前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[数据本地性 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Netty
...类特定的活儿,比如读数据啦,写数据啦,干得可带劲了!合理地设置EventLoopGroup,就能更好地分配和管理资源,避免大家抢来抢去的尴尬局面啦。 示例代码: java // 创建两个不同的EventLoopGroup,分别用于客户端和服务端 EventLoopGroup bossGroup = new NioEventLoopGroup(1); EventLoopGroup workerGroup = new NioEventLoopGroup(); try { // 创建服务器启动器 ServerBootstrap b = new ServerBootstrap(); b.group(bossGroup, workerGroup) .channel(NioServerSocketChannel.class) .childHandler(new ChannelInitializer() { @Override public void initChannel(SocketChannel ch) throws Exception { ch.pipeline().addLast(new TimeServerHandler()); } }); // 绑定端口,同步等待成功 ChannelFuture f = b.bind(port).sync(); // 等待服务端监听端口关闭 f.channel().closeFuture().sync(); } finally { // 优雅地关闭所有线程组 bossGroup.shutdownGracefully(); workerGroup.shutdownGracefully(); } 在这个例子中,我们创建了两个EventLoopGroup:bossGroup和workerGroup。前者用于接收新的连接请求,后者则负责处理这些连接上的I/O操作。这样的设计不仅提高了并发处理能力,还使得代码结构更加清晰。 3.2 ChannelPipeline:灵活的请求处理管道 除了EventLoopGroup之外,Netty还提供了一个非常强大的功能——ChannelPipeline。这简直就是个超级灵活的请求处理流水线,我们可以把一堆处理器像串糖葫芦一样串起来,然后一个个按顺序来处理网络上的请求,简直不要太爽!这种方式非常适合那些需要执行复杂业务逻辑的应用场景。 示例代码: java public class TimeServerHandler extends ChannelInboundHandlerAdapter { @Override public void channelRead(ChannelHandlerContext ctx, Object msg) { ByteBuf buf = (ByteBuf) msg; try { byte[] req = new byte[buf.readableBytes()]; buf.readBytes(req); String body = new String(req, "UTF-8"); System.out.println("The time server receive order : " + body); String currentTime = "QUERY TIME ORDER".equalsIgnoreCase(body) ? new Date( System.currentTimeMillis()).toString() : "BAD ORDER"; currentTime = currentTime + System.getProperty("line.separator"); ByteBuf resp = Unpooled.copiedBuffer(currentTime.getBytes()); ctx.write(resp); } finally { buf.release(); } } @Override public void channelReadComplete(ChannelHandlerContext ctx) { ctx.flush(); } @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) { // 当出现异常时,关闭Channel cause.printStackTrace(); ctx.close(); } } 在这个例子中,我们定义了一个TimeServerHandler类,继承自ChannelInboundHandlerAdapter。这个处理器的主要职责是从客户端接收请求,并返回当前时间作为响应。加个这样的处理器到ChannelPipeline里,我们就能轻轻松松地扩展或者修改请求处理的逻辑,完全不用去动那些复杂的底层网络通信代码。这样一来,调整起来就方便多了! 4. 结论 拥抱变化,不断进化 通过上述讨论,我们已经看到了正确选择并发资源分配算法的重要性,以及Netty在这方面的强大支持。当然啦,这只是个开始嘛,真正的考验在于你得根据自己实际用到的地方,不断地调整和优化这些方法。记住,优秀的软件工程师总是愿意拥抱变化,勇于尝试新的技术和方法,以求达到最佳的性能表现和用户体验。希望这篇文章能给大家带来一些启示,让我们一起在技术的海洋里继续探索吧! --- 这篇技术文章希望能够以一种更贴近实际开发的方式,让大家了解并发资源分配的重要性,并通过Netty提供的强大工具,找到适合自己的解决方案。如果有任何疑问或建议,欢迎随时留言交流!
2024-12-05 15:57:43
102
晚秋落叶
c++
...接崩了,辛辛苦苦弄的数据全都没了,还有可能给坏蛋们留下可乘之机,让他们钻安全漏洞的空子。所以啊,咱们在这些事儿上可得细心点儿,别让它们成为你的大麻烦!哎呀,你瞧这C++,简直就是编程界的超级英雄嘛!它手里的工具可多啦,能让开发者们在写代码的时候,就像盖高楼大厦一样稳稳当当,既安全又可靠。想象一下,你用C++编程,就像是在用魔法,不仅能够创造出超酷的软件,还能让这些软件运行得比闪电还快,稳定性那就更不用说了,简直是无敌的存在!所以啊,如果你是个编程小能手,那C++绝对是你不可错过的神器!在这篇文章中,我们将探讨如何利用C++的特性,特别是资源管理机制,来构建异常安全的程序设计。 第一部分:资源管理的重要性 资源管理是程序设计中不可或缺的一部分,它关乎程序的稳定性和安全性。哎呀,你要是写代码的时候,不小心没把那些用到的资源,比如文件夹的小钥匙、数据库的密码本或者网线插头啥的,都给好好放回原位,那可是大麻烦啊!不光是浪费了电脑里的宝贵空间,程序要是遇到点啥意外,就像没关紧的水龙头,没法好好休息,容易出故障。更糟糕的是,这些乱糟糟的资源可能还会给坏人提供机会,让他们偷偷溜进你的系统里捣乱。所以,记得每次用完资源,都要好好收好,别让它们乱跑!因此,确保资源在不再需要时被正确地释放,对于构建健壮和可靠的软件至关重要。 第二部分:C++中的资源管理方法 C++提供了几种不同的方式来管理资源,包括智能指针、RAII(Resource Acquisition Is Initialization)原则以及手动管理资源的方法。在这篇文章中,我们将重点介绍智能指针,尤其是std::unique_ptr和std::shared_ptr,它们是现代C++中实现资源管理的强大工具。 代码示例 1: 使用 std::unique_ptr 管理资源 cpp include include class Resource { public: Resource() { std::cout << "Resource created." << std::endl; } ~Resource() { std::cout << "Resource destroyed." << std::endl; } }; int main() { std::unique_ptr resource = std::make_unique(); // 使用资源... return 0; } 在这个例子中,当 resource 对象离开作用域时(即函数执行完毕),Resource 的析构函数会被自动调用,确保资源被正确释放。这就是RAII原则的一个简单应用,它使得资源管理变得简洁且易于理解。 代码示例 2: 使用 std::shared_ptr 实现共享所有权 cpp include include class SharedResource { public: SharedResource() { std::cout << "SharedResource created." << std::endl; } ~SharedResource() { std::cout << "SharedResource destroyed." << std::endl; } }; int main() { std::shared_ptr shared_resource1 = std::make_shared(); std::shared_ptr shared_resource2 = shared_resource1; // 共享资源... return 0; } 这里展示了 std::shared_ptr 如何允许多个对象共享对同一资源的所有权。当最后一个持有 shared_resource1 的引用消失时,资源才会被释放。这种机制有助于避免内存泄漏,并确保资源在适当的时候被释放。 第三部分:异常安全的资源管理 在C++中,异常安全的资源管理尤为重要。当程序中包含可能抛出异常的操作时,确保资源在异常发生时也能得到妥善处理,是非常关键的。智能指针提供了一种自然的方式来实现这一点,因为它们会在异常发生时自动释放资源,而无需额外的保护措施。 代码示例 3: 异常安全的资源管理示例 cpp include include include class CriticalResource { public: CriticalResource() { std::cout << "CriticalResource created." << std::endl; } ~CriticalResource() { std::cout << "CriticalResource destroyed." << std::endl; } void criticalOperation() { throw std::runtime_error("An error occurred during critical operation."); } }; int main() { try { std::unique_ptr critical_resource = std::make_unique(); critical_resource->criticalOperation(); } catch (const std::exception& e) { std::cerr << "Exception caught: " << e.what() << std::endl; } return 0; } 在上述代码中,critical_operation 可能会抛出异常。哎呀,你知道的,critical_resource 这个家伙可是被 std::unique_ptr 给罩着呢!这可真是太好了,因为这样,如果程序里突然蹦出个异常来,critical_resource 就能自动被释放掉,不会出现啥乱七八糟、不靠谱的行为。这下子,咱们就不用操心资源没清理干净这种事儿啦! 第四部分:结论 通过使用C++的智能指针和RAII原则,我们可以轻松地实现异常安全的资源管理,这大大增强了程序的可靠性和稳定性。哎呀,兄弟,你要是想让你的代码跑得顺畅,资源管理这事儿可得好好抓牢!别小瞧了它,这玩意儿能防住好多坑,比如内存漏了或者资源没收好,那程序一不小心就卡死或者出bug,用户体验直接掉分。还有啊,万一程序遇到点啥意外,比如服务器突然断电啥的,资源管理做得好,程序就能像小猫一样,优雅地处理问题,然后自己蹦跶回来,用户一点都感觉不到。这样一来,不光用户体验上去了,系统的稳定性和质量也跟着水涨船高,你说值不值! 总之,资源管理是构建强大、安全和高效的C++程序的关键。嘿!兄弟,学了这些技术后,你就能像大厨炒菜一样,把程序做得既美味又营养。这样一来,修修补补的工作就少多了,就像不用天天洗碗一样爽快!而且,你的代码就像是一本好书,别人一看就懂,就像看《哈利·波特》一样过瘾。最后,用户得到的服务就像五星级餐厅的餐点,稳定又可靠,他们吃得开心,你也跟着美滋滋!
