前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[缓存管理]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...: 请教mpi 任务管理器里发现有mpd进程,mpiconfig也能找到对方, 我们是在同一个宿舍,用hub相连,这在局域网内应该没问题了, 共享也是可读写的,盘符的格式是一样的,单机可以运行 mpirun -np 2 -localonly c:/ .exe 有结果 Zhihui Du <duzh@tsinghua.edu.cn> wrote: 安装mpich后应该有一个新的mpi进程在运行,用mpiconfig应该能够列出其他的机器才行, 还有这些计算结点的网络配置应该在一个子网内,另外共享的权限是否是任何用户可以读 写?你用mpirun -localonly -np x abc方式是否可以运行? ------------------------------ Dr. Zhihui Du Department of Computer Science and Technology Tsinghua University. Beijing, 100084, P.R. China Phone:86-10-62782530 Fax:86-10-62771138 http://hpclab.cs.tsinghua.edu.cn/~duzh ----- Original Message ----- From: zhyi To: Zhihui Du Sent: Saturday, October 30, 2004 5:55 PM Subject: Re: 请教mpi 我是严格按照mpich的要求进行的, 1。使用管理员权限在两机器上新建同一个名称的用户及相同的口令 2。分别在上面的两用户里安装mpich,然后mpiregister ,用户名和口令同 3。同一名称的盘符共享 4。mpiconfig,显示了对方的mpich 的版本号,说明已找到。 5。运行mpi程序 这样还是没有用,我们这边在windows系统下进行的很少有人成功过 我们都在网上问这个问题 Zhihui Du <duzh@tsinghua.edu.cn> wrote: 如果仅仅是自己做实验用,就可以不要考虑太多的安全问题,把MPI程序所在的盘共享出来 让其他的机器都可以访问,按照MPICH自己的设置,你可以运行MPIREGISTER程序先注册一 下用户名和口令。 ------------------------------ Dr. Zhihui Du Department of Computer Science and Technology Tsinghua University. Beijing, 100084, P.R. China Phone:86-10-62782530 Fax:86-10-62771138 http://hpclab.cs.tsinghua.edu.cn/~duzh ----- Original Message ----- From: zhyi To: duzh@tirc.cs.tsinghua.edu.cn Sent: Friday, October 29, 2004 9:26 PM Subject: 请教mpi 都老师: 你好! 我是南京大学系学生,现在正在用mpi进行数值并行编程, 是在windows系统下,同实验室的两台机器,总是显示登陆失败 不知怎么设置的。两台机器用的是同一用户名和相同密码,同样的注册。 希望能得到您的指点。 此致 -- ※ 来源:.南京大学小百合站 http://bbs.nju.edu.cn [FROM: 172.16.78.68] -- ※ 转寄:.南京大学小百合站 bbs.nju.edu.cn.[FROM: 202.120.20.14] -- ※ 转寄:.南京大学小百合站 bbs.nju.edu.cn.[FROM: 202.120.20.14] 一、预备工作 0. 二、下载 1. 下载mpich 三、安装 2. 用具有管理权限的帐户登陆计算机 3. 执行mpich.nt.1.2.5.exe,选择所有缺省安装 4. 在每台计算机上均执行上述过程2、3 四、配置 5. 运行配置工具 start->programs->MPICH->mpd->MPICH Configuration tool 6. 加入已经安装mpich的主机 7.点击 [Apply] 保存 8 点击 [OK] 退出 五、测试 9. 打开MSDEV工作空间文件 MPICH/SDK/examples/nt/examples.dsw 10. 编译调试该cpi 项目 11. 拷贝MPICH/SDK/examples/nt/basic/Debug/cpi.exe 到每一台机器某一共享目录。 如: c:/temp/cpi.exe 注意:确保每台机器均有同样的共享目录,并且可以互相访问!! 12. 打开命令窗口,改变当前路径到 c:/temp 下(与前相同) 13. 执行命令 MPICH/mpd/bin/mpirun.exe -np 4 cpi 本篇文章为转载内容。原文链接:https://blog.csdn.net/yangdelong/article/details/3946113。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-09 11:52:38
