前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[数据冷启动 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
RocketMQ
...模型是Java运行时数据区域的逻辑划分,包括程序计数器、虚拟机栈、本地方法栈、堆和方法区等组成部分。在本文中,重点讨论了堆内存,它是存储对象实例的主要区域,GC(Garbage Collection,垃圾回收机制)主要针对堆内存进行无用对象的回收。 Garbage Collection (GC) , GC是一种自动内存管理机制,用于回收不再使用的Java对象所占用的内存空间,以防止内存泄漏并释放资源。在RocketMQ实际应用中,频繁的GC会导致系统性能下降,因为它会暂停程序执行(Stop-The-World事件),查找并清理无效对象,从而消耗CPU资源。 Apache RocketMQ , Apache RocketMQ是一款开源的消息中间件,由阿里巴巴集团开发并贡献给Apache基金会。它具备高性能、高可靠、分布式等特点,常用于构建大规模分布式系统中的消息传递、异步解耦和削峰填谷等场景。在文中,作者通过实例说明了在使用RocketMQ过程中,如果对JVM内存管理不当,可能会引发内存溢出或GC过于频繁的问题,并提供了相应的优化策略。 批量发送 , 在分布式消息系统如RocketMQ中,批量发送是指一次操作将多个消息对象同时发送至消息队列,而非逐个发送。这种做法可以减少网络通信开销,降低系统调用次数,同时也减少了短时间内创建大量临时对象导致的内存压力,有利于提升系统整体性能。
2023-05-31 21:40:26
92
半夏微凉
Mahout
...ink的完美融合 在数据科学的领域里,Mahout和Flink都是不可或缺的利器。Mahout,一个开源的机器学习库,以其强大的算法库而闻名,尤其在推荐系统、聚类分析和协同过滤等领域有着广泛的应用。哎呀,你知道Flink这个家伙吗?这家伙可是个了不得的工具!它就像个超级英雄一样,专门负责处理那些海量的数据流,而且速度超快,延迟超低,简直就像闪电侠附体似的。用它来实时分析数据,那简直就是小菜一碟,分分钟搞定!当这两者相遇,一场数据处理的革命便悄然发生。 二、Mahout的Flink接口 功能概述 Mahout的Flink接口提供了丰富的功能,旨在将Mahout的机器学习能力与Flink的实时计算能力相结合,为用户提供更高效、更灵活的数据分析工具。以下是几个核心功能: 1. 实时推荐系统构建 通过Flink流处理特性,Mahout可以实时处理用户行为数据,快速生成个性化推荐,提升用户体验。 2. 大规模聚类分析 利用Flink的并行处理能力,Mahout能对大量数据进行高效聚类,帮助发现数据中的模式和结构。 3. 在线协同过滤 Flink接口允许Mahout实现在线协同过滤算法,实时更新用户偏好,提高推荐的准确性和时效性。 4. 数据流上的机器学习 Mahout的Flink接口支持在数据流上执行机器学习任务,如实时异常检测、预测模型更新等。 三、代码示例 构建实时推荐系统 为了更好地理解Mahout的Flink接口如何工作,下面我们将构建一个简单的实时推荐系统。哎呀,这个玩意儿啊,它能根据你过去咋用它的样子,比如你点过啥,买过啥,然后啊,它就能实时给你推东西。就像是个超级贴心的朋友,老记着你的喜好,时不时给你点惊喜! java import org.apache.flink.api.common.functions.MapFunction; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; public class RealtimeRecommendationSystem { public static void main(String[] args) throws Exception { // 创建流处理环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 假设我们有一个实时事件流,包含用户ID和商品ID DataStream> eventStream = env.fromElements( Tuple2.of("user1", "itemA"), Tuple2.of("user2", "itemB"), Tuple2.of("user1", "itemC") ); // 使用Mahout的协同过滤算法进行实时推荐 DataStream> recommendations = eventStream.map(new MapFunction, Tuple2>() { @Override public Tuple2 map(Tuple2 value) { // 这里只是一个示例,实际应用中需要调用具体的协同过滤算法 return new Tuple2<>(value.f0, "recommendedItem"); } }); // 打印输出 recommendations.print(); // 执行任务 env.execute("Realtime Recommendation System"); } } 四、结论 开启数据驱动的未来 通过整合Mahout的机器学习能力和Flink的实时计算能力,开发者能够构建出响应迅速、高效精准的数据分析系统。无论是实时推荐、大规模聚类还是在线协同过滤,这些功能都为数据分析带来了新的可能。哎呀,随着科技这玩意儿越变越厉害,咱们能见到的新鲜事儿也是一波接一波。就像是魔法一样,数据这东西,现在能帮咱们推动业务发展,搞出不少新花样,让咱们的生意越来越红火,创意源源不断。简直就像开了挂一样!
2024-09-01 16:22:51
63
海阔天空
Kafka
...析 1. 引言 在大数据时代,Apache Kafka作为一款高性能、分布式的消息发布和订阅系统,在实时流处理领域扮演着重要角色。不过在实际用起来的时候,咱们可能会碰上这么个情况:Kafka服务器和它的好朋友们——像是数据库、应用程序这些外部系统的连接,有时网络延迟会高得让人头疼。这样一来,对整个系统的运行效率以及用户的体验感可是会产生不小的影响。本文将深入探讨这个问题,通过实例代码分析可能的原因,并提出相应的优化策略。 2. 网络延迟问题的表象及影响 当Kafka与外部系统交互时,若出现显著高于正常水平的网络延迟,其表现形式可能包括:消息投递延迟、消费者消费速率下降、系统响应时间增长等。这些问题可能会在咱们的数据处理流水线上形成拥堵,就像高峰期的马路一样,一旦堵起来,业务运作的流畅度自然会大打折扣,严重时,就有可能像多米诺骨牌效应那样,引发一场服务崩溃的大雪崩。 java // 例如,一个简单的消费者代码片段 Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("group.id", "test"); props.put("enable.auto.commit", "true"); props.put("auto.commit.interval.ms", "1000"); KafkaConsumer consumer = new KafkaConsumer<>(props); consumer.subscribe(Arrays.asList("my-topic")); while (true) { ConsumerRecords records = consumer.poll(Duration.ofMillis(100)); for (ConsumerRecord record : records) { long latency = System.currentTimeMillis() - record.timestamp(); if (latency > acceptableLatencyThreshold) { // 如果延迟超过阈值,说明可能存在网络延迟问题 log.warn("High network latency detected: {}", latency); } // 进行数据处理... } } 3. 原因剖析 3.1 网络拓扑复杂性 复杂的网络架构,比如跨地域、跨数据中心的数据传输,或网络设备性能瓶颈,都可能导致较高的网络延迟。 3.2 配置不当 Kafka客户端配置不恰当也可能造成网络延迟升高,例如fetch.min.bytes和fetch.max.bytes参数设置不合理,使得消费者在获取消息时等待时间过长。 3.3 数据量过大 如果Kafka Topic中的消息数据量过大,导致网络带宽饱和,也会引起网络延迟上升。 4. 解决策略 4.1 优化网络架构 尽量减少数据传输的物理距离,合理规划网络拓扑,使用高速稳定的网络设备,并确保带宽充足。 4.2 调整Kafka客户端配置 根据实际业务需求,调整fetch.min.bytes和fetch.max.bytes等参数,以平衡网络利用率和消费速度。 java // 示例:调整fetch.min.bytes参数 props.put("fetch.min.bytes", "1048576"); // 设置为1MB,避免频繁的小批量请求 4.3 数据压缩与分片 对发送至Kafka的消息进行压缩处理,减少网络传输的数据量;同时考虑适当增加Topic分区数,分散网络负载。 4.4 监控与报警 建立完善的监控体系,实时关注网络延迟指标,一旦发现异常情况,立即触发报警机制,便于及时排查和解决。 5. 结语 面对Kafka服务器与外部系统间的网络延迟问题,我们需要从多个维度进行全面审视和分析,结合具体应用场景采取针对性措施。明白并能切实搞定网络延迟这个问题,那可不仅仅是对咱Kafka集群的稳定性和性能有大大的提升作用,更关键的是,它能像超级能量饮料一样,给整个数据处理流程注入活力,确保其高效顺畅地运作起来。在整个寻找答案、搞定问题的过程中,我们不停地动脑筋、动手尝试、不断改进,这正是技术进步带来的挑战与乐趣所在,让我们的每一次攻关都充满新鲜感和成就感。
2023-10-14 15:41:53
467
寂静森林
RabbitMQ
...权限管理,不然咱们的数据安全可就悬了。希望这篇文章对你有所帮助,如果你有任何疑问或建议,欢迎留言交流! --- 这就是今天的分享了,希望大家能够从中获得灵感,并在自己的项目中运用起来。记住啊,不管多复杂的系统,到最后不就是为了让人用起来更方便,生活过得更舒心嘛!加油,程序员朋友们!
