息是否正常入队: select from aq$demo_queue_table; select user_data from aq$demo_queue_table; 6. 出队消息 使用Oracle进行出队操作,我没有实验成功(不确定是否和DBMS_OUTPUT的执行权限有关),代码如下,读者可以进行调试: declare r_dequeue_options DBMS_AQ.DEQUEUE_OPTIONS_T; r_message_properties DBMS_AQ.MESSAGE_PROPERTIES_T; v_message_handle RAW(16); o_payload demo_queue_payload_type; begin DBMS_AQ.DEQUEUE( queue_name => 'demo_queue', dequeue_options => r_dequeue_options, message_properties => r_message_properties, payload => o_payload, msgid => v_message_handle ); DBMS_OUTPUT.PUT_LINE( ' Browse message is [' || o_payload.message || ']' ); end; 二、Java使用JMS监听并处理Oracle AQ队列 Java使用JMS进行相应的处理,需要使用Oracle提供的jar,在Oracle安装目录可以找到:在linux中可以使用find命令进行查找,例如 find pwd -name 'jmscommon.jar' 需要的jar为: app/oracle/product/12.1.0/dbhome_1/rdbms/jlib/jmscommon.jar app/oracle/product/12.1.0/dbhome_1/jdbc/lib/ojdbc7.jar app/oracle/product/12.1.0/dbhome_1/jlib/orai18n.jar app/oracle/product/12.1.0/dbhome_1/jlib/jta.jar app/oracle/product/12.1.0/dbhome_1/rdbms/jlib/aqapi_g.jar 1. 创建连接参数类 实际使用时可以把参数信息配置在properties文件中,使用Spring进行注入。 package org.kevin.jms; / @author 李文锴 连接参数信息 / public class JmsConfig { public String username = "ckevin"; public String password = "a111111111"; public String jdbcUrl = "jdbc:oracle:thin:@127.0.0.1:1521:orcl"; public String queueName = "demo_queue"; } 2. 创建消息转换类 因为消息载荷是Oracle数据类型,需要提供一个转换工厂类将Oracle类型转换为Java类型。 package org.kevin.jms; import java.sql.SQLException; import oracle.jdbc.driver.OracleConnection; import oracle.jdbc.internal.OracleTypes; import oracle.jpub.runtime.MutableStruct; import oracle.sql.CustomDatum; import oracle.sql.CustomDatumFactory; import oracle.sql.Datum; import oracle.sql.STRUCT; / @author 李文锴 数据类型转换类 / @SuppressWarnings("deprecation") public class QUEUE_MESSAGE_TYPE implements CustomDatum, CustomDatumFactory { public static final String _SQL_NAME = "QUEUE_MESSAGE_TYPE"; public static final int _SQL_TYPECODE = OracleTypes.STRUCT; MutableStruct _struct; // 12表示字符串 static int[] _sqlType = { 12 }; static CustomDatumFactory[] _factory = new CustomDatumFactory[1]; static final QUEUE_MESSAGE_TYPE _MessageFactory = new QUEUE_MESSAGE_TYPE(); public static CustomDatumFactory getFactory() { return _MessageFactory; } public QUEUE_MESSAGE_TYPE() { _struct = new MutableStruct(new Object[1], _sqlType, _factory); } public Datum toDatum(OracleConnection c) throws SQLException { return _struct.toDatum(c, _SQL_NAME); } public CustomDatum create(Datum d, int sqlType) throws SQLException { if (d == null) return null; QUEUE_MESSAGE_TYPE o = new QUEUE_MESSAGE_TYPE(); o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory); return o; } public String getContent() throws SQLException { return (String) _struct.getAttribute(0); } } 3. 主类进行消息处理 package org.kevin.jms; import java.util.Properties; import javax.jms.Message; import javax.jms.MessageConsumer; import javax.jms.MessageListener; import javax.jms.Queue; import javax.jms.QueueConnection; import javax.jms.QueueConnectionFactory; import javax.jms.Session; import oracle.jms.AQjmsAdtMessage; import oracle.jms.AQjmsDestination; import oracle.jms.AQjmsFactory; import oracle.jms.AQjmsSession; / @author 李文锴 消息处理类 / public class Main { public static void main(String[] args) throws Exception { JmsConfig config = new JmsConfig(); QueueConnectionFactory queueConnectionFactory = AQjmsFactory.getQueueConnectionFactory(config.jdbcUrl, new Properties()); QueueConnection conn = queueConnectionFactory.createQueueConnection(config.username, config.password); AQjmsSession session = (AQjmsSession) conn.createQueueSession(false, Session.AUTO_ACKNOWLEDGE); conn.start(); Queue queue = (AQjmsDestination) session.getQueue(config.username, config.queueName); MessageConsumer consumer = session.createConsumer(queue, null, QUEUE_MESSAGE_TYPE.getFactory(), null, false); consumer.setMessageListener(new MessageListener() { @Override public void onMessage(Message message) { System.out.println("ok"); AQjmsAdtMessage adtMessage = (AQjmsAdtMessage) message; try { QUEUE_MESSAGE_TYPE payload = (QUEUE_MESSAGE_TYPE) adtMessage.getAdtPayload(); System.out.println(payload.getContent()); } catch (Exception e) { e.printStackTrace(); } } }); Thread.sleep(1000000); } } 使用Oracle程序块进行入队操作,在没有启动Java时看到队列表中存在数据。启动Java后,控制台正确的输出的消息;通过Oracle程序块再次写入消息,发现控制台正确处理消息。Java的JMS监听不是立刻进行处理,可能存在几秒中的时间差,时间不等。 三、监控表记录变化通知Java 下面的例子创建一个数据表,然后在表中添加触发器,当数据变化后触发器调用存储过程给Oracle AQ发送消息,然后使用Java JMS对消息进行处理。 1. 创建表 创建student表,包含username和age两个子段,其中username时varchar2类型,age时number类型。 2. 创建存储过程 创建send_aq_msg存储过程,因为存储过程中调用dbms数据包,系统包在存储过程中执行需要进行授权(使用sys用户进行授权): grant execute on dbms_aq to ckevin; 注意存储过程中包含commit语句。 create or replace PROCEDURE send_aq_msg (info IN VARCHAR2) as r_enqueue_options DBMS_AQ.ENQUEUE_OPTIONS_T; r_message_properties DBMS_AQ.MESSAGE_PROPERTIES_T; v_message_handle RAW(16); o_payload demo_queue_payload_type; begin o_payload := demo_queue_payload_type(info); dbms_aq.enqueue( queue_name => 'demo_queue', enqueue_options => r_enqueue_options, message_properties => r_message_properties, payload => o_payload, msgid => v_message_handle ); commit; end send_aq_msg; 3. 创建触发器 在student表中创建触发器,当数据写入或更新时,如果age=18,则进行入队操作。需要调用存储过程发送消息,但触发器中不能包含事物提交语句,因此需要使用pragma autonomous_transaction;声明自由事物: CREATE OR REPLACE TRIGGER STUDENT_TR AFTER INSERT OR UPDATE OF AGE ON STUDENT FOR EACH ROW DECLARE pragma autonomous_transaction; BEGIN if :new.age = 18 then send_aq_msg(:new.username); end if; END; 创建完触发器后向执行插入或更新操作: insert into student (username,age) values ('jack.lee.3k', 18); update student set age=18 where username='jack003'; Java JMS可以正确的处理消息。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42309178/article/details/115241521。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-17 14:22:22
139
转载
转载文章
...面我们强行将它变成了数据属性描述符 其次,如果我们想监听更加丰富的操作,比如新增属性、删除属性,那么 Object.defineProperty 是无能为力的 所以我们要知道,存储数据描述符设计的初衷并不是为了去监听一个完整的对象 Ps: 原来的对象是 数据属性描述符,通过 Object.defineProperty 变成了 访问属性描述符 2. Proxy基本使用 在ES6中,新增了一个Proxy类,这个类从名字就可以看出来,是用于帮助我们创建一个代理的: 也就是说,如果我们希望监听一个对象的相关操作,那么我们可以先创建一个代理对象(Proxy对象) 之后对该对象的所有操作,都通过代理对象来完成,代理对象可以监听我们想要对原对象进行哪些操作 将上面的案例用 Proxy 来实现一次: 首先,我们需要 new Proxy 对象,并且传入需要侦听的对象以及一个处理对象,可以称之为 handler; const p = new Proxy(target, handler) 其次,我们之后的操作都是直接对 Proxy 的操作,而不是原有的对象,因为我们需要在 handler 里面进行侦听 const obj = {name: 'why',age: 18}const objProxy = new Proxy(obj, {// 获取值时的捕获器get: function (target, key) {console.log(监听到obj对象的${key}属性被访问了)return target[key]},// 设置值时的捕获器set: function (target, key, newValue) {console.log(监听到obj对象的${key}属性被设置值)target[key] = newValue} })console.log(objProxy.name)console.log(objProxy.age)objProxy.name = 'kobe'objProxy.age = 30console.log(obj.name)console.log(obj.age)/ 监听到obj对象的name属性被访问了why监听到obj对象的age属性被访问了18监听到obj对象的name属性被设置值监听到obj对象的age属性被设置值kobe30/ 2.1 Proxy 的 set 和 get 捕获器 如果我们想要侦听某些具体的操作,那么就可以在 handler 中添加对应的捕捉器(Trap) set 和 get 分别对应的是函数类型 set 函数有四个参数: target:目标对象(侦听的对象) property:将被设置的属性 key value:新属性值 receiver:调用的代理对象 get 函数有三个参数 target:目标对象(侦听的对象) property:被获取的属性 key receiver:调用的代理对象 2.2 Proxy 所有捕获器 (13个) handler.getPrototypeOf() Object.getPrototypeOf 方法的捕捉器 handler.setPrototypeOf() Object.setPrototypeOf 方法的捕捉器 handler.isExtensible() Object.isExtensible 方法的捕捉器 handler.preventExtensions() Object.preventExtensions 方法的捕捉器 handler.getOwnPropertyDescriptor() Object.getOwnPropertyDescriptor 方法的捕捉器 handler.defineProperty() Object.defineProperty 方法的捕捉器 handler.ownKeys() Object.getOwnPropertyNames 方法和 Object.getOwnPropertySymbols 方法的捕捉器 handler.has() in 操作符的捕捉器 handler.get() 属性读取操作的捕捉器 handler.set() 属性设置操作的捕捉器 handler.deleteProperty() delete 操作符的捕捉器 handler.apply() 函数调用操作的捕捉器 handler.construct() new 操作符的捕捉器 const obj = {name: 'why',age: 18}const objProxy = new Proxy(obj, {// 获取值时的捕获器get: function (target, key) {console.log(监听到obj对象的${key}属性被访问了)return target[key]},// 设置值时的捕获器set: function (target, key, newValue) {console.log(监听到obj对象的${key}属性被设置值)target[key] = newValue},// 监听 in 的捕获器has: function (target, key) {console.log(监听到obj对象的${key}属性的in操作)return key in target},// 监听 delete 的捕获器deleteProperty: function (target, key) {console.log(监听到obj对象的${key}属性的delete操作)delete target[key]} })// in 操作符console.log('name' in objProxy)// delete 操作delete objProxy.name/ 监听到obj对象的name属性的in操作true监听到obj对象的name属性的delete操作/ 2.3 Proxy 的 construct 和 apply 到捕捉器中还有 construct 和 apply,它们是应用于函数对象的 function foo() {console.log('调用了 foo')}const fooProxy = new Proxy(foo, {apply: function (target, thisArg, argArray) {console.log(对 foo 函数进行了 apply 调用)target.apply(thisArg, argArray)},construct: function (target, argArray, newTarget) {console.log(对 foo 函数进行了 new 调用)return new target(...argArray)} })fooProxy.apply({}, ['abc', 'cba'])new fooProxy('abc', 'cba')/ 对 foo 函数进行了 apply 调用调用了 foo对 foo 函数进行了 new 调用调用了 foo/ 3. Reflect 3.1 Reflect 的作用 Reflect 也是 ES6 新增的一个 API,它是一个对象,字面的意思是反射 Reflect 的作用: 它主要提供了很多操作 JavaScript 对象的方法,有点像 Object 中操作对象的方法 比如 Reflect.getPrototypeOf(target) 类似于 Object.getPrototypeOf() 比如 Reflect.defineProperty(target, propertyKey, attributes) 类似于 Object.defineProperty() 如果我们有 Object 可以做这些操作,那么为什么还需要有Reflect这样的新增对象呢? 