前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[MySQL安装路径bin目录重要性]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
VUE
Vue和MySQL是两个普遍的前端结构和关系型数据库,它们分别用于前端页面的呈现和数据存储。Vue是目前最盛行的前端结构之一,它具有快速的双向数据绑定机制和组件化的设计思路,使得开发人员可以快速构建数据驱动的网页应用。MySQL则是一种快速、稳固的关系型数据库,它被广泛用于数据存储和管理,具有开放源代码、可定制和高度可靠性等特点。 在使用Vue开发网页应用时,经常需要从MySQL数据库中读取数据,供前端页面进行呈现或者做其他处理。此时,我们可以通过Vue的组件导入mysql模块,完成与MySQL数据库的连接和数据读取。 import mysql from 'mysql'; export default { data() { return { users: [] } }, mounted() { const connection = mysql.createConnection({ host: 'localhost', user: 'root', password: '123456', database: 'test' }); connection.connect(); connection.query('SELECT FROM users', (error, results, fields) =>{ if (error) throw error; this.users = results; }); connection.end(); } } 在上面的代码中,我们通过npm安装了mysql模块,并在Vue组件中使用了它。首先,我们创建了一个数据库连接connection,并传入数据库的参数。接着,我们执行了一次数据查询,得到了结果results,并将其关联到Vue组件的data中。最后,我们关闭了数据库连接connection。这样就完成了从MySQL数据库中读取数据,并且将其关联至Vue组件中。 总的来说,Vue和MySQL是两个非常重要的前端结构和关系型数据库,在实际开发中经常被使用。通过学习和掌握Vue和MySQL的使用方法,可以让我们更加快速地进行前端开发和数据存储。
2023-11-04 09:39:55
77
数据库专家
Tomcat
...Name="com.mysql.jdbc.Driver" url="jdbc:mysql://localhost:3306/mydb"/> 在这个示例中,我们定义了一个名为"MyDB"的数据源,并设置了最大活动连接数为100,最大空闲连接数为30,最大等待时间(毫秒)为10000。 其次,我们需要确保在使用完数据库连接后,能够正确地关闭它。这通常需要在finally块中执行相关操作。以下是一个简单的示例: java try { Connection conn = dataSource.getConnection(); // 使用数据库连接进行操作... } finally { if (conn != null) { try { conn.close(); } catch (SQLException e) { // 忽略异常 } } } 最后,我们可以使用工具来检测和管理Tomcat的数据源连接泄漏。比如,咱们可以用像JVisualVM这样的工具,来实时瞅瞅应用服务器的内存消耗情况,这样一来,就能轻松揪出并解决那些烦人的连接泄漏问题啦。 五、结论 Tomcat的数据源连接泄漏是一个非常严重的问题,如果不及时处理,可能会对系统的稳定性和性能造成严重影响。因此,我们应该重视这个问题,并采取有效的措施来防止和管理连接泄漏。只要我们把配置调对,管理妥当,就完全可以把这类问题扼杀在摇篮里,确保系统的稳定运行,一切都能顺顺利利、稳稳妥妥的。
2023-06-08 17:13:33
243
落叶归根-t
Gradle
...构建工具时,一个至关重要的环节就是处理项目中的依赖关系。在本文里,咱们要来好好唠唠,在Gradle打包这事儿上,怎么才能又准又溜地把依赖包塞进来,让你的项目能顺顺利利编译运行,一点儿都不带卡壳的。 1. 理解Gradle依赖管理 首先,Gradle的依赖管理机制非常强大,它允许我们以声明式的方式定义项目所需的各种库(或称依赖)。这些依赖项,你可以从本地的文件夹、Maven那个大仓库、Ivy的存储地,甚至其他远在天边的远程仓库里通通把它们捞出来。理解这一点是正确配置和打包依赖的关键。 1.1 在build.gradle文件中声明依赖 每个Gradle项目都有一个或多个build.gradle文件,这是配置项目构建过程的地方。在这里,我们可以用groovy或者kotlin DSL来声明依赖。例如: groovy dependencies { // 声明一个Java项目的编译期依赖 implementation 'com.google.guava:guava:30.1-jre' // 声明测试相关的依赖 testImplementation 'junit:junit:4.13.2' // 声明运行时需要但编译时不需要的依赖 runtimeOnly 'mysql:mysql-connector-java:8.0.26' } 上述代码中,我们在dependencies块内通过implementation、testImplementation和runtimeOnly等方式分别指定了不同类型的依赖。 2. 控制依赖范围与传递性 2.1 依赖范围 Gradle为依赖提供了多种范围,如implementation、api、compileOnly等,用于控制依赖在编译、测试及运行阶段的作用域。比方说,implementation这个家伙的作用,就好比你有一个小秘密,只告诉自己模块内部的成员,不会跑去跟依赖它的其他模块小伙伴瞎嚷嚷。但是,当你用上api的时候,那就相当于你不仅告诉了自家模块的成员,还大方地把这个接口分享给了所有下游模块的朋友。 2.2 依赖传递性 默认情况下,Gradle具有依赖传递性,即如果A模块依赖B模块,而B模块又依赖C模块,那么A模块间接依赖了C模块。有时我们需要控制这种传递性,可以通过transitive属性进行设置: groovy dependencies { implementation('org.hibernate:hibernate-core:5.6.9.Final') { transitive = false // 禁止传递依赖 } } 3. 使用定制化仓库 除了标准的Maven中央仓库,我们还可以添加自定义的仓库地址来下载依赖包: groovy repositories { mavenCentral() // 默认的Maven中央仓库 maven { url 'https://maven.example.com/repo' } // 自定义仓库 } 4. 打包时包含依赖 当执行gradle build命令时,Gradle会自动处理并包含所有已声明的依赖。对于Java应用,使用jar任务打包时,默认并不会将依赖打进生成的jar文件中。若需将依赖包含进去,可采用如下方式: groovy task fatJar(type: Jar) { archiveBaseName = 'my-fat-app' from { configurations.runtimeClasspath.collect { it.isDirectory() ? it : zipTree(it) } } with jar } 这段代码创建了一个名为fatJar的任务,它将运行时依赖一并打包进同一个jar文件中,便于部署和运行。 总结来说,掌握Gradle依赖管理的核心在于理解其声明式依赖配置以及对依赖范围、传递性的掌控。同时,咱们在打包的时候,得瞅准实际情况,灵活选择最合适的策略把依赖项一并打包进去,这样才能保证咱们的项目构建既一步到位,又快马加鞭,准确高效没商量。在整个开发过程中,Gradle就像个超级灵活、无比顺手的工具箱,让开发者能够轻轻松松解决各种乱七八糟、错综复杂的依赖关系难题,真可谓是个得力小助手。
2023-06-09 14:26:29
408
凌波微步_
Gradle
... 这将在当前目录下生成一个基本的Gradle Java应用项目结构,其中build.gradle文件就是我们用来配置项目依赖的地方。 2. 添加依赖到build.gradle文件 2.1 添加本地库依赖 如果你有一个本地的JAR包需要添加为依赖,可以如下操作: groovy dependencies { implementation files('libs/my-local-library.jar') } 上述代码意味着Gradle在编译和打包时会自动将'libs/my-local-library.jar'包含进你的项目中。 2.2 添加远程仓库依赖 通常情况下,我们会从Maven Central或JCenter等远程仓库获取依赖。例如,要引入Apache Commons Lang库,我们可以这样做: groovy repositories { mavenCentral() // 或者 jcenter() } dependencies { implementation 'org.apache.commons:commons-lang3:3.9' } 在这里,Gradle会在mavenCentral仓库查找指定groupId(org.apache.commons)、artifactId(commons-lang3)和version(3.9)的依赖,并将其包含在最终的打包结果中。 3. 理解依赖范围 Gradle中的依赖具有不同的范围,如implementation、api、runtime等,它们会影响依赖包在不同构建阶段是否被包含以及如何传递给其他模块。例如: groovy dependencies { implementation 'com.google.guava:guava:29.0-jre' // 只对本模块编译和运行有效 api 'junit:junit:4.13' // 不仅对本模块有效,还会暴露给依赖此模块的其他模块 runtime 'mysql:mysql-connector-java:8.0.25' // 只在运行时提供,编译阶段不需 } 4. 执行打包并验证依赖 完成依赖配置后,我们可以通过执行gradle build命令来编译并打包项目。Gradle会根据你在build.gradle中声明的依赖进行解析和下载,最后将依赖与你的源码一起打包至输出的.jar或.war文件中。 为了验证依赖是否已成功包含,你可以解压生成的.jar文件(或者查看.war文件中的WEB-INF/lib目录),检查相关的依赖库是否存在。 结语 Gradle的依赖管理机制使得我们在打包项目时能轻松应对各种复杂场景下的依赖问题。掌握这项技能,可不只是提升开发效率那么简单,更能像给项目构建上了一层双保险,让其稳如磐石,始终如一。在整个捣鼓配置和打包的过程中,如果你能时刻把握住Gradle构建逻辑的脉络,一边思考一边调整优化,你就会发现Gradle这家伙在应对个性化需求时,展现出了超乎想象的灵活性和强大的力量,就像一个无所不能的变形金刚。所以,让我们带着探索和实践的热情,深入挖掘Gradle更多的可能性吧!
