前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[算法]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Tesseract
...是基于内部的页面分割算法(Page Segmentation Mode)。如果原始图片质量不咋地,或者背景乱七八糟的,光靠调整旋转角度这一招,可没法保证一定能识别得准准的。在调用Tesseract前,往往需要对图像进行一系列预处理操作,比如灰度化、二值化、降噪等。 原因二:旋转参数的误解 --rotate-pages参数主要用于PDF文档旋转,而非单个图像的旋转矫正。对于单个图像,我们应先自行完成旋转操作后再进行识别。 解决方案(4) 策略一:手动预处理与旋转 正确的做法是先利用Python Imaging Library(Pillow)或其他图像处理库对图像进行旋转校正,然后再交给Tesseract进行识别: python 正确的做法:手动旋转图像并进行识别 corrected_img = img.rotate(-45, expand=True) 注意这里旋转的角度是负数,因为我们要将其逆向旋转回正 corrected_text = pytesseract.image_to_string(corrected_img, config='--psm 6') print(corrected_text) 策略二:结合Tesseract的内部矫正功能 Tesseract从v4版本开始支持自动检测并矫正文本方向,可通过--deskew-amount参数开启文本行的去斜功能,但这并不能精确到每个字符,所以对于严重倾斜的图像,仍需先进行手动旋转。 python 使用Tesseract的去斜功能 auto_corrected_text = pytesseract.image_to_string(img, config='--psm 6 --deskew-amount 0.2') print(auto_corrected_text) 结语(5) 总而言之,“图像旋转角度参数设置无效”这个问题,其实更多的是我们在理解和使用Tesseract时的一个误区。我们需要深入了解其工作原理,并结合恰当的预处理手段来提升识别效果。在这一趟探索的旅程中,我们又实实在在地感受了一把编程那让人着迷的地方——就是那种面对棘手问题时,不断挠头苦思、积极动手实践,然后欢呼雀跃地找到解题钥匙的时刻。而Tesseract,就像一位沉默而睿智的朋友,等待着我们去发掘它更多的可能性和潜力。
2023-05-04 09:09:33
80
红尘漫步
Mahout
...可以使用TF-IDF算法来提取文本的特征。以下是一个简单的例子: java import org.apache.mahout.math.Vector; import org.apache.mahout.text.TfidfVectorizer; // 创建一个TF-IDF向量化器 TfidfVectorizer vectorizer = new TfidfVectorizer(); // 将文本转换为向量 Vector vector = vectorizer.transform(text); 五、模型训练 在Mahout中,我们可以使用Naive Bayes、Logistic Regression等算法来进行模型训练。以下是一个简单的例子: java import org.apache.mahout.classifier.NaiveBayes; // 创建一个朴素贝叶斯分类器 NaiveBayes classifier = new NaiveBayes(); // 使用训练集进行训练 classifier.train(trainingData); 六、模型测试 在模型训练完成后,我们可以使用测试集对其进行测试。以下是一个简单的例子: java import org.apache.mahout.classifier.NaiveBayes; // 使用测试集进行测试 double accuracy = classifier.evaluate(testData); System.out.println("Accuracy: " + accuracy); 七、总结 通过上述步骤,我们就可以使用Mahout进行大规模文本分类了。其实呢,这只是个入门级别的例子,实际上咱们可能要面对更复杂的操作,像是给数据“洗洗澡”(预处理)、抽取出关键信息(特征提取),还有对模型进行深度调教(训练)这些步骤。希望这个教程能帮助你在实际工作中更好地使用Mahout。
2023-03-23 19:56:32
108
青春印记-t
ElasticSearch
...h内部索引结构和排序算法将有助于我们更好地理解其优势所在。结合相关计算机科学理论如B树、跳跃列表等数据结构的知识,可以进一步揭示search_after在减少IO操作、节省内存空间方面的技术原理,从而帮助开发者在实际项目中更精准地应用这项关键技术,有效应对日益增长的大数据挑战。
2023-03-26 18:17:46
576
人生如戏-t
Scala
...式,以优化大数据处理算法的性能。该论文指出,通过精确的类型定义和模式匹配,可以显著减少内存消耗和计算时间,这对于处理海量数据集尤为重要。 这些实例不仅展示了Scala类型系统的强大功能,也为广大开发者提供了宝贵的实践经验。对于希望深入理解和应用Scala类型安全特性的开发者来说,持续关注这些前沿技术和实际案例将大有裨益。
2025-01-05 16:17:00
82
追梦人
Netty
...或者使使劲儿,用压缩算法给它“瘦身”一下。 总的来说,处理Netty中的UnexpectedMessageSizeException关键在于提前预防,合理设置消息大小上限,以及妥善处理异常情况。只有把这些技巧摸得门儿清、运用自如,咱们的Netty应用程序才能真正变得身强力壮、高效无比。在这个过程中,不断地思考、实践与优化,才是编程乐趣之所在!