2024-10-05 16:01:00
48
春暖花开
转载文章
...能有3部分,1.接收数据,2.处理数据,3.写入数据库,当然三个功能是不同的内容,只是大体结构相同。我目前见得最多的是这样分,直接按3个功能分成3个任务,一种是一个功能的一部分分成一个任务,也就是分下来有6个任务。 这里我有点微微的吐嘲一下分成6个任务的坏处。我们先说一下好处。 1.3个人每个人拿3个小任务,任务显得小,对他们压力小一些。 2.每个人处理自己的3个任务类似,可能处理整速度快,而且分配时按善长哪一块分配哪一块的方式,较为合理。 下面说一下坏处,我认为还是弊大于利,下面列一些坏处(因为目前公司就是很多这样分配的任务) 1.3部分功能,3个文档,如果分给3个人来做,那么每个人都要求很精确的理解文档的意思,然后找出自己要做的部分来处理。 2.3个人看3个文档,假设每个文档由一个设计人员设计,那么这3个设计人员都要与3个开发人员产生沟通(所以沟通成本约为第一种方安的3倍,可能小于3倍) 3.开发人员在这种做多个相似(我们假设相似,其实这些问题因该由一个好的架构设计来处理)的编码情况下容易厌倦,产生复制修改代码的情况。 4.还有一部分成本前面3点都没有说到,也是沟通的成本,也就是一个功能里面的三个部分的衔接问题,也就是每个功能模块多了2个开发人员的沟通,也就是多出6个单位沟通成本。 先就说这么几点吧。但是我觉得已经很致命了,公司经常出现重复的沟通,就是上面所说的一个设计人员要同多个开发说明一件事情,而且不是在一起说,是开发在参与到开发过程中时,反馈回去,然后只有同这个开发沟通,可能与每个开发沟通的内容有一部分不是重复的,但是他们的设计内容都是一个模块当中的。而且公司经常出来开发与开发的衔接部分的沟通,有分歧时也会叫设计人员参与进来。所以这样分配的最大的成本就是沟通上面的成本,或者是变更方面的成本最大,比如一个功能模块有要变动,那么可能要通知3个开发人员。要是第一种方案可能就通知一个开发人员就行了。这里也不是说其他的人员不通知,我这里的意思是通知的力度是不一样的,如果是一个责任矩阵(Responsibility Matrix)来看的话,可能这种一点的方案会3个开发人员A,一个组长R,其它人员I。如果是上面一种方案那么可能是1个开发人员A,一个组长R,其它人员I.这里我也就是想说明他们的力度是不一样的。当然成本肯定也不一样。 插入:(我打算在以后的文章中加入插入系列,主要用于解释一些我认为比较有趣,或者有用,或者对我对大家来说可能陌生,但是有印像,本人也是通过查询总结出来的一些东西,多数为一些名词解释) 插入: 责任矩阵 责任矩阵是以表格形式表示完成工作分解结构中工作细目的个人责任方法。这是在项目管理中一个十分重要的工具,因为他强调每一项工作细目由谁负责,并表明每个人的角色在整个项目中的地位。制定责任色(RACI)(R=Responsible,A=Accountable,C=Consulted,I=Informed)。 插入后面继续说,刚才已经吐槽了一下一种方案的坏处,所以我认为对于分解还是逃不过模块,一个人做不下来的大模块,分解成小模块,每个模块主要就是IPO,输入什么,做什么事,出输什么,模块接口要设计好,这样一个一个的装配上就是一个大的系统,而不是把一个模块的类似部分或者说一个独立的功能模块再来分开。最小的模块我们就是函数,或者现在面向对象可以说类,但是细化下来的思想面向过程还是有用处的。这里我就强调一点,现代的设计中多用接口这个东西吧,你慢慢会发现他有很大的用处的。 总结:从昨天下午开始写这个,今天才完成中间有断开,所以可能思路不太清析,但是主要说的一点就是工作分解结构里面的一小部分内容,说了说两种分解方式的优劣。建议大家以接口设计,功能模块,类等去处理分解任务。 转载于:https://www.cnblogs.com/gw2010/p/3781447.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34253126/article/details/94304775。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-29 21:22:45
111
转载
Saiku
...LAP工具,或者你对数据仓库和数据分析挺感兴趣的,那你可得看看这篇文章,说不定能帮到你! 首先,让我们简单回顾一下什么是Saiku。Saiku是一款开源的BI工具,它能够帮助用户通过直观的界面与OLAP数据源进行交互,从而实现数据的探索和分析。然而,就像任何软件一样,Saiku也有其脆弱的一面。特别是当涉及到系统的稳定性和恢复能力时,如果准备不足,那后果可能是灾难性的。 2. 系统恢复的重要性 想象一下,你的数据库突然崩溃了,所有的分析工作都停止了,这时候你会怎么办?是的,你需要一个可靠的系统恢复计划。这个计划应该包括但不限于定期备份、故障转移策略以及详细的恢复步骤。不过呢,很多人用Saiku的时候,都不太重视系统的恢复,结果就给自己惹了不少麻烦。 举个例子,假设你是一名数据分析师,每天都会使用Saiku来分析销售数据。有一天,由于服务器硬盘损坏,所有的数据都丢失了。要是没提前准备好恢复的招数,那你可就得从头再来,重建整个数据库了。而且这事儿可不小,你得花大把时间去重新找齐所有的原始数据。这样的经历,相信谁都不想再经历第二次。 3. 实践中的问题 让我们深入探讨一些实际遇到的问题。在用Saiku的时候,我发现很多小伙伴都没有定期备份的好习惯,就算备份了,也不知道怎么用这些备份来快速恢复数据。另外,大家对故障转移这部分聊得不多,也就是说,如果主服务器挂了,整个系统可能就会直接瘫痪了。 这里我有一个小建议:为什么不试试编写一个脚本,让它自动执行备份任务呢?这样不仅能够节省时间,还能确保数据的安全性。比如说,你可以在Linux下用crontab设置定时任务,让它自动跑一个简单的bash脚本。这个脚本的作用就是调用MySQL的dump命令,生成数据库的备份文件。这样就不用担心忘记备份了,挺方便的。 bash 编辑crontab crontab -e 添加如下行,每周日凌晨两点执行一次备份 0 2 0 /usr/bin/mysqldump -u username -p'password' database_name > /path/to/backup/db_backup_$(date +\%Y\%m\%d).sql 4. 恢复策略的设计 现在我们已经了解了为什么需要一个好的恢复计划,接下来谈谈如何设计这样一个计划。首先,你需要明确哪些数据是最关键的。然后,根据这些数据的重要程度制定相应的恢复策略。比如说,如果你每天都在更新的数据,那就得时不时地备份一下,甚至可以每一小时就来一次。但如果是那种好几天都不动弹的数据,那就可以放宽心,不用那么频繁地备份了。 另外,别忘了测试你的恢复计划!只有经过实践检验的恢复流程才能真正发挥作用。你可以定期模拟一些常见故障场景,看看你的系统是否能够顺利恢复到正常状态。 5. 代码示例 为了让大家更好地理解,下面我会给出几个具体的代码示例,展示如何使用Saiku API来进行数据恢复操作。 示例1:连接到Saiku服务器 java import org.saiku.service.datasource.IDatasourceService; import org.saiku.service.datasource.MondrianDatasource; public class SaikuConnectionExample { public static void main(String[] args) { // 假设我们已经有了一个名为"myDataSource"的数据源实例 MondrianDatasource myDataSource = new MondrianDatasource(); myDataSource.setName("myDataSource"); // 使用datasource服务保存数据源配置 IDatasourceService datasourceService = ...; // 获取datasource服务实例 datasourceService.save(myDataSource); } } 示例2:从备份文件中恢复数据 这里假设你已经有一个包含所有必要信息的备份文件,比如SQL脚本。 java import java.io.BufferedReader; import java.io.FileReader; import java.sql.Connection; import java.sql.DriverManager; import java.sql.Statement; public class RestoreFromBackupExample { public static void main(String[] args) { try (Connection conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/mydb", "username", "password")) { Statement stmt = conn.createStatement(); // 读取备份文件内容并执行 BufferedReader reader = new BufferedReader(new FileReader("/path/to/backup/file.sql")); String line; StringBuilder sql = new StringBuilder(); while ((line = reader.readLine()) != null) { sql.append(line); if (line.trim().endsWith(";")) { stmt.execute(sql.toString()); sql.setLength(0); // 清空StringBuilder } } reader.close(); } catch (Exception e) { e.printStackTrace(); } } } 6. 结语 好了,到这里我们的讨论就告一段落了。希望今天聊的这些能让大家更看重系统恢复计划,也赶紧动手做点啥来提高自己的数据安全,毕竟防患于未然嘛。记住,预防总是胜于治疗,提前做好准备总比事后补救要好得多! 最后,如果你有任何想法或建议,欢迎随时与我交流。数据分析的世界充满了无限可能,让我们一起探索吧! --- 以上就是本次关于“Saiku的系统恢复计划不充分”的全部内容。希望这篇文章能够对你有所帮助,也欢迎大家提出宝贵的意见和建议。
2024-11-18 15:31:47
36
寂静森林
Impala
... 引言 在大数据时代,高效的数据分析成为企业决策的重要支撑。Apache Impala,这个家伙可真不简单!它就像个超级英雄,专门负责搞定那些海量数据的大任务。别看数据量大得能装满好几座山(PB级别),Impala一上阵,立马就能飞快地帮我们查询到需要的信息,而且还是那种边聊天边玩手机也能随时翻阅数据的那种速度,简直不要太爽!所以,如果你想找一个既能快速响应又能处理大数据的小伙伴,Impala绝对是你的菜!嘿,你知道吗?Impala的厉害之处在于它有个超酷的设计理念!那就是不让那些中间的数据白白地躺在那儿不动,而是尽可能地让所有的任务一起并肩作战。这样一来,不管你的数据有多大,Impala都能像小菜一碟一样,高效地完成查询,让你的数据分析快人一步!是不是超级牛逼啊?然而,要充分发挥Impala的潜力,硬件配置的选择与优化至关重要。嘿,兄弟!这篇大作就是要好好扒一扒 Impala 这个家伙的查询速度和咱们硬件设备之间的那点事儿。咱们要拿真实的代码例子来说明,怎么才能把这事儿给整得既高效又顺溜。咱们得聊聊,怎么根据你的硬件配置,调整 Impala 的设置,让它跑起来更快,效率更高。别担心,咱们不会用一堆干巴巴的术语让你头疼,而是用一些接地气的语言,让你一看就懂,一学就会的那种。准备好了吗?咱们这就开始,探索这个神秘的关系,找出最佳的优化策略,让你的查询快如闪电,流畅如丝! 1. Impala查询性能的关键因素 Impala的性能受到多种因素的影响,包括但不限于硬件资源、数据库架构、查询优化策略等。硬件配置作为基础,直接影响着查询的响应时间和效率。 - 内存:Impala需要足够的内存来缓存查询计划和执行状态,同时存储中间结果。内存的大小直接影响到并行度和缓存效果,进而影响查询性能。 - CPU:CPU的计算能力决定了查询执行的速度,尤其是在多线程环境下。合理的CPU分配可以显著提升查询速度。 - 网络:数据存储和计算之间的网络延迟也会影响查询性能,尤其是在分布式环境中。优化网络配置可以减少数据传输时间。 2. 实例代码 配置与优化 接下来,我们通过一段简单的代码实例,展示如何通过配置和优化来提升Impala的查询性能。 示例代码:查询性能调优配置 python 假设我们正在使用Cloudera Manager进行配置管理 调整Impala节点的内存配置 cloudera_manager.set_impala_config('memory', { 'query_mem_limit': '2GB', 根据实际需求调整查询内存限制 'coordinator_memory_limit': '16GB', 协调器的最大内存限制 'executor_memory_limit': '16GB' 执行器的最大内存限制 }) 调整CPU配额 cloudera_manager.set_impala_config('cpu', { 'max_threads_per_node': 8, 每个节点允许的最大线程数 'max_threads_per_core': 2 每个核心允许的最大线程数 }) 开启并行查询功能 cloudera_manager.set_impala_config('parallelism', { 'default_parallelism': 'auto' 自动选择最佳并行度 }) 运行查询前,确保表数据更新已同步到Impala cloudera_manager.refresh_table('your_table_name') cloudera_manager.compute_stats('your_table_name') print("配置已更新,查询性能调优已完成。") 这段代码展示了如何通过Cloudera Manager调整Impala节点的内存限制、CPU配额以及开启自动并行查询功能。通过这样的配置,我们可以针对特定的查询场景和数据集进行优化,提高查询性能。 3. 性能监控与诊断 为了确保硬件配置达到最佳状态,持续的性能监控和诊断至关重要。利用Impala自带的诊断工具,如Explain Plan和Profile,可以帮助我们深入了解查询执行的详细信息,包括但不限于执行计划、CPU和内存使用情况、I/O操作等。 Examine Plan 示例 bash 使用Explain Plan分析查询执行计划 impala-shell> EXPLAIN SELECT FROM your_table WHERE column = 'value'; 输出的结果将展示查询的执行计划,帮助识别瓶颈所在,为后续的优化提供依据。 4. 结语 Impala的查询性能与硬件配置息息相关,合理的配置不仅能提升查询效率,还能优化资源利用,降低运行成本。通过本文的探讨和示例代码的展示,希望能够激发读者对Impala性能优化的兴趣,并鼓励大家在实践中不断探索和尝试,以实现大数据分析的最佳效能。嘿,兄弟!你得明白,真正的硬仗可不只在找答案,而是在于找到那个对特定工作环境最合适的平衡点。这事儿啊,一半靠的是技巧,另一半还得靠点智慧。就像调鸡尾酒一样,你得知道加多少冰,放什么酒,才能调出那个完美的味道。所以,别急着去死记硬背那些公式和规则,多琢磨琢磨,多试试错,慢慢你会发现,找到那个平衡点,其实挺像在创作一首诗,又像是在解一道谜题。