113
转载
Go-Spring
...因素 1. 知识产权管理:明确开源软件的使用和贡献规则,保护自身权益的同时,尊重和遵守开源社区的规范。 2. 人才培养与激励:培养具备开源文化意识和技术能力的人才,通过项目贡献、社区活动等方式激励开发者积极参与开源项目。 3. 风险评估与管理:在采用开源软件前进行全面的风险评估,包括代码质量、安全漏洞、许可证合规性等方面,确保其符合组织的安全策略和法律法规要求。 4. 持续参与与贡献:积极参与开源社区,不仅使用开源软件,更要贡献自己的代码和知识,促进开源生态的健康发展。 拥抱开源软件不仅是技术层面的选择,更是推动创新、促进知识共享与合作的行动。面对未来的挑战与机遇,企业和个人开发者应积极适应这一趋势,充分利用开源资源,共同构建更加开放、协作的科技生态系统。
2024-07-31 16:06:44
277
月下独酌
.net
...说就是把对象的创建和管理工作“外包”给一个外部的“容器”,这样就能让代码之间的关系变得松散一些,彼此不那么死板地绑在一起,开发起来也更灵活方便。这样做简直太棒了!代码变得超级清晰,就像一条干净整洁的小路,谁走都明白;维护起来也轻松多了,像是收拾一个不大的房间,根本不用费劲找东西;而且还能轻松做单元测试,就像给每个小零件单独体检一样简单! 但是,依赖注入也不是万能的。如果我们配置不对,那就会出大问题。今天我们就来聊聊这个话题——DI容器配置错误。 --- 2. 配置错误 从一个小例子说起 先来看一个简单的例子: csharp public interface IService { void DoWork(); } public class Service : IService { public void DoWork() { Console.WriteLine("Doing work..."); } } 假设我们有一个Service类实现了IService接口,现在我们需要在程序中使用这个服务。按照传统的做法,可能会直接在类内部实例化: csharp public class Worker { private readonly IService _service = new Service(); public void Execute() { _service.DoWork(); } } 这种方式看起来没什么问题,但实际上隐藏着巨大的隐患。比如,如果你需要替换Service为其他实现(比如MockService),你就得修改Worker类的代码。这违背了开闭原则。 于是,我们引入了依赖注入框架,比如Microsoft的Microsoft.Extensions.DependencyInjection。让我们看看如何正确配置。 --- 3. 正确配置 DI容器的正确姿势 首先,你需要注册服务。比如,在Program.cs文件中: csharp using Microsoft.Extensions.DependencyInjection; var services = new ServiceCollection(); services.AddTransient(); var serviceProvider = services.BuildServiceProvider(); 这里的关键点在于Transient这个词。它表示每次请求时都会生成一个新的实例。对了,还有别的选择呢,比如说 Scoped——在一个作用域里大家用同一个实例,挺节省资源的;再比如 Singleton——在整个应用跑着的时候大家都用一个“独苗”实例,从头到尾都不换。选择合适的生命周期很重要,否则可能会导致意想不到的行为。 接下来,我们可以通过依赖注入获取实例: csharp public class Worker { private readonly IService _service; public Worker(IService service) { _service = service; } public void Execute() { _service.DoWork(); } } 在这个例子中,Worker类不再负责创建IService的实例,而是由DI容器提供。