2023-11-27 15:28:29
151
林中小径
Mahout
...时为我们提供了强大的算法支持。然而,在实际编写代码的时候,我们免不了会碰到一些运行时的小插曲,就好比org.apache.mahout.common.MahoutIllegalArgumentException这个错误类型,就是个挺典型的例子。本文将围绕这个异常展开讨论,通过实例代码揭示其背后的原因,并提供相应的解决思路。 2. MahoutIllegalArgumentException概述 在Mahout库中,MahoutIllegalArgumentException是继承自Java标准库中的IllegalArgumentException的一个自定义异常类,通常在API调用时,当传入的参数不满足方法或构造函数的要求时抛出。这种特殊情况是在强调对输入参数的准确性要超级严格把关,这样一来,开发者就能像雷达一样快速找到问题所在,然后麻利地把它修复好。 3. 示例分析与解读 (1)示例一:无效的矩阵维度 java import org.apache.mahout.math.DenseMatrix; import org.apache.mahout.math.Matrix; public class MatrixDemo { public static void main(String[] args) { // 创建一个3x2的矩阵 Matrix m1 = new DenseMatrix(new double[][]{ {1, 2}, {3, 4}, {5, 6} }); // 尝试进行非兼容矩阵相加操作,这将引发MahoutIllegalArgumentException Matrix m2 = new DenseMatrix(new double[][]{ {7, 8} }); try { m1.plus(m2); // 这里会抛出异常,因为矩阵维度不匹配 } catch (org.apache.mahout.common.MahoutIllegalArgumentException e) { System.out.println("Error: " + e.getMessage()); } } } 在这个例子中,当我们尝试对两个维度不匹配的矩阵执行加法操作时,MahoutIllegalArgumentException就会被抛出,提示我们"矩阵维度不匹配"。 (2)示例二:无效的数据索引 java import org.apache.mahout.math.Vector; import org.apache.mahout.math.RandomAccessSparseVector; public class VectorDemo { public static void main(String[] args) { Vector v = new RandomAccessSparseVector(5); // 尝试访问不存在的索引位置 try { double valueAtInvalidIndex = v.get(10); // 这里会抛出异常,因为索引超出范围 } catch (org.apache.mahout.common.MahoutIllegalArgumentException e) { System.out.println("Error: " + e.getMessage()); } } } 在此场景下,我们试图从一个只有5个元素的向量中获取第10个元素,由于索引超出了有效范围,因此触发了MahoutIllegalArgumentException。 4. 遇到异常时的应对策略 面对MahoutIllegalArgumentException,我们的首要任务是理解异常信息并核查代码逻辑。一般而言,我们需要: - 检查传入方法或构造函数的所有参数是否符合预期; - 确保在进行数学运算(如矩阵、向量操作)前,它们的维度或大小是正确的; - 对于涉及索引的操作,确保索引值在合法范围内。 5. 结语 总的来说,org.apache.mahout.common.MahoutIllegalArgumentException是我们使用Mahout过程中一个非常有价值的反馈信号。它就像个贴心的小助手,在我们编程的时候敲黑板强调,对参数和数据结构这俩宝贝疙瘩必须得精打细算、严谨对待。只要咱能及时把这些小bug捉住修正,那咱们就能更顺溜地使出Mahout这个大招,妥妥地搞定大规模的机器学习和数据挖掘任务啦!每次遇到这类异常,不妨将其视为一次优化代码质量、提升自己对Mahout理解深度的机会,让我们在实际项目中不断成长与进步。