2024-08-19 16:08:50
71
晚秋落叶
Consul
...你的应用配置文件包含数据库连接信息。要是哪个程序员不小心改了这部分设置,又没好好测一测就直接扔到生产环境里,那可就麻烦了。数据库连接可能就挂了,整个应用都得跟着遭殃。不过嘛,要是咱们的配置系统能像git那样支持版本控制,那我们就轻松多了。遇到问题时,可以直接回到上一个稳当的配置版本,这样就能躲过那些可能捅娄子的大麻烦。 3. 如何在Consul中实现版本控制? 现在,让我们来看看如何在Consul中实际地实现配置的版本控制。Consul自己其实没有自带版本控制的功能,但我们可以耍点小聪明,用一些策略和工具来搞定这个需求。在这里,我们要说两种方法。第一种是用Consul的API和外部版本控制系统(比如Git)一起玩;第二种则是在Consul里面自己搞一套版本控制逻辑。 方法一:结合外部版本控制系统 首先,我们来看一看如何将Consul与Git这样的版本控制系统结合起来使用。这种做法主要是定期把Consul里的配置备份到Git仓库里,每次改动配置后,都会自动加个新版本。就像是给配置文件做了一个定时存档,而且每次修改都留个记录,方便追踪和管理。这样,我们就能拥有完整的配置历史记录,并且可以随时回滚到任何历史版本。 步骤如下: 1. 创建Git仓库 首先,在你的服务器上创建一个新的Git仓库,专门用于存放Consul的配置文件。 bash git init --bare /path/to/config-repo.git 2. 编写导出脚本 接下来,编写一个脚本,用于定期从Consul中导出配置文件并推送到Git仓库。这个脚本可以使用Consul的API来获取配置数据。 python import consul import os import subprocess 连接到Consul c = consul.Consul(host='127.0.0.1', port=8500) 获取所有KV对 index, data = c.kv.get('', recurse=True) 创建临时目录 temp_dir = '/tmp/consul-config' if not os.path.exists(temp_dir): os.makedirs(temp_dir) 将数据写入文件 for item in data: key = item['Key'] value = item['Value'].decode('utf-8') file_path = os.path.join(temp_dir, key) os.makedirs(os.path.dirname(file_path), exist_ok=True) with open(file_path, 'w') as f: f.write(value) 提交到Git subprocess.run(['git', '-C', '/path/to/config-repo.git', 'add', '.']) subprocess.run(['git', '-C', '/path/to/config-repo.git', 'commit', '-m', 'Update config from Consul']) subprocess.run(['git', '-C', '/path/to/config-repo.git', 'push']) 3. 设置定时任务 最后,设置一个定时任务(例如使用cron),让它每隔一段时间执行上述脚本。 这种方法的优点在于它可以很好地集成现有的Git工作流程,并且提供了强大的版本控制功能。不过,需要注意的是,它可能需要额外的维护工作,尤其是在处理并发更新时。 方法二:在Consul内部实现版本控制 除了上述方法之外,我们还可以尝试在Consul内部通过自定义逻辑来实现版本控制。这个方法有点儿复杂,但好处是能让你更精准地掌控一切,而且还不用靠外界的那些系统帮忙。 基本思路是: - 使用Consul的KV存储作为主存储区,同时为每个配置项创建一个单独的版本记录。 - 每次更新配置时,不仅更新当前版本,还会保存一份新版本的历史记录。 - 可以通过Consul的查询功能来检索特定版本的配置。 下面是一个简化的Python示例,演示如何使用Consul的API来实现这种逻辑: python import consul import json c = consul.Consul() def update_config(key, new_value, version=None): 如果没有指定版本,则自动生成一个新版本号 if version is None: index, current_version = c.kv.get(key + '/version') version = int(current_version['Value']) + 1 更新当前版本 c.kv.put(key, json.dumps(new_value)) 保存版本记录 c.kv.put(f'{key}/version', str(version)) c.kv.put(f'{key}/history/{version}', json.dumps(new_value)) def get_config_version(key, version=None): if version is None: index, data = c.kv.get(key + '/version') version = int(data['Value']) return c.kv.get(f'{key}/history/{version}')[1]['Value'] 示例:更新配置 update_config('myapp/database', {'host': 'localhost', 'port': 5432}, version=1) 示例:获取特定版本的配置 print(get_config_version('myapp/database', version=1)) 这段代码展示了如何使用Consul的KV API来实现一个简单的版本控制系统。虽然这只是一个非常基础的实现,但它已经足以满足许多场景下的需求。 4. 总结与反思 通过上述两种方法,我们已经看到了如何在Consul中实现配置的版本控制。不管你是想用外部的版本控制系统来管配置,还是打算在Consul里面自己捣鼓一套方案,最重要的是搞清楚你们团队到底需要啥,然后挑个最适合你们的法子干就是了。 在这个过程中,我深刻体会到,技术的选择往往不是孤立的,它总是受到业务需求、团队技能等多种因素的影响。所以啊,在碰到这类问题的时候,咱们得保持个开放的心态,多尝试几种方法,这样才能找到那个最适合的解决之道。 希望这篇文章对你有所帮助,如果你有任何疑问或建议,请随时留言交流。我们一起学习,共同进步!
2024-11-17 16:10:02
27
星辰大海
Lua
...效地处理游戏中的大量数据和实时事件。这对于资源密集型的游戏开发尤为重要,能够确保游戏在多种硬件平台上流畅运行。同时,Lua的跨平台特性使得开发者无需重新编译代码即可在不同的操作系统上部署游戏,大大减少了开发和维护的成本。 4. 结合现代开发趋势 随着云游戏、虚拟现实和增强现实技术的发展,Lua的应用范围也在不断扩大。开发者可以通过Lua与现代游戏引擎(如Unity、Unreal Engine)结合,实现在云端运行游戏、创建沉浸式体验或者开发跨平台应用。这种融合不仅扩展了Lua的应用场景,也为游戏开发者提供了更多创新的可能性。 5. 总结 Lua凭借其灵活性、易用性、丰富的社区资源、高效的性能管理和适应现代开发趋势的能力,在现代游戏开发中扮演着不可或缺的角色。随着技术的不断进步,Lua有望继续在游戏行业发挥重要作用,推动游戏开发向更高水平迈进。对于游戏开发者而言,掌握Lua语言,不仅能够提升个人技能,还能为项目带来更高的效率和创新空间。
2024-09-19 16:01:49
91
秋水共长天一色
Golang
...硬编码配置或通过共享数据库存储配置,这不仅增加了维护成本,还可能导致数据同步问题。借助现代配置管理工具,如Consul、Etcd或Vault,可以实现服务之间的配置共享和安全存储。这些工具提供了强大的API和丰富的客户端库,使得在Golang项目中集成配置管理变得更加便捷和高效。 三、DevOps与自动化测试 DevOps实践强调自动化和持续交付,这对配置管理提出了更高要求。在Golang项目中,可以结合CI/CD工具链,如Jenkins、GitLab CI或GitHub Actions,实现配置文件的自动化管理。通过编写脚本或使用特定的配置管理工具,可以在每次代码提交后自动触发配置更新过程,确保生产环境与开发环境的配置一致性。此外,引入自动化测试,特别是针对配置文件的测试,可以帮助检测配置错误,提前发现潜在问题,减少上线风险。 四、未来展望 随着技术的不断演进,Golang生态下的配置管理实践也将不断发展。未来,我们可以期待更智能的配置管理系统,能够自动检测配置冲突、预测配置变更影响,甚至通过机器学习算法优化配置性能。同时,跨平台和跨语言的配置管理工具将进一步增强Golang与其他技术栈的互操作性,促进更广泛的生态系统集成和协作。 总之,Golang生态下的现代配置管理实践不仅关乎技术细节,更是企业级应用架构设计和运维策略的重要组成部分。通过采用先进的配置管理工具和技术,可以有效提升应用的可维护性、可靠性和响应速度,助力企业在竞争激烈的市场环境中保持竞争优势。
2024-08-22 15:58:15
168
落叶归根
HessianRPC
...。它用二进制的方式传数据,速度快得飞起,特别适合微服务里那些小家伙们互相聊天儿用!唉,说真的,再厉害的工具也有它的短板啊。就像这次我的服务莫名其妙挂掉了,想让它重新站起来吧,那过程简直跟做噩梦一样,折腾得我头都大了。 --- 2. 症状 服务异常的表象 服务崩溃的表现其实挺明显的。首先,客户端请求一直超时,没有任何响应。然后,服务器日志里开始出现各种错误信息,比如: java.net.SocketTimeoutException: Read timed out 或者更糟糕的: java.lang.NullPointerException 看到这些错误,我心里咯噔一下:“坏了,这可能是服务端出现了问题。”于是赶紧登录服务器查看情况。果然,服务进程已经停止运行了。更让我抓狂的是,重启服务后问题并没有解决,反而越搞越复杂。 --- 3. 原因分析 为什么恢复失败? 接下来,我们来聊聊为什么会发生这种状况。经过一番排查,我发现问题可能出在以下几个方面: 3.1 配置问题 第一个怀疑对象是配置文件。HessianRPC的配置其实很简单,但有时候细节决定成败。比如说啊,在配置文件里我给超时时间设成了5秒,结果一到高并发那场面,这时间简直不够塞牙缝的,分分钟就崩了。修改配置后,虽然有一定的改善,但问题依然存在。 java // 修改HessianRPC的超时时间 Properties properties = new Properties(); properties.setProperty("hessian.read.timeout", "10000"); // 设置为10秒 3.2 线程池耗尽 第二个怀疑对象是线程池。HessianRPC默认使用线程池来处理请求,但如果线程池配置不当,可能会导致线程耗尽,进而引发服务不可用。我检查了一下线程池参数,发现最大线程数设置得太低了。 java // 修改线程池配置 ExecutorService executor = Executors.newFixedThreadPool(50); // 将线程数增加到50 3.3 内存泄漏 第三个怀疑对象是内存泄漏。有时候服务崩溃并不是因为CPU或网络的问题,而是内存不足导致的。我用JProfiler这个工具去给服务做了一次内存“体检”,结果一查,嘿,还真揪出了几个“大块头”对象,愣是赖在那儿没走,该回收的内存也没释放掉。 java // 使用WeakReference避免内存泄漏 WeakReference weakRef = new WeakReference<>(new Object()); --- 4. 解决方案 一步步修复服务 好了,找到了问题所在,接下来就是动手解决问题了。这里分享一些具体的解决方案,希望能帮到大家。 4.1 优化配置 首先,优化配置是最直接的方式。我调整了HessianRPC的超时时间和线程池大小,让服务能够更好地应对高并发场景。 java // 配置HessianRPC客户端 HessianProxyFactory factory = new HessianProxyFactory(); factory.setOverloadEnabled(true); // 开启方法重载 factory.setConnectTimeout(5000); // 设置连接超时时间为5秒 factory.setReadTimeout(10000); // 设置读取超时时间为10秒 4.2 异常处理 其次,完善异常处理机制也很重要。我给这个服务加了不少“兜底”的代码,就像在每个关键步骤都放了个小垫子,这样就算某个地方突然“摔跤”了,整个服务也不至于直接“趴下”,还能继续撑着运行。 java try { // 执行业务逻辑 } catch (Exception e) { log.error("服务执行失败", e); } 4.3 日志监控 最后,加强日志监控也是必不可少的。嘿,我装了个ELK日志系统,就是那个 Elasticsearch、Logstash 和 Kibana 的组合拳,专门用来实时盯着服务的日志输出。只要一出问题,我马上就能找到是哪里卡住了,超方便! java // 使用Logback记录日志 logs/service.log %d{yyyy-MM-dd HH:mm:ss} [%thread] %-5level %logger{36} - %msg%n --- 5. 总结 从失败中成长 经过这次折腾,我对HessianRPC有了更深的理解,也明白了一个道理:技术不是一蹴而就的,需要不断学习和实践。虽然这次服务异常恢复失败的经历让我很沮丧,但也让我积累了宝贵的经验。 如果你也有类似的问题,不妨按照以下步骤去排查: 1. 检查配置文件,确保所有参数都合理。 2. 监控线程池状态,避免线程耗尽。 3. 使用工具检测内存泄漏,及时清理无用资源。 4. 完善异常处理机制,增强服务的健壮性。 希望这篇文章能对你有所帮助!如果还有其他问题,欢迎随时交流。我们一起进步,一起成长! --- PS:记住,技术之路虽难,但每一步都是值得的!