这是因为在早期的 ECMA 规范中没有考虑到这种对 对象本身 的操作如何设计会更加规范,所以将这些 API 放到了 Object上面 但是 Object 作为一个构造函数,这些操作实际上放到它身上并不合适 另外还包含一些类似于 in、delete 操作符,让 JS 看起来是会有一些奇怪的 所以在 ES6 中新增了 Reflect,让我们这些操作都集中到了 Reflect 对象上 那么 Object 和 Reflect 对象之间的 API 关系,可以参考 MDN 文档: 比较 Reflect 和 Object 方法 3.2 Reflect 的常见方法 Reflect中有哪些常见的方法呢?它和Proxy是一一对应的,也是13个 Reflect.getPrototypeOf(target) 类似于 Object.getPrototypeOf() Reflect.setPrototypeOf(target, prototype) 设置对象原型的函数. 返回一个 Boolean, 如果更新成功,则返回 true Reflect.isExtensible(target) 类似于 Object.isExtensible() Reflect.preventExtensions(target) 类似于 Object.preventExtensions() , 返回一个 Boolean Reflect.getOwnPropertyDescriptor(target, propertyKey) 类似于 Object.getOwnPropertyDescriptor() , 如果对象中存在该属性,则返回对应的属性描述符, 否则返回 undefined Reflect.defineProperty(target, propertyKey, attributes) 和 Object.defineProperty() 类似, 如果设置成功就会返回 true Reflect.ownKeys(target) 返回一个包含所有自身属性(不包含继承属性)的数组 (类似于 Object.keys(), 但不会受 enumerable 影响) Reflect.has(target, propertyKey) 判断一个对象是否存在某个属性,和 in 运算符 的功能完全相同 Reflect.get(target, propertyKey[, receiver]) 获取对象身上某个属性的值,类似于 target[name] Reflect.set(target, propertyKey, value[, receiver]) 将值分配给属性的函数,返回一个 Boolean,如果更新成功,则返回 true Reflect.deleteProperty(target, propertyKey) 作为函数的 delete 操作符,相当于执行 delete target[name] Reflect.apply(target, thisArgument, argumentsList) 对一个函数进行调用操作,同时可以传入一个数组作为调用参数。和 Function.prototype.apply() 功能类似 Reflect.construct(target, argumentsList[, newTarget]) 对构造函数进行 new 操作,相当于执行 new target(...args) 3.3 Reflect 的使用 那么我们可以将之前Proxy案例中对原对象的操作,都修改为Reflect来操作 const obj = {name: 'why',age: 18}const objProxy = new Proxy(obj, {get: function (target, key) {console.log(监听到obj对象的${key}属性被访问了)return Reflect.get(target, key)// return target[key] // 对原来对象进行了直接操作},set: function (target, key, newValue) {console.log(监听到obj对象的${key}属性被设置值)Reflect.set(target, key, newValue)// target[key] = newValue // 对原来对象进行了直接操作} })objProxy.name = 'kobe'console.log(objProxy.name)/ 监听到obj对象的name属性被设置值监听到obj对象的name属性被访问了kobe/ 3.4 Receiver的作用 我们发现在使用getter、setter的时候有一个receiver的参数,它的作用是什么呢? 如果我们的源对象(obj)有 setter 、getter 的访问器属性,那么可以通过 receiver 来改变里面的 this const obj = {_name: 'why',get name() {return this._name // 不使用receiver, _name属性的操作不会被objProxy代理,因为this指向obj},set name(newValue) {this._name = newValue} }const objProxy = new Proxy(obj, {get: function (target, key, receiver) {// receiver 是创建出来的代理对象console.log('get 方法被访问-------', key, receiver)console.log(objProxy === receiver) // truereturn Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)} })objProxy.name = 'kobe'console.log(objProxy.name) // kobe/ get 方法被访问------- name { _name: 'kobe', name: [Getter/Setter] }trueget 方法被访问------- _name { _name: 'kobe', name: [Getter/Setter] }truekobe/ 3.5 Reflect 的 construct function Student(name, age) {this.name = namethis.age = age}function Teacher() {}const stu = new Student('why', 18)console.log(stu)console.log(stu.__proto__ === Student.prototype)/ Student { name: 'why', age: 18 }true/// 执行 Student 函数中的内容,但是创建出来的对象是 Teacher 对象const teacher = Reflect.construct(Student, ['why', 18], Teacher)console.log(teacher)console.log(teacher.__proto__ === Teacher.prototype)/ Teacher { name: 'why', age: 18 }true/ 4. 响应式 4.1 什么是响应式? 先来看一下响应式意味着什么?我们来看一段代码: m 有一个初始化的值,有一段代码使用了这个值; 那么在 m 有一个新的值时,这段代码可以自动重新执行 let m = 0// 一段代码console.log(m)console.log(m 2)console.log(m 2)m = 200 上面的这样一种可以自动响应数据变量的代码机制,我们就称之为是响应式的 对象的响应式 4.2 响应式函数设计 首先,执行的代码中可能不止一行代码,所以我们可以将这些代码放到一个函数中: 那么问题就变成了,当数据发生变化时,自动去执行某一个函数; 但是有一个问题:在开发中是有很多的函数的,如何区分一个函数需要响应式,还是不需要响应式呢? 很明显,下面的函数中 foo 需要在 obj 的 name 发生变化时,重新执行,做出相应; bar 函数是一个完全独立于 obj 的函数,它不需要执行任何响应式的操作; // 对象的响应式const obj = {name: 'why',age: 18}function foo() {const newName = obj.nameconsole.log('你好啊,李银河')console.log('Hello World')console.log(obj.name)}function bar() {console.log('普通的其他函数')console.log('这个函数不需要有任何的响应式')}obj.name = 'kobe' // name 发生改变时候 foo 函数执行 响应式函数的实现 watchFn 如何区分响应式函数? 这个时候我们封装一个新的函数 watchFn 凡是传入到 watchFn 的函数,就是需要响应式的 其他默认定义的函数都是不需要响应式的 / 封装一个响应式的函数 /let reactiveFns = []function watchFn(fn) {reactiveFns.push(fn)}// 对象的响应式const obj = {name: 'why',age: 18}watchFn(function foo() {const newName = obj.nameconsole.log('你好啊,李银河')console.log('Hello World')console.log(obj.name)})watchFn(function demo() {console.log(obj.name, 'demo function ---------')})function bar() {console.log('普通的其他函数')console.log('这个函数不需要有任何的响应式')}obj.name = 'kobe' // name 发生改变时候 foo 函数执行reactiveFns.forEach((fn) => {fn()}) 4.3 响应式依赖的收集 目前收集的依赖是放到一个数组中来保存的,但是这里会存在数据管理的问题: 在实际开发中需要监听很多对象的响应式 这些对象需要监听的不只是一个属性,它们很多属性的变化,都会有对应的响应式函数 不可能在全局维护一大堆的数组来保存这些响应函数 所以要设计一个类,这个类用于管理某一个对象的某一个属性的所有响应式函数: 相当于替代了原来的简单 reactiveFns 的数组; class Depend {constructor() {this.reactiveFns = []}addDepend(reactiveFn) {this.reactiveFns.push(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }const depend = new Depend()function watchFn(fn) {depend.addDepend(fn)}// 对象的响应式const obj = {name: 'why', // depend 对象age: 18 // depend 对象}watchFn(function foo() {const newName = obj.nameconsole.log('你好啊,李银河')console.log('Hello World')console.log(obj.name)})watchFn(function demo() {console.log(obj.name, 'demo function ---------')})function bar() {console.log('普通的其他函数')console.log('这个函数不需要有任何的响应式')}obj.name = 'kobe'depend.notify() 4.4 监听对象的变化 那么接下来就可以通过之前的方式来监听对象的变化: 方式一:通过 Object.defineProperty 的方式(vue2采用的方式); 方式二:通过 new Proxy 的方式(vue3采用的方式); 我们这里先以Proxy的方式来监听 class Depend {constructor() {this.reactiveFns = []}addDepend(reactiveFn) {this.reactiveFns.push(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }const depend = new Depend()function watchFn(fn) {depend.addDepend(fn)}// 对象的响应式const obj = {name: 'why', // depend 对象age: 18 // depend 对象}// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)const objProxy = new Proxy(obj, {get: function (target, key, receiver) {return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)depend.notify()} })watchFn(function foo() {const newName = objProxy.nameconsole.log('你好啊,李银河')console.log('Hello World')console.log(objProxy.name)})watchFn(function demo() {console.log(objProxy.name, 'demo function ---------')})objProxy.name = 'kobe'objProxy.name = 'james'/ 你好啊,李银河Hello Worldkobekobe demo function ---------你好啊,李银河Hello Worldjamesjames demo function ---------/ 4.5 对象的依赖管理 目前是创建了一个 Depend 对象,用来管理对于 name 变化需要监听的响应函数: 但是实际开发中我们会有不同的对象,另外会有不同的属性需要管理; 如何可以使用一种数据结构来管理不同对象的不同依赖关系呢? 在前面我们刚刚学习过 WeakMap,并且在学习 WeakMap 的时候我讲到了后面通过 WeakMap 如何管理这种响应式的数据依赖: 实现 可以写一个 getDepend 函数专门来管理这种依赖关系 / 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取mapconst map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象const depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)const objProxy = new Proxy(obj, {get: function (target, key, receiver) {return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} }) 正确的依赖收集 我们之前收集依赖的地方是在 watchFn 中: 但是这种收集依赖的方式我们根本不知道是哪一个 key 的哪一个 depend 需要收集依赖; 只能针对一个单独的 depend 对象来添加你的依赖对象; 那么正确的应该是在哪里收集呢?应该在我们调用了 Proxy 的 get 捕获器时 因为如果一个函数中使用了某个对象的 key,那么它应该被收集依赖 / 封装一个响应式函数 /let activeReactviceFn = nullfunction watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)const objProxy = new Proxy(obj, {get: function (target, key, receiver) {// 根据 target key 获取对应的 depnedconst depend = getDepend(target, key)// 给 depend 对象中添加响应式函数activeReactviceFn && depend.addDepend(activeReactviceFn)return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} }) 4.6 对 Depend 重构 两个问题: 问题一:如果函数中有用到两次 key,比如 name,那么这个函数会被收集两次 问题二:我们并不希望将添加 reactiveFn 放到 get 中,因为它是属于 Depend 的行为 所以我们需要对 Depend 类进行重构: 解决问题一的方法:不使用数组,而是使用 Set 解决问题二的方法:添加一个新的方法,用于收集依赖 // 保存当前需要收集的响应式函数let activeReactviceFn = nullclass Depend {constructor() {this.reactiveFns = new Set()}depend() {if (activeReactviceFn) {this.reactiveFns.add(activeReactviceFn)} }addDepend(reactiveFn) {this.reactiveFns.add(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }// 对象的响应式const obj = {name: 'why', // depend 对象age: 18 // depend 对象}/ 封装一个响应式函数 /function watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)const objProxy = new Proxy(obj, {get: function (target, key, receiver) {// 根据 target key 获取对应的 depnedconst depend = getDepend(target, key)// 给 depend 对象中添加响应式函数depend.depend()return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} })watchFn(function () {console.log(objProxy.name, '--------------')console.log(objProxy.name, '++++++++++++++')})objProxy.name = 'kobe'/ why --------------why ++++++++++++++kobe --------------kobe ++++++++++++++/ 4.7 创建响应式对象 目前的响应式是针对于obj一个对象的,我们可以创建出来一个函数,针对所有的对象都可以变成响应式对象 / 保存当前需要收集的响应式函数 /let activeReactviceFn = null/ 依赖收集类 /class Depend {constructor() {this.reactiveFns = new Set()}depend() {if (activeReactviceFn) {this.reactiveFns.add(activeReactviceFn)} }addDepend(reactiveFn) {this.reactiveFns.add(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }/ 封装一个响应式函数 /function watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}/ 创建响应式对象函数 /function reactive(obj) {// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)return new Proxy(obj, {get: function (target, key, receiver) {// 根据 target key 获取对应的 depnedconst depend = getDepend(target, key)// 给 depend 对象中添加响应式函数depend.depend()return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} })}const info = reactive({address: '广州市',height: 1.88})watchFn(() => {console.log(info.address, '---')})info.address = '北京市' 4.8 Vue2 响应式原理 前面所实现的响应式的代码,其实就是 Vue3 中的响应式原理: Vue3 主要是通过 Proxy 来监听数据的变化以及收集相关的依赖的 Vue2 中通过 Object.defineProerty的方式来实现对象属性的监听 可以将 reactive 函数进行如下的重构: 在传入对象时,我们可以遍历所有的 key,并且通过属性存储描述符来监听属性的获取和修改 在 setter 和 getter 方法中的逻辑和前面的 Proxy 是一致的 / 保存当前需要收集的响应式函数 /let activeReactviceFn = null/ 依赖收集类 /class Depend {constructor() {this.reactiveFns = new Set()}depend() {if (activeReactviceFn) {this.reactiveFns.add(activeReactviceFn)} }addDepend(reactiveFn) {this.reactiveFns.add(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }/ 封装一个响应式函数 /function watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}/ 创建响应式对象函数 /function reactive(obj) {Object.keys(obj).forEach((key) => {let value = obj[key]Object.defineProperty(obj, key, {get: function () {const dep = getDepend(obj, key)dep.depend()return value},set: function (newValue) {value = newValueconst dep = getDepend(obj, key)dep.notify()} })})return obj}const info = reactive({address: '广州市',height: 1.88})watchFn(() => {console.log(info.address, '---')})info.address = '北京市' 本篇文章为转载内容。原文链接:https://blog.csdn.net/wanghuan1020/article/details/126774033。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-11 12:37:47
679
转载
转载文章
...灵活的分块策略确保了数据安全性和完整性,使开发者能够轻松应对大规模数据迁移或备份的需求。 同时,在前端性能优化方面,Webpack 5等现代构建工具引入了更精细的模块分割功能,结合HTTP/2服务器推送技术,可以在一定程度上改善大资源如视频、音频等文件的加载体验,间接影响着用户上传大文件时的整体流畅度。 总之,无论是前端脚本库的不断迭代更新,还是云服务提供商对大文件上传功能的深度优化,都表明在这个数据爆炸的时代,高效稳定地上传大容量文件已成为互联网基础设施建设的重要一环,值得广大开发者持续关注并深入研究。
2023-12-19 09:43:46
127
转载
转载文章
...播server发送的数据。 - 组播MAC地址是指第一个字节的最低位是1的MAC地址。 - 组播MAC地址的前3个字节固定为01:00:5e,后3个字节使用组播IP的后23位。例如239.192.255.251的MAC地址为01:00:5e:40:ff:fb。 - Windows 10 Wireshark要抓取SOME/IP组播报文,需要使用SocketTool工具监听239.192.255.251:30490,然后Wireshark才会显示组播报文,否则不显示(Windows netmon不需要任何设置,就可以抓到全部报文)。 netsh interface ip show joins Win 10 PowerShell: Get-NetAdapter | Format-List -Property ifAlias,PromiscuousMode In Linux, map IP addr to multicast MAC is function ip_eth_mc_map(), kernel eventually calls driver ndo_set_rx_mode() to set multicast MAC to NIC RX MAC filter table. 3.5 NAT 查看当前机器的NAT端口代理表: netsh interface portproxy show all 1) 第三方软件PortTunnel。 2) ICS(Internet Connection Sharing)是NAT的简化版。 3) showcase: USB Reverse Tethering 3.6 route命令用法 route [-f] [-p] [command [destination] [mask netmask] [gateway] [metric metric] [if interface]] route print ::增加一条到192.168.0.10/24网络的路由,网关是192.168.0.1,最后一个if参数是数字,可以使用route print查询,类似于Android的NetId。 route add 192.168.0.0 mask 255.255.255.0 192.168.0.1 metric 1 if 11 ::删除192.168.0.10这条路由 route delete 192.168.0.0 3.7 VLAN PowerShell Get-NetAdapter PowerShell Set-NetAdapterAdvancedProperty -Name \"Ethernet 3\" -DisplayName \"VLAN ID\" -DisplayValue 24 PowerShell Reset-NetAdapterAdvancedProperty -Name \"Ethernet 3\" -DisplayName \"VLAN ID\" 3.8 WiFi AP 1) get password netsh wlan show profiles netsh wlan show profiles name="FAST_ABCD" key=clear 2) enable Soft AP netsh wlan show drivers ::netsh wlan set hostednetwork mode=allow netsh wlan set hostednetwork mode=allow ssid=myWIFI key=12345678 netsh wlan start hostednetwork ::netsh wlan stop hostednetwork 3.9 Malicious software Task Manager Find process name, open file location, remove xxx.exe, rename empty xxx.txt to xxx.exe 4 Office 4.1 Excel Insert Symbol More Symbols Wingdings 2 4.2 Outlook 4.2.1 邮箱清理 点击 自己的邮件名字 Data File Properties(数据文件属性) Folder Size(文件夹大小) Server Data(服务器数据) 从左下角“导航选项”中切换到“日历” View(视图) Change View(更改视图) List(列表) 删除“日历”中过期的项目。 Calendar (Left Bottom) - View (Change View to Calendar) - Choose Menu Month 4.2.2 TCAM filter rule Home - ... - Rules - Create Rule (Manage Rules & Alerts) - Title 4.3 Powerpoint画图 插入 - > 形状 Insert - > Shapes 4.4 Word 升级目录 [References][Update Table] 5 Sprax EA 5.1 Basic Design - Toolbox Message/Argument/Return Value Publish - Save - Save to Clipboard 5.2 Advanced Copy/Paste - Copy to Clipboard - Full Structure for Duplication Copy/Paste - Paste Package from Clipboard 6 USB Win7 CMD: wmic path Win32_PnPSignedDriver | find "Android" wmic path Win32_PnPSignedDriver | find "USB" :: similar to Linux lsusb wmic path Win32_USBControllerDevice get Dependent 7 Abbreviations CAB: Capacity Approval Board NPcap: Nmap Packet Capture wmic: Windows Management Instrumentation Command-line 本篇文章为转载内容。原文链接:https://blog.csdn.net/zoosenpin/article/details/118596813。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-10 16:27:10
270
转载
Ruby
...说啊,你正在倒腾一堆数据的时候,完全可以把它切成一小块一小块的,然后让每个线程去负责一块,这样一来,效率直接拉满,干活儿的速度蹭蹭往上涨! 但是,问题来了:并发编程虽然强大,但它并不是万能药。哎呀,经常会有这样的情况呢——自个儿辛辛苦苦改代码,还以为是在让程序变得更好,结果一不小心,又给它整出了新麻烦,真是“好心办坏事”的典型啊!接下来,我们来看几个具体的例子。 --- 3. 示例一 共享状态的混乱 场景描述: 假设你正在开发一个电商网站,需要统计用户的购买记录。你琢磨着干脆让多线程上阵,给这个任务提速,于是打算让每个线程各管一拨用户的活儿,分头行动效率肯定更高!看起来很合理对不对? 问题出现: 问题是,当你让多个线程共享同一个变量(比如一个全局计数器),事情就开始变得不可控了。Ruby 的线程可不是完全分开的,这就有点像几个人共用一个记事本,大家都能随便写东西上去。结果就是,这本子可能一会儿被这个写点,一会儿被那个划掉,最后你都不知道上面到底写了啥,数据就乱套了。 代码示例: ruby 错误的代码 counter = 0 threads = [] 5.times do |i| threads << Thread.new do 100_000.times { counter += 1 } end end threads.each(&:join) puts "Counter: {counter}" 分析: 这段代码看起来没什么问题,每个线程都只是简单地增加计数器。但实际情况却是,输出的结果经常不是期望的500_000,而是各种奇怪的数字。这就好比说,counter += 1 其实不是一步到位的简单操作,它得先“读一下当前的值”,再“给这个值加1”,最后再“把新的值存回去”。问题是,在这中间的每一个小动作,都可能被别的线程突然插队过来捣乱! 解决方案: 为了避免这种混乱,我们需要使用线程安全的操作,比如Mutex(互斥锁)。Mutex可以确保每次只有一个线程能够修改某个变量。 修正后的代码: ruby 正确的代码 require 'thread' counter = 0 mutex = Mutex.new threads = [] 5.times do |i| threads << Thread.new do 100_000.times do mutex.synchronize { counter += 1 } end end end threads.each(&:join) puts "Counter: {counter}" 总结: 这一段代码告诉我们,共享状态是一个雷区。如果你非要用共享变量,记得给它加上锁,不然后果不堪设想。 --- 4. 示例二 死锁的诅咒 场景描述: 有时候,我们会遇到更复杂的情况,比如两个线程互相等待对方释放资源。哎呀,这种情况就叫“死锁”,简直就像两只小猫抢一个玩具,谁都不肯让步,结果大家都卡在那里动弹不得,程序也就这样傻乎乎地停在原地,啥也干不了啦! 问题出现: 想象一下,你有两个线程,A线程需要获取锁X,B线程需要获取锁Y。想象一下,A和B两个人都想打开两把锁——A拿到了锁X,B拿到了锁Y。然后呢,A心想:“我得等B先把他的锁Y打开,我才能继续。”而B也在想:“等A先把她的锁X打开,我才能接着弄。”结果俩人就这么干等着,谁也不肯先放手,最后就成了“死锁”——就像两个人在拔河,谁都不松手,僵在那里啥也干不成。 代码示例: ruby 死锁的代码 lock_a = Mutex.new lock_b = Mutex.new thread_a = Thread.new do lock_a.synchronize do puts "Thread A acquired lock A" sleep(1) lock_b.synchronize do puts "Thread A acquired lock B" end end end thread_b = Thread.new do lock_b.synchronize do puts "Thread B acquired lock B" sleep(1) lock_a.synchronize do puts "Thread B acquired lock A" end end end thread_a.join thread_b.join 分析: 在这段代码中,两个线程都在尝试获取两个不同的锁,但由于它们的顺序不同,最终导致了死锁。运行这段代码时,你会发现程序卡住了,没有任何输出。 解决方案: 为了避免死锁,我们需要遵循“总是按照相同的顺序获取锁”的原则。比如,在上面的例子中,我们可以强制让所有线程都先获取锁A,再获取锁B。 修正后的代码: ruby 避免死锁的代码 lock_a = Mutex.new lock_b = Mutex.new thread_a = Thread.new do [lock_a, lock_b].each do |lock| lock.synchronize do puts "Thread A acquired lock {lock.object_id}" end end end thread_b = Thread.new do [lock_a, lock_b].each do |lock| lock.synchronize do puts "Thread B acquired lock {lock.object_id}" end end end thread_a.join thread_b.join 总结: 死锁就像一只隐形的手,随时可能掐住你的喉咙。记住,保持一致的锁顺序是关键! --- 5. 示例三 不恰当的线程池 场景描述: 线程池是一种管理线程的方式,它可以复用线程,减少频繁创建和销毁线程的开销。但在实际使用中,很多人会因为配置不当而导致性能下降甚至崩溃。 问题出现: 假设你创建了一个线程池,但线程池的大小设置得不合理。哎呀,这就好比做饭时锅不够大,菜都堆在那儿煮不熟,菜要是放太多呢,锅又会冒烟、潽得到处都是,最后饭也没做好。线程池也一样,太小了任务堆成山,程序半天没反应;太大了吧,电脑资源直接被榨干,啥事也干不成,还得收拾烂摊子! 代码示例: ruby 线程池的错误用法 require 'thread' pool = Concurrent::FixedThreadPool.new(2) 20.times do |i| pool.post do sleep(1) puts "Task {i} completed" end end pool.shutdown pool.wait_for_termination 分析: 在这个例子中,线程池的大小被设置为2,但有20个任务需要执行。哎呀,这就好比你请了个帮手,但他一次只能干两件事,其他事儿就得排队等着,得等前面那两件事儿干完了,才能轮到下一件呢!这种情况下,整个程序的执行时间会显著延长。 解决方案: 为了优化线程池的性能,我们需要根据系统的负载情况动态调整线程池的大小。可以使用Concurrent::CachedThreadPool,它会根据当前的任务数量自动调整线程的数量。 修正后的代码: ruby 使用缓存线程池 require 'concurrent' pool = Concurrent::CachedThreadPool.new 20.times do |i| pool.post do sleep(1) puts "Task {i} completed" end end sleep(10) 给线程池足够的时间完成任务 pool.shutdown pool.wait_for_termination 总结: 线程池就像一把双刃剑,用得好可以提升效率,用不好则会成为负担。记住,线程池的大小要根据实际情况灵活调整。 --- 6. 示例四 忽略异常的代价 场景描述: 并发编程的一个常见问题是,线程中的异常不容易被察觉。如果你没有妥善处理这些异常,程序可能会因为一个小错误而崩溃。 问题出现: 假设你有一个线程在执行某个操作时抛出了异常,但你没有捕获它,那么整个线程池可能会因此停止工作。 代码示例: ruby 忽略异常的代码 threads = [] 5.times do |i| threads << Thread.new do raise "Error in thread {i}" if i == 2 puts "Thread {i} completed" end end threads.each(&:join) 分析: 在这个例子中,当i == 2时,线程会抛出一个异常。哎呀糟糕!因为我们没抓住这个异常,程序直接就挂掉了,别的线程啥的也别想再跑了。 解决方案: 为了防止这种情况发生,我们应该在每个线程中添加异常捕获机制。比如,可以用begin-rescue-end结构来捕获异常并进行处理。 修正后的代码: ruby 捕获异常的代码 threads = [] 5.times do |i| threads << Thread.new do begin raise "Error in thread {i}" if i == 2 puts "Thread {i} completed" rescue => e puts "Thread {i} encountered an error: {e.message}" end end end threads.each(&:join) 总结: 异常就像隐藏在暗处的敌人,稍不注意就会让你措手不及。学会捕获和处理异常,是成为一个优秀的并发编程者的关键。 --- 7. 结语 好了,今天的分享就到这里啦!并发编程确实是一项强大的技能,但也需要谨慎对待。大家看看今天这个例子,是不是觉得有点隐患啊?希望能引起大家的注意,也学着怎么避开这些坑,别踩雷了! 最后,我想说的是,编程是一门艺术,也是一场冒险。每次遇到新挑战,我都觉得像打开一个神秘的盲盒,既兴奋又紧张。不过呢,光有好奇心还不够,还得有点儿耐心,就像种花一样,得一点点浇水施肥,不能急着看结果。相信只要我们不断学习、不断反思,就一定能写出更加优雅、高效的代码! 祝大家编码愉快!