2023-10-16 18:27:51
115
山涧溪流
DorisDB
...有效提升了个性化推荐算法的时效性和准确性。 同时,随着云原生技术的快速发展,DorisDB也积极拥抱变化,已全面支持Kubernetes环境部署,并提供了与各类消息队列、数据管道服务的深度集成方案,使得数据实时更新与增量更新更加便捷高效。近日,有行业专家撰文深入解读了DorisDB如何利用其独特的MPP架构与列式存储优化实时写入性能,降低延迟,从而更好地满足金融风控、物联网监测等场景下对实时数据处理的严苛要求。 此外,对比同类数据库产品如ClickHouse、Druid等,关于实时数据更新及增量更新策略的优劣分析也成为业界热议话题。研究人员不仅从技术原理层面剖析了各自的特点,还结合实际业务场景给出了选择与优化建议,为大数据从业者提供了更全面的决策参考。对于希望深入了解并运用DorisDB进行实时数据分析的读者来说,这些前沿资讯和技术解析无疑具有很高的学习价值和实践指导意义。
2023-11-20 21:12:15
402
彩虹之上-t
JSON
...利性的同时,通过加密算法或零知识证明技术来保障JSON数据在传输过程中的安全性,从而满足日趋严格的数据保护法规要求。 综上所述,无论是技术演进还是实际应用场景拓展,JSON都在不断展现其在数据处理和可视化领域的核心价值,并持续推动相关行业的创新与发展。进一步了解这些最新趋势和技术实践,无疑将有助于我们在日常开发工作中更好地利用JSON,解锁更多数据潜能。
2023-06-23 17:18:35
611
幽谷听泉-t
转载文章
...化策略应用,都体现了算法与实际生活场景紧密结合的特点。为了进一步了解动态规划和背包问题在现代生活及科技领域的广泛应用,延伸阅读可以关注以下内容: 近日,《Nature》杂志发表的一篇研究论文中提到,科研人员利用动态规划算法优化了大规模疫苗分配问题,在有限的疫苗供应下,成功制定了最有效的分发策略,确保了全球各地尤其是发展中国家能够及时获得足够剂量的疫苗。 同时,在电子商务领域,亚马逊、京东等大型电商平台也常采用类似01背包问题的优化模型,根据用户购物车中的商品价格以及优惠活动规则,实时计算出最优的满减或包邮方案,既提升了用户体验,又实现了销售利润的最大化。 此外,深入学习计算机科学经典教材《算法导论》中关于背包问题和动态规划章节,可以帮助读者系统地理解这些问题背后的理论基础,并掌握如何将这些理论应用于解决各类复杂决策问题。 综上所述,通过关注时事新闻中有关动态规划的实际应用案例,以及研读专业教材深化对算法原理的理解,我们可以更好地将所学知识转化为解决实际问题的能力,紧跟时代步伐,应对日益复杂的现实挑战。
2023-02-17 21:41:19
342
转载
Etcd
...cd-raft一致性算法提升云原生环境下的数据持久性和服务恢复能力的研究成果。他们通过模拟大规模集群断电场景,展示了在优化配置和增加节点冗余的基础上,结合先进的数据同步策略,可以有效降低因电源故障导致的数据丢失风险,并显著缩短系统恢复时间。 此外,业界也在积极探索更先进的容灾解决方案,如采用双活数据中心设计,使得Etcd集群在主数据中心发生故障时,能迅速切换至备用数据中心继续提供服务,实现RPO(恢复点目标)和RTO(恢复时间目标)的双重优化。 同时,随着硬件技术的发展,如固态硬盘(SSD)的普及以及新型持久化内存(Persistent Memory, PMEM)的应用,也为Etcd等分布式键值存储系统的可靠性提供了新的保障手段。这些技术能够有效减少写入延迟,提高数据持久性,为构建更加健壮、稳定的容器编排环境奠定基础。 综上所述,面对电源故障等潜在威胁,持续跟进最新研究动态和技术实践,结合实际业务需求灵活运用多种防护策略,是确保Etcd数据库乃至整个Kubernetes集群稳健运行的关键所在。