2024-12-18 15:31:50
103
梦幻星空
Netty
...下,当你正在处理大量数据或者需要确保通信的可靠性时,消息队列的健康状态直接关系到系统的稳定性和性能。因此,了解如何监控它们是至关重要的。 2. Netty中的消息队列基础 在深入探讨之前,让我们先了解一下Netty中的消息队列是如何工作的。Netty通过ChannelPipeline来处理网络数据流,而ChannelHandler则是Pipeline中的处理单元。当数据到达或从Channel发出时,会依次通过这些处理器进行处理。你可以把消息队列想象成一个大大的“数据篮子”,放在这些处理器之间。当处理器忙不过来或者还没准备好处理新数据时,就可以先把数据暂存在这个“篮子”里,等它们空闲了再拿出来处理。这样就能让整个流程更顺畅啦! 例如,假设我们有一个简单的EchoServer,在这个服务器中,客户端发送一条消息,服务器接收并返回同样的消息给客户端。在这个过程中,消息队列充当了存储待处理消息的角色。 java public class EchoServerInitializer extends ChannelInitializer { @Override protected void initChannel(SocketChannel ch) throws Exception { ChannelPipeline pipeline = ch.pipeline(); // 添加编码器和解码器 pipeline.addLast(new StringEncoder()); pipeline.addLast(new StringDecoder()); // 添加业务处理器 pipeline.addLast(new EchoServerHandler()); } } 在这个例子中,虽然没有直接展示消息队列,但通过ChannelPipeline和ChannelHandler,我们可以间接地理解消息是如何被处理的。 3. 实现消息队列的监控 现在,让我们进入正题,看看如何实现对Netty消息队列的监控。要达到这个目的,我们可以用一些现成的东西,比如说自己定义的ChannelInboundHandler和ChannelOutboundHandler,再加上Netty自带的一些监控工具,比如Metrics。这样操作起来会方便很多。 3.1 自定义Handler 首先,我们需要创建自定义的ChannelHandler来记录消息的入队和出队情况。你可以试试在处理方法里加点日志记录,这样就能随时掌握每条消息的动态啦。 java public class MonitorHandler extends SimpleChannelInboundHandler { @Override protected void channelRead0(ChannelHandlerContext ctx, String msg) throws Exception { System.out.println("Received message: " + msg); // 记录消息入队时间 long enqueueTime = System.currentTimeMillis(); // 处理消息... // 记录消息出队时间 long dequeueTime = System.currentTimeMillis(); System.out.println("Message processed in " + (dequeueTime - enqueueTime) + " ms"); } } 3.2 使用Metrics Netty本身并不直接提供监控功能,但我们可以通过集成第三方库(如Micrometer)来实现这一目标。Micrometer让我们能轻松把应用的性能数据秀出来,这样后面分析和监控就方便多了。 java import io.micrometer.core.instrument.MeterRegistry; import io.micrometer.core.instrument.Timer; // 初始化MeterRegistry MeterRegistry registry = new SimpleMeterRegistry(); // 在自定义Handler中使用Micrometer public class MicrometerMonitorHandler extends SimpleChannelInboundHandler { private final Timer timer; public MicrometerMonitorHandler() { this.timer = Timer.builder("message.processing") .description("Time taken to process messages") .register(registry); } @Override protected void channelRead0(ChannelHandlerContext ctx, String msg) throws Exception { Timer.Sample sample = Timer.start(registry); // 处理消息 sample.stop(timer); } } 4. 总结与反思 通过上述步骤,我们已经成功地为Netty中的消息队列添加了基本的监控能力。然而,这只是一个起点。在实际操作中,你可能会遇到更多需要处理的事情,比如说怎么应对错误,怎么监控那些不正常的状况之类的。另外,随着系统变得越来越复杂,你可能得找一些更高级的工具来解决问题,比如说用分布式追踪系统(比如Jaeger或者Zipkin),这样你才能更好地了解整个系统的运行状况和性能表现。 最后,我想说的是,技术总是在不断进步的,保持学习的心态是非常重要的。希望这篇文章能够激发你对Netty和消息队列监控的兴趣,并鼓励你在实践中探索更多可能性! --- 这就是我们的文章,希望你喜欢这种更有人情味的叙述方式。如果你有任何疑问或想要了解更多细节,请随时提问!
2024-11-04 16:34:13
317
青春印记
Go Iris
...发者喜爱。然而,在与数据库交互的过程中,SQL查询错误是难以避免的问题之一。本文将围绕“Go Iris中的SQL查询错误异常”这一主题,探讨其产生的原因、影响以及如何有效地进行捕获和处理,同时辅以丰富的代码示例,力求让您对这个问题有更深入的理解。 2. SQL查询错误概述 在使用Go Iris构建应用程序并集成数据库操作时,可能会遇到诸如SQL语法错误、数据不存在或权限问题等导致的SQL查询错误。这类异常情况如果不被好好处理,那可不只是会让程序罢工那么简单,它甚至可能泄露一些核心机密,搞得用户体验大打折扣,严重点还可能会对整个系统的安全构成威胁。 3. Go Iris中处理SQL查询错误的方法 让我们通过一段实际的Go Iris代码示例来观察和理解如何优雅地处理SQL查询错误: go package main import ( "github.com/kataras/iris/v12" "github.com/go-sql-driver/mysql" "fmt" ) func main() { app := iris.New() // 假设我们已经配置好了数据库连接 db, err := sql.Open("mysql", "user:password@tcp(127.0.0.1:3306)/testdb") if err != nil { panic(err.Error()) // 此处处理数据库连接错误 } defer db.Close() // 定义一个HTTP路由处理函数,其中包含SQL查询 app.Get("/users/{id}", func(ctx iris.Context) { id := ctx.Params().Get("id") var user User err = db.QueryRow("SELECT FROM users WHERE id=?", id).Scan(&user.ID, &user.Name, &user.Email) if err != nil { if errors.Is(err, sql.ErrNoRows) { // 处理查询结果为空的情况 ctx.StatusCode(iris.StatusNotFound) ctx.WriteString("User not found.") } else if mysqlErr, ok := err.(mysql.MySQLError); ok { // 对特定的MySQL错误进行判断和处理 ctx.StatusCode(iris.StatusInternalServerError) ctx.WriteString(fmt.Sprintf("MySQL Error: %d - %s", mysqlErr.Number, mysqlErr.Message)) } else { // 其他未知错误,记录日志并返回500状态码 log.Printf("Unexpected error: %v", err) ctx.StatusCode(iris.StatusInternalServerError) ctx.WriteString("Internal Server Error.") } return } // 查询成功,继续处理业务逻辑... // ... }) app.Listen(":8080") } 4. 深入思考与讨论 面对SQL查询错误,我们应该首先确保它被正确捕获并分类处理。就像刚刚提到的例子那样,面对各种不同的错误类型,我们完全能够灵活应对。比如说,可以选择扔出合适的HTTP状态码,让用户一眼就明白是哪里出了岔子;还可以提供一些既友好又贴心的错误提示信息,让人一看就懂;甚至可以细致地记录下每一次错误的详细日志,方便咱们后续顺藤摸瓜,找出问题所在。 在实际项目中,我们不仅要关注错误的处理方式,还要注重设计良好的错误处理策略,例如使用中间件统一处理数据库操作异常,或者在ORM层封装通用的错误处理逻辑等。这些方法不仅能提升代码的可读性和维护性,还能增强系统的稳定性和健壮性。 5. 结语 总之,理解和掌握Go Iris中SQL查询错误的处理方法至关重要。只有当咱们应用程序装上一个聪明的错误处理机制,才能保证在数据库查询出岔子的时候,程序还能稳稳当当地运行。这样一来,咱就能给用户带来更稳定、更靠谱的服务体验啦!在实际编程的过程中,咱们得不断摸爬滚打,积攒经验,像升级打怪一样,一步步完善我们的错误处理招数。这可是我们每一位开发者都该瞄准的方向,努力做到的事儿啊!