2024-01-15 18:26:00
435
雪落无痕_
Golang
...互的功能,包括文件和目录的创建、删除、读写等基础操作。 go import "os" // 创建一个新文件 file, err := os.Create("newfile.txt") if err != nil { panic(err) } defer file.Close() // 写入内容 _, err = file.WriteString("Hello, Gophers!") if err != nil { panic(err) } - io/ioutil包则封装了一些方便的I/O操作,如一次性读取或写入整个文件内容。 go import ( "io/ioutil" "log" ) // 读取整个文件内容 content, err := ioutil.ReadFile("newfile.txt") if err != nil { log.Fatal(err) } fmt.Println(string(content)) 2. 异常处理和错误检查 在进行文件操作时,我们必须重视异常处理。在Go语言里,它选择了一种不那么抛出异常的方式来处理问题,而是通过返回错误信息的方式。这就意味着,每当我们要对文件进行操作的时候,都得小心翼翼地去瞅瞅函数返回的结果,看看是否藏着什么错误消息。 go // 检查文件是否存在 _, err := os.Stat("myfile.txt") if os.IsNotExist(err) { fmt.Println("File does not exist.") } else if err != nil { // 处理其他非预期的错误 panic(err) } 3. 使用上下文(Context)进行控制 在处理大文件或者网络文件系统时,可能会涉及长时间运行的操作。Go的context包能帮助我们优雅地取消长时间运行的任务。例如,在读取大文件时,我们可以适时地中止IO操作。 go import ( "context" "io/ioutil" "time" ) ctx, cancel := context.WithTimeout(context.Background(), 5time.Second) defer cancel() data, err := ioutil.ReadAll(ctx, openFile("largefile.bin")) if err != nil { select { case <-ctx.Done(): fmt.Println("Read operation timed out.") default: panic(err) } } 4. 并发操作 同步与互斥 Go的并发特性使得同时对多个文件进行操作变得轻而易举,但同时也需要注意同步问题。在日常使用中,比如大家伙都在同一个文件夹里操作文件的时候,咱们得聪明点,巧妙运用像sync.Mutex这样的同步工具,来避免出现资源争夺的情况哈。就像是大家一起玩一个游戏,要轮流来,不能抢,这样才能保证每个人的操作都能顺利完成,不乱套。 go import ( "os" "sync" ) var mutex = &sync.Mutex{} func writeFile(filename string, content string) { mutex.Lock() defer mutex.Unlock() file, err := os.Create(filename) if err != nil { panic(err) } defer file.Close() _, err = file.WriteString(content) if err != nil { panic(err) } } // 在多个goroutine中调用writeFile函数,此时它们会按照顺序依次执行 总之,熟练掌握Go语言进行文件系统操作的关键在于理解并正确应用相关API,严谨对待错误处理,充分利用Go的并发特性并妥善解决由此带来的同步问题。希望以上的探讨和实例代码能实实在在帮到你,让你更溜地掌握Go语言在操作文件系统方面的绝活儿,这样一来,你的程序设计不仅效率更高,还更稳更靠谱!
2024-02-24 11:43:21
428
雪落无痕
Golang
... 1.1 连接池的重要性 连接池是数据库访问中非常关键的一环。它允许我们在不频繁建立新连接的情况下,重用已有的数据库连接,从而提高效率并减少资源消耗。想象一下,如果你每次执行SQL查询都要打开一个新的数据库连接,那效率该有多低啊! 1.2 SQL查询与ORM 在进行数据库操作时,我们有两种主要的方法:直接编写SQL语句或者使用ORM(对象关系映射)。直接编写SQL语句虽然能够提供更多的控制权,但可能会增加出错的风险。而ORM则通过将数据库表映射到程序中的对象,使得数据操作更加直观。不过,选择哪种方式,还要根据具体的应用场景和个人偏好来决定。 2. 实践篇 构建高性能数据库访问 现在,让我们进入实践部分。咱们这就来点儿实战教学,用几个小例子带你看看怎么用Go语言搞定又快又稳的数据库操作。 2.1 使用标准库 database/sql Go语言的标准库提供了database/sql包,它是一个用于SQL数据库的通用接口。下面是一个简单的例子: go package main import ( "database/sql" _ "github.com/go-sql-driver/mysql" // 注意这里需要导入MySQL驱动 "fmt" ) func main() { db, err := sql.Open("mysql", "user:password@tcp(127.0.0.1:3306)/dbname") if err != nil { panic(err.Error()) } defer db.Close() // 执行一个简单的查询 rows, err := db.Query("SELECT id, name FROM users") if err != nil { panic(err.Error()) } defer rows.Close() for rows.Next() { var id int var name string err = rows.Scan(&id, &name) if err != nil { panic(err.Error()) } fmt.Println(id, name) } } 2.2 使用ORM工具:Gorm 对于更复杂的项目,使用ORM工具如Gorm可以极大地简化数据库操作。Gorm就像是给数据库操作加了个“翻译”,让我们可以用更贴近日常说话的方式来摆弄数据库里的数据,感觉就像是在玩弄对象一样轻松。下面是如何使用Gorm的一个简单示例: go package main import ( "gorm.io/driver/mysql" "gorm.io/gorm" "log" ) type User struct { ID uint Name string } func main() { dsn := "user:password@tcp(127.0.0.1:3306)/dbname?charset=utf8mb4&parseTime=True&loc=Local" db, err := gorm.Open(mysql.Open(dsn), &gorm.Config{}) if err != nil { log.Fatal(err) } // 创建用户 newUser := User{Name: "John Doe"} db.Create(&newUser) // 查询用户 var user User db.First(&user, newUser.ID) log.Printf("Found user: %s\n", user.Name) } 3. 性能优化技巧 在实际开发中,除了基础的数据库操作外,我们还需要考虑如何进一步优化性能。这里有几个建议: - 索引:确保你的数据库表上有适当的索引,特别是对于那些频繁查询的字段。 - 缓存:利用缓存机制(如Redis)来存储常用的数据结果,可以显著减少数据库的负载。 - 批量操作:尽量减少与数据库的交互次数,比如批量插入或更新数据。 - 异步处理:对于耗时的操作,可以考虑使用异步处理方式,避免阻塞主线程。 4. 结语 通过以上的内容,我们大致了解了如何使用Go语言进行高性能的数据库访问和操作。当然,这只是冰山一角,真正的高手之路还很长。希望能给你带来点儿灵感,让你在Go语言的路上越走越远,越走越顺!记住,编程是一场马拉松,不是短跑,保持耐心,不断学习和尝试新的东西吧! --- 希望这篇文章能帮助你更好地理解和应用Golang在数据库访问方面的最佳实践。如果你有任何问题或想法,欢迎随时交流讨论!