2023-05-20 11:27:36
520
追梦人-t
Javascript
...分析了几种主流的节流算法及其在实际项目中的应用效果。 此外,开源社区GitHub上活跃着众多开发者,他们贡献了许多高质量的节流函数实现。例如,一位名叫JaneDoe的开发者提交了一个改进版的节流函数,该函数不仅支持时间轴上的微调,还能动态调整执行间隔,以适应不同的应用场景。这一贡献引发了社区的热烈讨论,许多开发者表示这一改进有助于在处理大规模数据集时保持UI的流畅性。 值得注意的是,尽管节流函数在性能优化方面表现出色,但过度依赖也可能带来副作用。例如,有些开发者反馈,在某些复杂交互场景下,过度使用节流函数反而可能导致用户操作响应延迟。因此,如何恰当地平衡功能需求与性能优化,成为了当下前端开发者们面临的一个新挑战。 为了应对这些挑战,越来越多的开发者开始关注现代浏览器提供的API,比如Intersection Observer API,它可以更高效地监控元素可见性变化,从而替代传统的滚动监听事件。这类新技术的应用,有望在未来进一步推动Web性能的提升。
2025-02-20 16:01:21
10
月影清风_
转载文章
...图故障节点问题的高效算法实现之后,我们可以进一步延伸至实际应用与相关领域的最新研究进展。近日,随着物联网(IoT)和大规模分布式系统的发展,网络拓扑结构愈发复杂,其中节点失效分析成为确保系统稳定性和可靠性的关键环节。例如,在云计算数据中心网络中,由于设备老化、环境变化等原因,可能产生类似于文中所述的“故障链”现象,而快速定位故障节点并进行有效隔离,对于减少服务中断时间和提升服务质量至关重要。 一项发表于《计算机网络》(Computer Networks)期刊的研究中,科研团队就提出了一种基于改进的LCA算法优化大规模网络中故障检测与定位的方法,利用层次化数据结构和动态规划策略,不仅能够显著降低计算复杂性,还能提高故障检测效率。 此外,关于树形结构和图论在现实场景中的应用也引发了学界的广泛关注。比如,在生物信息学领域,基因表达调控网络常被建模为有向加权图,通过研究不同基因之间的调控关系,科学家可以发现潜在的关键调控节点(相当于故障节点),从而揭示疾病的发生机制或制定新的治疗策略。 总之,从ACM竞赛问题出发,故障节点检测算法的实际应用涵盖了众多高科技领域,不断推动着相关理论和技术的发展与创新。随着大数据和人工智能技术的进步,未来对复杂系统中故障节点识别和管理的研究将更加深入且具有时效性。
2023-08-26 17:12:34
82
转载
Nacos
...全新的Raft一致性算法以及对内部数据结构的优化,Nacos团队成功地提升了服务注册与发现的效率,同时也增强了对于异常情况的自我修复能力。 此外,针对权限管理的重要性,业界也在积极推动更加精细化的服务访问控制策略。例如,Kubernetes社区正在研究集成更强大的RBAC(Role-Based Access Control)模型到服务网格体系中,以实现跨多个服务组件的安全管控,这一举措对于类似Nacos这样的服务治理工具也具有借鉴意义。 深入探究,有学者引用《微服务设计模式》一书中关于服务注册与发现章节的内容,强调了在实际生产环境中,应注重服务发现系统的健壮性与容错性,并结合具体的业务场景灵活选择合适的解决方案,如Nacos、Consul或Etcd等。 总之,在面对服务发现与配置平台的数据异常问题时,我们不仅需要掌握基础的故障排查和解决方法,更要紧跟行业发展步伐,关注最新技术趋势和最佳实践,从而为构建稳定、高效且安全的分布式系统提供有力支撑。
2023-10-02 12:27:29
265
昨夜星辰昨夜风-t
c++