2023-08-27 08:51:35
459
月下独酌
Maven
...近期发布了一份关于其数据中心能源使用的报告,指出通过优化代码和选择合适的构建工具,可以显著降低能耗。报告中提到,使用Maven和npm进行构建时,可以通过最小化不必要的依赖和优化构建脚本,减少构建过程中的资源消耗,从而达到节能减排的目的。这不仅是对技术细节的关注,也是对社会责任的一种体现。 此外,近期GitHub Actions因其便捷性和灵活性,在自动化部署领域受到了广泛关注。对于使用npm的Node.js开发者来说,GitHub Actions提供了一种无需额外付费即可实现持续集成和持续部署的方法。通过编写简单的YAML文件,开发者可以定义一系列自动化任务,如代码质量检查、单元测试和部署流程。这种方法不仅提高了开发效率,还降低了人为错误的可能性。 综上所述,无论是从技术发展趋势还是从环保角度出发,Maven和npm的应用都在不断演进。借助最新的云服务和自动化工具,开发者可以更加高效地管理项目,同时为建设一个更加绿色的数字世界做出贡献。
2024-12-07 16:20:37
31
青春印记
Apache Atlas
...,它本质上是个管理大数据世界各种零部件元数据的大管家,它的主业就是帮我们把各类组件的元数据整得明明白白、治理得井井有条。不过呐,它并不插手网络连接层那些具体实现的细枝末节。所以呢,兄弟,咱们没法直接动手写一个Apache Atlas客户端和服务器在网络抽风或者掉线时如何应对的代码实例。为啥呢?原因在于,这些情况通常是由那些藏在底层、默默无闻的通信协议(比如HTTP啊、RESTful API之类的)或者更基础的网络编程工具包在背后自动处理的,不是我们直接能写的。 但是,我可以帮助你构建一篇以“在面对网络不稳定时,Apache Atlas使用者如何优化系统设计和使用策略”为主题的文章,虽然不包含具体的Apache Atlas客户端连接代码,但会尽量满足你的其他要求。 1. 引言 在大数据时代,Apache Atlas作为一款强大的元数据管理系统,在企业级数据湖架构中扮演着至关重要的角色。不过,在实际动手部署和运维的过程中,我们免不了会碰到这样那样的小插曲,就比如说客户端和服务器之间的网络连接时好时坏,甚至有时候还会突然玩个“消失”。这不仅可能导致数据同步延迟,还可能引发一系列的数据一致性问题。在这篇文章里,咱们要实实在在地掰扯一下,在这个特定场景下,咱们该如何正确理解和有效应对,并且在使用Apache Atlas时,有哪些妙招能用上,让整个系统的健壮性和稳定性噌噌噌往上涨。 2. Apache Atlas的服务端与客户端通信机制 Apache Atlas主要通过RESTful API进行服务端与客户端的通信,这意味着任何与Atlas服务器的交互都将以HTTP请求的形式发生。当网络出现波动时,这些请求可能会超时、重试甚至失败。例如,当你尝试执行以下Atlas客户端调用操作(尽管这不是真正的代码,但在真实环境中,它会表现为一个HTTP请求): python 假设的Atlas客户端API调用示例(非真实代码) from atlas_client import AtlasClient client = AtlasClient(base_url="http://atlas-server:21000") entity_result = client.get_entity(guid='your-entity-guid') 3. 应对网络不稳定 策略与实践 (a) 重试机制 在面对网络不稳定时,首要的策略就是实施合理的重试机制。对于HTTP客户端库(如Python的requests库),我们可以设定自动重试策略: python import requests from requests.adapters import HTTPAdapter from urllib3.util.retry import Retry session = requests.Session() retries = Retry(total=5, backoff_factor=0.1, status_forcelist=[ 500, 502, 503, 504 ]) session.mount('http://', HTTPAdapter(max_retries=retries)) session.mount('https://', HTTPAdapter(max_retries=retries)) response = session.get('http://atlas-server:21000/api/atlas/v2/entity/guid/your-entity-guid') 这段伪代码展示了如何配置一个具有重试机制的HTTP客户端,以便在网络状况不佳时仍能尽力获取所需数据。 (b) 缓存策略 在短暂的网络中断期间,可以利用本地缓存存储近期获取的元数据信息,以此降低对实时连接的依赖。一旦网络恢复,再进行必要的数据同步更新。 (c) 心跳检测与故障转移 针对集群环境,可以通过定期心跳检测判断与Atlas服务器的连接状态,及时切换至备份服务器,确保服务的连续性。 4. 结论与思考 面对Apache Atlas客户端与服务器间网络连接不稳定或中断的情况,我们需要从系统设计层面出发,采用合适的容错策略和技术手段提高系统的鲁棒性。同时呢,咱们得摸清楚底层通信机制那些个特性,再结合实际的使用场景,不断打磨、优化咱们的解决方案。这样一来,才能真正让基于Apache Atlas搭建的大数据平台坚如磐石,稳定运行起来。 以上讨论并未给出Apache Atlas本身的代码实现,而是围绕其使用场景和策略给出了建议。实际上,每个项目都有其独特性,具体策略需要根据实际情况灵活调整和实施。
2024-01-10 17:08:06
412
冬日暖阳
Apache Atlas
一、引言 在这个数据驱动的时代,保护敏感信息变得至关重要。Apache Atlas,这款超牛的数据治理神器,简直就是我们实施数据脱敏大计的得力舞台!在这篇文章里,我们要好好唠唠怎么在Atlas这个平台上巧妙地设计并执行数据脱敏方案,做到既能让数据安全无虞,又能保证咱的业务流程顺顺当当地跑起来,一点儿不卡壳儿。 二、理解数据脱敏的重要性 数据脱敏,简单来说,就是将敏感信息替换为非敏感的模拟值,如电话号码中的部分数字替换为星号,或者身份证号码的后几位隐藏。这样做既能满足法规要求,又能防止数据泄露带来的潜在风险。在这个海量数据满天飞的时代,保护个人隐私和做到合规合法可是企业躲不开的大问题啊。不过别担心,有个叫Apache Atlas的小能手,就是专门来帮我们解决这些头疼事儿的好伙伴。 三、设置基础环境与配置 首先,我们需要在Apache Atlas环境中设置好数据脱敏规则。登录到Atlas的管理界面,找到数据资产管理模块,创建一个新的数据实体(例如,用户表User)。在这里,你可以为每个字段指定脱敏策略。 java // 示例代码片段 DataEntity userEntity = new DataEntity(); userEntity.setName("User"); userEntity.setSchema(new DataSchema.Builder() .addField("userId", DataModel.Type.STRING, new DataMaskingPolicy.Builder() .setMaskType(DataMaskingPolicy.MaskType.PARTIAL) .setMaskCharacter('') .setLength(5) // 显示前5位 .build()) .addField("email", DataModel.Type.STRING, new DataMaskingPolicy.Builder() .setMaskType(DataMaskingPolicy.MaskType.FULL) .build()) .build()); 四、编写脱敏策略 在上述代码中,DataMaskingPolicy类定义了具体的脱敏策略。MaskType枚举允许我们选择全遮盖(FULL)、部分遮盖(PARTIAL)或其他方式。setMaskCharacter()定义了替换字符,setLength(5)则设置了显示的长度。当你想要在某些字段中保留部分真实的细节时,咱们就可以灵活地给这些字段设定一个合适的长度,并选择相应的掩码方式,这样一来,既保护了隐私,又不失实用性,就像是给信息穿上了“马赛克”外套一样。 五、关联数据脱敏策略到实际操作 接下来,我们需要确保在执行SQL查询时能应用这些策略。这通常涉及到配置数据访问层(如JDBC、Spark SQL等),让它们在查询时自动调用Atlas的策略。以下是一个使用Hive SQL的示例: sql -- 原始SQL SELECT userId, email FROM users; -- 添加脱敏处理 SELECT userId.substring(0, 5) as 'maskedUserId', email from users; 六、监控与调整 实施数据脱敏策略后,我们需要监控其效果,确保数据脱敏在实际使用中没有意外影响业务。根据反馈,可能需要调整策略的参数,比如掩码长度或替换字符,以达到最佳的保护效果。 七、总结与最佳实践 Apache Atlas的数据脱敏功能并非一蹴而就,它需要时间和持续的关注。要知道,要想既确保数据安然无恙又不拖慢工作效率,就得先摸清楚你的数据情况,然后量身定制适合的保护策略,并且在实际操作中灵活调整、持续改进这个策略!就像是守护自家宝贝一样,既要看好门,又要让生活照常进行,那就得好好研究怎么把门锁弄得既安全又方便,对吧!记住了啊,数据脱敏可不是一劳永逸的事儿,它更像是个持久战,需要随着业务发展需求的不断演变,还有那些法规要求的时常更新,我们得时刻保持警惕,持续地对它进行改进和调整。 通过这篇文章,你已经掌握了在Apache Atlas中实施数据脱敏策略的基本步骤。但在实际动手干的时候,你可能得瞅瞅具体项目的独特性跟需求,量身打造出你的解决方案才行。听好了,对一家企业来说,数据安全可是它的命根子,而做好数据脱敏这步棋,那就是走向合规这条大道的关键一步阶梯!祝你在数据治理的旅程中顺利!