2024-10-21 15:42:48
78
百转千回
Go Iris
...ql-driver/mysql" "fmt" ) func main() { app := iris.New() // 假设我们已经配置好了数据库连接 db, err := sql.Open("mysql", "user:password@tcp(127.0.0.1:3306)/testdb") if err != nil { panic(err.Error()) // 此处处理数据库连接错误 } defer db.Close() // 定义一个HTTP路由处理函数,其中包含SQL查询 app.Get("/users/{id}", func(ctx iris.Context) { id := ctx.Params().Get("id") var user User err = db.QueryRow("SELECT FROM users WHERE id=?", id).Scan(&user.ID, &user.Name, &user.Email) if err != nil { if errors.Is(err, sql.ErrNoRows) { // 处理查询结果为空的情况 ctx.StatusCode(iris.StatusNotFound) ctx.WriteString("User not found.") } else if mysqlErr, ok := err.(mysql.MySQLError); ok { // 对特定的MySQL错误进行判断和处理 ctx.StatusCode(iris.StatusInternalServerError) ctx.WriteString(fmt.Sprintf("MySQL Error: %d - %s", mysqlErr.Number, mysqlErr.Message)) } else { // 其他未知错误,记录日志并返回500状态码 log.Printf("Unexpected error: %v", err) ctx.StatusCode(iris.StatusInternalServerError) ctx.WriteString("Internal Server Error.") } return } // 查询成功,继续处理业务逻辑... // ... }) app.Listen(":8080") } 4. 深入思考与讨论 面对SQL查询错误,我们应该首先确保它被正确捕获并分类处理。就像刚刚提到的例子那样,面对各种不同的错误类型,我们完全能够灵活应对。比如说,可以选择扔出合适的HTTP状态码,让用户一眼就明白是哪里出了岔子;还可以提供一些既友好又贴心的错误提示信息,让人一看就懂;甚至可以细致地记录下每一次错误的详细日志,方便咱们后续顺藤摸瓜,找出问题所在。 在实际项目中,我们不仅要关注错误的处理方式,还要注重设计良好的错误处理策略,例如使用中间件统一处理数据库操作异常,或者在ORM层封装通用的错误处理逻辑等。这些方法不仅能提升代码的可读性和维护性,还能增强系统的稳定性和健壮性。 5. 结语 总之,理解和掌握Go Iris中SQL查询错误的处理方法至关重要。只有当咱们应用程序装上一个聪明的错误处理机制,才能保证在数据库查询出岔子的时候,程序还能稳稳当当地运行。这样一来,咱就能给用户带来更稳定、更靠谱的服务体验啦!在实际编程的过程中,咱们得不断摸爬滚打,积攒经验,像升级打怪一样,一步步完善我们的错误处理招数。这可是我们每一位开发者都该瞄准的方向,努力做到的事儿啊!
2023-08-27 08:51:35
458
月下独酌
转载文章
...放入到持久化系统中(MySQL) 广告点击系统实时分析的意义:因为可以在线实时的看见广告的投放效果,就为广告的更大规模的投入和调整打下了坚实的基础,从而为公司带来最大化的经济回报。 核心需求: 1、实时黑名单动态过滤出有效的用户广告点击行为:因为黑名单用户可能随时出现,所以需要动态更新; 2、在线计算广告点击流量; 3、Top3热门广告; 4、每个广告流量趋势; 5、广告点击用户的区域分布分析 6、最近一分钟的广告点击量; 7、整个广告点击Spark Streaming处理程序724小时运行; 数据格式: 时间、用户、广告、城市等 技术细节: 在线计算用户点击的次数分析,屏蔽IP等; 使用updateStateByKey或者mapWithState进行不同地区广告点击排名的计算; Spark Streaming+Spark SQL+Spark Core等综合分析数据; 使用Window类型的操作; 高可用和性能调优等等; 流量趋势,一般会结合DB等; Spark Core / /package com.tom.spark.SparkApps.sparkstreaming;import java.util.Date;import java.util.HashMap;import java.util.Map;import java.util.Properties;import java.util.Random;import kafka.javaapi.producer.Producer;import kafka.producer.KeyedMessage;import kafka.producer.ProducerConfig;/ 数据生成代码,Kafka Producer产生数据/public class MockAdClickedStat {/ @param args/public static void main(String[] args) {final Random random = new Random();final String[] provinces = new String[]{"Guangdong", "Zhejiang", "Jiangsu", "Fujian"};final Map<String, String[]> cities = new HashMap<String, String[]>();cities.put("Guangdong", new String[]{"Guangzhou", "Shenzhen", "Dongguan"});cities.put("Zhejiang", new String[]{"Hangzhou", "Wenzhou", "Ningbo"});cities.put("Jiangsu", new String[]{"Nanjing", "Suzhou", "Wuxi"});cities.put("Fujian", new String[]{"Fuzhou", "Xiamen", "Sanming"});final String[] ips = new String[] {"192.168.112.240","192.168.112.239","192.168.112.245","192.168.112.246","192.168.112.247","192.168.112.248","192.168.112.249","192.168.112.250","192.168.112.251","192.168.112.252","192.168.112.253","192.168.112.254",};/ Kafka相关的基本配置信息/Properties kafkaConf = new Properties();kafkaConf.put("serializer.class", "kafka.serializer.StringEncoder");kafkaConf.put("metadeta.broker.list", "Master:9092,Worker1:9092,Worker2:9092");ProducerConfig producerConfig = new ProducerConfig(kafkaConf);final Producer<Integer, String> producer = new Producer<Integer, String>(producerConfig);new Thread(new Runnable() {public void run() {while(true) {//在线处理广告点击流的基本数据格式:timestamp、ip、userID、adID、province、cityLong timestamp = new Date().getTime();String ip = ips[random.nextInt(12)]; //可以采用网络上免费提供的ip库int userID = random.nextInt(10000);int adID = random.nextInt(100);String province = provinces[random.nextInt(4)];String city = cities.get(province)[random.nextInt(3)];String clickedAd = timestamp + "\t" + ip + "\t" + userID + "\t" + adID + "\t" + province + "\t" + city;producer.send(new KeyedMessage<Integer, String>("AdClicked", clickedAd));try {Thread.sleep(50);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }).start();} } package com.tom.spark.SparkApps.sparkstreaming;import java.sql.Connection;import java.sql.DriverManager;import java.sql.PreparedStatement;import java.sql.ResultSet;import java.sql.SQLException;import java.util.ArrayList;import java.util.Arrays;import java.util.HashMap;import java.util.HashSet;import java.util.Iterator;import java.util.List;import java.util.Map;import java.util.Set;import java.util.concurrent.LinkedBlockingQueue;import kafka.serializer.StringDecoder;import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.PairFunction;import org.apache.spark.api.java.function.VoidFunction;import org.apache.spark.sql.DataFrame;import org.apache.spark.sql.Row;import org.apache.spark.sql.RowFactory;import org.apache.spark.sql.hive.HiveContext;import org.apache.spark.sql.types.DataTypes;import org.apache.spark.sql.types.StructType;import org.apache.spark.streaming.Durations;import org.apache.spark.streaming.api.java.JavaDStream;import org.apache.spark.streaming.api.java.JavaPairDStream;import org.apache.spark.streaming.api.java.JavaPairInputDStream;import org.apache.spark.streaming.api.java.JavaStreamingContext;import org.apache.spark.streaming.api.java.JavaStreamingContextFactory;import org.apache.spark.streaming.kafka.KafkaUtils;import