这种解耦的方式让代码更加灵活。 --- 4. 配置错误 常见的坑 然而,现实总是比理想复杂得多。以下是一些常见的DI配置错误,以及它们可能带来的后果。 4.1 注册类型时搞错了 有时候我们会不小心把类型注册错了。比如: csharp services.AddTransient(); // 想注册MockService,却写成了Service 结果就是,无论你在代码中怎么尝试,拿到的永远是Service而不是MockService。其实这个坑挺容易被忽略的,毕竟编译器又不报错,一切都看起来风平浪静,直到程序跑起来的时候,问题才突然冒出来,啪叽一下给你整一个大 surprise! 我的建议是,尽量使用常量或者枚举来定义服务名称,这样可以减少拼写错误的风险: csharp public static class ServiceNames { public const string MockService = "MockService"; public const string RealService = "RealService"; } services.AddTransient(ServiceNames.MockService, typeof(MockService)); 4.2 生命周期设置不当 另一个常见的问题是生命周期设置错误。比如说,你要是想弄个单例服务,结果不小心把它设成了 Transient,那每次调用的时候都会新生成一个实例。这就好比你本来想让一个人负责一件事,结果每次都换个人来干,不仅效率低得让人崩溃,搞不好还会出大乱子呢! csharp // 错误示范 services.AddTransient(); // 正确示范 services.AddSingleton(); 记住,单例模式适用于那些无状态或者状态不重要的场景。嘿,想象一下,你正在用一个数据库连接池这种“有状态”的服务,要是把它搞成单例模式,那可就热闹了——多个线程或者任务同时去抢着用它,结果就是互相踩脚、搞砸事情,什么竞争条件啦、数据混乱啦,各种麻烦接踵而至。就好比大家伙儿都盯着同一个饼干罐子,都想伸手拿饼干,但谁也没个规矩,结果不是抢得太猛把罐子摔了,就是谁都拿不痛快。所以啊,这种情况下,还是别让单例当这个“独裁者”了,分清楚责任才靠谱! 4.3 忘记注册依赖 有时候,我们可能会忘记注册某些依赖项。比如: csharp public class SomeClass { private readonly IAnotherService _anotherService; public SomeClass(IAnotherService anotherService) { _anotherService = anotherService; } } 如果IAnotherService没有被注册到DI容器中,那么在运行时就会抛出异常。为了避免这种情况,你可以使用AddScoped或AddTransient来确保所有依赖都被正确注册。 --- 5. 探讨与总结 通过今天的讨论,我们可以看到,虽然依赖注入能够极大地提高代码的质量和可维护性,但它并不是万能的。设置搞错了,那可就麻烦大了,小到一个单词拼错了,大到程序跑偏、东西乱套,什么幺蛾子都可能出现。 我的建议是,在使用DI框架时要多花时间去理解和实践。不要害怕犯错,因为正是这些错误教会了我们如何更好地编写代码。同时,也要学会利用工具和日志来帮助自己排查问题。 最后,我想说的是,编程不仅仅是解决问题的过程,更是一个不断学习和成长的过程。希望大家能够在实践中找到乐趣,享受每一次成功的喜悦! 好了,今天的分享就到这里啦,如果你有任何疑问或者想法,欢迎随时留言交流哦!😄
2025-05-07 15:53:50
37
夜色朦胧
转载文章
...进行分布式文件存储与管理,极大地提高了系统的稳定性和可扩展性。 同时,针对安全性问题,Spring Security框架提供了更严格的CSRF保护和JWT token验证等机制,确保用户在执行敏感操作(如文件上传与下载)时的身份合法性。此外,OAuth 2.0授权协议在企业级应用中的普及,使得跨系统、跨平台的用户身份验证与授权更为便捷且安全。 另外,随着前端技术的发展,诸如React、Vue.js等现代前端框架也实现了对文件上传组件的高度封装,配合后端API能够提供无缝的用户体验。例如,通过axios库在前端发起multipart/form-data类型的POST请求,配合后端的RESTful API完成文件上传过程,而后再通过响应式编程实现文件上传状态的实时反馈。 综上所述,随着技术的演进,无论是后端框架还是前端技术,都在不断提升文件上传下载功能的安全性、易用性和性能表现。在实际项目开发中,除了掌握基础的文件处理方法外,还需关注行业前沿趋势,灵活运用新技术手段以满足不断变化的业务需求。