2024-03-26 11:34:39
470
桃李春风一杯酒-t
DorisDB
1. 引言 在大数据时代,数据库作为数据存储和查询的核心组件,其性能直接影响着业务效率。DorisDB,这款采用分布式、MPP架构设计的列式数据库,可以说是相当厉害了。它能像压缩饼干一样高效地“挤”数据,大大节省存储空间;查询速度更是快如闪电,让你无需漫长等待;而且它的实时分析功能强大到飞起,让用户们爱不释手。正是因为这些优点,DorisDB才赢得了众多用户的芳心和点赞呢!然而,在实际操作的时候,我们可能会遇到SQL查询速度卡壳的问题,这篇文呢,咱就来好好唠唠嗑,聊聊怎么通过各种小妙招优化DorisDB这个数据库系统的SQL查询效率,让它跑得溜溜的。 2. 理解与诊断查询性能 首先,我们需要对DorisDB的查询过程有一个基本理解,这包括查询计划的生成、数据分区的选择以及执行引擎的工作原理等。当你发现查询速度不尽如人意时,可以通过EXPLAIN命令来查看SQL语句的执行计划,如同医生检查病人的“体检报告”一样: sql -- 使用EXPLAIN获取查询计划 EXPLAIN SELECT FROM my_table WHERE key = 'some_value'; 通过分析这个执行计划,我们可以了解到查询涉及哪些分区、索引是否被有效利用等关键信息,从而为优化工作找准方向。 3. 优化策略一 合理设计表结构与分区策略 - 列选择性优化:由于DorisDB是列式存储,高选择性的列(即唯一或接近唯一的列)能更好地发挥其优势。例如,对于用户ID这样的列,将其设为主键或构建Bloom Filter索引,可以大幅提升查询性能。 sql -- 创建包含主键的表 CREATE TABLE my_table ( user_id INT PRIMARY KEY, ... ); - 分区设计:根据业务需求和数据分布特性,合理设计分区策略至关重要。比如,咱们可以按照时间段给数据分区,这样做的好处可多了。首先呢,能大大减少需要扫描的数据量,让查询过程不再那么费力;其次,还能巧妙地利用局部性原理,就像你找东西时先从最近的地方找起一样,这样就能显著提升查询的效率,让你的数据查找嗖嗖快! sql -- 按天分区 CREATE TABLE my_table ( ... ) PARTITION BY RANGE (dt) ( PARTITION p20220101 VALUES LESS THAN ("2022-01-02"), PARTITION p20220102 VALUES LESS THAN ("2022-01-03"), ... ); 4. 优化策略二 SQL查询优化 - 避免全表扫描:尽量在WHERE子句中指定明确的过滤条件,利用索引加速查询。例如,假设我们已经为user_id字段创建了索引,那么以下查询会更高效: sql SELECT FROM my_table WHERE user_id = 123; - 减少数据传输量:只查询需要的列,避免使用SELECT 。同时,合理运用聚合函数和分组,避免不必要的计算和排序。 sql -- 只查询特定列,避免全表扫描 SELECT user_name, email FROM my_table WHERE user_id = 123; -- 合理运用GROUP BY和聚合函数 SELECT COUNT(), category FROM my_table GROUP BY category; 5. 优化策略三 系统配置调优 DorisDB提供了丰富的系统参数供用户调整以适应不同场景下的性能需求。比方说,你可以通过调节max_scan_range_length这个参数,来决定每次查询时最多能扫描多少数据范围,就像控制扫地机器人的清扫范围那样。再者,通过巧妙调整那些和内存相关的设置,就能让服务器资源得到充分且高效的利用,就像精心安排储物空间,让每个角落都物尽其用。 6. 结语 优化DorisDB的SQL查询性能是一个综合且持续的过程,需要结合业务特点和数据特征,从表结构设计、查询语句编写到系统配置调整等多个维度着手。每个环节都需细心打磨,才能使DorisDB在大数据洪流中游刃有余,提供更为出色的服务。每一次对DorisDB的优化,都是我们携手这位好伙伴,一起摸爬滚打、不断解锁新技能、共同进步的重要印记。这样一来,咱的数据分析之路也能走得更顺溜,效率嗖嗖往上涨,就像坐上了火箭一样快呢!
2023-05-07 10:47:25
501
繁华落尽
转载文章
...中的Tuple是一种数据结构,可存放多个元素,每个元素的数据类型可不同。Tuple与List集合类似,但是不同的是,List集合只能存储一种数据类型,而Tuple可存储多种数据类型。 可能你会说,Object类型的List实际也是可以存储多种类型的啊?但是在创建List的时候,需要指定元素数据类型,也就是只能指定为Object类型,获取的元素类型就是Object,如有需要则要进行强转。而Tuple在创建的时候,则可以直接指定多个元素数据类型。 Tuple具体是怎么的数据结构呢? 元组(tuple)是关系数据库中的基本概念,关系是一张表,表中的每行(即数据库中的每条记录)就是一个元组,每列就是一个属性。 在二维表里,元组也称为行。 以上是百度百科中的"元组"概念,我们将一个元组理解为数据表中的一行,而一行中每个字段的类型是可以不同的。这样我们就可以简单理解Java中的Tuple数据结构了。 2. 使用 2.1 依赖Jar包 Maven坐标如下: <dependency><groupId>org.javatuples</groupId><artifactId>javatuples</artifactId><version>1.2</version></dependency> 引入相关依赖后,可以看出jar包中的结构很简单,其中的类主要是tuple基础类、扩展的一元组、二元组…十元组,以及键值对元组;接口的作用是提供【获取创建各元组时传入参数值】的方法。 2.2 基本使用 2.2.1 直接调用 以下以三元组为例,部分源码如下: package org.javatuples;import java.util.Collection;import java.util.Iterator;import org.javatuples.valueintf.IValue0;import org.javatuples.valueintf.IValue1;import org.javatuples.valueintf.IValue2;/ <p> A tuple of three elements. </p> @since 1.0 @author Daniel Fernández/public final class Triplet<A,B,C> extends Tupleimplements IValue0<A>,IValue1<B>,IValue2<C> {private static final long serialVersionUID = -1877265551599483740L;private static final int SIZE = 3;private final A val0;private final B val1;private final C val2;public static <A,B,C> Triplet<A,B,C> with(final A value0, final B value1, final C value2) {return new Triplet<A,B,C>(value0,value1,value2);} 我们一般调用静态方法with,传入元组数据,创建一个元组。当然了,也可以通过有参构造、数组Array、集合Collection、迭代器Iterator来创建一个元组,直接调用相应方法即可。 但是,我们可能记不住各元组对象的名称(Unit、Pair、Triplet、Quartet、Quintet、Sextet、Septet、Octet、Ennead、Decade),还要背下单词…因此,我们可以自定义一个工具类,提供公共方法,根据传入的参数个数,返回不同的元组对象。 2.2.2 自定义工具类 package com.superchen.demo.utils;import org.javatuples.Decade;import org.javatuples.Ennead;import org.javatuples.Octet;import org.javatuples.Pair;import org.javatuples.Quartet;import org.javatuples.Quintet;import org.javatuples.Septet;import org.javatuples.Sextet;import org.javatuples.Triplet;import org.javatuples.Unit;/ ClassName: TupleUtils Function: <p> Tuple helper to create numerous items of tuple. the maximum is 10. if you want to create tuple which elements count more than 10, a new class would be a better choice. if you don't want to new a class, just extends the class {@link org.javatuples.Tuple} and do your own implemention. </p> date: 2019/9/2 16:16 @version 1.0.0 @author Chavaer @since JDK 1.8/public class TupleUtils{/ <p>Create a tuple of one element.</p> @param value0 @param <A> @return a tuple of one element/public static <A> Unit<A> with(final A value0) {return Unit.with(value0);}/ <p>Create a tuple of two elements.</p> @param value0 @param value1 @param <A> @param <B> @return a tuple of two elements/public static <A, B> Pair<A, B> with(final A value0, final B value1) {return Pair.with(value0, value1);}/ <p>Create a tuple of three elements.</p> @param value0 @param value1 @param value2 @param <A> @param <B> @param <C> @return a tuple of three elements/public static <A, B, C> Triplet<A, B, C> with(final A value0, final B value1, final C value2) {return Triplet.with(value0, value1, value2);} } 以上的TupleUtils中提供了with的重载方法,调用时根据传入的参数值个数,返回对应的元组对象。 2.2.3 示例代码 若有需求: 现有pojo类Student、Teacher、Programmer,需要存储pojo类的字节码文件、对应数据库表的主键名称、对应数据库表的毕业院校字段名称,传到后层用于组装sql。 