2025-05-05 15:38:48
31
风轻云淡
HessianRPC
...接给用户返回个备用的数据,省得一直傻乎乎地去重试那个挂掉的服务,多浪费时间啊! 下面是一个基于HessianRPC的熔断器实现: java public class CircuitBreaker { private final T delegate; private boolean open = false; private int failureCount = 0; public CircuitBreaker(T delegate) { this.delegate = delegate; } public T getDelegate() { if (open && failureCount > 5) { return null; // 返回null表示断路器处于打开状态 } return delegate; } public void recordFailure() { failureCount++; if (failureCount >= 5) { open = true; } } } 将熔断器集成到之前的装饰器中: java public class CircuitBreakingUserServiceDecorator implements UserService { private final CircuitBreaker circuitBreaker; public CircuitBreakingUserServiceDecorator(CircuitBreaker circuitBreaker) { this.circuitBreaker = circuitBreaker; } @Override public UserInfo getUserInfo(int userId) { UserService userService = circuitBreaker.getDelegate(); if (userService == null) { return new UserInfo(-1, "Circuit Opened", "Service Unavailable"); } try { return userService.getUserInfo(userId); } catch (Exception e) { circuitBreaker.recordFailure(); return new UserInfo(-1, "Fallback User", "Service Unavailable"); } } } 这样,我们就能够在一定程度上缓解高负载带来的压力,并且确保系统的稳定性。 5. 总结与展望 回顾这次经历,我深刻体会到服务降级并不是一件轻松的事情。这事儿吧,不光得靠技术硬功夫,还得会提前打算,脑子转得也得快,不然真容易手忙脚乱。虽然HessianRPC没有提供现成的服务降级工具,但通过灵活运用设计模式,我们完全可以打造出适合自己项目的解决方案。 未来,我希望能够在更多场景下探索HessianRPC的应用潜力,同时也期待社区能够推出更加完善的降级框架,让开发者们少走弯路。毕竟,谁不想写出既高效又优雅的代码呢?如果你也有类似的经历或想法,欢迎随时交流讨论!
2025-05-01 15:44:28
17
半夏微凉
转载文章
...从监视器读取edid数据 hdmi_force_hotplug=1即使没有检测到hdmi监视器,也可以使用hdmi模式。 hdmi_niel_edid=0xa5000080如果显示没有准确的Edid,则启用忽略Edid/Display数据。 hdmi_ignore_hotplug=1即使检测到hdmi监视器,也可以使用复合模式。 config_hdmi_boost=2配置hdmi接口的信号强度。如果您对hdmi有干扰问题,尝试增加(例如,到7)11是最大的。 disdable_overscan=0设置为1以禁用过度扫描。 max_usb_current=1结合树莓PI B+,引入了一个新的config.txt设置。 max_usb_current=0当添加这一行时,USB电源管理器将将其输出电流限制(对所有4个USB端口加起来)从600 mA更改为1200 mA的两倍。 dtparam=i2c_arm=on在GPIO引脚上启用I2C。 dtparam=i2s=on启用I2S音频硬件。 dtparam=spi=on启用SPI驱动程序。 dtoverlay=xxx向设备树中添加一个覆盖/boot/overays/xxx-overlay.dtb(在树莓派的系统盘中搜索文件位置) 文章总结: 一个树莓派发烧友(小学生)使用树莓派版本4B,参考过很多文章和博客但是都没有成功,最后翻译官方文档,更改参数最终victory!!! 附上我的config文件参数 文章参考: https://elinux.org/RPiconfig 本篇文章为转载内容。原文链接:https://blog.csdn.net/gcyhacker/article/details/122666018。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-09 14:23:40
375
转载
Apache Lucene
...中,特别是在处理复杂数据结构时。那么,让我们一边学习如何优雅地使用Lucene,一边看看如何巧妙地避开NullPointerException吧! 二、Lucene的魅力所在 从概念到实践 首先,让我们来了解一下Lucene的基本概念。Lucene可真是个厉害的角色,它是个超级能打的文本搜索小能手,给咱们提供了全套的工具,不管是建索引、搜东西还是让搜索结果更给力,都能搞定!简单来说,Lucene就像是你电脑上的超级搜索引擎,但它的能力远不止于此。 2.1 创建你的第一个索引 在开始之前,你需要确保已经在你的项目中引入了Lucene的相关依赖。接下来,让我们通过一些简单的步骤来创建一个基本的索引: java import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.apache.lucene.document.Document; import org.apache.lucene.document.Field; import org.apache.lucene.index.IndexWriter; import org.apache.lucene.index.IndexWriterConfig; import org.apache.lucene.store.Directory; import org.apache.lucene.store.RAMDirectory; public class SimpleIndexer { public static void main(String[] args) throws Exception { // 创建内存中的目录,用于存储索引 Directory directory = new RAMDirectory(); // 创建索引配置 IndexWriterConfig config = new IndexWriterConfig(new StandardAnalyzer()); // 创建索引写入器 IndexWriter indexWriter = new IndexWriter(directory, config); // 创建文档对象 Document doc = new Document(); doc.add(new Field("content", "Hello Lucene!", Field.Store.YES, Field.Index.ANALYZED)); // 添加文档到索引 indexWriter.addDocument(doc); // 关闭索引写入器 indexWriter.close(); } } 在这个例子中,我们首先创建了一个内存中的目录(RAMDirectory),这是为了方便演示。接着,我们定义了索引配置,并使用StandardAnalyzer对文本进行分析。最后,我们创建了一个文档,并将它添加到了索引中。是不是很简单呢? 2.2 解决NullPointerException:预防胜于治疗 现在,让我们回到那个恼人的NullPointerException问题上。在用Lucene做索引的时候,经常会被空指针异常坑到,特别是当你试图去访问那些还没被初始化的对象或者字段时。为了避免这种情况,我们需要养成良好的编程习惯,比如: - 检查null值:在访问任何对象前,先检查是否为null。 - 初始化变量:确保所有对象在使用前都被正确初始化。 - 使用Optional类:Java 8引入的Optional类可以帮助我们更好地处理可能为空的情况。 例如,假设我们在处理索引文档时遇到了一个可能为空的字段,我们可以这样处理: java // 假设我们有一个可能为空的内容字段 String content = getContent(); // 这里可能会返回null if (content != null) { doc.add(new Field("content", content, Field.Store.YES, Field.Index.ANALYZED)); } else { System.out.println("内容字段为空!"); } 三、深入探索 Lucene的高级特性 3.1 搜索:不仅仅是查找 除了创建索引外,Lucene还提供了强大的搜索功能。让我们来看一个简单的搜索示例: java import org.apache.lucene.index.DirectoryReader; import org.apache.lucene.queryparser.classic.QueryParser; import org.apache.lucene.search.IndexSearcher; import org.apache.lucene.search.Query; import org.apache.lucene.search.ScoreDoc; import org.apache.lucene.search.TopDocs; import org.apache.lucene.store.Directory; public class SimpleSearcher { public static void main(String[] args) throws Exception { Directory directory = new RAMDirectory(); IndexWriterConfig config = new IndexWriterConfig(new StandardAnalyzer()); IndexWriter indexWriter = new IndexWriter(directory, config); Document doc = new Document(); doc.add(new Field("content", "Hello Lucene!", Field.Store.YES, Field.Index.ANALYZED)); indexWriter.addDocument(doc); indexWriter.close(); DirectoryReader reader = DirectoryReader.open(directory); IndexSearcher searcher = new IndexSearcher(reader); QueryParser parser = new QueryParser("content", new StandardAnalyzer()); Query query = parser.parse("lucene"); TopDocs results = searcher.search(query, 10); for (ScoreDoc scoreDoc : results.scoreDocs) { System.out.println(searcher.doc(scoreDoc.doc).get("content")); } reader.close(); } } 这段代码展示了如何使用QueryParser解析查询字符串,并使用IndexSearcher执行搜索操作。通过这种方式,我们可以轻松地从索引中检索出相关的文档。 3.2 高级搜索技巧:优化你的查询 当你开始构建更复杂的搜索逻辑时,Lucene提供了许多高级功能来帮助你优化搜索结果。比如说,你可以用布尔查询把好几个搜索条件拼在一起,或者用模糊匹配让搜索变得更灵活一点。这样找东西就方便多了! java import org.apache.lucene.index.Term; import org.apache.lucene.search.BooleanClause; import org.apache.lucene.search.BooleanQuery; import org.apache.lucene.search.FuzzyQuery; // 构建布尔查询 BooleanQuery booleanQuery = new BooleanQuery(); booleanQuery.add(new TermQuery(new Term("content", "hello")), BooleanClause.Occur.MUST); booleanQuery.add(new FuzzyQuery(new Term("content", "lucen")), BooleanClause.Occur.SHOULD); TopDocs searchResults = searcher.search(booleanQuery, 10); 在这个例子中,我们创建了一个布尔查询,其中包含两个子查询:一个是必须满足的精确匹配查询,另一个是可选的模糊匹配查询。这种组合可以显著提升搜索的准确性和相关性。 四、结语 享受编码的乐趣 通过这篇文章,我们不仅学习了如何使用Apache Lucene来创建和搜索索引,还一起探讨了如何有效地避免NullPointerException。希望这些示例代码和技巧能对你有所帮助。记住,编程不仅仅是一门技术,更是一种艺术。尽情享受编程的乐趣吧,一路探索和学习,你会发现自己的收获多到让人惊喜!如果你有任何问题或想法,欢迎随时与我交流! --- 以上就是关于Apache Lucene与javalangNullPointerException: null的讨论。希望能通过这篇文章点燃你对Lucene的热情,让你在实际开发中游刃有余,玩得更嗨!让我们一起继续探索更多有趣的技术吧!