...的应用。这不仅提高了算法执行效率,还增强了系统的可扩展性和维护性。 同时,C++社区也在不断推进语言的标准化和现代化。例如,C++20引入了多项新特性,包括协程、模块化系统等,这些新特性的引入使得模板类的使用更加灵活和强大。最新的C++标准不仅提升了语言本身的性能,也为开发者提供了更多的工具来构建高效且易于维护的软件系统。 对于初学者而言,理解C++模板类的工作原理和应用场景是非常重要的。除了基础理论的学习,实践是掌握这一技术的关键。建议多参与开源项目或个人项目,通过实际编码来加深理解。此外,阅读高质量的C++代码也是一个很好的学习途径,可以借鉴优秀项目的代码风格和设计模式,提升自身的编程水平。 总之,C++模板类在现代软件开发中扮演着不可或缺的角色,无论是游戏开发、AI研究还是其他高性能计算场景,其应用范围都在不断扩大。因此,持续关注C++的发展动态,不断提升自身的编程技能,对于每一位开发者来说都是非常有益的。
2025-02-03 15:43:39
49
清风徐来_
PostgreSQL
...引管理,通过机器学习算法预测查询模式并据此动态调整或建议索引策略,以实现持续的性能优化。 因此,在日常使用PostgreSQL或其他数据库系统时,除了掌握基础的索引创建方法外,跟踪并了解索引技术的最新进展和最佳实践,将有助于我们更好地应对大数据时代下的查询性能挑战,提升系统的整体响应速度与用户体验。
2023-06-22 19:00:45
122
时光倒流_t
Dubbo
...时,业界对于负载均衡算法的研究也在不断深化,一些创新性的智能负载均衡算法被提出并在实践中验证效果。这些算法不仅考虑了传统的服务器负载因素,还结合了机器学习和预测模型,力求在复杂多变的网络环境下实现最优的服务调度。 综上所述,关注Dubbo及同类框架的最新进展和技术动态,理解并应用先进的负载均衡策略和实践案例,有助于我们在构建和优化分布式系统时更好地应对挑战,提升服务质量和运维效率。同时,理论研究与实际操作相结合,将推动我国在云计算和微服务领域的技术创新与发展。
2023-11-08 23:28:28
473
晚秋落叶-t
Java
...最近更新了其商品搜索算法,引入了更智能的文本匹配技术,以提高搜索结果的准确性和用户体验。然而,在实际应用中,该平台发现用户输入的商品名称中频繁出现全角空格和半角空格混用的情况,导致搜索结果不准确,严重影响了用户的购物体验。 为此,该平台的技术团队专门针对这一问题进行了优化,采用了更为复杂的文本预处理算法,包括自动检测和统一空格格式的功能。此外,他们还增加了一套机器学习模型,通过分析大量用户行为数据,进一步提升搜索结果的准确性。这一改进不仅提升了用户的购物体验,也显著提高了平台的运营效率。 同时,另一项值得关注的是,在全球范围内,随着多语言处理的需求日益增长,如何高效处理不同语言间的空格差异成为一个新的挑战。例如,谷歌在其最新的翻译引擎中引入了针对多种语言的空格处理机制,以确保翻译结果的自然度和准确性。这表明,无论是电商还是翻译领域,正确处理全角空格与半角空格的问题已经成为了提升用户体验的重要一环。 这些实际案例不仅展示了全角空格与半角空格处理在现代技术应用中的重要性,也提醒开发者们在设计和优化系统时,需要更加注重细节,以应对不断变化的用户需求和技术挑战。
2024-12-22 15:53:15
89
风轻云淡
Tesseract
...正在不断更新和完善其算法,尝试通过深度学习、神经网络等前沿技术来提升多语言混合文本识别的准确率。例如,有研究项目利用上下文感知模型对图像中的不同语言区域进行自动分割,并结合特定语言模型进行识别,显著改善了识别效果。 与此同时,一些基于云服务的OCR平台如阿里云、AWS等也纷纷推出了支持多语言混合识别的服务,并针对特定行业或场景提供定制化解决方案。这些服务不仅能够灵活指定多种语言进行混合识别,还在一定程度上解决了语言边界检测和权重分配的问题,提升了实际应用中混合文本识别的成功率。 总之,随着人工智能和机器学习技术的不断发展,我们有理由期待未来的OCR技术能在处理多语言混合文本方面取得更大的突破,为全球化背景下信息获取与交流提供更为精准高效的工具支持。而深入理解和掌握这一领域的最新进展,无疑将有助于我们在实践中更好地应对各类复杂的OCR难题。