2025-04-25 16:14:17
33
凌波微步
转载文章
...。 原文地址为: 大数据——海量数据处理的基本方法总结 声明: 原文引用参考July大神的csdn博客文章 => 海量处理面试题 海量数据处理概述 所谓海量数据处理,就是数据量太大,无法在较短时间内迅速解决,无法一次性装入内存。本文在前人的基础上总结一下解决此类问题的办法。那么有什么解决办法呢? 时间复杂度方面,我们可以采用巧妙的算法搭配合适的数据结构,如Bloom filter/Hash/bit-map/堆/数据库或倒排索引/trie树。空间复杂度方面,分而治之/hash映射。 海量数据处理的基本方法总结起来分为以下几种: 分而治之/hash映射 + hash统计 + 堆/快速/归并排序; 双层桶划分; Bloom filter/Bitmap; Trie树/数据库/倒排索引; 外排序; 分布式处理之Hadoop/Mapreduce。 前提基础知识: 1 byte= 8 bit。 int整形一般为4 bytes 共32位bit。 2^32=4G。 1G=2^30=10.7亿。 1 分而治之+hash映射+快速/归并/堆排序 问题1 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url? 分析:50亿64=320G大小空间。 算法思想1:hash 分解+ 分而治之 + 归并 遍历文件a,对每个url根据某种hash规则求取hash(url)/1024,然后根据所取得的值将url分别存储到1024个小文件(a0~a1023)中。这样每个小文件的大约为300M。如果hash结果很集中使得某个文件ai过大,可以在对ai进行二级hash(ai0~ai1024)。 这样url就被hash到1024个不同级别的目录中。然后可以分别比较文件,a0VSb0……a1023VSb1023。求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_map中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_map中,如果是,那么就是共同的url,存到文件里面就可以了。 把1024个级别目录下相同的url合并起来。 问题2 有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。 解决思想1:hash分解+ 分而治之 +归并 顺序读取10个文件a0~a9,按照hash(query)%10的结果将query写入到另外10个文件(记为 b0~b9)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。 找一台内存2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件c0~c9。 对这10个文件c0~c9进行归并排序(内排序与外排序相结合)。每次取c0~c9文件的m个数据放到内存中,进行10m个数据的归并,即使把归并好的数据存到d结果文件中。如果ci对应的m个数据全归并完了,再从ci余下的数据中取m个数据重新加载到内存中。直到所有ci文件的所有数据全部归并完成。 解决思想2: Trie树 如果query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。在这种假设前提下,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。 问题3: 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。 类似问题:怎么在海量数据中找出重复次数最多的一个? 解决思想: hash分解+ 分而治之+归并 顺序读文件中,对于每个词x,按照hash(x)/(10244)存到4096个小文件中。这样每个文件大概是250k左右。如果其中的有的文件超过了1M大小,还可以按照hash继续往下分,直到分解得到的小文件的大小都不超过1M。 对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100词及相应的频率存入文件。这样又得到了4096个文件。 下一步就是把这4096个文件进行归并的过程了。(类似与归并排序) 问题4 海量日志数据,提取出某日访问百度次数最多的那个IP 解决思想: hash分解+ 分而治之 + 归并 把这一天访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有2^32个IP。同样可以采用hash映射的方法,比如模1024,把整个大文件映射为1024个小文件。 再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。 然后再在这1024组最大的IP中,找出那个频率最大的IP,即为所求。 问题5 海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。 解决思想: 分而治之 + 归并。 注意TOP10是取最大值或最小值。如果取频率TOP10,就应该先hash分解。 在每台电脑上求出TOP10,采用包含10个元素的堆完成(TOP10小,用最大堆,TOP10大,用最小堆)。比如求TOP10大,我们首先取前10个元素调整成最小堆,如果发现,然后扫描后面的数据,并与堆顶元素比较,如果比堆顶元素大,那么用该元素替换堆顶,然后再调整为最小堆。最后堆中的元素就是TOP10大。 求出每台电脑上的TOP10后,然后把这100台电脑上的TOP10组合起来,共1000个数据,再利用上面类似的方法求出TOP10就可以了。 问题6 在2.5亿个整数中找出不重复的整数,内存不足以容纳这2.5亿个整数。 解决思路1 : hash 分解+ 分而治之 + 归并 2.5亿个int数据hash到1024个小文件中a0~a1023,如果某个小文件大小还大于内存,进行多级hash。每个小文件读进内存,找出只出现一次的数据,输出到b0~b1023。最后数据合并即可。 解决思路2 : 2-Bitmap 如果内存够1GB的话,采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存2^322bit=1GB内存。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。 注意,如果是找出重复的数据,可以用1-bitmap。第一次bit位由0变1,第二次查询到相应bit位为1说明是重复数据,输出即可。 问题7 一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数中的中数? 解决思想1 : hash分解 + 排序 按照升序顺序把这些数字,hash划分为N个范围段。假设数据范围是2^32 的unsigned int 类型。理论上第一台机器应该存的范围为0~(2^32)/N,第i台机器存的范围是(2^32)(i-1)/N~(2^32)i/N。hash过程可以扫描每个机器上的N个数,把属于第一个区段的数放到第一个机器上,属于第二个区段的数放到第二个机器上,…,属于第N个区段的数放到第N个机器上。注意这个过程每个机器上存储的数应该是O(N)的。 然后我们依次统计每个机器上数的个数,一次累加,直到找到第k个机器,在该机器上累加的数大于或等于(N^2)/2,而在第k-1个机器上的累加数小于(N^2)/2,并把这个数记为x。那么我们要找的中位数在第k个机器中,排在第(N^2)/2-x位。然后我们对第k个机器的数排序,并找出第(N^2)/2-x个数,即为所求的中位数的复杂度是O(N^2)的。 解决思想2: 分而治之 + 归并 先对每台机器上的数进行排序。排好序后,我们采用归并排序的思想,将这N个机器上的数归并起来得到最终的排序。找到第(N^2)/2个便是所求。复杂度是O(N^2 lgN^2)的。 2 Trie树+红黑树+hash_map 这里Trie树木、红黑树或者hash_map可以认为是第一部分中分而治之算法的具体实现方法之一。 问题1 上千万或上亿数据(有重复),统计其中出现次数最多的钱N个数据。 解决思路: 红黑树 + 堆排序 如果是上千万或上亿的int数据,现在的机器4G内存可以能存下。所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计重复次数。 然后取出前N个出现次数最多的数据,可以用包含N个元素的最小堆找出频率最大的N个数据。 问题2 1000万字符串,其中有些是重复的,需要把重复的全部去掉,保留没有重复的字符串。请怎么设计和实现? 解决思路:trie树。 这题用trie树比较合适,hash_map也应该能行。 问题3 一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。 解决思路: trie树 + 堆排序 这题是考虑时间效率。 1. 用trie树统计每个词出现的次数,时间复杂度是O(nlen)(len表示单词的平准长度)。 2. 然后找出出现最频繁的前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(nlg10)。 总的时间复杂度,是O(nle)与O(nlg10)中较大的哪一个。 问题4 搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录,这些查询串的重复读比较高,虽然总数是1千万,但是如果去除重复和,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就越热门。请你统计最热门的10个查询串,要求使用的内存不能超过1G。 解决思想 : trie树 + 堆排序 采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。 3 BitMap或者Bloom Filter 3.1 BitMap BitMap说白了很easy,就是通过bit位为1或0来标识某个状态存不存在。可进行数据的快速查找,判重,删除,一般来说适合的处理数据范围小于82^32。否则内存超过4G,内存资源消耗有点多。 问题1 已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。 解决思路: bitmap 8位最多99 999 999,需要100M个bit位,不到12M的内存空间。我们把0-99 999 999的每个数字映射到一个Bit位上,所以只需要99M个Bit==12MBytes,这样,就用了小小的12M左右的内存表示了所有的8位数的电话 问题2 2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。 解决思路:2bit map 或者两个bitmap。 将bit-map扩展一下,用2bit表示一个数即可,00表示未出现,01表示出现一次,10表示出现2次及以上,11可以暂时不用。 在遍历这些数的时候,如果对应位置的值是00,则将其置为01;如果是01,将其置为10;如果是10,则保持不变。需要内存大小是2^32/82=1G内存。 或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map,都是一样的道理。 3.2 Bloom filter Bloom filter可以看做是对bit-map的扩展。 参考july大神csdn文章 Bloom Filter 详解 4 Hadoop+MapReduce 参考引用july大神 csdn文章 MapReduce的初步理解 Hadoop框架与MapReduce模式 转载请注明本文地址: 大数据——海量数据处理的基本方法总结 本篇文章为转载内容。原文链接:https://blog.csdn.net/hong2511/article/details/80842704。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-01 12:40:17
541
转载
转载文章