可以再定义一个对象类,但是如果还要再添加条件字段的话,又得重新定义…所以我们这里直接使用元组Tuple实现。 public class TupleTest {public static void main(String[] args) {List<Triplet<Class, String, String>> roleList = new ArrayList<Triplet<Class, String, String>>();/三元组,存储数据:对应实体类字节码文件、数据表主键名称、数据表毕业院校字段名称/Triplet<Class, String, String> studentTriplet = TupleUtils.with(Student.class, "sid", "graduate");Triplet<Class, String, String> teacherTriplet = TupleUtils.with(Teacher.class, "tid", "graduate");Triplet<Class, String, String> programmerTriplet = TupleUtils.with(Programmer.class, "id", "graduate");roleList.add(studentTriplet);roleList.add(teacherTriplet);roleList.add(programmerTriplet);for (Triplet<Class, String, String> triplet : roleList) {System.out.println(triplet);} }} 存储数据结构如下: 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_35006663/article/details/100301416。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 17:43:51
258
转载
Kylin
... 用Kylin解决数据集成与管理问题 在大数据时代,数据就像石油一样珍贵。不过呢,要想让这些数据真正派上用场,我们就得搞定数据整合和管理,让它变得又快又好。嘿,今天想跟大家聊聊Apache Kylin,这是一款超棒的开源分布式分析工具,它能帮我们轻松搞定数据整合和管理的问题。 1. Kylin是什么? 首先,让我们来了解一下Kylin是什么。Kylin这东西啊,是建在Hadoop上面的一个数据仓库工具,你可以用SQL来跟它对话,而且它在处理超大规模的数据时,查询速度能快到像闪电一样,几乎就在一眨眼的工夫。Kylin最初是由eBay开发的,后来成为了Apache软件基金会的顶级项目之一。对那些每天得跟海量数据打交道,还得迅速分析的企业来说,Kylin简直就是个神器。 2. 数据集成挑战 在开始之前,我们需要认识到数据集成与管理面临的挑战。我们在搭建数据仓库的时候,经常会碰到各种棘手的问题,比如数据来源五花八门、数据量大到吓人,还有数据质量也是参差不齐,真是让人头大。而Kylin正是为了解决这些问题而生。 2.1 多样化数据源 想象一下,你的公司可能拥有来自不同部门、不同系统的数据,比如销售数据、用户行为数据、库存数据等。如何把这些数据统一起来,形成一个完整的数据视图,是数据集成的第一步。 代码示例: python 假设我们有一个简单的ETL流程,将数据从多个源导入Kylin from pykylin import KylinClient client = KylinClient(host='localhost', port=7070) project_name = 'sales_project' 创建一个新的项目 client.create_project(project_name) 将数据从Sales系统导入Kylin sales_data = client.import_data('sales_source', project_name) 同样的方式处理用户行为数据 user_behavior_data = client.import_data('user_behavior_source', project_name) 在这个例子中,我们简化了实际操作中的复杂度,但是可以看到,通过Kylin提供的API,我们可以轻松地将来自不同源的数据导入到Kylin中,为后续的数据分析打下基础。 3. 数据管理策略 有了数据之后,接下来就是如何有效地管理和利用这些数据了。Kylin提供了多种数据管理策略,包括但不限于数据模型的设计、维度的选择以及Cube的构建。 3.1 数据模型设计 一个好的数据模型设计能够极大地提升查询效率。Kylin 这个工具挺酷的,可以让用户自己定义多维数据模型。这样一来,我们就能够根据实际的业务需求,随心所欲地搭建数据立方体了。 代码示例: python 定义一个数据模型 model = { "name": "sales_model", "dimensions": [ {"name": "date"}, {"name": "product_id"}, {"name": "region"} ], "measures": [ {"name": "total_sales", "function": "SUM"} ] } 使用Kylin API创建数据模型 client.create_model(model, project_name) 在这个例子中,我们定义了一个包含日期、产品ID和区域三个维度以及总销售额这一指标的数据模型。通过这种方式,我们可以针对不同的业务场景构建适合的数据模型。 3.2 Cube构建 Cube是Kylin的核心概念之一。它是一种预计算的数据结构,用于加速查询速度。Kylin 这个工具挺酷的,能让用户自己决定怎么搭建 Cube。比如说,你可以挑选哪些维度要放进 Cube 里,还可以设置数据怎么汇总。 代码示例: python 构建一个包含所有维度的Cube cube_config = { "name": "all_dimensions_cube", "model_name": "sales_model", "dimensions": ["date", "product_id", "region"], "measures": ["total_sales"] } 使用Kylin API创建Cube client.create_cube(cube_config) 在这个例子中,我们构建了一个包含了所有维度的Cube。这样做虽然会增加存储空间的需求,但能够显著提高查询效率。 4. 总结 通过上述介绍,我们可以看到Kylin在解决数据集成与管理问题上所展现的强大能力。无论是面对多样化的数据源还是复杂的业务需求,Kylin都能提供有效的解决方案。当然,Kylin并非万能,它也有自己的局限性和适用场景。所以啊,在实际操作中,我们要根据实际情况灵活地选择和调整策略,这样才能真正把Kylin的作用发挥出来。 最后,我想说的是,技术的发展永远是双刃剑,它既带来了前所未有的机遇,也伴随着挑战。咱们做技术的啊,得有一颗好奇的心,老是去学新东西,新技能。遇到难题也不要怕,得敢上手,找办法解决。只有这样,我们才能在这个快速变化的时代中立于不败之地。
2024-12-12 16:22:02
91
追梦人
Mongo
... 在这个数字化时代,数据已成为企业的重要资产,而NoSQL数据库如MongoDB因其灵活性和高性能,在处理非结构化、半结构化数据方面发挥着关键作用。MongoDB,这个家伙可不简单,它独创的文档型数据模型设计,就像给数据库装上了超级马达,让信息处理变得灵活又高效。加上那让人拍案叫绝的超强扩展能力,轻轻松松就捕获了全球各地开发者的心,让他们纷纷对MongoDB爱不释手,赞不绝口呢!不过呢,你知道的,不是所有开发者都擅长用命令行或者编程接口去摆弄数据库,这玩意儿对非专职的数据库管理员来说,难度系数有点高。所以嘞,一个瞅着就明白、操作简单的可视化界面,对他们来讲,那就跟救命稻草一样重要哇!嘿,伙伴们,今天咱们就来聊聊MongoDB怎么利用一个超级给力的工具——MongoDB Studio,给大伙儿搭建一个可视化操作台。这样一来,不管是管理还是操作MongoDB数据库,都能变得轻松又高效,让数据管理跟玩似的! 二、MongoDB Studio简介 MongoDB Studio 是一款由 MongoDB 官方推出的跨平台图形化数据库管理工具,它不仅具备基本的数据导入导出功能,更提供了丰富的查询构建器、实时监控、数据模型设计以及数据迁移等功能,大大简化了用户对MongoDB集群的日常维护与应用开发工作流程。它的出现犹如一把钥匙,打开了连接MongoDB世界与业务场景之间的一扇大门。 三、MongoDB Studio 功能解析 1. 数据建模与设计 - 首先,让我们通过实例感受MongoDB Studio的直观性。假设我们要在名为 users 的集合中建立一个新的用户文档类型,打开MongoDB Studio,点击 "Collections" -> "Create Collection",输入新集合名称 new_users。接着,在右侧的Document Schema区域,可以通过拖拽字段图标并填写字段名、数据类型(如String, Number, Date等),定义新的用户文档结构: { "_id": ObjectId(), "username": String, "email": {type: String, required: true}, "password": {type: String, required: true, min: 6}, "createdAt": Date, "updatedAt": Date } 2. 查询构建与执行 - 当我们需要从 new_users 集合中查找特定条件的记录时,MongoDB Studio的Query Builder功能大显身手。在 "Query Builder" 区域,选择 "Find" 操作,键入查询条件,例如找到邮箱地址包含 "@example.com" 的用户: db.new_users.find({"email": {$regex: /@example\.com$/} }) 3. 数据操作与管理 - 对于数据的增删改查操作,MongoDB Studio同样提供了便捷的操作界面。例如,在 "Data Editor" 中选择需要更新的文档,点击 "Update" 按钮,并设置新的属性值,如将用户名 "Alice" 更新为 "Alicia": db.new_users.updateOne( {"username": "Alice"}, {"$set": {"username": "Alicia"} } ) 4. 性能监控与调试 - 而对于数据库的整体性能指标,MongoDB Studio还集成了实时监控模块,包括CPU、内存、磁盘I/O、网络流量等各项指标,便于管理员快速发现潜在瓶颈,并针对性地进行优化调整。 四、结论与展望 MongoDB Studio作为一个集数据建模、查询构建、数据操作于一体的全面管理工具,极大地提升了用户在MongoDB环境下的工作效率。而且你知道吗,MongoDB这个大家庭正在日益壮大和成熟,那些聚合管道、索引优化、事务处理等高大上的功能,都将一步步被融入到MongoDB Studio里头去。这样一来,咱们管理数据库就能变得更聪明、更自动化,就像有个小助手在背后默默打理一切,轻松又省力!嘿,伙计们,咱们一起热血沸腾地站在技术革命的浪尖上,满怀期待地瞅瞅MongoDB Studio能给我们带来什么惊艳的新玩意儿吧!这货绝对会让广大的开发者小伙伴们更溜地驾驭MongoDB,让企业的数据战略发展如虎添翼,一路飙升!