2024-10-16 15:36:29
88
岁月静好
转载文章
...lerview并显示数据 这里我不再啰嗦,recylerview最基础的使用。 二,监听recylerview的滚动事件OnScrollListener onScrollStateChanged:监听滚动状态 onScrolled:监听滚动 我们接下来的统计工作,就是拿这两个方法做文章。 //检测recylerview的滚动事件recyclerView.addOnScrollListener(new RecyclerView.OnScrollListener() {@Overridepublic void onScrollStateChanged(RecyclerView recyclerView, int newState) {/我这里通过的是停止滚动后屏幕上可见view。如果滚动过程中的可见view也要统计,你可以根据newState去做区分SCROLL_STATE_IDLE:停止滚动SCROLL_STATE_DRAGGING: 用户慢慢拖动SCROLL_STATE_SETTLING:惯性滚动/if (newState == RecyclerView.SCROLL_STATE_IDLE) {.....} }@Overridepublic void onScrolled(RecyclerView recyclerView, int dx, int dy) {super.onScrolled(recyclerView, dx, dy);........} });复制代码 首先再次明确下,我们要统计的是用户停止滑动时,显示在屏幕的上控件。所以我们要监测到onScrollStateChanged 方法中 newState == RecyclerView.SCROLL_STATE_IDLE 时,也就是用户停止滚动。然后在这里做文章。 三,获取屏幕内可见条目的起始位置 这里的起始位置就是指我们屏幕当中最上面和最下面条目的位置。比如下图的0就是最上面的可见条目,3就是最下面的可见条目。我们次数的曝光view就是0,1,2,3 这个时候这四个条目显示在屏幕中。我们这时就要对这4个view的曝光量进行加1 那么接下来的重点就是要去获取屏幕内可见条目的起始位置。获取到起始位置后,当前屏幕里的可见条目就都能拿到了。 而recylerview的manager正好给我们提供的有对应的方法。 findFirstVisibleItemPosition()和findLastVisibleItemPosition() 看字面意思就能知道这时干嘛用的。 但是我们的manager不止LinearLayoutManager一种,所以我们要做下区分, //这里我们用一个数组来记录起始位置int[] range = new int[2];RecyclerView.LayoutManager manager = reView.getLayoutManager();if (manager instanceof LinearLayoutManager) {range = findRangeLinear((LinearLayoutManager) manager);} else if (manager instanceof GridLayoutManager) {range = findRangeGrid((GridLayoutManager) manager);} else if (manager instanceof StaggeredGridLayoutManager) {range = findRangeStaggeredGrid((StaggeredGridLayoutManager) manager);}复制代码 LinearLayoutManager和GridLayoutManager获取起始位置方法如下 private int[] findRangeLinear(LinearLayoutManager manager) {int[] range = new int[2];range[0] = manager.findFirstVisibleItemPosition();range[1] = manager.findLastVisibleItemPosition();return range;}private int[] findRangeGrid(GridLayoutManager manager) {int[] range = new int[2];range[0] = manager.findFirstVisibleItemPosition();range[1] = manager.findLastVisibleItemPosition();return range;}复制代码 StaggeredGridLayoutManager获取起始位置有点复杂,如下 private int[] findRangeStaggeredGrid(StaggeredGridLayoutManager manager) {int[] startPos = new int[manager.getSpanCount()];int[] endPos = new int[manager.getSpanCount()];manager.findFirstVisibleItemPositions(startPos);manager.findLastVisibleItemPositions(endPos);int[] range = findRange(startPos, endPos);return range;}private int[] findRange(int[] startPos, int[] endPos) {int start = startPos[0];int end = endPos[0];for (int i = 1; i < startPos.length; i++) {if (start > startPos[i]) {start = startPos[i];} }for (int i = 1; i < endPos.length; i++) {if (end < endPos[i]) {end = endPos[i];} }int[] res = new int[]{start, end};return res;}复制代码 四,获取到起始位置以后,我们就根据位置获取到view及view中的数据 上面第三步拿到屏幕内可见条目的起始位置以后,我们就用一个for循环,获取当前屏幕内可见的所有子view for (int i = range[0]; i <= range[1]; i++) {View view = manager.findViewByPosition(i);recordViewCount(view);}复制代码 recordViewCount是我自己写的用于获取子view内绑定数据的方法 //获取view绑定的数据private void recordViewCount(View view) {if (view == null || view.getVisibility() != View.VISIBLE ||!view.isShown() || !view.getGlobalVisibleRect(new Rect())) {return;}int top = view.getTop();int halfHeight = view.getHeight() / 2;int screenHeight = UiUtils.getScreenHeight((Activity) view.getContext());int statusBarHeight = UiUtils.getStatusBarHeight(view.getContext());if (top < 0 && Math.abs(top) > halfHeight) {return;}if (top > screenHeight - halfHeight - statusBarHeight) {return;}//这里获取的是我们view绑定的数据,相应的你要去在你的view里setTag,只有set了,才能getItemData tag = (ItemData) view.getTag();String key = tag.toString();if (TextUtils.isEmpty(key)) {return;}hashMap.put(key, !hashMap.containsKey(key) ? 1 : (hashMap.get(key) + 1));Log.i("qcl0402", key + "----出现次数:" + hashMap.get(key));}复制代码 这里有几点需要注意 1,这这里起始位置的view显示区域如果不超过50%,就不算这个view可见,进而也就不统计曝光。 2,我们通过view.getTag();获取view里的数据,必须在此之前setTag()数据,我这里setTag是在viewholder中把数据set进去的 到这里我们就实现了recylerview列表中view控件曝光量的统计了。下面贴出来完整的代码给大家 package com.example.qcl.demo.xuexi.baoguang;import android.app.Activity;import android.graphics.Rect;import android.support.v7.widget.GridLayoutManager;import android.support.v7.widget.LinearLayoutManager;import android.support.v7.widget.RecyclerView;import android.support.v7.widget.StaggeredGridLayoutManager;import android.text.TextUtils;import android.util.Log;import android.view.View;import com.example.qcl.demo.utils.UiUtils;import java.util.concurrent.ConcurrentHashMap;/ 2019/4/2 13:31 author: qcl desc: 安卓曝光量统计工具类 wechat:2501902696/public class ViewShowCountUtils {//刚进入列表时统计当前屏幕可见viewsprivate boolean isFirstVisible = true;//用于统计曝光量的mapprivate ConcurrentHashMap<String, Integer> hashMap = new ConcurrentHashMap<String, Integer>();/ 统计RecyclerView里当前屏幕可见子view的曝光量 /void recordViewShowCount(RecyclerView recyclerView) {hashMap.clear();if (recyclerView == null || recyclerView.getVisibility() != View.VISIBLE) {return;}//检测recylerview的滚动事件recyclerView.addOnScrollListener(new RecyclerView.OnScrollListener() {@Overridepublic void onScrollStateChanged(RecyclerView recyclerView, int newState) {/我这里通过的是停止滚动后屏幕上可见view。如果滚动过程中的可见view也要统计,你可以根据newState去做区分SCROLL_STATE_IDLE:停止滚动SCROLL_STATE_DRAGGING: 用户慢慢拖动SCROLL_STATE_SETTLING:惯性滚动/if (newState == RecyclerView.SCROLL_STATE_IDLE) {getVisibleViews(recyclerView);} }@Overridepublic void onScrolled(RecyclerView recyclerView, int dx, int dy) {super.onScrolled(recyclerView, dx, dy);//刚进入列表时统计当前屏幕可见viewsif (isFirstVisible) {getVisibleViews(recyclerView);isFirstVisible = false;} }});}/ 获取当前屏幕上可见的view /private void getVisibleViews(RecyclerView reView) {if (reView == null || reView.getVisibility() != View.VISIBLE ||!reView.isShown() || !reView.getGlobalVisibleRect(new Rect())) {return;}//保险起见,为了不让统计影响正常业务,这里做下try-catchtry {int[] range = new int[2];RecyclerView.LayoutManager manager = reView.getLayoutManager();if (manager instanceof LinearLayoutManager) {range = findRangeLinear((LinearLayoutManager) manager);} else if (manager instanceof GridLayoutManager) {range = findRangeGrid((GridLayoutManager) manager);} else if (manager instanceof StaggeredGridLayoutManager) {range = findRangeStaggeredGrid((StaggeredGridLayoutManager) manager);}if (range == null || range.length < 2) {return;}Log.i("qcl0402", "屏幕内可见条目的起始位置:" + range[0] + "---" + range[1]);for (int i = range[0]; i <= range[1]; i++) {View view = manager.findViewByPosition(i);recordViewCount(view);} } catch (Exception e) {e.printStackTrace();} }//获取view绑定的数据private void recordViewCount(View view) {if (view == null || view.getVisibility() != View.VISIBLE ||!view.isShown() || !view.getGlobalVisibleRect(new Rect())) {return;}int top = view.getTop();int halfHeight = view.getHeight() / 2;int screenHeight = UiUtils.getScreenHeight((Activity) view.getContext());int statusBarHeight = UiUtils.getStatusBarHeight(view.getContext());if (top < 0 && Math.abs(top) > halfHeight) {return;}if (top > screenHeight - halfHeight - statusBarHeight) {return;}//这里获取的是我们view绑定的数据,相应的你要去在你的view里setTag,只有set了,才能getItemData tag = (ItemData) view.getTag();String key = tag.toString();if (TextUtils.isEmpty(key)) {return;}hashMap.put(key, !hashMap.containsKey(key) ? 1 : (hashMap.get(key) + 1));Log.i("qcl0402", key + "----出现次数:" + hashMap.get(key));}private int[] findRangeLinear(LinearLayoutManager manager) {int[] range = new int[2];range[0] = manager.findFirstVisibleItemPosition();range[1] = manager.findLastVisibleItemPosition();return range;}private int[] findRangeGrid(GridLayoutManager manager) {int[] range = new int[2];range[0] = manager.findFirstVisibleItemPosition();range[1] = manager.findLastVisibleItemPosition();return range;}private int[] findRangeStaggeredGrid(StaggeredGridLayoutManager manager) {int[] startPos = new int[manager.getSpanCount()];int[] endPos = new int[manager.getSpanCount()];manager.findFirstVisibleItemPositions(startPos);manager.findLastVisibleItemPositions(endPos);int[] range = findRange(startPos, endPos);return range;}private int[] findRange(int[] startPos, int[] endPos) {int start = startPos[0];int end = endPos[0];for (int i = 1; i < startPos.length; i++) {if (start > startPos[i]) {start = startPos[i];} }for (int i = 1; i < endPos.length; i++) {if (end < endPos[i]) {end = endPos[i];} }int[] res = new int[]{start, end};return res;} }复制代码 使用就是在我们的recylerview设置完数据以后,把recylerview传递进去就可以了。如下图: 我们统计到曝光量,拿到曝光view绑定的数据,就可以结合后面的view点击,来看下那些商品view的曝光量高,那些商品的转化率高。当然,这都是运营小伙伴的事了,我们只需要负责把曝光量统计到即可。 如果你有任何编程方面的问题,可以加我微信交流 2501902696(备注编程) by:年糕妈妈qcl 转载于:https://juejin.im/post/5ca30ad1e51d4514c01634f1 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34150503/article/details/91475198。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-29 13:55:00
322
转载
RabbitMQ
...间,严重时甚至会导致数据丢失或服务不可用。所以啊,我们要想办法让系统变得更皮实,就算碰到那些麻烦事儿,它也能稳如老狗,继续正常运转。 3. 如何优雅地处理连接故障 3.1 使用重试机制 首先,我们可以利用重试机制来应对短暂的网络波动或临时性的服务不可用。通过设置合理的重试次数和间隔时间,可以有效地提高消息传递的成功率。以下是一个简单的Python代码示例,展示了如何使用pika库连接到RabbitMQ服务器,并在连接失败时进行重试: python import pika from time import sleep def connect_to_rabbitmq(): max_retries = 5 retry_delay = 5 seconds for i in range(max_retries): try: connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) print("成功连接到RabbitMQ") return connection except Exception as e: print(f"尝试{i+1}连接失败,将在{retry_delay}秒后重试...") sleep(retry_delay) print("多次重试后仍无法连接到RabbitMQ,程序将退出") exit(1) 调用函数尝试建立连接 connection = connect_to_rabbitmq() 3.2 实施断线重连策略 除了基本的重试机制外,我们还可以实现更复杂的断线重连策略。例如,当检测到连接异常时,立即尝试重新建立连接,并记录重连日志以便后续分析。另外,我们也可以试试用指数退避算法来调整重连的时间间隔,这样就不会在短时间内反复向服务器发起连接请求,也能让服务器稍微轻松一点。 下面展示了一个基于RabbitMQ官方客户端库pika的断线重连示例: python import pika from time import sleep class ReconnectingRabbitMQClient: def __init__(self, host='localhost'): self.host = host self.connection = None self.channel = None def connect(self): while True: try: self.connection = pika.BlockingConnection(pika.ConnectionParameters(self.host)) self.channel = self.connection.channel() print("成功连接到RabbitMQ") break except Exception as e: print(f"尝试连接失败,将在{2self.retry_count}秒后重试...") self.retry_count += 1 sleep(2self.retry_count) def close(self): if self.connection: self.connection.close() def send_message(self, message): if not self.channel: self.connect() self.channel.basic_publish(exchange='', routing_key='hello', body=message) client = ReconnectingRabbitMQClient() client.send_message('Hello World!') 在这个例子中,我们创建了一个ReconnectingRabbitMQClient类,它包含了连接、关闭连接以及发送消息的方法。特别要注意的是connect方法里的那个循环,这家伙每次连接失败后都会先歇一会儿,然后再杀回来试试看。而且这休息的时间也是越来越长,越往后重试间隔就按指数往上翻。 3.3 异步处理与心跳机制 对于那些需要长时间保持连接的应用场景,我们还可以采用异步处理方式,配合心跳机制来维持连接的有效性。心跳其实就是一种简单的保活方法,就像定时给对方发个信息或者挥挥手,确认一下对方还在不在。这样就能赶紧发现并搞定那些断掉的连接,免得因为放太长时间没动静而导致连接中断的问题。 4. 总结与展望 处理RabbitMQ中的连接故障是一项复杂但至关重要的任务。通过上面提到的几种招数——比如重试机制、断线重连和心跳监测,我们的系统会变得更强壮,也更靠谱了。当然,针对不同应用场景和需求,还需要进一步定制化和优化这些方案。比如说,对于那些对延迟特别敏感的应用,你得更仔细地调整重试策略,不然用户可能会觉得卡顿或者直接闪退。至于那些需要应对海量并发连接的场景嘛,你就得上点“硬货”了,比如用更牛的技术来搞定负载均衡和集群管理,这样才能保证系统稳如老狗。总而言之,就是咱们得不停地试啊试的,然后就能慢慢弄出个既快又稳的分布式消息传递系统。 --- 以上就是关于RabbitMQ中如何处理连接故障的一些探讨。希望这些内容能帮助你在实际工作中更好地应对挑战,打造更加可靠的应用程序。如果你有任何疑问或想要分享自己的经验,请随时留言讨论!