com.google.common.base.Optional;import scala.Tuple2;/ 数据处理,Kafka消费者/public class AdClickedStreamingStats {/ @param args/public static void main(String[] args) {// TODO Auto-generated method stub//好处:1、checkpoint 2、工厂final SparkConf conf = new SparkConf().setAppName("SparkStreamingOnKafkaDirect").setMaster("hdfs://Master:7077/");final String checkpointDirectory = "hdfs://Master:9000/library/SparkStreaming/CheckPoint_Data";JavaStreamingContextFactory factory = new JavaStreamingContextFactory() {public JavaStreamingContext create() {// TODO Auto-generated method stubreturn createContext(checkpointDirectory, conf);} };/ 可以从失败中恢复Driver,不过还需要指定Driver这个进程运行在Cluster,并且在提交应用程序的时候制定--supervise;/JavaStreamingContext javassc = JavaStreamingContext.getOrCreate(checkpointDirectory, factory);/ 第三步:创建Spark Streaming输入数据来源input Stream: 1、数据输入来源可以基于File、HDFS、Flume、Kafka、Socket等 2、在这里我们指定数据来源于网络Socket端口,Spark Streaming连接上该端口并在运行的时候一直监听该端口的数据 (当然该端口服务首先必须存在),并且在后续会根据业务需要不断有数据产生(当然对于Spark Streaming 应用程序的运行而言,有无数据其处理流程都是一样的) 3、如果经常在每间隔5秒钟没有数据的话不断启动空的Job其实会造成调度资源的浪费,因为并没有数据需要发生计算;所以 实际的企业级生成环境的代码在具体提交Job前会判断是否有数据,如果没有的话就不再提交Job;///创建Kafka元数据来让Spark Streaming这个Kafka Consumer利用Map<String, String> kafkaParameters = new HashMap<String, String>();kafkaParameters.put("metadata.broker.list", "Master:9092,Worker1:9092,Worker2:9092");Set<String> topics = new HashSet<String>();topics.add("SparkStreamingDirected");JavaPairInputDStream<String, String> adClickedStreaming = KafkaUtils.createDirectStream(javassc, String.class, String.class, StringDecoder.class, StringDecoder.class,kafkaParameters, topics);/因为要对黑名单进行过滤,而数据是在RDD中的,所以必然使用transform这个函数; 但是在这里我们必须使用transformToPair,原因是读取进来的Kafka的数据是Pair<String,String>类型, 另一个原因是过滤后的数据要进行进一步处理,所以必须是读进的Kafka数据的原始类型 在此再次说明,每个Batch Duration中实际上讲输入的数据就是被一个且仅被一个RDD封装的,你可以有多个 InputDStream,但其实在产生job的时候,这些不同的InputDStream在Batch Duration中就相当于Spark基于HDFS 数据操作的不同文件来源而已罢了。/JavaPairDStream<String, String> filteredadClickedStreaming = adClickedStreaming.transformToPair(new Function<JavaPairRDD<String,String>, JavaPairRDD<String,String>>() {public JavaPairRDD<String, String> call(JavaPairRDD<String, String> rdd) throws Exception {/ 在线黑名单过滤思路步骤: 1、从数据库中获取黑名单转换成RDD,即新的RDD实例封装黑名单数据; 2、然后把代表黑名单的RDD的实例和Batch Duration产生的RDD进行Join操作, 准确的说是进行leftOuterJoin操作,也就是说使用Batch Duration产生的RDD和代表黑名单的RDD实例进行 leftOuterJoin操作,如果两者都有内容的话,就会是true,否则的话就是false 我们要留下的是leftOuterJoin结果为false; /final List<String> blackListNames = new ArrayList<String>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doQuery("SELECT FROM blacklisttable", null, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {while(result.next()){blackListNames.add(result.getString(1));} }});List<Tuple2<String, Boolean>> blackListTuple = new ArrayList<Tuple2<String,Boolean>>();for(String name : blackListNames) {blackListTuple.add(new Tuple2<String, Boolean>(name, true));}List<Tuple2<String, Boolean>> blacklistFromListDB = blackListTuple; //数据来自于查询的黑名单表并且映射成为<String, Boolean>JavaSparkContext jsc = new JavaSparkContext(rdd.context());/ 黑名单的表中只有userID,但是如果要进行join操作的话就必须是Key-Value,所以在这里我们需要 基于数据表中的数据产生Key-Value类型的数据集合/JavaPairRDD<String, Boolean> blackListRDD = jsc.parallelizePairs(blacklistFromListDB);/ 进行操作的时候肯定是基于userID进行join,所以必须把传入的rdd进行mapToPair操作转化成为符合格式的RDD/JavaPairRDD<String, Tuple2<String, String>> rdd2Pair = rdd.mapToPair(new PairFunction<Tuple2<String,String>, String, Tuple2<String, String>>() {public Tuple2<String, Tuple2<String, String>> call(Tuple2<String, String> t) throws Exception {// TODO Auto-generated method stubString userID = t._2.split("\t")[2];return new Tuple2<String, Tuple2<String,String>>(userID, t);} });JavaPairRDD<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> joined = rdd2Pair.leftOuterJoin(blackListRDD);JavaPairRDD<String, String> result = joined.filter(new Function<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, Boolean>() {public Boolean call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> tuple)throws Exception {// TODO Auto-generated method stubOptional<Boolean> optional = tuple._2._2;if(optional.isPresent() && optional.get()){return false;} else {return true;} }}).mapToPair(new PairFunction<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, String, String>() {public Tuple2<String, String> call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> t)throws Exception {// TODO Auto-generated method stubreturn t._2._1;} });return result;} });//广告点击的基本数据格式:timestamp、ip、userID、adID、province、cityJavaPairDStream<String, Long> pairs = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t) throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} });/ 第4.3步:在单词实例计数为1基础上,统计每个单词在文件中出现的总次数/JavaPairDStream<String, Long> adClickedUsers= pairs.reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long i1, Long i2) throws Exception{return i1 + i2;} });/判断有效的点击,复杂化的采用机器学习训练模型进行在线过滤 简单的根据ip判断1天不超过100次;也可以通过一个batch duration的点击次数判断是否非法广告点击,通过一个batch来判断是不完整的,还需要一天的数据也可以每一个小时来判断。/JavaPairDStream<String, Long> filterClickedBatch = adClickedUsers.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {if (1 < v1._2){//更新一些黑名单的数据库表return false;} else { return true;} }});//filterClickedBatch.print();//写入数据库filterClickedBatch.