2024-02-25 11:28:38
70
幽谷听泉-t
Tomcat
...程”)想用一些共同的数据(比如一个共享的记事本),但是它没拿到这个数据的“钥匙”。这就像是你想去拿别人的书包里的东西,但是你手上没钥匙开不了包,结果就乱了套了。这种时候,电脑就得小心处理,防止出现混乱或者错误的结果。 三、示例代码分析 为了更好地理解这个异常,让我们通过一个简单的示例来演示它可能出现的情况: java import java.util.concurrent.locks.ReentrantLock; public class LockDemo { private static final ReentrantLock lock = new ReentrantLock(); private static int counter = 0; public static void main(String[] args) { // 锁住资源 lock.lock(); try { System.out.println("开始操作..."); // 这里是你的业务逻辑 doSomething(); } finally { lock.unlock(); // 不要忘记解锁 } } private static void doSomething() { synchronized (LockDemo.class) { // 锁定当前类的对象 counter++; System.out.println("计数器值:" + counter); } } } 这段代码展示了如何正确地使用锁来保护共享资源。哎呀,兄弟!你要是不小心在没锁门的情况下闯进了别人的私人空间,那肯定得吃大亏啊!就像这样,在编程的世界里,如果你不巧在没锁定的情况下就去碰那些受保护的资源,那可就等着被系统给你来个“非法监视状态异常”吧!这可不是闹着玩的,得小心点! 错误示例: java import java.util.concurrent.locks.ReentrantLock; public class LockDemoError { private static final ReentrantLock lock = new ReentrantLock(); private static int counter = 0; public static void main(String[] args) { System.out.println("开始操作..."); // 这里尝试访问受保护的资源,但没有锁定 doSomething(); } private static void doSomething() { synchronized (LockDemoError.class) { counter++; System.out.println("计数器值:" + counter); } } } 运行上述错误示例,将会抛出 java.lang.IllegalMonitorStateException 异常,因为 doSomething() 方法在没有获取锁的情况下直接访问了共享资源。 四、预防与解决策略 为了避免这类异常,确保所有对共享资源的操作都遵循以下原则: 1. 始终锁定 在访问任何共享资源之前,务必先获得相应的锁。 2. 正确释放锁 在完成操作后,无论成功与否,都应确保释放锁。 3. 避免死锁 检查锁的顺序和持有锁的时间,防止出现死锁情况。 五、总结 java.lang.IllegalMonitorStateException 异常提醒我们在多线程编程中注意锁的使用,确保每次操作都处于安全的监视器状态。通过正确的锁管理实践,我们可以有效预防这类异常,并提高应用程序的稳定性和性能。哎呀,亲!在咱们做程序开发的时候,多线程编程那可是个大功臣!要想让咱们的系统跑得又快又稳,学好这个技术,不断摸索最佳实践,那简直就是必须的嘛!这不光能让程序运行效率翻倍,还能确保系统稳定,用户用起来也舒心。所以啊,小伙伴们,咱们得勤于学习,多加实践,让自己的技能库再添一把火,打造出既高效又可靠的神级系统!
2024-08-07 16:07:16
54
岁月如歌
MyBatis
...开发中,我们都需要与数据库打交道。但是,数据库操作这活儿可不是闹着玩的,它可是个耗精力的大工程,管理起来得费不少心思,维护起来也相当劳神。这就是为什么 MyBatis 出现了。它为我们提供了一种简单的方式来操作数据库。在这篇文章中,我们将讨论 MyBatis 如何处理数据库连接的打开与关闭。 一、MyBatis 数据库连接的打开与关闭 当我们使用 JDBC 连接到数据库时,我们需要自己管理数据库连接的打开与关闭。这个过程其实挺复杂的,你得先建立起跟数据库的连接,然后才能用它来干活儿,最后还别忘了把它给关掉。就像是你要进一个房间,得先打开门进去,忙完事情后,还得记得把门关上。整个一套流程下来,真是够繁琐的。为了让大伙儿省去这些麻烦的操作,MyBatis 设计了一个叫做“SqlSessionFactory”的小帮手,它的任务就是打理所有和数据库连接相关的事务,确保一切井井有条。SqlSessionFactory 是 MyBatis 的核心组件,它是一个工厂类,用于创建 SqlSession 对象。SqlSession 是 MyBatis 的主要接口,它提供了所有数据库操作的方法。SqlSessionFactory 和 SqlSession 的关系如下图所示:  当我们在应用程序中创建一个 SqlSessionFactory 对象时,它会自动打开一个数据库连接,并将其保存在内存中。这样,每次我们想要创建一个 SqlSession 对象时,就像去 SqlSessionFactory 那儿说“嗨,给我开个数据库连接”,然后它就会从内存这个大口袋里掏出一个已经为我们预先打开的数据库连接。这种方式能够显著缩短创建和释放数据库连接所需的时间,让咱们的应用程序跑得更溜、更快。 二、MyBatis 如何处理数据库连接的打开与关闭 在 MyBatis 中,我们可以使用两种方式来处理数据库连接的打开与关闭。一种是手动管理,另一种是自动管理。 1. 手动管理 手动管理是指我们在应用程序中直接控制数据库连接的打开与关闭。这是最原始的方式,也是最直观的方式。我们可以通过 JDBC API 来实现数据库连接的打开与关闭。比如,我们可以想象一下这样操作:先用 DriverManager.getConnection() 这个神奇的小功能打开通往数据库的大门,然后呢,当我们不需要再跟数据库“交流”的时候,就用 Statement.close() 或 PreparedStatement.close() 这两个小工具把门关上,这样一来,我们就完成了数据库连接的开启和关闭啦。这种方式的好处就是超级灵活,就像你定制专属T恤一样,我们可以根据应用程序的独特需求,随心所欲地调整数据库连接的表现,让它更听话、更好使。缺点是工作量大,容易出错,而且无法充分利用数据库连接池的优势。 2. 自动管理 自动管理是指 MyBatis 在内部自动管理数据库连接的打开与关闭。这种方式的优点是可以避免手动管理数据库连接的繁琐工作,提高应用程序的性能。不过呢,这种方式有个小缺憾,就是不够灵活,咱们没法随心所欲地掌控数据库连接的具体表现。另外,想象一下这个场景哈,如果我们开发的小程序里,好几个线程兄弟同时挤进去访问数据库的话,就很可能碰上并发问题这个小麻烦。 三、MyBatis 的自动管理机制 为了实现自动管理,MyBatis 提供了一个名为“StatementExecutor”的类,它负责处理 SQL 查询请求。StatementExecutor 使用一个名为“PreparedStatementCache”的缓存来存储预编译的 SQL 查询语句。每当一个新的 SQL 查询请求到来时,StatementExecutor 就会在 PreparedStatementCache 中查找是否有一个匹配的预编译的 SQL 查询语句。如果有,就直接使用这个预编译的 SQL 查询语句来执行查询请求;如果没有,就先使用 JDBC API 来编译 SQL 查询语句,然后再执行查询请求。在这个过程中,StatementExecutor 将会自动打开和关闭数据库连接。当StatementExecutor辛辛苦苦执行完一个SQL查询请求后,它会像个聪明的小助手那样,主动判断一下是否有必要把这个SQL查询语句存放到PreparedStatementCache这个小仓库里。当SQL查询语句被执行的次数蹭蹭蹭地超过了某个限定值时,StatementExecutor这个小机灵鬼就会把SQL查询语句悄悄塞进PreparedStatementCache这个“备忘录”里头,这样一来,下次再遇到同样的查询需求,咱们就可以直接从“备忘录”里拿出来用,省时又省力。 四、总结 总的来说,MyBatis 是一个强大的持久层框架,它可以方便地管理数据库连接,提高应用程序的性能。然而,在使用 MyBatis 时,我们也需要注意一些问题。首先,我们应该合理使用数据库连接,避免长时间占用数据库连接。其次,我强烈建议大家伙尽可能多用 PreparedStatement 类型的 SQL 查询语句,为啥呢?因为它比 Statement 那种类型的 SQL 查询语句可安全多了。就像是给你的查询语句戴上了防护口罩,能有效防止SQL注入这类安全隐患,让数据处理更稳当、更保险。最后,我强烈推荐你们在处理预编译的 SQL 查询语句时,用上 PreparedStatementCache 这种缓存技术。为啥呢?因为它能超级有效地提升咱应用程序的运行速度和性能,让整个系统更加流畅、响应更快,就像给程序装上了涡轮增压器一样。
2023-01-11 12:49:37
99
冬日暖阳_t
转载文章
...分析和可视化各类日志数据,包括Windows事件日志,并通过Kusto查询语言实现复杂日志筛选和实时警报。 另外,随着GDPR等法规的实施,日志审计与合规性要求更加严格。《信息安全技术 网络安全等级保护基本要求》等相关标准强调了日志记录、留存和审查机制的必要性,对于企业来说,不仅需要优化日志筛选工具以提升效率,还应确保所有操作行为可追溯,符合法规要求。 同时,在DevOps实践中,日志聚合与智能分析平台如Splunk、Elasticsearch和Logstash(ELK Stack)等也在日志管理领域崭露头角,它们提供了强大的搜索过滤功能以及机器学习算法支持,能够帮助企业快速定位问题、预测潜在风险,并有效提高运维工作效率。 综上所述,日志筛选与分析不仅是IT运维的重要一环,也是当今网络安全与合规保障的关键手段。了解并掌握最新的日志处理技术和解决方案,有助于企业和组织在面对日益复杂的网络环境时,更好地维护信息系统的稳定性和安全性。