2024-12-02 16:11:51
94
红尘漫步
转载文章
...准版本,提供了更高的数据传输速率,对于固态硬盘等高速存储设备而言,支持PCIE 4.0意味着能实现更快速的数据读写性能。然而,在Dell G15笔记本上,作者发现并非所有硬盘接口均支持这一最新协议,从而引发了兼容性问题。 IPMITOOL , Intelligent Platform Management Interface (IPMI) Tool,智能平台管理接口工具。IPMITOOL是一个开源软件工具,用于与支持IPMI标准的硬件设备进行交互,提供远程监控、诊断和控制功能。在解决Dell T640服务器风扇转速控制问题时,作者使用了IPMITOOL工具,通过发送特定的命令行指令,实现了对服务器风扇的手动转速调节,解决了因硬件识别问题导致的风扇噪音巨大难题。
2023-02-24 14:29:07
172
转载
Gradle
...存,有时候缓存中的旧数据可能导致构建失败。 3. 更新依赖 检查并更新所有依赖的版本,确保它们之间不存在冲突或兼容性问题。 4. 调整网络设置 如果错误信息指向网络问题,尝试更换网络环境或调整代理设置。 5. 验证构建脚本 审查 .gradle 文件夹下的 build.gradle 或 build.gradle.kts 文件,确保没有语法错误或逻辑上的疏漏。 6. 使用调试工具 利用 Gradle 提供的诊断工具或第三方工具(如 IntelliJ IDEA 的 Gradle 插件)来辅助定位问题。 示例代码:实践中的应用 下面是一个简单的示例,展示了如何在 Gradle 中配置依赖管理,并处理可能的构建失败情况: groovy plugins { id 'com.android.application' version '7.2.2' apply false } android { compileSdkVersion 31 buildToolsVersion "32.0.0" defaultConfig { applicationId "com.example.myapp" minSdkVersion 21 targetSdkVersion 31 versionCode 1 versionName "1.0" } buildTypes { release { minifyEnabled false proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro' } } } dependencies { implementation 'androidx.appcompat:appcompat:1.4.2' implementation 'com.google.android.material:material:1.4.0' } // 简单的构建任务配置,用于演示 task checkDependencies(type: Check) { description = 'Checks dependencies for any issues.' classpath = configurations.compile.get() } 在这个示例中,我们定义了一个简单的 Android 应用项目,并添加了对 AndroidX 库的基本依赖。哎呀,你这项目里的小伙伴们都还好吗?对了,咱们有个小任务叫做checkDependencies,就是专门用来查一查这些小伙伴之间是不是有啥不和谐的地方。这事儿挺重要的,就像咱们定期体检一样,能早点发现问题,比如某个小伙伴突然闹脾气不干活了,或者新来的小伙伴和老伙计们不太合拍,咱都能提前知道,然后赶紧处理,不让事情闹得更大。所以,这个checkDependencies啊,其实就是咱们的一个小预防针,帮咱们防患于未然,确保项目运行得顺溜溜的! 结语 构建过程中的挑战是编程旅程的一部分,它们不仅考验着我们的技术能力,也是提升解决问题技巧的机会。通过细致地分析错误信息、逐步排查问题,以及灵活运用 Gradle 提供的工具和资源,我们可以有效地应对构建失败的挑战。嘿!兄弟,听好了,每次你栽跟头,那都不是白来的。那是你学习、进步的机会,让咱对这个叫 Gradle 的厉害构建神器用得更溜,做出超级棒的软件产品。别怕犯错,那可是通往成功的必经之路!
2024-07-29 16:10:49
497
冬日暖阳
转载文章
...够,还需要MySQL数据库与驱动,log4j的jar等等。下面我们开始今天的旅行: 第一步:创建数据库表 在Navicat下执行如下sql命令创建数据库mybatis和表t_user [sql] view plaincopy print? CREATE DATABASE IF NOT EXISTS mybatis; [sql] view plaincopy print? USE mybatis; [sql] view plaincopy print? create table t_user ( user_id int(11) NOT NULL AUTO_INCREMENT, user_name varchar(20) not null, user_age varchar(20) not null, PRIMARY KEY (user_id) )ENGINE=InnoDB DEFAULT CHARSET=utf8; 我们先看一下项目的完整目录,再继续下面的内容 第二步:添加jar包 对于下面代码的内容,我们就不再一一贴出来,只是把最重要的内容贴出来,大家可以下载源码。 第三步:创建model 创建一个model包并在其下创建一个User.Java文件。 [java] view plaincopy print? package com.tgb.model; / 用户 @author liang / public class User { private int id; private String age; private String userName; public User(){ super(); } public int getId() { return id; } public void setId(int id) { this.id = id; } public String getAge() { return age; } public void setAge(String age) { this.age = age; } public String getUserName() { return userName; } public void setUserName(String userName) { this.userName = userName; } public User(int id, String age, String userName) { super(); this.id = id; this.age = age; this.userName = userName; } } 第四步:创建DAO接口 创建一个包mapper,并在其下创建一个UserMapper.java文件作为DAO接口。 [java] view plaincopy print? package com.tgb.mapper; import java.util.List; import com.tgb.model.User; public interface UserMapper { void save(User user); boolean update(User user); boolean delete(int id); User findById(int id); List<User> findAll(); } 第五步:实现DAO接口 在dao包下创建一个UserMapper.xml文件作为上一步创建的DAO接口的实现。 [html] view plaincopy print? <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd"> <!-- namespace:必须与对应的接口全类名一致 id:必须与对应接口的某个对应的方法名一致 --> <mapper namespace="com.tgb.mapper.UserMapper"> <insert id="save" parameterType="User"> insert into t_user(user_name,user_age) values({userName},{age}) </insert> <update id="update" parameterType="User"> update t_user set user_name={userName},user_age={age} where user_id={id} </update> <delete id="delete" parameterType="int"> delete from t_user where user_id={id} </delete> <!-- mybsits_config中配置的alias类别名,也可直接配置resultType为类路劲 --> <select id="findById" parameterType="int" resultType="User"> select user_id id,user_name userName,user_age age from t_user where user_id={id} </select> <select id="findAll" resultType="User"> select user_id id,user_name userName,user_age age from t_user </select> </mapper> 这里对这个xml文件作几点说明: 1、namespace必须与对应的接口全类名一致。 2、id必须与对应接口的某个对应的方法名一致即必须要和UserMapper.java接口中的方法同名。 第六步:Mybatis和Spring的整合 对于Mybatis和Spring的整合是这篇博文的重点,需要配置的内容在下面有详细的解释。 [html] view plaincopy print? <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p" xmlns:context="http://www.springframework.org/schema/context" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-4.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-4.0.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-4.0.xsd"> <!-- 1. 数据源 : DriverManagerDataSource --> <bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource"> <property name="driverClassName" value="com.mysql.jdbc.Driver" /> <property name="url" value="jdbc:mysql://localhost:3306/mybatis" /> <property name="username" value="root" /> <property name="password" value="123456" /> </bean> <!-- 2. mybatis的SqlSession的工厂: SqlSessionFactoryBean dataSource:引用数据源 MyBatis定义数据源,同意加载配置 --> <bean id="sqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean"> <property name="dataSource" ref="dataSource"></property> <property name="configLocation" value="classpath:config/mybatis-config.xml" /> </bean> <!-- 3. mybatis自动扫描加载Sql映射文件/接口 : MapperScannerConfigurer sqlSessionFactory basePackage:指定sql映射文件/接口所在的包(自动扫描) --> <bean class="org.mybatis.spring.mapper.MapperScannerConfigurer"> <property name="basePackage" value="com.tgb.mapper"></property> <property name="sqlSessionFactory" ref="sqlSessionFactory"></property> </bean> <!