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:userID,adID,clickedCount,time//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<UserAdClicked> userAdClickedList = new ArrayList<UserAdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");UserAdClicked userClicked = new UserAdClicked();userClicked.setTimestamp(splited[0]);userClicked.setIp(splited[1]);userClicked.setUserID(splited[2]);userClicked.setAdID(splited[3]);userClicked.setProvince(splited[4]);userClicked.setCity(splited[5]);userAdClickedList.add(userClicked);}final List<UserAdClicked> inserting = new ArrayList<UserAdClicked>();final List<UserAdClicked> updating = new ArrayList<UserAdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final UserAdClicked clicked : userAdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclicked WHERE"+ " timestamp =? AND userID = ? AND adID = ?",new Object[]{clicked.getTimestamp(), clicked.getUserID(),clicked.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(UserAdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getIp(),insertRecord.getUserID(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclicked VALUES(?, ?, ?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(UserAdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getTimestamp(),updateRecord.getIp(),updateRecord.getUserID(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity(),updateRecord.getClickedCount() + 1});}jdbcWrapper.doBatch("UPDATE adclicked SET clickedCount = ? WHERE"+ " timestamp =? AND ip = ? AND userID = ? AND adID = ? "+ "AND province = ? AND city = ?", updateParametersList);} });return null;} });//再次过滤,从数据库中读取数据过滤黑名单JavaPairDStream<String, Long> blackListBasedOnHistory = filterClickedBatch.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {//广告点击的基本数据格式:timestamp,ip,userID,adID,province,cityString[] splited = v1._1.split("\t"); //提取key值String date =splited[0];String userID =splited[2];String adID =splited[3];//查询一下数据库同一个用户同一个广告id点击量超过50次列入黑名单//接下来 根据date、userID、adID条件去查询用户点击广告的数据表,获得总的点击次数//这个时候基于点击次数判断是否属于黑名单点击int clickedCountTotalToday = 81 ;if (clickedCountTotalToday > 50) {return true;}else {return false ;} }});//map操作,找出用户的idJavaDStream<String> blackListuserIDBasedInBatchOnhistroy =blackListBasedOnHistory.map(new Function<Tuple2<String,Long>, String>() {public String call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubreturn v1._1.split("\t")[2];} });//有一个问题,数据可能重复,在一个partition里面重复,这个好办;//但多个partition不能保证一个用户重复,需要对黑名单的整个rdd进行去重操作。//rdd去重了,partition也就去重了,一石二鸟,一箭双雕// 找出了黑名单,下一步就写入黑名单数据库表中JavaDStream<String> blackListUniqueuserBasedInBatchOnhistroy = blackListuserIDBasedInBatchOnhistroy.transform(new Function<JavaRDD<String>, JavaRDD<String>>() {public JavaRDD<String> call(JavaRDD<String> rdd) throws Exception {// TODO Auto-generated method stubreturn rdd.distinct();} });// 下一步写入到数据表中blackListUniqueuserBasedInBatchOnhistroy.foreachRDD(new Function<JavaRDD<String>, Void>() {public Void call(JavaRDD<String> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<String>>() {public void call(Iterator<String> t) throws Exception {// TODO Auto-generated method stub//插入的用户信息可以只包含:useID//此时直接插入黑名单数据表即可。//写入数据库List<Object[]> blackList = new ArrayList<Object[]>();while(t.hasNext()) {blackList.add(new Object[]{t.next()});}JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doBatch("INSERT INTO blacklisttable values (?)", blackList);} });return null;} });/广告点击累计动态更新,每个updateStateByKey都会在Batch Duration的时间间隔的基础上进行广告点击次数的更新, 更新之后我们一般都会持久化到外部存储设备上,在这里我们存储到MySQL数据库中/JavaPairDStream<String, Long> updateStateByKeyDSteam = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} }).updateStateByKey(new Function2<List<Long>, Optional<Long>, Optional<Long>>() {public Optional<Long> call(List<Long> v1, Optional<Long> v2)throws Exception {// v1:当前的Key在当前的Batch Duration中出现的次数的集合,例如{1,1,1,。。。,1}// v2:当前的Key在以前的Batch Duration中积累下来的结果;Long clickedTotalHistory = 0L; if(v2.isPresent()){clickedTotalHistory = v2.get();}for(Long one : v1) {clickedTotalHistory += one;}return Optional.of(clickedTotalHistory);} });updateStateByKeyDSteam.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:timestamp、adID、province、city//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<AdClicked> AdClickedList = new ArrayList<AdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");AdClicked adClicked = new AdClicked();adClicked.setTimestamp(splited[0]);adClicked.setAdID(splited[1]);adClicked.setProvince(splited[2]);adClicked.setCity(splited[3]);adClicked.setClickedCount(record._2);AdClickedList.add(adClicked);}final List<AdClicked> inserting = new ArrayList<AdClicked>();final List<AdClicked> updating = new ArrayList<AdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdClicked clicked : AdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedcount WHERE"+ " timestamp = ? AND adID = ? AND province = ? AND city = ?",new Object[]{clicked.getTimestamp(), clicked.getAdID(),clicked.getProvince(), clicked.getCity()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedcount VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.getTimestamp(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity()});}jdbcWrapper.doBatch("UPDATE adclickedcount SET clickedCount = ? WHERE"+ " timestamp =? AND adID = ? AND province = ? AND city = ?", updateParametersList);} });return null;} });/ 对广告点击进行TopN计算,计算出每天每个省份Top5排名的广告 因为我们直接对RDD进行操作,所以使用了transfomr算子;/updateStateByKeyDSteam.transform(new Function<JavaPairRDD<String,Long>, JavaRDD<Row>>() {public JavaRDD<Row> call(JavaPairRDD<String, Long> rdd) throws Exception {JavaRDD<Row> rowRDD = rdd.mapToPair(new PairFunction<Tuple2<String,Long>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, Long> t)throws Exception {// TODO Auto-generated method stubString[] splited=t._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];String clickedRecord = timestamp + "_" + adID + "_" + province;return new Tuple2<String, Long>(clickedRecord, t._2);} }).reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }).map(new Function<Tuple2<String,Long>, Row>() {public Row call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubString[] splited=v1._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];return RowFactory.create(timestamp, adID, province, v1._2);} });StructType structType = DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("timestamp", DataTypes.StringType, true),DataTypes.createStructField("adID", DataTypes.StringType, true),DataTypes.createStructField("province", DataTypes.StringType, true),DataTypes.createStructField("clickedCount", DataTypes.LongType, true)));HiveContext hiveContext = new HiveContext(rdd.context());DataFrame df = hiveContext.createDataFrame(rowRDD, structType);df.registerTempTable("topNTableSource");DataFrame result = hiveContext.sql("SELECT timestamp, adID, province, clickedCount, FROM"+ " (SELECT timestamp, adID, province,clickedCount, "+ "ROW_NUMBER() OVER(PARTITION BY province ORDER BY clickeCount DESC) rank "+ "FROM topNTableSource) subquery "+ "WHERE rank <= 5");return result.toJavaRDD();} }).foreachRDD(new Function<JavaRDD<Row>, Void>() {public Void call(JavaRDD<Row> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Row>>() {public void call(Iterator<Row> t) throws Exception {// TODO Auto-generated method stubList<AdProvinceTopN> adProvinceTopN = new ArrayList<AdProvinceTopN>();while(t.hasNext()) {Row row = t.next();AdProvinceTopN item = new AdProvinceTopN();item.setTimestamp(row.getString(0));item.setAdID(row.getString(1));item.setProvince(row.getString(2));item.setClickedCount(row.getLong(3));adProvinceTopN.add(item);}// final List<AdProvinceTopN> inserting = new ArrayList<AdProvinceTopN>();// final List<AdProvinceTopN> updating = new ArrayList<AdProvinceTopN>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();Set<String> set = new HashSet<String>();for(AdProvinceTopN item: adProvinceTopN){set.add(item.getTimestamp() + "_" + item.getProvince());}//表的字段timestamp、adID、province、clickedCountArrayList<Object[]> deleteParametersList = new ArrayList<Object[]>();for(String deleteRecord : set) {String[] splited = deleteRecord.split("_");deleteParametersList.add(new Object[]{splited[0],splited[1]});}jdbcWrapper.doBatch("DELETE FROM adprovincetopn WHERE timestamp = ? AND province = ?", deleteParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdProvinceTopN insertRecord : adProvinceTopN) {insertParametersList.add(new Object[] {insertRecord.getClickedCount(),insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince()});}jdbcWrapper.doBatch("INSERT INTO adprovincetopn VALUES (?, ?, ?, ?)", insertParametersList);} });return null;} });/ 计算过去半个小时内广告点击的趋势 广告点击的基本数据格式:timestamp、ip、userID、adID、province、city/filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String splited[] = t._2.split("\t");String adID = splited[3];String time = splited[0]; //Todo:后续需要重构代码实现时间戳和分钟的转换提取。此处需要提取出该广告的点击分钟单位return new Tuple2<String, Long>(time + "_" + adID, 1L);} }).reduceByKeyAndWindow(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }, new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 - v2;} }, Durations.minutes(30), Durations.milliseconds(5)).foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition)throws Exception {List<AdTrendStat> adTrend = new ArrayList<AdTrendStat>();// TODO Auto-generated method stubwhile(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("_");String time = splited[0];String adID = splited[1];Long clickedCount = record._2;/ 在插入数据到数据库的时候具体需要哪些字段?time、adID、clickedCount; 而我们通过J2EE技术进行趋势绘图的时候肯定是需要年、月、日、时、分这个维度的,所以我们在这里需要 年月日、小时、分钟这些时间维度;/AdTrendStat adTrendStat = new AdTrendStat();adTrendStat.setAdID(adID);adTrendStat.setClickedCount(clickedCount);adTrendStat.set_date(time); //Todo:获取年月日adTrendStat.set_hour(time); //Todo:获取小时adTrendStat.set_minute(time);//Todo:获取分钟adTrend.add(adTrendStat);}final List<AdTrendStat> inserting = new ArrayList<AdTrendStat>();final List<AdTrendStat> updating = new ArrayList<AdTrendStat>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdTrendStat trend : adTrend) {final AdTrendCountHistory adTrendhistory = new AdTrendCountHistory();jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedtrend WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?",new Object[]{trend.get_date(), trend.get_hour(), trend.get_minute(),trend.