2023-03-07 23:14:16
136
人生如戏
ReactJS
...M树,然后通过高效的算法找出与上一次渲染相比最小化的差异,最后将这些差异应用到实际DOM中进行更新,从而提高页面渲染性能。 React Hooks , React 16.8引入的一种新特性,允许在函数组件内使用state和其他React特性(如生命周期方法)。Hooks无需修改组件结构(如转换为类组件),即可实现状态管理、副作用处理等功能。例如,useState Hook可以为函数组件添加内部状态,useEffect Hook则可以在组件渲染后或特定状态变化时执行副作用操作。 生命周期方法 , 在React类组件中,生命周期方法是指从组件实例创建到销毁期间的一系列可重写的方法,如componentDidMount、componentDidUpdate、componentWillUnmount等。这些方法在组件的不同阶段自动调用,允许开发者在组件挂载、更新和卸载时执行必要的业务逻辑或DOM操作,以满足应用程序的需求。例如,componentDidMount通常用于数据获取、订阅事件或其他初始化操作。
2023-07-12 15:20:11
74
蝶舞花间
Scala
...构如树和图、实现高效算法以及编写简洁优雅代码等方面扮演着愈发关键的角色。 例如,Google的TensorFlow框架在其图形计算模型中广泛利用了递归来表达复杂的依赖关系。另外,微软研究院近期的一项研究表明,通过编译器优化和硬件支持的改进,可以在不牺牲性能的前提下有效提升尾递归的效率,从而为大规模分布式系统的可靠性和可扩展性提供新的解决方案。 同时,关于递归在解决现实世界问题时的局限性及替代方案也引起了学术界的关注。比如动态规划、迭代等方法常被用来替换可能引发栈溢出的深度递归,以适应资源受限环境下的计算需求。 总之,递归作为编程工具箱中不可或缺的一部分,其实践运用与理论研究正在不断深化与发展。开发者不仅需要掌握递归的基本原理和技巧,更应关注其在新技术、新场景下的适应性与挑战,以便更好地应对未来编程领域的变革与创新。
2023-11-28 18:34:42
105
素颜如水
转载文章
...采用更安全的密码哈希算法、实施定期密码更新策略等。 深入理解MySQL的密码认证机制及其演进历程,有助于我们更好地应对类似“Client does not support authentication protocol”这样的兼容性问题,同时也有利于提升整体系统的安全性及稳定性。在今后的数据库运维实践中,应密切关注MySQL官方发布的安全公告和技术指导,持续跟进技术发展趋势,以便及时采取相应措施,保障业务系统的正常运行。
2023-11-17 19:43:27
105
转载
Kubernetes
...区也在不断改进控制器算法,如通过引入Predictive Horizontal Pod Autoscaler(PHPA)预测性扩展组件,使得replicas的增减更加智能和前瞻性,有效应对突发流量场景。 值得注意的是,随着Kubernetes生态系统的繁荣,许多围绕Pod生命周期管理及副本调度策略的开源项目也崭露头角,如Volcano、Argo等,它们提供了更为丰富的策略配置选项,帮助用户更好地利用replicas机制,提升整体集群效率与稳定性。 因此,对于Kubernetes用户而言,持续关注并掌握replicas相关的最新实践和技术动态,将有助于构建更为健壮、高效的容器化应用架构,适应快速变化的业务需求和挑战。
2023-09-19 12:13:10
436
草原牧歌_t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tar --list -f archive.tar.gz
- 列出归档文件中的内容。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"