-- 4. 事务管理 : DataSourceTransactionManager dataSource:引用上面定义的数据源 --> <bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager"> <property name="dataSource" ref="dataSource"></property> </bean> <!-- 5. 使用声明式事务 transaction-manager:引用上面定义的事务管理器 --> <tx:annotation-driven transaction-manager="txManager" /> </beans> 第七步:mybatis的配置文件 [html] view plaincopy print? <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE configuration PUBLIC "-//mybatis.org//DTD Config 3.0//EN" "http://mybatis.org/dtd/mybatis-3-config.dtd"> <configuration> <!-- 实体类,简称 -设置别名 --> <typeAliases> <typeAlias alias="User" type="com.tgb.model.User" /> </typeAliases> <!-- 实体接口映射资源 --> <!-- 说明:如果xxMapper.xml配置文件放在和xxMapper.java统一目录下,mappers也可以省略,因为org.mybatis.spring.mapper.MapperFactoryBean默认会去查找与xxMapper.java相同目录和名称的xxMapper.xml --> <mappers> <mapper resource="com/tgb/mapper/userMapper.xml" /> </mappers> </configuration> 总结 Mybatis和Spring的集成相对而言还是很简单的,祝你成功。 源码下载:SpringMVC+Spring4+Mybatis3 下篇博文我们将Hibernate和Mybatis进行一下详细的对比。 本篇文章为转载内容。原文链接:https://blog.csdn.net/konglongaa/article/details/51706991。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-05 11:56:25
111
转载
c++
...顾客满意度。这种基于数据驱动的决策方式,正是现代企业追求精细化运营的重要体现。 与此同时,开源社区也在不断壮大,许多开发者通过GitHub等平台分享自己的代码成果。这不仅促进了技术交流,也为初学者提供了宝贵的学习资源。例如,一个名为“Awesome-CPP”的项目整理了大量高质量的C++开源库,涵盖了从图形处理到网络通信等多个领域,极大地降低了开发者的学习门槛和技术壁垒。 此外,随着元宇宙概念的兴起,虚拟现实(VR)和增强现实(AR)技术正逐渐成为新的热点。一些高校和研究机构正在积极开展相关领域的研究,试图解决硬件性能瓶颈及用户体验等问题。例如,某大学实验室开发了一套基于SLAM技术的室内导航系统,能够在复杂环境中实现高精度定位,为未来的智能城市建设奠定了基础。 值得注意的是,在全球范围内,各国政府都在加大对科技创新的支持力度。美国出台了多项鼓励高科技产业发展的政策,而欧盟则推出了《数字服务法案》,旨在规范互联网平台的行为,保护用户隐私权。这些举措无疑将进一步推动全球科技生态的发展,为程序员们创造更多机会。 综上所述,无论是技术创新还是政策支持,都表明当前正处于一个充满机遇的时代。对于程序员而言,保持对新技术的关注,并不断提升自身技能,将是适应未来挑战的关键所在。
2025-03-25 15:39:59
10
幽谷听泉_
Kafka
... 一、引言 在大数据处理领域,Apache Kafka凭借其高吞吐量、低延迟、可靠的消息传递特性,成为了构建实时数据流处理系统的首选工具。Kafka中的一个关键概念是Consumer Group,它允许多个消费者同时消费来自同一主题的消息,从而实现负载均衡和容错。哎呀,你懂的,有时候在Consumer Group群里,突然有人掉线了,或者人少了点,这可就有点棘手了。毕竟,要是咱们这个小团体不稳当,效率也上不去啊。就像是打游戏,队伍一散,那可就难玩了不是?得想办法让咱们这个小组子,既能稳住阵脚,又能跑得快,对吧?本文将深入探讨这一问题,并提供解决方案。 二、问题现象与原因分析 现象描述: 在实际应用中,一旦某个Consumer Group成员(即消费者实例)发生故障或网络中断,该成员将停止接收新的消息。哎呀,你知道的,如果团队里的小伙伴们没能在第一时间察觉并接手这部分信息的处理任务,那可就麻烦了。就像你堆了一大堆未读邮件在收件箱里,久而久之,不光显得杂乱无章,还可能拖慢你整日的工作节奏,对不对?同样的道理,信息堆积多了,整个系统的运行效率就会变慢,稳定性也容易受到威胁。所以,大家得互相帮忙,及时分担任务,保持信息流通顺畅,这样才能让我们的工作更高效,系统也更稳定! 原因分析: 1. 成员间通信机制不足 Kafka默认不提供成员间的心跳检测机制,依赖于应用开发者自行实现。 2. 配置管理不当 如未能正确配置自动重平衡策略,可能导致成员在故障恢复后无法及时加入Group,或加入错误的Group。 3. 资源调度问题 在高并发场景下,资源调度不均可能导致部分成员承担过多的消费压力,而其他成员则处于空闲状态。 三、解决策略 1. 实现心跳检测机制 为了检测成员状态,可以实现一个简单的心跳检测机制,通过定期向Kafka集群发送心跳信号来检查成员的存活状态。如果长时间未收到某成员的心跳响应,则认为该成员可能已故障,并从Consumer Group中移除。以下是一个简单的Java示例: java import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; public class HeartbeatConsumer extends AbstractKafkaConsumer { private static final long HEARTBEAT_INTERVAL = 60 1000; // 心跳间隔时间,单位毫秒 @Override public void onConsume() { while (true) { try { Thread.sleep(HEARTBEAT_INTERVAL); if (!isAlive()) { System.out.println("Heartbeat failure detected."); // 可以在这里添加逻辑来处理成员故障,例如重新加入组或者通知其他成员。 } } catch (InterruptedException e) { Thread.currentThread().interrupt(); } } } private boolean isAlive() { // 实现心跳检测逻辑,例如发送心跳请求并等待响应。 return true; // 假设总是返回true,需要根据实际情况调整。 } } 2. 自动重平衡策略 合理配置Kafka的自动重平衡策略,确保在成员故障或加入时能够快速、平滑地进行组内成员的重新分配。利用Kafka的API或自定义逻辑来监控成员状态,并在需要时触发重平衡操作。例如: java KafkaConsumer consumer = new KafkaConsumer<>(config); consumer.subscribe(Arrays.asList(topic)); while (true) { ConsumerRecords records = consumer.poll(Duration.ofMillis(100)); for (ConsumerRecord record : records) { // 处理消息... } // 检查组成员状态并触发重平衡 if (needRebalance()) { consumer.leaveGroup(); consumer.close(); consumer = new KafkaConsumer<>(config); consumer.subscribe(Arrays.asList(topic)); } } private boolean needRebalance() { // 根据实际情况判断是否需要重平衡,例如检查成员状态等。 return false; } 3. 资源均衡与优化 设计合理的资源分配策略,确保所有成员在消费负载上达到均衡。可以考虑动态调整成员的消费速度、优化网络路由策略等手段,以避免资源的过度集中或浪费。 四、总结 解决Consumer Group成员失散的问题,需要从基础的通信机制、配置管理、到高级的资源调度策略等多个层面综合考虑。哎呀,咱们得好好琢磨琢磨这事儿!要是咱们能按这些策略来操作,不仅能稳稳地扛住成员出了状况的难题,还能让整个系统变得更加强韧,处理问题的能力也大大提升呢!就像是给咱们的团队加了层保护罩,还能让咱们干活儿更顺畅,效率蹭蹭往上涨!哎呀,兄弟,你得明白,在真刀真枪地用上这套系统的时候,咱们可不能死板地照着书本念。得根据你的业务需求,就像给娃挑衣服一样,挑最合适的那一件。还得看咱们的系统架构,就像是厨房里的调料,少了哪一味都不行。得灵活调整,就像变魔术一样,让性能和稳定性这俩宝贝儿,一个不落地都达到最好状态。这样,咱们的系统才能像大厨做菜一样,色香味俱全,让人爱不释口!
2024-08-11 16:07:45
52
醉卧沙场
Kafka
...心角色。生产者负责将数据写入Kafka集群,而消费者则从这些主题中读取数据。嘿,你知道吗?Kafka这家伙,他可是个玩转分布式系统的高手!他设计的那个系统,就像个超级快递员一样,能保证你的信息无论去哪儿,都能安全无误地送达。这背后有个秘密武器,那就是消息持久化和高可用性机制。就像是在每个包裹上都贴了个追踪标签,不管遇到啥情况,都能找到它的踪迹。这样一来,无论是你发的信息还是数据,都能稳稳当当地到达目的地,不用担心会迷路或者丢失。这不就是咱们想要的安全可靠嘛!哎呀,你知道吗?在咱们实际操作的时候,有时候会遇到一些出乎意料的小麻烦。比如说,“InvalidProducerGroupLogPartitionLogSegmentState”,这句看起来就挺专业的,但其实就是告诉我们,系统在处理数据时遇到了点小问题,可能是某个部分的状态不对劲了。得赶紧找找是哪里出了岔子,然后对症下药,把这个问题解决掉。毕竟,咱们的系统就像个大家庭,每个成员都得好好配合,才能顺畅运行啊!本文旨在深入探讨这一问题的原因、解决方法以及预防措施。 二、问题解析 理解“InvalidProducerGroupLogPartitionLogSegmentState” 当我们在Kafka的日志中看到这个错误信息时,通常意味着生产者组的日志分区或日志段的状态不正常。这可能是由于多种原因导致的,包括但不限于: - 日志段损坏:Kafka在存储消息时,会将其分割成多个日志段(log segments)。哎呀,你猜怎么着?如果某个日志段因为存储的时候出了点小差错,或者是硬件哪里有点小故障,那可就有可能导致一些问题冒出来!就像是你家电脑里的文件不小心被删了,或者硬盘突然罢工了,结果你得花时间去找回丢失的信息,这事儿在日志里也可能会发生。所以,咱们得好好照顾这些数据,别让它们乱跑乱跳,对吧? - 日志清理策略冲突:Kafka的默认配置可能与特定场景下的需求不匹配,例如日志清理策略设置为保留时间过短或日志备份数量过多等,都可能导致日志段状态异常。 - 生产者组管理问题:生产者组内部的成员管理不当,或者组内成员的增加或减少频繁,也可能引发这种状态的错误。 三、代码示例 如何检测和修复问题 为了更直观地理解这个问题及其解决方法,下面我们将通过一些简单的代码示例来演示如何在Kafka环境中检测并修复这类问题。 示例代码1:检查和修复日志段状态 首先,我们需要使用Kafka提供的命令行工具kafka-log-consumer来检查日志段的状态。以下是一个基本的命令示例: bash 连接到Kafka集群 bin/kafka-log-consumer.sh --zookeeper localhost:2181 --topic your-topic-name --group your-group-name 检查特定日志段的状态 bin/kafka-log-consumer.sh --zookeeper localhost:2181 --topic your-topic-name --group your-group-name --log-segment-state INVALID 如果发现特定日志段的状态为“INVALID”,可以尝试使用kafka-log-cleaner工具来修复问题: bash 启动日志清理器,修复日志段 bin/kafka-log-cleaner.sh --zookeeper localhost:2181 --topic your-topic-name --group your-group-name --repair 示例代码2:调整日志清理策略 对于日志清理策略的调整,可以通过修改Kafka配置文件server.properties来实现。