2023-11-12 11:51:46
152
转载
SeaTunnel
...unnel进行大规模数据处理的过程中,我们可能会遭遇一些官方文档未曾详尽列举的异常情况。这些异常就像是海洋中的暗礁,虽然在航行图上没有明确标识,但并不意味着它们不存在。这篇文章的目标呢,就是想和大伙儿一起头脑风暴下,面对这些神出鬼没的未知状况,咱们该咋整,同时啊,我也想趁机给大家伙分享些排查问题、解决问题的小妙招。 2. 遇见未知异常,从何入手? 当SeaTunnel运行时抛出一个未在官方文档中列出的异常信息,比如UnknownError: A sudden surge of data caused pipeline instability(这是一个假设的异常),我们首先要做的是保持冷静,然后按照以下步骤进行: java // 假设SeaTunnel任务配置简化版 Pipeline pipeline = new Pipeline(); pipeline.addSource(new FlinkKafkaSource(...)); pipeline.addTransform(new SomeTransform(...)); pipeline.addSink(new HdfsSink(...)); // 运行并捕获异常 try { SeaTunnelRunner.run(pipeline); } catch (Exception e) { System.out.println("Caught an unexpected error: " + e.getMessage()); // 记录日志、堆栈跟踪等详细信息用于后续分析 } 遇到异常后,首要的是记录下详细的错误信息和堆栈跟踪,这是排查问题的重要线索。 3. 深入挖掘异常背后的原因 - 资源监控:查看SeaTunnel运行期间的系统资源消耗(如CPU、内存、磁盘IO等),确认是否因资源不足导致异常。 - 日志分析:深入研究SeaTunnel生成的日志文件,寻找可能导致异常的行为或事件。 - 数据检查:检查输入数据源是否有异常数据或突发流量,例如上述虚构异常可能是由于数据突然激增造成的数据倾斜问题。 4. 实战演练 通过代码调整解决问题 假设我们发现异常是由数据倾斜引起,可以通过修改transform阶段的代码来尝试均衡数据分布: java class BalancedTransform extends BaseTransform<...> { @Override public DataStream<...> transform(DataStream<...> input) { // 添加数据均衡策略,例如Flink的Rescale操作 return input.rescale(); } } // 更新pipeline配置 pipeline.replaceTransform(oldTransform, new BalancedTransform(...)); 5. 总结与反思 每一次面对未列明的SeaTunnel异常,都是一次深入学习和理解其内部工作原理的机会。尽管具体的代码示例在此处未能给出,但这种解决思路和调试过程本身才是最宝贵的财富。在面对那些未知的挑战时,咱们得拿出实打实的严谨劲儿,就像侦探破案那样,用科学的办法一步步来。这就好比驾驶SeaTunnel这艘大数据处理的大船,在浩瀚的数据海洋里航行,咱得结合实际情况,逐个环节、逐个场景地细细排查问题,同时灵活应变,该调整代码逻辑的时候就大胆修改,配置参数也得拿捏得恰到好处。这样,咱们才能稳稳当当地驾驭好这艘大船,一路乘风破浪前进。 请记住,每个项目都有其独特性,处理异常的关键在于理解和掌握工具的工作原理,以及灵活应用调试技巧。嗯,刚才说的那些呢,其实就是一些通用的处理办法和思考套路,不过具体问题嘛,咱们还得接地气儿,根据实际项目的个性特点和需求来量体裁衣,进行对症下药的分析和解决才行。
2023-09-12 21:14:29
255
海阔天空
Apache Lucene
...我们能够高效地从海量数据中挖掘出有用的信息,而文本自动摘要则帮助我们快速把握文档的核心内容,两者结合,简直不要太酷! 2. Apache Lucene简介 走进全文检索的世界 首先,我们得了解一下Apache Lucene。这货是个用Java写的开源全文搜索神器,索引能力超强,搜东西快得飞起!Lucene的核心功能包括创建索引、存储索引以及执行复杂的查询等。简单来说,Lucene就是你进行全文检索时的超级助手。 代码示例: java // 创建索引目录 Directory directory = FSDirectory.open(Paths.get("/path/to/index")); // 创建索引写入器 IndexWriterConfig config = new IndexWriterConfig(new StandardAnalyzer()); IndexWriter indexWriter = new IndexWriter(directory, config); // 添加文档到索引 Document doc = new Document(); doc.add(new TextField("content", "这是文档的内容", Field.Store.YES)); indexWriter.addDocument(doc); indexWriter.close(); 这段代码展示了如何利用Lucene创建索引并添加文档的基本步骤。这里用了TextField来存文档内容,这样一来,搜索起来就灵活多了,想找啥就找啥。 3. 全文检索中的文本自动摘要 为什么我们需要它? 文本自动摘要是指通过算法自动生成文档摘要的过程。这不仅有助于提高阅读效率,还能有效节省时间。想象一下,如果你能在搜索引擎里输入关键词后,直接看到每篇文章的重点内容,那该有多爽啊!在Lucene里实现这个功能,就意味着我们能让信息的处理和展示变得更聪明、更贴心。 思考过程: 当我们处理大量文本时,手动编写摘要显然是不现实的。因此,开发一种自动化的方法就显得尤为重要了。这不仅仅是技术上的挑战,更是提升用户体验的关键所在。 4. 实现文本自动摘要 策略与技巧 实现文本自动摘要主要涉及两个方面:选择合适的摘要生成算法,以及如何将这些算法集成到Lucene中。 摘要生成算法: - TF-IDF:一种统计方法,用来评估一个词在一个文档或语料库中的重要程度。 - TextRank:基于PageRank算法的思想,用于提取文本中的关键句子。 代码示例(使用TextRank): java import com.huaban.analysis.jieba.JiebaSegmenter; import com.huaban.analysis.jieba.SegToken; public class TextRankSummary { private static final int MAX_SENTENCE = 5; // 最大句子数 public static String generateSummary(String text) { JiebaSegmenter segmenter = new JiebaSegmenter(); List segResult = segmenter.process(text, JiebaSegmenter.SegMode.INDEX); // 这里简化处理,实际应用中需要构建图结构并计算TextRank值 return "这是生成的摘要,简化处理..."; // 真实实现需根据具体算法调整 } } 注意:上述代码仅作为示例,实际应用中需要完整实现TextRank算法逻辑,并将其与Lucene的搜索结果结合。 5. 集成到Lucene 让摘要成为搜索的一部分 为了让摘要功能更加实用,我们需要将其整合到现有的搜索流程中。这就意味着每当用户搜东西的时候,除了给出相关的资料,还得给他们一个简单易懂的内容概要,这样他们才能更快知道这些资料是不是自己想要的。 代码示例: java public class LuceneSearchWithSummary { public static void main(String[] args) throws IOException { Directory directory = FSDirectory.open(Paths.get("/path/to/index")); IndexReader reader = DirectoryReader.open(directory); IndexSearcher searcher = new IndexSearcher(reader); QueryParser parser = new QueryParser("content", new StandardAnalyzer()); Query query = parser.parse("搜索关键词"); TopDocs topDocs = searcher.search(query, 10); for (ScoreDoc scoreDoc : topDocs.scoreDocs) { Document doc = searcher.doc(scoreDoc.doc); System.out.println("文档标题:" + doc.get("title")); System.out.println("文档内容摘要:" + TextRankSummary.generateSummary(doc.get("content"))); } reader.close(); directory.close(); } } 这段代码展示了如何在搜索结果中加入文本摘要的功能。每次搜索时,都会调用TextRankSummary.generateSummary()方法生成文档摘要,并显示给用户。 6. 结论 展望未来,无限可能 通过本文的学习,相信你已经掌握了在Lucene中实现全文检索文本自动摘要的基本思路和技术。当然,这只是开始,随着技术的发展,我们还有更多的可能性去探索。无论是优化算法性能,还是提升用户体验,都值得我们不断努力。让我们一起迎接这个充满机遇的时代吧! --- 希望这篇文章对你有所帮助,如果有任何问题或想了解更多细节,请随时联系我!