...被加载执行的用户进程数据段所对应的全局描述符号给显示到桌面上,上面代码执行后情况如下: 我们看到,在控制台中执行hlt命令后,内核加载了用户进程,同时在控制台下方输出了一个字符串,也就是0x1E,这个数值对应的就是当前运行用户进程其数据段对应的全局描述符号。一旦有这个信息之后,另一个进程就可以有机可乘了。 接着我们在本地目录创建一个新文件叫crack.c,其内容如下: void main() {char p = (char)0x123;p[0] = 'c';p[1] = 'r';p[2] = 'a';p[3] = 'c';p[4] = 'k';p[5] = 0;} 它的目的简单,就是针对内存地址0x123处写入字符串”crack”.接着我们修改一下makefile,使得内核编译时,能把crack.c编译成二进制文件: CFLAGS=-fno-stack-protectorckernel : ckernel_u.asm app_u.asm crack_u.asm cp ckernel_u.asm win_sheet.h win_sheet.c mem_util.h mem_util.c write_vga_desktop.c timer.c timer.h global_define.h global_define.c multi_task.c multi_task.h app_u.asm app.c crack_u.asm crack.c makefile '/media/psf/Home/Documents/操作系统/文档/19/OS-kernel-win-sheet/'ckernel_u.asm : ckernel.o....crack_u.asm : crack.o./objconv -fnasm crack.o crack_u.asmcrack.o : crack.cgcc -m32 -fno-stack-protector -fno-asynchronous-unwind-tables -s -c -o crack.o crack.c 然后我们在本地目录下,把api_call.asm拷贝一份,并命名为crack_call.asm,后者内容与前者完全相同,只不过稍微有那么一点点改变,例如: BITS 32mov AX, 30 8mov DS, axcall mainmov edx, 4 ;返回内核int 02Dh.... 这里需要注意,语句: mov AX, 30 8mov DS, ax 其中30对应的就是前面显示的0x1E,这两句汇编的作用是,把程序crack的数据段设置成下标为30的全局描述符所指向的内存段一致。这就意味着crack进程所使用的数据段就跟hlt启动的进程所使用的数据段一致了!于是在crack.c中,它对内存地址为0x123的地方写入字符串”crack”,那就意味着对hlt加载用户进程的内存空间写入对应字符串! 完成上面代码后,我们在java项目中,增加代码,一是用来编译crack进程,而是把crack代码写入虚拟磁盘。在OperatingSystem.java中,将代码做如下添加: public void makeFllopy() {writeFileToFloppy("kernel.bat", false, 1, 1);....header = new FileHeader();header.setFileName("crack");header.setFileExt("exe");file = new File("crack.bat");in = null;try {in = new FileInputStream(file);long len = file.length();int count = 0;while (count < file.length()) {bbuf[count] = (byte) in.read();count++;}in.close();}catch(IOException e) {e.printStackTrace();return;}header.setFileContent(bbuf);fileSys.addHeader(header);....}public static void main(String[] args) {CKernelAsmPrecessor kernelPrecessor = new CKernelAsmPrecessor();kernelPrecessor.process();kernelPrecessor.createKernelBinary();CKernelAsmPrecessor appPrecessor = new CKernelAsmPrecessor("hlt.bat", "app_u.asm", "app.asm", "api_call.asm");appPrecessor.process();appPrecessor.createKernelBinary();CKernelAsmPrecessor crackPrecessor = new CKernelAsmPrecessor("crack.bat", "crack_u.asm", "crack.asm", "crack_call.asm");crackPrecessor.process();crackPrecessor.createKernelBinary();OperatingSystem op = new OperatingSystem("boot.bat");op.makeFllopy();} 在main函数中,我们把crack.c及其附属汇编文件结合在一起,编译成二进制文件crack.bat,在makeFllopy中,我们把编译后的crack.bat二进制数据读入,并把它写入到虚拟磁盘中,当系统运行起来后,可以把crack.bat二进制内容作为进程加载执行。 完成上面代码后,回到内核的C语言部分,也就是write_vga_desktop.c做一些修改,在kernel_api函数中,修改如下: int kernel_api(int edi, int esi, int ebp, int esp,int ebx, int edx, int ecx, int eax) {....else if (edx == 14) {sheet_free(shtctl, (struct SHEET)ebx);//change herecons_putstr((char)(task->pTaskBuffer->pDataSeg + 0x123));}....}void console_task(struct SHEET sheet, int memtotal) {....for(;;) {....else if (i == KEY_RETURN) {....else if (strcmp(cmdline, "crack") == 1) {cmd_execute_program("crack.exe");}....}....} 在kernel_api中,if(edx == 14)对应的api调用是api_closewin,也就是当用户进程关闭窗口时,我们把进程数据偏移0x123处的数据当做字符串打印到控制台窗口上,在console_task控制台进程主函数中,我们增加了对命令crack的响应,当用户在控制台上输入命令”crack”时,将crack代码加载到内核中运行。上面代码完成后,编译内核,然后用虚拟机将内核加载,系统启动后,我们现在一个控制台中输入hlt,先启动用户进程。然后点击”shift + w”,启动另一个控制台窗口,在其中输入crack,运行crack程序: 接着把点击tab键,把焦点恢复到窗口task_a,然后用鼠标点击运行hlt命令的窗口,把输入焦点切换到该控制台,然后再次点击tab键,把执行权限提交给运行hlt命令的控制台,此时点击回车,介绍用户进程启动的窗口,结果情况如下: 此时我们可以看到,运行hlt命令,执行用户进程的控制台窗口居然输出了字符串”crack”,而这个字符串正是crack.c在执行时,写入地址0x123的字符串。这就意味着一个恶意进程成功修改了另一个进程的内存数据,也相当于一个流氓程序把一只咸猪手伸到其他用户进程的裙底,蹂躏一番后留下了猥琐的证据。 那么如何防范恶意进程对其他程序的非法入侵呢,这就得使用CPU提供的LDT机制,也就是局部描述符表,该机制的使用,我们将在下一节详细讲解。更详细的讲解和代码演示调试,请参看视频: 更详细的讲解和代码调试演示过程,请参看视频 Linux kernel Hacker, 从零构建自己的内核 更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号: 本篇文章为转载内容。原文链接:https://blog.csdn.net/tyler_download/article/details/78731905。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-14 19:08:07
254
转载
Spark
...Spark,它可是大数据处理界的明星选手,性能强大,功能丰富。但即使是这么优秀的框架,有时候也会让我们头疼不已。 分布式缓存是Spark的一个重要特性,它的核心目标是减少重复计算,提升任务执行效率。简单来说,就是把一些频繁使用的数据放到内存里,供多个任务共享。听起来是不是很美好?但实际上,我在实际开发过程中遇到了不少麻烦。 比如有一次,我正在做一个数据分析项目,需要多次对同一份数据进行操作。我寻思着,这不就是常规操作嘛,直接用Spark的分布式缓存功能得了,这样岂不是能省掉好多重复加载的麻烦?嘿,事情是这样的——我辛辛苦苦搞完了任务,满怀期待地提交上去,结果发现这运行速度简直让人无语,不仅没达到预期的飞快效果,反而比啥缓存都不用的时候还慢!当时我就蒙圈了,心里直嘀咕:“卧槽,这是什么神仙操作?”没办法,只能硬着头皮一点点去查问题,最后才慢慢搞清楚了分布式缓存里到底藏着啥猫腻。 二、深入分析 为什么缓存反而变慢? 经过一番折腾,我发现问题出在以下几个方面: 2.1 数据量太大导致内存不足 首先,大家要明白一点,Spark的分布式缓存本质上是将数据存储在集群节点的内存中。要是数据量太大,超出了单个节点能装下的内存容量,那就会把多余的数据写到磁盘上,这个过程叫“磁盘溢写”。但这样一来,任务的速度就会被拖慢,变得特别磨叽。 举个例子吧,假设你有一份1GB大小的数据集,而你的集群节点只有512MB的可用内存。你要是想把这份数据缓存起来,Spark会自己挑个序列化的方式给数据“打包”,顺便还能压一压体积。不过呢,就算是这样,还是有可能会出现溢写这种烦人的情况,挡都挡不住。唉,真是没想到啊,本来想靠着缓存省事儿提速呢,结果这操作反倒因为磁盘老是读写(频繁I/O)变得更卡了,简直跟开反向加速器似的! 解决办法也很简单——要么增加节点的内存配置,要么减少需要缓存的数据规模。当然,这需要根据实际情况权衡利弊。 2.2 序列化方式的选择不当 另一个容易被忽视的问题是序列化方式的选择。Spark提供了多种序列化机制,包括JavaSerializer、KryoSerializer等。不同的序列化方式会影响数据的大小以及读取效率。 我曾经试过直接使用默认的JavaSerializer,结果发现性能非常差。后来改用了KryoSerializer之后,才明显感觉到速度有所提升。话说回来啊,用 KryoSerializer 的时候可别忘了先给所有要序列化的类都注册好,不然程序很可能就“翻车”报错啦! java import org.apache.spark.serializer.KryoRegistrator; import com.esotericsoftware.kryo.Kryo; public class MyRegistrator implements KryoRegistrator { @Override public void registerClasses(Kryo kryo) { kryo.register(MyClass.class); // 注册其他需要序列化的类... } } 然后在SparkConf中设置: java SparkConf conf = new SparkConf(); conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer"); conf.set("spark.kryo.registrator", "MyRegistrator"); 2.3 缓存时机的选择失误 还有一个关键点在于缓存的时机。有些人一启动任务就赶紧给数据加上.cache(),觉得这样数据就能一直乖乖待在内存里,不用再费劲去读了。但实际上,这种做法并不总是最优解。 比如,在某些情况下,数据可能只会在特定阶段被频繁访问,而在其他阶段则很少用到。要是你提前把这部分数据缓存了,不光白白占用了宝贵的内存空间,搞不好后面真要用缓存的地方还找不到足够的空位呢! 因此,合理规划缓存策略非常重要。比如说,在某个任务快开始了,你再随手调用一下.cache()这个方法,这样就能保证数据乖乖地待在内存里,别到时候卡壳啦! 三、实践案例 如何正确使用分布式缓存? 接下来,我想分享几个具体的案例,帮助大家更好地理解和运用分布式缓存。 案例1:简单的词频统计 假设我们有一个文本文件,里面包含了大量的英文单词。我们的目标是统计每个单词出现的次数。为了提高效率,我们可以先将文件内容缓存起来,然后再进行处理。 scala val textFile = sc.textFile("hdfs://path/to/input.txt") textFile.cache() val wordCounts = textFile.flatMap(_.split(" ")) .map(word => (word, 1)) .reduceByKey(_ + _) wordCounts.collect().foreach(println) 在这个例子中,.cache()方法确保了textFile RDD的内容只被加载一次,并且可以被后续的操作共享。其实嘛,要是没用缓存的话,每次你调用flatMap或者map的时候,都得重新去原始数据里翻一遍,这就跟每次出门都得把家里所有东西再检查一遍似的,纯属给自己找麻烦啊! 案例2:多步骤处理流程 有时候,一个任务可能会涉及到多个阶段的处理,比如过滤、映射、聚合等等。在这种情况下,合理安排缓存的位置尤为重要。 python from pyspark.sql import SparkSession spark = SparkSession.builder.appName("WordCount").getOrCreate() df = spark.read.text("hdfs://path/to/input.txt") 第一步:将文本拆分为单词 words = df.selectExpr("split(value, ' ') as words").select("words.") 第二步:缓存中间结果 words.cache() 第三步:统计每个单词的出现次数 word_counts = words.groupBy("value").count() word_counts.show() 这里,我们在第一步处理完之后立即调用了.cache()方法,目的是为了保留中间结果,方便后续步骤复用。要是不这么干啊,那每走一步都得把上一步的算一遍,想想就费劲,效率肯定低得让人抓狂。 四、总结与展望 通过今天的讨论,相信大家对Spark的分布式缓存有了更深刻的认识。虽然它能带来显著的性能提升,但也并非万能药。其实啊,要想把它用得溜、用得爽,就得先搞懂它是怎么工作的,再根据具体的情况去灵活调整。不然的话,它的那些本事可就都浪费啦! 未来,随着硬件条件的不断改善以及算法优化的持续推进,相信Spark会在更多领域展现出更加卓越的表现。嘿,咱们做开发的嘛,就得有颗永远好奇的心!就跟追剧似的,新技术一出就得赶紧瞅两眼,说不定哪天就用上了呢。别怕麻烦,多学点东西总没错,说不定哪天就能整出个大招儿来! 最后,感谢大家耐心阅读这篇文章。如果你有任何疑问或者想法,欢迎随时交流!让我们一起努力,共同进步吧!