以下是一个示例配置,用于延长日志段的保留时间: properties 延长日志段保留时间 log.retention.hours=24 确保在进行任何配置更改后,重启Kafka服务器以使更改生效: bash 重启Kafka服务器 service kafka-server-start.sh config/server.properties 四、最佳实践与预防措施 为了预防“InvalidProducerGroupLogPartitionLogSegmentState”错误的发生,建议采取以下最佳实践: - 定期监控:使用Kafka监控工具(如Kafka Manager)定期检查集群状态,特别是日志清理和存储情况。 - 合理配置:根据实际业务需求合理配置Kafka的参数,如日志清理策略、备份策略等,避免过度清理导致数据丢失。 - 容错机制:设计具有高容错性的生产者和消费者逻辑,能够处理临时网络中断或其他不可预测的错误。 - 定期维护:执行定期的集群健康检查和日志清理任务,及时发现并解决问题。 五、结语 从失败到成长 面对“InvalidProducerGroupLogPartitionLogSegmentState”这样的问题,虽然它可能会带来暂时的困扰,但正是这些挑战促使我们深入理解Kafka的工作机制和最佳实践。哎呀,学着怎么识别问题,然后把它们解决掉,这事儿可真挺有意思的!不仅能让你的电脑或者啥设备运行得更稳当,还不停地长本事,就像个技术侦探一样,对各种情况都能看得透透的。这不是简单地提升技能,简直是开挂啊!记住,每一次挑战都是成长的机会,让我们在技术的道路上不断前行。
2024-08-28 16:00:42
107
春暖花开
Kylin
... 一、引言 探索数据仓库的奥秘 在数据驱动的时代,如何高效地处理和分析海量数据是企业面临的关键挑战之一。哎呀,你听说过Kylin这个家伙没?这家伙在Apache开源项目里可是个大明星!它凭借着超棒的性能和超灵活的特性,在大数据分析这块地盘上可是独领风骚呢!就像是在数据这片海洋里,Kylin就是那条游得最快、最灵活的大鱼,让人不得不佩服它的实力和魅力!哎呀,你知道的,当Kylin碰上了MySQL这种关系型数据库,俩人之间的联接优化问题可真是个大课题啊!这事儿得好好琢磨琢磨,不然数据跑起来可就慢了不止一点点。你得想想怎么能让它们配合得天衣无缝,让数据查询快如闪电,用户体验棒棒哒!这背后涉及到的技术细节可多了去了,比如索引优化、查询语句的编写技巧,还有就是数据库配置的调整,每一步都得精心设计,才能让整个系统运行得既高效又稳定。所以,这不仅仅是个理论问题,更是一场实战演练,考验的是咱们对数据库知识的掌握和运用能力呢!本文将带你一起揭开这个谜题的面纱,从理论到实践,全方位解析Kylin与MySQL联接优化的关键点。 二、理论基础 理解Kylin与MySQL的联接机制 在深入讨论优化策略之前,我们首先需要理解两者之间的基本联接机制。Kylin是一个基于Hadoop的列式存储OLAP引擎,它通过预先计算并存储聚合数据来加速查询速度。而MySQL作为一个广泛使用的SQL数据库管理系统,提供了丰富的查询语言和存储能力。嘿,兄弟!你听过数据联接这事儿吗?它通常在咱们把数据从一个地方搬进另一个地方或者在查询数据的时候出现。就像拼图一样,对了,就是那种需要精准匹配才能完美组合起来的拼图。用对了联接策略,那操作效率简直能嗖的一下上去,比火箭还快呢!所以啊,小伙伴们,别小瞧了这个小小的联接步骤,它可是咱们大数据处理里的秘密武器! 三、策略一 优化联接条件 实践示例: sql -- 原始查询语句 SELECT FROM kylin_table JOIN mysql_table ON kylin_table.id = mysql_table.id; -- 优化后的查询语句 SELECT FROM kylin_table JOIN mysql_table ON kylin_table.id = mysql_table.id AND kylin_table.date >= '2023-01-01' AND kylin_table.date <= '2023-12-31'; 通过在联接条件中加入过滤条件(如时间范围),可以减少MySQL服务器需要处理的数据量,从而提高联接效率。 四、策略二 利用索引优化 实践示例: 在MySQL表上为联接字段创建索引,可以大大加速查询速度。同时,在Kylin中,确保相关维度的列已经进行了适当的索引,可以进一步提升性能。 sql -- MySQL创建索引 CREATE INDEX idx_kylin_table_id ON kylin_table(id); -- Kylin配置维度索引 id long true 通过这样的配置,不仅MySQL的查询速度得到提升,Kylin的聚合计算也更加高效。 五、策略三 批量导入与增量更新 实践示例: 对于大型数据集,考虑使用批量导入策略,而不是频繁的增量更新。哎呀,你瞧,咱们用批量导入这招,就像是给MySQL服务器做了一次减压操,让它不那么忙碌,喘口气。同时,借助Kylin的离线大法,我们就能让那些实时查询快如闪电,不拖泥带水。这样一来,不管是数据处理还是查询速度,都大大提升了,用户满意度也蹭蹭往上涨呢! bash 批量导入脚本示例 $ hadoop fs -put data.csv /input/ $ bin/hive -e "LOAD DATA INPATH '/input/data.csv' INTO TABLE kylin_table;" 六、策略四 优化联接模式 选择合适的联接模式(如内联接、外联接等)对于性能优化至关重要。哎呀,你得知道,在咱们实际干活的时候,选对了数据联接的方式,就像找到了开锁的金钥匙,能省下不少力气,避免那些没必要的数据大扫荡。比如说,你要是搞个报表啥的,用对了联接方法,数据就乖乖听话,找起来快又准,省得咱们一个个文件翻,一个个字段找,那得多费劲啊!所以,挑对工具,效率就是王道! 实践示例: 假设我们需要查询所有在特定时间段内的订单信息,并且关联了用户的基本信息。这里,我们可以使用内联接: sql SELECT FROM orders o INNER JOIN users u ON o.user_id = u.user_id WHERE o.order_date BETWEEN '2023-01-01' AND '2023-12-31'; 七、总结与展望 通过上述策略的实施,我们能够显著提升Kylin与MySQL联接操作的性能。哎呀,你知道优化数据库操作这事儿,可真是个门道多得很!比如说,调整联接条件啊,用上索引来提速啊,批量导入数据也是一大妙招,还有就是选对联接方式,这些小技巧都能让咱们的操作变得顺畅无比,响应速度嗖嗖的快起来。就像开车走高速,不堵车不绕弯,直奔目的地,那感觉,爽歪歪!哎呀,随着咱手里的数据越来越多,就像超市里的货物堆积如山,技术这玩意儿也跟咱们的手机更新换代一样快。所以啊,要想让咱们的系统运行得又快又好,就得不断调整和改进策略。就像是给汽车定期加油、保养,让它跑得既省油又稳定。这事儿,可得用心琢磨,不能偷懒!未来,随着更多高级特性如分布式计算、机器学习集成等的引入,Kylin与MySQL的联接优化将拥有更广阔的应用空间,助力数据分析迈向更高层次。
2024-09-20 16:04:27
104
百转千回
Apache Atlas
...las”,一款开源的数据治理工具。说实话,当我第一次听说它的时候,内心是既兴奋又紧张的。为啥呢?就因为它那个功能听着也太牛了吧!数据分类、管元数据、还能追踪数据的来龙去脉……这不就跟个啥都能搞定的“数据保姆”似的嘛! 但现实往往比想象复杂得多。哎呀,在捣鼓Apache Atlas的时候,真是被一个问题给卡住了——Hook 部署老是失败,气得我直挠头!这就跟做菜的时候,正打算大显身手呢,结果一瞧,盐和糖给放反了位置,那感觉简直要抓狂了,想直接躺平不干了! 不过别担心,咱们今天就来聊聊这个问题,看看能不能找到解决办法。毕竟,解决问题的过程本身就是一种成长嘛! --- 2. Hook是什么?为什么它如此重要? 在深入探讨问题之前,我们得先搞清楚什么是“Hook”。简单来说,Hook就是Apache Atlas用来与其他系统(比如Hive、Kafka等)集成的一种机制。有了这些“钩子”,Atlas就能在一旁盯着目标系统的一举一动,还能自动记下相关的各种小细节。 举个例子,如果你有一个Hive表被创建了,Atlas可以通过Hive Hook实时记录下这个事件,包括表名、字段定义、所属数据库等信息。这么做的好处嘛,简直不要太明显!就好比给你的数据加上了一个“出生证”和“护照”,不仅能随时知道它是从哪儿来的、去过哪儿,还能记录下它一路上经历的所有变化。这样一来,管理起来就方便多了,也不用担心数据会“走丢”或者被搞砸啦! 然而,正因如此,Hook的部署显得尤为重要。要是Hook没装好,那Atlas就啥元数据也收不到啦,整个数据治理的工作就得卡在那里干瞪眼了。这也是为什么当我的Hook部署失败时,我会感到特别沮丧的原因。 --- 3. 部署失败 从错误日志中寻找线索 那么,Hook到底为什么会部署失败呢?为了找出答案,我打开了Atlas的日志文件,开始逐行分析那些晦涩难懂的错误信息。说实话,第一次看这些日志的时候,我直接傻眼了,那感觉就跟对着一堆乱码似的,完全摸不着头脑。 不过,经过一番耐心的研究,我发现了一些关键点。比如: - 依赖冲突:有些情况下,Hook可能会因为依赖的某些库版本不兼容而导致加载失败。 - 配置错误:有时候,我们可能在application.properties文件中漏掉了必要的参数设置。 - 权限不足:Hook需要访问目标系统的API接口,但如果权限配置不当,自然会报错。 为了验证我的猜测,我决定先从最简单的配置检查做起。打开atlas-application.properties文件,我仔细核对了以下内容: properties atlas.hook.kafka.enabled=true atlas.hook.kafka.consumer.group=atlas-kafka-group atlas.kafka.bootstrap.servers=localhost:9092 确认无误后,我又检查了Kafka服务是否正常运行,确保Atlas能够连接到它。虽然这一系列操作看起来很基础,但它们往往是排查问题的第一步。 --- 4. 实战演练 动手修复Hook部署失败 接下来,让我们一起动手试试如何修复Hook部署失败吧!首先,我们需要明确一点:问题的根源可能有很多,因此我们需要分步骤逐一排除。 Step 1: 检查依赖关系 假设我们的Hook是基于Hive的,那么首先需要确保Hive的客户端库已经正确添加到了项目中。例如,在Maven项目的pom.xml文件里,我们应该看到类似如下的配置: xml org.apache.hive hive-jdbc 3.1.2 如果版本不对,或者缺少了必要的依赖项,就需要更新或补充。记得每次修改完配置后都要重新构建项目哦! Step 2: 调试日志级别 为了让日志更加详细,帮助我们定位问题,可以在log4j.properties文件中将日志级别调整为DEBUG级别: properties log4j.rootLogger=DEBUG, console 这样做虽然会让日志输出变得冗长,但却能为我们提供更多有用的信息。 Step 3: 手动测试连接 有时候,Hook部署失败并不是代码本身的问题,而是网络或者环境配置出了差错。这时候,我们可以尝试手动测试一下Atlas与目标系统的连接情况。例如,对于Kafka Hook,可以用下面的命令检查是否能正常发送消息: bash kafka-console-producer.sh --broker-list localhost:9092 --topic test-topic 如果这条命令执行失败,那就可以确定是网络或者Kafka服务的问题了。 --- 5. 总结与反思 成长中的点滴收获 经过这次折腾,我对Apache Atlas有了更深的理解,同时也意识到,任何技术工具都不是万能的,都需要我们投入足够的时间和精力去学习和实践。 最后想说的是,尽管Hook部署失败的经历让我一度感到挫败,但它也教会了我很多宝贵的经验。比如: - 不要害怕出错,错误往往是进步的起点; - 日志是排查问题的重要工具,要学会善加利用; - 团队合作很重要,遇到难题时不妨寻求同事的帮助。 希望这篇文章对你有所帮助,如果你也有类似的经历或见解,欢迎随时交流讨论!我们一起探索技术的世界,共同进步!
2025-04-03 16:11:35
60
醉卧沙场
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
last
- 查看系统的登录记录。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"