2024-11-13 16:23:47
87
夜色朦胧
转载文章
...y代理作为Istio数据平面的核心组件,其通过异步非阻塞模型以及智能的超时与重试机制,在保障性能的同时,有效避免了因第三方服务响应慢而导致的系统级雪崩效应。 此外,阿里巴巴集团在其内部大规模微服务实践中,也深入研究并优化了RPC框架Dubbo的超时控制机制,并结合Hystrix等开源库实现了服务降级和熔断功能,为高并发场景下的服务稳定性提供了有力保障。这些最新的技术动态和实践经验都为我们理解和优化微服务架构中的超时中断机制提供了宝贵的参考依据。 同时,对于分布式系统设计原则的探究也不能忽视,例如《微服务设计模式》一书中提出的“Circuit Breaker”(断路器模式),就详细阐述了如何利用超时中断等手段在系统出现故障时快速隔离问题服务,防止故障蔓延,确保整体系统的可用性。此类理论研究与实操经验相结合,有助于我们不断优化和完善微服务架构中的各类关键组件,以适应日趋复杂的业务需求和技术挑战。
2023-10-05 16:28:16
84
转载
转载文章
...安装 2.6 检查并启动 2.6.1 检查 2.6.2 启动 2.7 访问 2.8 设置开启自启动 总结 一、什么是离线安装? 使用离线安装包进行软件安装的方式就叫离线安装。 离线安装包又叫做完整安装包,包含所有的安装文件。与其相对的是在线安装,即在条件允许且网络良好的条件下采用网络安装的方式。在线安装方式的缺点是在不太好的网络状况下容易出现长时间等待或安装失败的情况,这种情况下只能进行离线安装。 二、安装步骤 1.安装nginx所需依赖 1.1 安装gcc和gcc-c++ 1.1.1 下载依赖包 gcc依赖下载镜像地址: 官网:https://gcc.gnu.org/releases.html 阿里云镜像站:http://mirrors.aliyun.com/centos/7/os/x86_64/Packages/ CentOS 镜像站点:https://vault.centos.org/7.5.1804/os/x86_64/Packages/ 只需下载如下依赖即可:cpp-4.8.5-44.el7.x86_64.rpmgcc-4.8.5-44.el7.x86_64.rpmglibc-devel-2.17-317.el7.x86_64.rpmglibc-headers-2.17-317.el7.x86_64.rpmkernel-headers-3.10.0-1160.el7.x86_64.rpmlibmpc-1.0.1-3.el7.x86_64.rpmmpfr-3.1.1-4.el7.x86_64.rpm----------------------------------------------gcc-c++-4.8.5-44.el7.x86_64.rpmlibstdc++-4.8.5-44.el7.x86_64.rpmlibstdc++-devel-4.8.5-44.el7.x86_64.rpm 1.1.2 上传依赖包 下载完成后,将依赖包上传到服务器,若权限不足不能上传,可以通过 sudo chmod -R 777 文件夹路径名命令增加权限 1.1.3 安装依赖 进入上传目录,输入rpm -Uvh .rpm --nodeps --forc命令进行批量安装,出现下图则说明安装成功 1.1.4 验证安装 使用gcc-v和g++ -v命令查看版本,若出现版本详情则说明离线安装成功,如下图示: 1.2 安装pcre 1.2.1 下载pcre 下载地址:http://www.pcre.org/ 1.2.2 上传解压安装包 将下载好的安装包上传到服务器,并解压,解压命令tar -xvf pcre-8.45.tar.gz 1.2.3 编译安装 进入解压目录,依次执行以下命令: ./configure make make install 1.3 下载安装zlib 1. 3.1 下载zlib 下载地址:http://www.zlib.net/ 1.3.2 上传解压安装包 将下载好的安装包上传到服务器,并解压 1.3.3 配置 进入解压目录输入 ./configure 1.3.4 编译安装 进入解压目录输入make && make install 1.4 下载安装openssl tips:检查是否已安装openssl,输入命令openssl version,若出现版本信息,则无需安装;若没有安装则继续安装 1.4.1 下载 地址:https://www.openssl.org/source/ 1.4.2 上传解压安装包 将下载好的安装包上传到服务器,并解压 1.4.3 配置 进入解压目录输入 ./configure 1.4.4 编译安装 进入解压目录输入 make && make install 1.4.5 验证 安装完成后,控制台输入openssl version,出现版本信息则说明安装成功 2. 下载安装nginx 2.1 下载nginx安装包 下载地址:https://nginx.org/en/download.html 2.2 上传解压安装包 将下载好的安装包上传到服务器,并解压 2.3 配置 进入解压目录进行配置安装地址:./configure --prefix=/home/develop/nginx 2.4 编译 make 2.5 安装 make install 2.6 检查并启动 2.6.1 检查 进入安装目录下的sbin文件夹,输入./nginx -t,如下图则说明安装成功: 2.6.2 启动 启动nginx,命令:./nginx 2.7 访问 浏览器访问nginx,前提是80端口可以访问 2.8 设置开启自启动 tips:此步骤为可选项 将nginx的sbin目录添加到rc.local文件中: 编辑rc.local文件 vim /etc/rc.local 在最后一行加入如下内容 /home/develop/nginx/sbin/nginx 总结 以上就是离线安装nginx的详细步骤,希望可以帮到有需要的小伙伴。 本篇文章为转载内容。原文链接:https://blog.csdn.net/Shiny_boy_/article/details/126965658。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-23 08:28:14
108
转载
Etcd
...cd那里悄悄抓取各种数据指标,比如节点健康状况、请求响应速度、存储空间的使用情况等等,然后麻利地把这些信息实时报告给Prometheus。这样一来,我们就有了第一手的数据资料,随时掌握系统的动态啦! yaml prometheus.yml 配置文件示例 global: scrape_interval: 15s scrape_configs: - job_name: 'etcd' static_configs: - targets: ['localhost:9101'] etcd-exporter监听端口 metrics_path: '/metrics' 同时,编写针对Etcd的Prometheus查询语句,可以让我们洞察集群性能: promql 查询过去5分钟内所有Etcd节点的平均写操作延迟 avg(etcd_request_duration_seconds_bucket{operation="set", le="+Inf"})[5m] 2. 内建诊断工具 etcdctl etcdctl 是官方提供的命令行工具,不仅可以用来与Etcd进行交互(如读写键值对),还内置了一系列诊断命令来排查问题。例如,查看成员列表、检查leader选举状态或执行一致性检查: bash 查看集群当前成员信息 etcdctl member list 检查Etcd的领导者状态 etcdctl endpoint status --write-out=table 执行一次快照以诊断数据完整性 etcdctl snapshot save /path/to/snapshot.db 此外,etcdctl debug 子命令提供了一组调试工具,比如dump.consistent-snap.db可以导出一致性的快照数据,便于进一步分析潜在问题。 3. 日志和跟踪 对于更深层次的问题定位,Etcd的日志输出是必不可少的资源。通过调整日志级别(如设置为debug模式),可以获得详细的内部处理流程。同时,结合分布式追踪系统如Jaeger,可以收集和可视化Etcd调用链路,理解跨节点间的通信延迟和错误来源。 bash 设置etcd日志级别为debug ETCD_DEBUG=true etcd --config-file=/etc/etcd/etcd.conf.yaml 4. 性能调优与压力测试 在了解了基本的监控和诊断手段后,我们还可以利用像etcd-bench这样的工具来进行压力测试,模拟大规模并发读写请求,评估Etcd在极限条件下的性能表现,并据此优化配置参数。 bash 使用etcd-bench进行基准测试 ./etcd-bench -endpoints=localhost:2379 -total=10000 -conns=100 -keys=100 在面对复杂的生产环境时,人类工程师的理解、思考和决策至关重要。用上这些监视和诊断神器,咱们就能化身大侦探,像剥洋葱那样层层深入,把躲藏在集群最旮旯的性能瓶颈和一致性问题给揪出来。这样一来,Etcd就能始终保持稳如磐石、靠谱无比的运行状态啦!记住了啊,老话说得好,“实践出真知”,想要彻底驯服Etcd这匹“分布式系统的千里马”,就得不断地去摸索、试验和改进。只有这样,才能让它在你的系统里跑得飞快,发挥出最大的效能,成为你最得力的助手。
2023-11-29 10:56:26
386
清风徐来
转载文章
...全球1.4亿余条专利数据,还可实现批量下载专利全文,大大提升了专利研究工作的效率。 同时,学术界也在探索更先进的自然语言处理(NLP)和计算机视觉(CV)技术在专利信息抽取和自动识别验证码方面的应用。例如,有研究人员利用深度学习模型对专利网站的验证码进行智能识别,并结合自动化脚本实现高效、无误的批量下载。这一进展预示着未来可能实现完全自动化的专利全文下载解决方案。 此外,针对专利数据的合法合规使用,国家知识产权局近期发布了新版《专利信息公共服务体系建设方案》,强调将加强专利数据开放共享和安全保障,鼓励社会各界充分利用专利信息资源,推动技术创新与产业发展。 综上所述,无论是从实际应用工具的更新迭代,还是前沿科技的研究突破,都显示了专利全文批量下载领域的快速发展与创新实践。对于广大需要频繁查阅和分析专利全文的专业人士来说,关注这些动态不仅能提升工作效率,还能更好地适应知识产权保护环境的变化,从而在各自的领域中取得竞争优势。
2023-11-21 12:55:28
275
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
du -sh *
- 显示当前目录下各文件及子目录所占用的空间大小(以人类可读格式)。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"