2025-05-02 15:46:14
82
素颜如水
转载文章
...back:接收IMU数据,将IMU数据存到imu_msg_buffer中,这里只会利用开头200帧IMU数据进行静止初始化,不做其他处理。featureCallback:接收双目特征,进行后端处理。利用IMU进行EKF Propagation,利用双目特征进行EKF Update。静止初始化(initializeGravityAndBias):将前200帧加速度和角速度求平均, 平均加速度的模值g作为重力加速度, 平均角速度作为陀螺仪的bias, 计算重力向量(0,0,-g)和平均加速度之间的夹角(旋转四元数), 标定初始时刻IMU系与world系之间的夹角. 因此MSCKF要求前200帧IMU是静止不动的 sudo apt-get install libsuitesparse-devcd ~/catkin_ws/srcgit clone KumarRobotics/msckf_viocd ..catkin_make --pkg msckf_vio --cmake-args -DCMAKE_BUILD_TYPE=Release激活环境变量很关键source /devel/setup.bashroslaunch msckf_vio msckf_vio_euroc.launch注意文件路径rosrun rviz rviz -d rviz/rviz_euroc_config.rviz (改成你自己的rviz文件)rosbag play ~/data/euroc/MH_04_difficult.bag(改成你自己的rosbag文件) 可以看到,s_msckf的输出是没有轨迹的,可以增加如下脚本,将/odom存为/path,在rviz订阅即可可视化轨迹 脚本来自其issue:https://github.com/KumarRobotics/msckf_vio/issues/13 !/usr/bin/env pythonimport rospyfrom nav_msgs.msg import Odometry, Pathfrom geometry_msgs.msg import PoseStampedclass OdomToPath:def __init__(self):self.path_pub = rospy.Publisher('/slz_path', Path, latch=True, queue_size=10)self.odom_sub = rospy.Subscriber('/firefly_sbx/vio/odom', Odometry, self.odom_cb, queue_size=10)self.path = Path()def odom_cb(self, msg):cur_pose = PoseStamped()cur_pose.header = msg.headercur_pose.pose = msg.pose.poseself.path.header = msg.headerself.path.poses.append(cur_pose)self.path_pub.publish(self.path)if __name__ == '__main__':rospy.init_node('odom_to_path')odom_to_path = OdomToPath()rospy.spin() 或者增加一个draw_path的功能包: cpp为: include <stdio.h>include <stdlib.h>include <unistd.h>include <ros/ros.h>include <ros/console.h>include <nav_msgs/Path.h>include <std_msgs/String.h>include <nav_msgs/Odometry.h>include <geometry_msgs/Quaternion.h>include <geometry_msgs/PoseStamped.h>nav_msgs::Path path;ros::Publisher path_pub;ros::Subscriber odomSub;ros::Subscriber odom_raw_Sub;void odomCallback(const nav_msgs::Odometry::ConstPtr& odom){geometry_msgs::PoseStamped this_pose_stamped;this_pose_stamped.header= odom->header;this_pose_stamped.pose = odom->pose.pose;//this_pose_stamped.pose.position.x = odom->pose.pose.position.x;//this_pose_stamped.pose.position.y = odom->pose.pose.position.y;//this_pose_stamped.pose.orientation = odom->pose.pose.orientation;//this_pose_stamped.header.stamp = ros::Time::now();//this_pose_stamped.header.frame_id = "world";//frame_id 是消息中与数据相关联的参考系id,例如在在激光数据中,frame_id对应激光数据采集的参考系 path.header= this_pose_stamped.header;path.poses.push_back(this_pose_stamped);//path.header.stamp = ros::Time::now();//path.header.frame_id= "world";path_pub.publish(path);//printf("path_pub ");//printf("odom %.3lf %.3lf\n",odom->pose.pose.position.x,odom->pose.pose.position.y);}int main (int argc, char argv){ros::init (argc, argv, "showpath");ros::NodeHandle ph;path_pub = ph.advertise<nav_msgs::Path>("/trajectory",10, true);odomSub = ph.subscribe<nav_msgs::Odometry>("/firefly_sbx/vio/odom", 10, odomCallback);//ros::Rate loop_rate(50);while (ros::ok()){ros::spinOnce(); // check for incoming messages//loop_rate.sleep();}return 0;} cmakelists.txt cmake_minimum_required(VERSION 2.8.3)project(draw) Compile as C++11, supported in ROS Kinetic and newer add_compile_options(-std=c++11) Find catkin macros and libraries if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz) is used, also find other catkin packagesfind_package(catkin REQUIRED COMPONENTSgeometry_msgsroscpprospystd_msgsmessage_generation)catkin_package( INCLUDE_DIRS include LIBRARIES learning_communicationCATKIN_DEPENDS geometry_msgs roscpp rospy std_msgs message_runtime DEPENDS system_lib) Build include_directories(include${catkin_INCLUDE_DIRS})add_executable(draw_path draw.cpp)target_link_libraries(draw_path ${catkin_LIBRARIES}) package.xml <?xml version="1.0"?><package><name>draw</name><version>0.0.0</version><description>The learning_communication package</description><!-- One maintainer tag required, multiple allowed, one person per tag --><!-- Example: --><!-- <maintainer email="jane.doe@example.com">Jane Doe</maintainer> --><maintainer email="hcx@todo.todo">hcx</maintainer><!-- One license tag required, multiple allowed, one license per tag --><!-- Commonly used license strings: --><!-- BSD, MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1, LGPLv3 --><license>TODO</license><!-- Url tags are optional, but multiple are allowed, one per tag --><!-- Optional attribute type can be: website, bugtracker, or repository --><!-- Example: --><!-- <url type="website">http://wiki.ros.org/learning_communication</url> --><!-- Author tags are optional, multiple are allowed, one per tag --><!-- Authors do not have to be maintainers, but could be --><!-- Example: --><!-- <author email="jane.doe@example.com">Jane Doe</author> --><!-- The _depend tags are used to specify dependencies --><!-- Dependencies can be catkin packages or system dependencies --><!-- Examples: --><!-- Use build_depend for packages you need at compile time: --><!-- <build_depend>message_generation</build_depend> --><!-- Use buildtool_depend for build tool packages: --><!-- <buildtool_depend>catkin</buildtool_depend> --><!-- Use run_depend for packages you need at runtime: --><!-- <run_depend>message_runtime</run_depend> --><!-- Use test_depend for packages you need only for testing: --><!-- <test_depend>gtest</test_depend> --><buildtool_depend>catkin</buildtool_depend><build_depend>geometry_msgs</build_depend><build_depend>roscpp</build_depend><build_depend>rospy</build_depend><build_depend>std_msgs</build_depend><run_depend>geometry_msgs</run_depend><run_depend>roscpp</run_depend><run_depend>rospy</run_depend><run_depend>std_msgs</run_depend><build_depend>message_generation</build_depend><run_depend>message_runtime</run_depend><!-- The export tag contains other, unspecified, tags --><export><!-- Other tools can request additional information be placed here --></export></package> vins_fusion: 双目vio等多系统 mkdir -p vins-catkin_ws/srccd vins-catkin_ws/srcgit clone https://github.com/HKUST-Aerial-Robotics/VINS-Fusion.gitcd ..catkin_makesource devel/setup.bash按照readme 3.1 Monocualr camera + IMUroslaunch vins vins_rviz.launchrosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_mono_imu_config.yaml (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_mono_imu_config.yaml rosbag play YOUR_DATASET_FOLDER/MH_01_easy.bag 3.2 Stereo cameras + IMUroslaunch vins vins_rviz.launchrosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_imu_config.yaml (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_imu_config.yaml rosbag play YOUR_DATASET_FOLDER/MH_01_easy.bag 3.3 Stereo camerasroslaunch vins vins_rviz.launchrosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_config.yaml (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_config.yaml rosbag play YOUR_DATASET_FOLDER/MH_01_easy.bag<img src="https://github.com/HKUST-Aerial-Robotics/VINS-Fusion/blob/master/support_files/image/euroc.gif" width = 430 height = 240 /> 4. KITTI Example 4.1 KITTI Odometry (Stereo)Download [KITTI Odometry dataset](http://www.cvlibs.net/datasets/kitti/eval_odometry.php) to YOUR_DATASET_FOLDER. Take sequences 00 for example,Open two terminals, run vins and rviz respectively. (We evaluated odometry on KITTI benchmark without loop closure funtion)roslaunch vins vins_rviz.launch(optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/kitti_odom/kitti_config00-02.yamlrosrun vins kitti_odom_test ~/catkin_ws/src/VINS-Fusion/config/kitti_odom/kitti_config00-02.yaml YOUR_DATASET_FOLDER/sequences/00/ 4.2 KITTI GPS Fusion (Stereo + GPS)Download [KITTI raw dataset](http://www.cvlibs.net/datasets/kitti/raw_data.php) to YOUR_DATASET_FOLDER. Take [2011_10_03_drive_0027_synced](https://s3.eu-central-1.amazonaws.com/avg-kitti/raw_data/2011_10_03_drive_0027/2011_10_03_drive_0027_sync.zip) for example.Open three terminals, run vins, global fusion and rviz respectively. Green path is VIO odometry; blue path is odometry under GPS global fusion.roslaunch vins vins_rviz.launchrosrun vins kitti_gps_test ~/catkin_ws/src/VINS-Fusion/config/kitti_raw/kitti_10_03_config.yaml YOUR_DATASET_FOLDER/2011_10_03_drive_0027_sync/ rosrun global_fusion global_fusion_node<img src="https://github.com/HKUST-Aerial-Robotics/VINS-Fusion/blob/master/support_files/image/kitti.gif" width = 430 height = 240 /> 5. VINS-Fusion on car demonstrationDownload [car bag](https://drive.google.com/open?id=10t9H1u8pMGDOI6Q2w2uezEq5Ib-Z8tLz) to YOUR_DATASET_FOLDER.Open four terminals, run vins odometry, visual loop closure(optional), rviz and play the bag file respectively. Green path is VIO odometry; red path is odometry under visual loop closure.roslaunch vins vins_rviz.launchrosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/vi_car/vi_car.yaml (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/vi_car/vi_car.yaml rosbag play YOUR_DATASET_FOLDER/car.bag 本篇文章为转载内容。原文链接:https://blog.csdn.net/slzlincent/article/details/104364909。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-13 20:38:56