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);adTrendhistory.setClickedCountHistoryLong(count);updating.add(trend);} else { inserting.add(trend);} }});}//表的字段date、hour、minute、adID、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdTrendStat insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.get_date(),insertRecord.get_hour(),insertRecord.get_minute(),insertRecord.getAdID(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedtrend VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段date、hour、minute、adID、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdTrendStat updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.get_date(),updateRecord.get_hour(),updateRecord.get_minute(),updateRecord.getAdID()});}jdbcWrapper.doBatch("UPDATE adclickedtrend SET clickedCount = ? WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?", updateParametersList);} });return null;} });;/ Spark Streaming 执行引擎也就是Driver开始运行,Driver启动的时候是位于一条新的线程中的,当然其内部有消息循环体,用于 接收应用程序本身或者Executor中的消息,/javassc.start();javassc.awaitTermination();javassc.close();}private static JavaStreamingContext createContext(String checkpointDirectory, SparkConf conf) {// If you do not see this printed, that means the StreamingContext has been loaded// from the new checkpointSystem.out.println("Creating new context");// Create the context with a 5 second batch sizeJavaStreamingContext ssc = new JavaStreamingContext(conf, Durations.seconds(10));ssc.checkpoint(checkpointDirectory);return ssc;} }class JDBCWrapper {private static JDBCWrapper jdbcInstance = null;private static LinkedBlockingQueue<Connection> dbConnectionPool = new LinkedBlockingQueue<Connection>();static {try {Class.forName("com.mysql.jdbc.Driver");} catch (ClassNotFoundException e) {// TODO Auto-generated catch blocke.printStackTrace();} }public static JDBCWrapper getJDBCInstance() {if(jdbcInstance == null) {synchronized (JDBCWrapper.class) {if(jdbcInstance == null) {jdbcInstance = new JDBCWrapper();} }}return jdbcInstance; }private JDBCWrapper() {for(int i = 0; i < 10; i++){try {Connection conn = DriverManager.getConnection("jdbc:mysql://Master:3306/sparkstreaming","root", "root");dbConnectionPool.put(conn);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } }public synchronized Connection getConnection() {while(0 == dbConnectionPool.size()){try {Thread.sleep(20);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }return dbConnectionPool.poll();}public int[] doBatch(String sqlText, List<Object[]> paramsList){Connection conn = getConnection();PreparedStatement preparedStatement = null;int[] result = null;try {conn.setAutoCommit(false);preparedStatement = conn.prepareStatement(sqlText);for(Object[] parameters: paramsList) {for(int i = 0; i < parameters.length; i++){preparedStatement.setObject(i + 1, parameters[i]);} preparedStatement.addBatch();}result = preparedStatement.executeBatch();conn.commit();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }}return result; }public void doQuery(String sqlText, Object[] paramsList, ExecuteCallBack callback){Connection conn = getConnection();PreparedStatement preparedStatement = null;ResultSet result = null;try {preparedStatement = conn.prepareStatement(sqlText);for(int i = 0; i < paramsList.length; i++){preparedStatement.setObject(i + 1, paramsList[i]);} result = preparedStatement.executeQuery();try {callback.resultCallBack(result);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }}interface ExecuteCallBack {void resultCallBack(ResultSet result) throws Exception;}class UserAdClicked {private String timestamp;private String ip;private String userID;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getIp() {return ip;}public void setIp(String ip) {this.ip = ip;}public String getUserID() {return userID;}public void setUserID(String userID) {this.userID = userID;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdClicked {private String timestamp;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdProvinceTopN {private String timestamp;private String adID;private String province;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendStat {private String _date;private String _hour;private String _minute;private String adID;private Long clickedCount;public String get_date() {return _date;}public void set_date(String _date) {this._date = _date;}public String get_hour() {return _hour;}public void set_hour(String _hour) {this._hour = _hour;}public String get_minute() {return _minute;}public void set_minute(String _minute) {this._minute = _minute;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendCountHistory{private Long clickedCountHistoryLong;public Long getClickedCountHistoryLong() {return clickedCountHistoryLong;}public void setClickedCountHistoryLong(Long clickedCountHistoryLong) {this.clickedCountHistoryLong = clickedCountHistoryLong;} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/tom_8899_li/article/details/71194434。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-14 19:16:35
297
转载
JQuery插件下载
...,既凸显了分享功能的重要性,又保持了界面设计的优雅和简洁。此外,这款插件充分考虑了用户的操作习惯和响应速度,确保在展现酷炫动画的同时,不影响实际的分享流程。对于追求创新与高品质网站体验的开发者来说,jQuery模糊背景社会化分享插件socialShare无疑是一个值得采用的高效工具。 点我下载 文件大小:526.39 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-12-06 08:34:14
84
本站
JQuery插件下载
...它支持通过npm进行安装,极大地简化了引入过程。此外,它还提供了丰富的定制选项,包括插槽和自定义样式功能,让你可以根据具体需求调整按钮的颜色、大小以及动画速度等属性,满足各种个性化需求。更重要的是,它的使用方法非常简单直观。只需几行代码即可完成初始化,并且文档详尽,示例丰富,即使是前端开发新手也能快速上手。无论你是要为网站添加交互式元素,还是想提升现有应用的用户体验,这款插件都是你的理想选择。使用“ES6炫酷开关按钮插件”,让你的应用瞬间拥有iOS般的流畅体验。 点我下载 文件大小:15.05 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2025-02-10 11:29:56
77
本站
JQuery插件下载
...,考虑到响应式设计的重要性,此插件还具备良好的兼容性和适应性,能够在不同设备和屏幕尺寸上保持一致的表现,确保用户在任何环境下都能享受到流畅的视觉体验。无论是个人博客、企业官网还是电子商务平台,“炫酷吹风机样式loading进度条插件”都是提升页面吸引力、增强用户互动性的理想选择。 点我下载 文件大小:45.73 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-10-20 11:24:15
72
本站
JQuery插件下载