310
转载
转载文章
...;a>狂神说大数据</a></li><li><a>狂神聊理财</a></li></ul></div></div></div></div></div><el-button @click="download" id="download">下载</el-button><!-- <el-button @click="concurrenceDownload" >并发下载测试</el-button>--><el-button @click="stop">停止</el-button><el-button @click="start">开始</el-button>{ {fileFinalOffset} }{ {contentList} }<el-progress type="circle" :percentage="percentage"></el-progress></div><!--前端使用Vue,实现前后端分离--><script th:src="@{/js/axios.min.js}"></script><script th:src="@{/js/vue.min.js}"></script><!-- 引入样式 --><link rel="stylesheet" href="https://unpkg.com/element-ui/lib/theme-chalk/index.css"><!-- 引入组件库 --><script src="https://unpkg.com/element-ui/lib/index.js"></script><script>new Vue({ el: 'app',data: {keyword: '', //搜索关键字results: [] ,//搜索结果percentage: 0, // 下载进度filesCurrentPage:0,//文件开始偏移量fileFinalOffset:0, //文件最后偏移量stopRecursiveTags:true, //停止递归标签,默认是true 继续进行递归contentList: [], // 文件流数组breakpointResumeTags:false, //断点续传标签,默认是false 不进行断点续传temp:[],fileMap:new Map(),timer:null, //定时器名称},methods: {//根据关键字搜索商品信息searchKey(){var keyword=this.keyword;axios.get('/search/JD/search/'+keyword+"/1/10").then(res=>{this.results=res.data;//绑定数据console.log(this.results)console.table(this.results)})},//停止下载stop(){//改变递归标签为falsethis.stopRecursiveTags=false;},//开始下载start(){//重置递归标签为true 最后进行合并this.stopRecursiveTags=true;//重置断点续传标签this.breakpointResumeTags=true;//重新调用下载方法this.download();},// 分段下载需要后端配合download() {// 下载地址const url = "/down?fileName="+this.keyword.trim()+"&drive=E";console.log(url)const chunkSize = 1024 1024 50; // 单个分段大小,这里测试用100Mlet filesTotalSize = chunkSize; // 安装包总大小,默认100Mlet filesPages = 1; // 总共分几段下载//计算百分比之前先清空上次的if(this.percentage==100){this.percentage=0;}let sentAxios = (num) => {let rande = chunkSize;//判断是否开启了断点续传(断点续传没法并行-需要上次请求的结果作为参数)if (this.breakpointResumeTags){rande = ${Number(this.fileFinalOffset)+1}-${num chunkSize + 1};}else {if (num) {rande = ${(num - 1) chunkSize + 2}-${num chunkSize + 1};} else {// 第一次0-1方便获取总数,计算下载进度,每段下载字节范围区间rande = "0-1";} }let headers = {range: rande,};axios({method: "get",url: url.trim(),async: true,data: {},headers: headers,responseType: "blob"}).then((response) => {if (response.status == 200 || response.status == 206) {//检查了下才发现,后端对文件流做了一层封装,所以将content指向response.data即可const content = response.data;//截取文件总长度和最后偏移量let result= response.headers["content-range"].split("/");// 获取文件总大小,方便计算下载百分比filesTotalSize =result[1];//获取最后一片文件位置,用于断点续传this.fileFinalOffset=result[0].split("-")[1]// 计算总共页数,向上取整filesPages = Math.ceil(filesTotalSize / chunkSize);// 文件流数组this.contentList.push(content);// 递归获取文件数据(判断是否要继续递归)if (this.filesCurrentPage < filesPages&&this.stopRecursiveTags==true) {this.filesCurrentPage++;//计算下载百分比 当前下载的片数/总片数this.percentage=Number((this.contentList.length/filesPages)100).toFixed(2);sentAxios(this.filesCurrentPage);//结束递归return;}//递归标签为true 才进行下载if (this.stopRecursiveTags){// 文件名称const fileName =decodeURIComponent(response.headers["fname"]);//构造一个blob对象来处理数据const blob = new Blob(this.contentList);//对于<a>标签,只有 Firefox 和 Chrome(内核) 支持 download 属性//IE10以上支持blob但是依然不支持downloadif ("download" in document.createElement("a")) {//支持a标签download的浏览器const link = document.createElement("a"); //创建a标签link.download = fileName; //a标签添加属性link.style.display = "none";link.href = URL.createObjectURL(blob);document.body.appendChild(link);link.click(); //执行下载URL.revokeObjectURL(link.href); //释放urldocument.body.removeChild(link); //释放标签} else {//其他浏览器navigator.msSaveBlob(blob, fileName);} }} else {//调用暂停方法,记录当前下载位置console.log("下载失败")} }).catch(function (error) {console.log(error);});};// 第一次获取数据方便获取总数sentAxios(this.filesCurrentPage);this.$message({message: '文件开始下载!',type: 'success'});} }})</script></body></html> 本篇文章为转载内容。原文链接:https://blog.csdn.net/kangshihang1998/article/details/129407214。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-19 08:12:45
546
转载
转载文章
...例如PyTorch)导出的模型转换为Relay IR,TVM能够进一步对模型进行优化并在不同后端硬件上高效执行。在文章中,用户通过from_pytorch函数将PyTorch模型转化为Relay IR以供后续编译和执行。
2023-12-12 20:04:26
87
转载
转载文章
...,只向目标发出SYN数据包,如果收到SYN/ACK响应包就认为目标端口正在监听,并立即断开连接;否则认为目标端口并未开放。-sT:TCP连接扫描,这是完整的TCP扫描方式(默认扫描类型),用来建立一个TCP连接,如果成功则认为目标端口正在监听服务,否则认为目标端口并未开放。-sF:TCP的FIN扫描,开放的端口会忽略这种数据包,关闭的端口会回应RST数据包。许多防火墙只对SYN数据包进行简单过滤,而忽略了其他形式的TCP attack 包。这种类型的扫描可间接检测防火墙的健壮性。-sU:UDP扫描,探测目标主机提供哪些UDP服务,UDP扫描的速度会比较慢。-sP:ICMP扫描,类似于ping检测,快速判断目标主机是否存活,不做其他扫描。-P0:跳过ping检测,这种方式认为所有的目标主机是存活的,当对方不响应ICMP请求时,使用这种方式可以避免因无法 ping通而放弃扫描。 总结: 1.账号基本安全措施:系统账号处理、密码安全控制、命令历史清理、自动注销 2.用户切换与提权(su、sudo) 3.开关机安全控制(BIOS引导设置、禁止Ctrl+Alt+Del快捷键、GRUB菜单设置密码) 4.终端控制 5.弱口令检测——John the Ripper 6.端口扫描——namp 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_67474417/article/details/123982900。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-07 23:37:44
98
转载
转载文章
...一、建模背景及目的及数据源说明 二、描述性分析 2.1 连续自变量与连续因变量的相关性分析 2.2 二分类变量与连续变量的相关性分析 2.3 多分类变量与连续变量的相关性分析 三、模型建立与诊断 3.1 一元线形回归及模型解读 3.2 残差可视化分析 3.3 多元线性回归 一、建模背景及目的及数据源说明 本案例数据来源于常国珍等人的《Python数据科学》一书第7章中的信用卡公司客户申请信息(年龄、收入、地区等信息)以及已有开卡客户的申请信息和信用卡消费信息数据,案例希望通过对该数据的分析和建模,根据已有的开卡用户的用户信息和消费来线形回归模型,来预测未开卡用户的消费潜力。数据下载见如下链https://download.csdn.net/download/baidu_26137595/85101874 数据读入及示例: raw = pd.read_csv('./data/creditcard_exp.csv', skipinitialspace = True)raw.head() 数据字段及说明: Acc: 是否开卡, 为0说明未开卡,对应的 avg_exp 为NaN;为1说明已开卡,对应avg_exp有值 avg_exp: 月均信用卡支出 avg_exp_ln:月均信用卡支出的对熟 gender : 性别 Ownrent: 是否自有住房 Selfempl: 是否自谋职业 Income:收入 dist_home_val: 所住小区均价 w dist_avg_income: 当地人均收入 age2: 年龄的平方 high_avg: 高出当地平均收入 edu_class:教育等级,0、1、2、3 依次是小学、初中、高中、大学 二、描述性分析 首先可筛选Acc为1的数据,分别以avg_exp为因变量,其余变量为自变量进行数据探索,主要是发现自变量和因变量是否有线形关系。 raw_1 = raw[raw['Acc'] == 1] 2.1 连续自变量与连续因变量的相关性分析 首先对连续变量和目标变量进行相关性分析,因变量avg_exp为连续变量,一般可以用相关系数来看其线形相关性。 cons_vasr = ['avg_exp', 'avg_exp_ln', 'Age', 'Income', 'dist_home_val', 'dist_avg_income', 'age2', 'high_avg']raw_1[cons_vasr].corr()vg']].corr() 结果如下,可以看到收入 Income 和当地人均收入 dist_avg_income这两个变量和avg_exp月均信用卡支出有较强的相关性,同时观察自变量间的相关性可发现人均收入 Income 和当地人均收入 dist_avg_income 之间也有较强的相关性,相关系数为0.99,说明接下来我们可以把这两个变量加入模型,但要注意可能会存在多重共线性。 2.2 二分类变量与连续变量的相关性分析 分类变量和连续变量之间的相关性可以用t检验进行,接下来以是否自有住房 Ownrent 变量 和 月均收入之间进行相关性检验。首先查看Ownrent 不同取值的数量以及avg_exp均值分布情况如何: pd.pivot_table(raw_1, values = ['avg_exp'], index = ['Ownrent'], aggfunc = {'avg_exp': ['count', np.mean]}) 接着分别对 Ownrent 为0、1的 avg_exp 进行t检验: import scipy.stats as st 引入scipy.stats进行t检验 创建变量Ownrent_0 = raw_1[raw_1['Ownrent'] == 0]['avg_exp'].valuesOwnrent_1 = raw_1[raw_1['Ownrent'] == 1]['avg_exp'].valuesst.ttest_ind(Ownrent_0, Ownrent_1, equal_var = True) p值为0.01 < 0.05,可以拒绝原假设,即认为是否自有住房和月均信用卡支出是相关的。 2.3 多分类变量与连续变量的相关性分析 多分类变量和连续变量之间的相关性检验可以用多次t检验进行,但较为繁琐,用方差分析进行快速检验相关性,然后再运用多重检验查看具体是哪些处理之间存在差异。以教育水平edu_class为例进行分析,同理首先查看分布 raw_1.pivot_table(index = 'edu_class', values = ['avg_exp'], aggfunc={'avg_exp': ['count', np.mean]}) 可以看到不同教育水平之间消费水平有明显差异,接下来通过方差分析进行检验差异是否明显。 from statsmodels.stats.anova import anova_lm 引入anova_lm进行方差分析from ststsmodels.stats.formula import ols 引入ols进行线性回归建模lm = ols('avg_exp~C(edu_class)', data = raw_1).fit() C(edu_class) 将数值型的变量指定为分类型anova_lm(lm, typ = 2) 可以看到不同教育水平之间的月均消费支出之间的差异是显著的,继续用多重检验来看哪些处理之间是显著的。 from statsmodels.stats.multicomp import MultiComparison 引入MultiComparison进行tukey多重检验mc = MultiComparison(raw_1['avg_exp'],raw_1['edu_class'])tukey_result = mc.tukeyhsd(alpha = 0.5)print(tukey_result) 结果是每个处理之间因变量差异的显著性,最后一列reject都为True说明各组之间均存在显著差异。 三、模型建立与诊断 3.1 一元线性回归及模型解读 以Income为自变量,以avg_exp为因变量建立一元线形回归并对模型结果进行解释 lm_1 = ols('avg_exp ~ Income', data = raw_1).fit()print(lm_1.summary()) 首先从第一部分可以看到R^2为0.454,整个模型的F检验p值小于0.05,说明模型通过显著性检验。 其次模型结果的第二块也表明自变量和截距也通过显著性检验。 最后一部分主要是对残差进行检验,左侧Omnibus、Prob(Omnibus)主要是对偏度Skew和峰度Kurtosis进行检验,正态分布的偏度为0,峰度为3,模型的Prob(Omnibus)值为0.156大于0.05,说明不能拒绝残差符合正态分布。 右侧Durbin-Watson主要是对残差的自相关性进行检(改检验可表示为,为残差之间的相关系数),Durbin-Watson的取值范围是0-4,越接近2说明残差不存在自相关性,越接近0说明存在正相关,越接近4说明存在负相关性。 右侧Jarque-Bera (JB)、Prob(JB)是对残差正态性检验,可以用来判断残差是否符合正态分布,本案例中Prob(JB)值为0.173 > 0.05,基不能拒绝残差服从正态分布。 右侧Cond. No.是多重共线性检验,该值越大,共线性越严重。 整体上看模型虽然拟合效果没那么好,但是显著性通过了检验。接下来看一下模型具体的系数,Income的系数为97.7说明模型收入越高信用卡消费越高,是符合业务预期的。 3.2 残差可视化分析 接下来对残差进一步进行可视化分析,主要看残差是否满足以下几个假定,并尝试通过对自变量、因变量进行调整来优化模型。首先来回顾一下残差需要满足的几个假定: a.残差的要服从均值为0,方差为的正态分布; b.残差之间要相互独立 c.残差和自变量没有相关性 (1)通过残差图进行模型优化 模型avg_exp ~ Income的自变量与残差分布图、残差qq图、模型拟合情况图即自变量与因变量及其预测值的图像 lm_1 = ols('avg_exp ~ Income', data = raw_1).fit() 建模raw_1['resid_1'] = lm_1.resid 模型残差raw_1['resid_1_rank'] = raw_1['resid_1'].rank(ascending = False, pct = True) 计算残差的百分位数raw_1['pred_1'] = lm_1.predict() 添加预测值plt.figure(figsize = (20, 6)) 自变量与残差分布图ax1 = plt.subplot(131)ax1.scatter('Income', 'resid', data = raw_1)ax1.set_title('Income & resid') 残差的qq图ax2 = plt.subplot(132)stats.probplot(raw_1['resid_1_rank'], dist = 'norm', plot = ax2) 模型拟合情况图,自变量与因变量以及模型预测值ax3 = plt.subplot(133)ax3.scatter('Income', 'avg_exp', data = raw_1)ax3.plot('Income', 'pred_1', data = raw_1, color = 'red')ax3.legend()ax3.text(12, 1920, 'pred func R^2: %.2f'% lm_1.rsquared)ax3.set_title('Income & avg_exp') 从第一个自变量和残差散点图可以看出,残差基本符合对称分布,但随着自变量增大,残差也在变大,存在方差不齐的情况。第二个图残差的qq图可以看出,残差近似正态分布。第三个图可以看模型的拟合效果并不是很好,R^2只有0.45。对avg_exp取对数,能够改善预测值越大残差越大的情况,但由于只对因变量取对数导致模型不好解释,对自变量Income同时取对数,代码和以上类似,只是改变因变量和自变量形式而已,以下是残差图,可以看到残差的异方差现象被有效的抑制,并且R^2也得到了提高。 (2)通过残差图发现强影响点 仔细观察以上图像结果,左下侧有两个较为异常的数据,对模型的拟和效果有较大的影响, 对于这种影响较大的可将其进行删除并重新建模: 计算学生化残差raw_1['resid_t'] = (raw_1['resid_2'] - raw_1['resid_2'].mean())/raw_1['resid_2'].std() raw_1[abs(raw_1['resid_t']) > 2] 将残差大于2的筛选出来 将强影响点删除后,得到的结果如下,模型结果更稳定。 3.3 多元线性回归 上一篇文章有说到多重共线性会对模型产生致命的影响,用方差膨胀因子来处理的话会非常繁琐。通过正则化处理如Lasso回归,能够产生某些严格等于0的系数,从而达到变量筛选的目的。接下来以Lasso为例,首先用LassoCV来找到最优的alpha。由于statsmodels中的ols的fit_regularized方法没有很好的实现,所以用sklearn中linear_model模块来进行建模 from sklearn.preprocessing import StandardScaler sklearn进行线性回归前必须要进行标准化from sklearn.linear_model import LassoCV Lasso的交叉验证方法con_xcols = ['Age', 'Income', 'dist_home_val', 'dist_avg_income']scaler = StandardScaler()X = scaler.fit_transform(raw_1[con_xcols])y = raw_1['avg_exp_ln']lasso_alphas = np.logspace(-3, 0, 100, base = 10)lcv = LassoCV(alphas = lasso_alphas, cv = 10)lcv.fit(X, y)print('best alpha %.4f' % lcv.alpha_)print('the r-square %.4f' % lcv.score(X, y)) 接下来画出不同alpha下的岭迹图,来看alpha值对系数的影响 from sklearn.linear_model import Lassocoefs = []lasso = Lasso()for i in lasso_alphas:lasso.set_params(alpha = i)lasso.fit(X, y)coefs.append(lasso.coef_)ax = plt.gca()ax.plot(lasso_alphas, coefs)ax.set_xscale('log')ax.set_xlabel('$\\alpha$')ax.set_ylabel('coefs value') 从图中可以看到随着alpha的增大,系数不断在减小,有些系数会优先收缩为0,再继续增大时所欲系数都会为0,通过该特性从而达到变量筛选的目的。将LassoCV得到的系数打印出来,可以看到用户月均信用卡支出和当地小区均价、当地人均收入成正比,当地人均收入水平的影响更大。 以上就是线形回归在应用时的注意事项。 本篇文章为转载内容。原文链接:https://blog.csdn.net/baidu_26137595/article/details/123766191。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 15:52:56
106
转载
Kafka
...台,可以用来处理实时数据流。它的核心是消息队列,但又不仅仅是简单的消息队列。它不仅传输速度快、反应还超灵敏,而且特别皮实,出点小问题也不带怕的。这么能打的表现,让它在大数据圈子里简直成了明星!不过,要想用好Kafka,你得先搞清楚它的命名规范和组织结构。接下来,我会结合自己的理解和实践,给大家分享一些干货。 --- 2. 命名规范 让Kafka的世界井然有序 2.1 主题(Topic):Kafka世界的基石 首先,我们来聊聊主题(Topic)。在Kafka里面呢,主题就好比是一个文件夹,所有的消息啊,就像文件一样,一股脑儿地塞进这个文件夹里头。每一个主题都有一个唯一的名称,这个名字就是它的标识符。比如说嘛,你可以建个叫user_events的话题分区,专门用来存用户干的事儿,点啥、买啥、逛哪儿,都往里丢,方便又清晰! java // 创建一个Kafka主题 kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 3 --topic user_events 这里的关键点在于,主题的名字要尽量简单明了,避免使用特殊字符或者空格。哎呀,这就好比你给文件夹起个特别绕口的名字,结果自己都记不住路径了,Kafka也是一样!它会根据主题的名字创建对应的文件夹结构,但要是主题名太复杂,搞不好就会在找东西的时候迷路,路径解析起来就容易出岔子啦。而且啊,主题的名字最好起得通俗易懂一点,让大伙儿一眼扫过去就明白这是干啥用的。 2.2 分区(Partition):主题的分身术 接着说分区(Partition)。每个主题都可以被划分为多个分区,每个分区就是一个日志文件。分区的作用是什么呢?它可以提高并发性和扩展性。比如说,你有个主题叫orders(订单),你可以把它分成5个区(分区)。这样一来,不同的小伙伴就能一起开工,各自处理这些区里的数据啦! java // 查看主题的分区信息 kafka-topics.sh --describe --zookeeper localhost:2181 --topic orders 分区的数量决定了并发的上限。所以,在设计主题时,你需要仔细权衡分区数量。太多的话,管理起来麻烦;太少的话,可能无法充分利用资源。我一般会根据预计的消息量来决定分区的数量。比如说,如果一秒能收到几千条消息,那分区设成10到20个就挺合适的。毕竟分区太多太少了都不好,得根据实际情况来调,不然可能会卡壳或者资源浪费啊! 2.3 消费者组(Consumer Group):团队协作的秘密武器 最后,我们来说消费者组(Consumer Group)。消费者组是一组消费者的集合,它们共同消费同一个主题的消息。每个消费者组都有一个唯一的名称,这个名字同样非常重要。 java // 创建一个消费者组 kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic user_events --group my_consumer_group 消费者组的设计理念是为了实现负载均衡和故障恢复。比如说,如果有两个小伙伴在一个小组里,系统就会帮他们自动分配任务(也就是主题的分区),这样大家就不会抢来抢去,重复干同样的活儿啦!而且呢,要是有个消费者挂掉了或者出问题了,其他的消费者就会顶上来,接手它负责的那些分区,接着干活儿,完全不受影响。 --- 3. 组织结构 Kafka的大脑与四肢 3.1 集群(Cluster):Kafka的心脏 Kafka集群是由多个Broker组成的,Broker是Kafka的核心组件,负责存储和转发消息。一个Broker就是一个节点,多个Broker协同工作,形成一个分布式的系统。 java // 启动Kafka Broker nohup kafka-server-start.sh config/server.properties & Broker的数量决定了系统的容错能力和性能。其实啊,通常咱们都会建议弄三个Broker,为啥呢?就怕万一有个家伙“罢工”了,比如突然挂掉或者出问题,别的还能顶上,整个系统就不耽误干活啦!不过,Broker的数量也不能太多,否则会增加管理和维护的成本。 3.2 Zookeeper:Kafka的大脑 Zookeeper是Kafka的协调器,它负责管理集群的状态和配置。没有Zookeeper,Kafka就无法正常运作。比如说啊,新添了个Broker(也就是那个消息中转站),Zookeeper就会赶紧告诉其他Broker:“嘿,快看看这位新伙伴,更新一下你们的状态吧!”还有呢,要是某个分区的老大换了(Leader切换了),Zookeeper也会在一旁默默记好这笔账,生怕漏掉啥重要信息似的。 java // 启动Zookeeper nohup zookeeper-server-start.sh config/zookeeper.properties & 虽然Zookeeper很重要,但它也有一定的局限性。比如,它可能会成为单点故障,影响整个系统的稳定性。因此,近年来Kafka也在尝试去掉对Zookeeper的依赖,开发了自己的内部协调机制。 3.3 日志(Log):Kafka的四肢 日志是Kafka存储消息的地方,每个分区对应一个日志文件。嘿,这个日志设计可太聪明了!它用的是顺序写入的方法,就像一条直线往前跑,根本不用左顾右盼,写起来那叫一个快,效率直接拉满! java // 查看日志路径 cat config/server.properties | grep log.dirs 日志的大小可以通过参数log.segment.bytes来控制。默认值是1GB,你可以根据实际情况调整。要是日志文件太大了,查个东西就像在大海捞针一样慢吞吞的;但要是弄得太小吧,又老得换新的日志文件,麻烦得很,还费劲。 --- 4. 实战演练 从零搭建一个Kafka环境 说了这么多理论,咱们来实际操作一下吧!假设我们要搭建一个简单的Kafka环境,用来收集用户的登录日志。 4.1 安装Kafka和Zookeeper 首先,我们需要安装Kafka和Zookeeper。可以从官网下载最新的二进制包,解压后按照文档配置即可。 bash 下载Kafka wget https://downloads.apache.org/kafka/3.4.0/kafka_2.13-3.4.0.tgz 解压 tar -xzf kafka_2.13-3.4.0.tgz 4.2 创建主题和消费者 接下来,我们创建一个名为login_logs的主题,并启动一个消费者来监听消息。 bash 创建主题 bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 3 --topic login_logs 启动消费者 bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic login_logs --from-beginning 4.3 生产消息 最后,我们可以编写一个简单的Java程序来生产消息。 java import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerRecord; import java.util.Properties; public class KafkaProducerExample { public static void main(String[] args) { Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); KafkaProducer producer = new KafkaProducer<>(props); for (int i = 0; i < 10; i++) { producer.send(new ProducerRecord<>("login_logs", "key" + i, "value" + i)); } producer.close(); } } 这段代码会向login_logs主题发送10条消息,每条消息都有一个唯一的键和值。 --- 5. 总结 Kafka的魅力在于细节 好了,到这里咱们的Kafka之旅就告一段落了。通过这篇文章,我希望大家能更好地理解Kafka的命名规范和组织结构。Kafka为啥这么牛?因为它在设计的时候真是把每个小细节都琢磨得特别透。就像给主题起名字吧,分个区啦,还有消费者组怎么配合干活儿,这些地方都能看出人家确实是下了一番功夫的,真不是随便凑合出来的! 当然,Kafka的学习之路还有很多内容需要探索,比如监控、调优、安全等等。其实我觉得啊,只要你把命名的规矩弄明白了,东西该怎么放也心里有数了,那你就算是走上正轨啦,成功嘛,它就已经在向你招手啦!加油吧,朋友们! --- 希望这篇文章对你有所帮助,如果有任何疑问,欢迎随时交流哦!
2025-04-05 15:38:52
96
彩虹之上
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
rm -rf dir/*
- 删除目录下所有文件(慎用)。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"