...结构变得直观易用。更重要的是,它默认集成了FontAwesome图标库,使菜单项不仅限于文字,还可以包含各种图标,增强了视觉效果和辨识度。此外,通过简单的配置选项,开发者可以轻松自定义菜单样式,包括颜色、字体大小等,以匹配不同网站的设计风格。安装和使用jquery-vertical-navigation非常简便,即使是没有深厚编程背景的用户也能快速上手。只需引入必要的CSS和JavaScript文件,并根据文档进行基本设置,即可拥有一个响应迅速、外观优雅的固定侧边栏菜单。这使得网站的导航更加友好,有助于提升用户的浏览体验和整体满意度。总之,jquery-vertical-navigation凭借其实用性、灵活性以及易于集成的特点,成为构建现代网站不可或缺的工具之一,特别适合那些追求高效、美观导航系统的开发者和设计师。 点我下载 文件大小:41.45 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2025-01-14 11:15:37
95
本站
JQuery插件下载
...加隐私保护、强调内容重要性或是实现现代UI设计风格的场景。例如,在表单输入框周围添加毛玻璃效果可以提高用户的输入体验,而在敏感信息显示区域使用此效果则能增强数据安全感。FrostedPanel的灵活特性使其成为开发者构建美观且功能丰富的Web应用程序时的有力工具。总之,FrostedPanel是一款功能强大、易于集成的JavaScript插件,旨在通过其独特的毛玻璃和模糊效果,为网站和应用带来更加吸引人和专业的外观。无论是追求视觉创新还是增强用户体验,FrostedPanel都是一个值得探索的解决方案。 点我下载 文件大小:694.21 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-08-26 10:50:50
37
本站
JQuery插件下载
...多网页中脱颖而出。更重要的是,此幻灯片特效具备高度的响应式设计,能够根据不同的设备屏幕大小自动调整布局,确保在手机、平板或桌面电脑上均能保持最佳显示效果。无论是用于展示产品、服务介绍还是个人作品集,这款插件都能完美适应各种场景需求,为用户提供流畅且美观的浏览体验。此外,该插件安装简便,配置灵活,支持自定义设置如过渡动画速度、图片切换间隔等,使开发者可以根据项目需求进行个性化调整。无论是初学者还是经验丰富的开发者,都能轻松上手并迅速实现令人惊艳的幻灯片效果。总之,“jQuery创意响应式两栏滚动幻灯片特效”是一个提升网站用户体验、增强视觉冲击力的理想选择。 点我下载 文件大小:476.84 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-11-30 20:57:25
40
本站
JQuery插件下载
...但不限于动画的速度、路径、以及色彩过渡,从而创造出独一无二的用户体验。这款插件的核心优势在于其对CSS3背景动态属性的高效利用,使得图像从黑白到彩色的渐变过程流畅自然,给用户带来沉浸式的视觉享受。无论是用于网站的加载动画、交互元素还是艺术展示,ImageDrawer.js都能展现出其独特魅力。安装与集成ImageDrawer.js非常简便,只需在你的项目中引入相应的CSS文件、jQuery库以及ImageDrawer.js文件即可开始使用。丰富的API接口让开发者可以根据具体需求定制动画效果,从简单的平滑过渡到复杂的路径绘制,一切皆有可能。ImageDrawer.js的兼容性广泛,适用于大多数现代浏览器,确保了广泛的受众群体都能享受到高质量的视觉体验。尽管某些浏览器可能存在兼容性问题,但通过持续优化和更新,ImageDrawer.js已经显著提高了其在不同环境下的表现。总之,ImageDrawer.js是一个功能强大、易于集成的jQuery插件,为开发者提供了一种创造令人印象深刻的动态图片动画的新途径。通过巧妙运用其提供的功能,你可以将静态图像转化为令人惊叹的视觉故事,为网站增添活力与吸引力。 点我下载 文件大小:85.20 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-08-19 10:43:40
105
本站
JSON
...格式,其解析与操作的重要性日益凸显。 例如,2023年5月,Node.js社区发布了一篇关于优化JSON性能的文章,其中详述了如何利用最新版本V18中的JSON.parse()方法的新特性提高大数据量JSON解析速度。通过引入新的Streaming API和改进的内存管理机制,开发者可以更高效地处理大规模JSON数据流,并动态获取嵌套数组或对象的名字及其对应值。 另外,对于那些需要深度访问JSON结构的应用场景,如配置文件解析、复杂状态管理等,JavaScript提供了诸如Lodash这样的工具库,提供了诸如_.get()、_.set()等便捷方法,使得根据路径字符串动态获取或设置JSON任意层级的数据成为可能,大大提升了开发效率及代码可读性。 同时,针对安全性考量,在实际项目中处理JSON时应确保进行有效的数据验证和错误处理,防止因恶意构造或意外损坏的JSON数据导致的安全漏洞。例如,使用AJV等JSON Schema验证库,可以在数据解析前对其进行严格校验,从而降低潜在风险。 综上所述,对JSON数组名值获取的基础理解是前端乃至全栈开发者的必备技能之一,而随着技术发展和安全需求的提升,掌握更多先进的JSON处理策略与工具将为开发者应对各种复杂应用场景提供有力支持。
2023-10-30 12:28:39
512
编程狂人
JQuery
...馈对于提升用户体验的重要性。他们倡导的“有意义的运动”理念,主张在设计中融入物理规则,使元素的移动和变化更符合用户的直觉预期,从而增强互动性和趣味性。 因此,无论是从基础的jQuery实践出发,还是着眼未来Web前端领域的发展潮流,理解和掌握运用数学模型驱动UI动态效果的方法,都将对提升产品品质和用户体验产生深远影响。感兴趣的开发者可以继续深入学习CSS动画、GreenSock(GSAP)、Popmotion等更多用于创建丰富动画效果的工具和技术,并关注行业最新动态,以保持设计理念和技术应用的与时俱进。
2023-10-07 14:59:45
631
数据库专家
Docker
...有时,我们要求将一个目录放入Docker容器中。在这篇文章中,我们将介绍如何将目录放入Docker容器中。 首先,我们要求建立一个目录来保存我们要放入Docker容器的文件。假定我们把这个目录命名为myfolder。 $ mkdir myfolder 接下来,我们要求建立一个Dockerfile文件。Dockerfile文件是一个文本文件,其中包括用于创建Docker映像的命令。在这里,我们将采用COPY命令将myfolder目录移动到Docker容器中。下面是一个简单的Dockerfile示例: FROM ubuntu:latest COPY myfolder /myfolder 在此Dockerfile中,我们选择了最新版本的Ubuntu作为我们的操作系统。我们采用COPY命令将myfolder目录移动到容器的根目录下。现在,我们可以采用Docker命令创建这个映像了: $ docker build -t myimage . 在这个命令中,我们采用了-t选项来标明映像的名字,.是Dockerfile所在的目录。接下来,我们可以采用docker run命令来启动容器并运行我们的应用程序: $ docker run -it --rm myimage /bin/bash --rm选项表示容器在退出后应自动删除。在容器启动后,我们可以通过执行以下命令来检查myfolder目录是否已成功移动到容器中: $ ls / 如果您看到myfolder目录出现在列表中,那么您已经成功将目录放入了Docker容器中。
2023-11-22 11:10:48
520
键盘勇士
MySQL
在MySQL数据库使用过程中,遇到“Table 'database_name.table_name' doesn't exist”这类错误提示时,表无法找到的问题可能涉及多个层面。深入了解MySQL的权限管理机制、数据库备份与恢复策略以及服务器运行状态监控,是确保数据库稳定高效运行的关键。 近期,一篇由MySQL官方博客发布的《深入理解MySQL权限系统》文章详尽解读了如何精确配置用户权限以避免因权限不足导致的访问错误。文中强调了GRANT和REVOKE命令在分配、撤销特定数据库或表访问权限时的重要性,并提醒用户注意MySQL中大小写敏感设置对表名的影响。 与此同时,关于数据库运维实践,《数据库灾难恢复:从理论到实战》一文结合实例探讨了当数据库表被误删后,如何通过定期备份快速进行数据恢复,并介绍了MySQL自带的binlog日志工具在实时数据同步及增量恢复中的应用。 此外,针对MySQL连接故障问题,InfoQ的一篇报道《优化MySQL连接池配置,提升数据库性能》指出,除了确认服务器运行状态和登录凭据外,合理配置数据库连接池参数也是防止连接故障的有效手段。文章提醒开发者关注连接超时设定、最大连接数限制等关键配置项,以应对高并发场景下的数据库连接挑战。 总之,在实际操作MySQL数据库过程中,不断学习并掌握最新最佳实践,对于解决“Table 'database_name.table_name' doesn't exist”这类常见错误,乃至提高整体数据库管理水平具有深远意义。
2023-11-28 12:42:54
55
算法侠
HTML
...化标准编写HTML的重要性更加凸显。Google在其AMP(Accelerated Mobile Pages)项目中就强调了正确使用HTML标签以提升页面性能的重要性,明确要求开发者注意标签闭合、属性完整等编码规范。 此外,在实际项目中,如电商平台或新闻网站,由于图片资源众多,确保标签的src属性设置准确无误尤为关键。近期有报道显示,某知名电商网站因部分商品图片路径失效导致用户体验下降,经过排查发现是由于后台生成的HTML代码中图片src属性值未能动态更新所造成。这一实例再次提醒我们,即便是在动态生成内容的场景下,也要严格把控HTML代码质量,避免出现类似资源加载失败的现象。 总结来说,无论从基础的网页开发规范还是前沿的性能优化实践来看,深入理解和重视HTML代码编写中的细微之处,对于构建高质量、高性能的Web应用都具有重要意义。在日常开发工作中,定期进行代码审查,借助自动化工具检查标签闭合、资源引用等问题,将有助于减少因这类低级错误带来的用户界面故障,并有效提升整体项目的稳定性和用户体验。
2023-03-06 16:22:50
499
键盘勇士
VUE
...文件、复制移动文件或目录等。通过在Vue项目中安装并使用fs-extra,开发者可以方便地在JavaScript代码中执行复杂的本地文件系统操作,从而实现启动exe文件的功能。 Node.js子进程 , 在Node.js环境中,子进程是一个独立于父进程运行的进程实例,由父进程创建并控制。通过child_process模块,开发者可以在Node.js应用中创建并管理子进程,以便执行外部命令或程序(如Windows环境下的exe文件)。在本文中,Vue组件利用Node.js的子进程功能来启动本地的exe文件,当用户在前端界面触发相应操作时,后台可以通过创建子进程的方式来调用并执行exe文件。
2023-06-30 09:47:16
56
逻辑鬼才
VUE
...的代码达成: // 安装vue-sticky-directive npm install vue-sticky-directive --save // 导入vue-sticky-directive import vSticky from 'vue-sticky-directive' // 登记v-sticky命令 Vue.directive('sticky', vSticky) 在部件的template中,添加v-sticky命令即可达成图钉效果。例如: // 需要锁定的部件 // 其他内容 上述代码中的v-sticky命令将锁定部件的坐标设为距离浏览器窗口顶部20像素,并将其z-index属性设为100,即显示在其他部件之上。 除了上述的top、zIndex之外,Vue图钉还支持多种配置。例如,可以为v-sticky命令添加bottom属性,指定部件距离浏览器窗口底部的距离;也可以添加class属性,指定部件从普通状态变为锁定状态时添加的外观类。 总的来说,Vue图钉是一款非常有用的部件,能够帮助我们达成各种常见的锁定效果,提升用户体验。
2023-05-09 22:41:38
61
逻辑鬼才
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
rm -rf dir/*
- 删除目录下所有文件(慎用)。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"