2023-11-12 20:53:42
140
转载
转载文章
...继承默认的限制。集群管理员可以使用这个文档 LimitRange来配置默认的内存限制。 内存申请和限制的原因 通过配置容器的内存申请和限制,你可以更加有效充分的使用集群里内存资源。配置较少的内存申请, 可以让Pod跟任意被调度。设置超过内存申请的限制,可以达到以下效果: Pod可以在负载高峰时更加充分利用内存。 可以将Pod的内存使用限制在比较合理的范围。 清理 删除命名空间,这会顺便删除命名空间里的Pod。 kubectl delete namespace mem-example 译者:NickSu86 原文链接 本篇文章为转载内容。原文链接:https://blog.csdn.net/Aria_Miazzy/article/details/99694937。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-23 12:14:07
494
转载
Beego
...的开发者开始关注配置管理的最佳实践。在这一背景下,Beego 框架的配置文件解析问题虽然看似基础,却依然具有重要意义。实际上,类似的问题不仅限于 Beego,而是广泛存在于各种框架和工具中。例如,Spring Boot 社区最近也发布了一篇博客,探讨了如何优化配置文件的加载机制,以应对大规模分布式系统的挑战。这表明,随着技术的发展,配置管理正变得越来越复杂,同时也更加关键。 从现实案例来看,某知名电商企业在一次系统升级过程中,由于配置文件格式错误导致服务中断长达数小时。事后调查发现,问题的根本原因并非技术难度,而是团队缺乏对配置管理的重视。这一事件引发了行业内对于配置文件规范化管理的反思。一些专家指出,现代开发团队应当建立完善的 CI/CD 流程,将配置文件的检查纳入自动化测试环节,从而最大限度地减少人为失误。 此外,近年来 DevOps 思维的兴起也为配置管理带来了新的视角。传统的配置管理往往被视为运维人员的职责,但在 DevOps 文化中,开发与运维之间的界限逐渐模糊。这意味着开发者也需要具备一定的配置管理知识,以便更好地支持持续交付流程。例如,GitHub Actions 等工具集成了丰富的配置模板,帮助开发者快速搭建自动化工作流。这种趋势不仅提升了效率,还促进了跨部门协作。 回到 Beego 框架本身,其核心开发者也在积极迭代版本,引入更多智能化特性。例如,新版 Beego 支持基于环境变量的动态配置加载,允许用户在不同环境中灵活切换设置。这一改进既体现了技术的进步,也反映了社区对用户体验的关注。未来,随着 Go 语言生态的不断完善,配置管理工具可能会进一步集成到语言标准库中,形成更加统一的解决方案。 综上所述,无论是从技术趋势还是实际应用的角度看,配置文件管理始终是软件工程中的重要一环。希望本文能够激发读者对这一领域的兴趣,并鼓励大家在日常工作中投入更多精力去优化配置流程。毕竟,正如一句古话所言:“千里之堤,溃于蚁穴”,细微之处往往决定成败。
2025-04-13 15:33:12
24
桃李春风一杯酒
Apache Lucene
...1. 性能优化与资源管理:通过算法优化和硬件加速技术,进一步提高处理速度和资源利用率,满足大流量、高并发场景的需求。 2. 集成AI与机器学习:引入深度学习、自然语言处理等AI技术,增强检索系统的智能性和个性化推荐能力。 3. 跨语言与多模态搜索:随着全球化的进程加快,支持更多语言的处理和多模态(文本、图像、语音等)搜索将成为重要发展方向。 4. 隐私保护与安全:在数据安全和个人隐私日益受到重视的背景下,开发基于差分隐私、同态加密等技术的检索系统,保障用户数据的安全性。 结语 Apache Lucene作为一款成熟且仍在不断演进的全文检索库,在现代搜索引擎架构中发挥着不可或缺的作用。面对未来的挑战,它不仅需要持续优化现有功能,还需不断创新,以适应不断变化的市场需求和技术发展趋势。通过融合前沿技术,Apache Lucene有望在未来的信息检索领域中继续引领创新,为用户提供更高效、更智能、更安全的搜索体验。 --- 这篇“延伸阅读”旨在讨论Apache Lucene在当前及未来可能面临的技术挑战与发展方向,强调其在现代搜索引擎架构中的核心地位,并提出可能的解决方案和展望。通过深入分析当前应用优势、面临的挑战及未来发展趋势,为读者提供了一个全面而前瞻性的视角。
2024-07-25 00:52:37
391
青山绿水
Hadoop
...统Hadoop集群的管理模式。越来越多的企业开始尝试将Hadoop与Kubernetes结合,通过容器化部署来简化运维工作,提高资源利用率。 此外,隐私保护法规的变化也为Hadoop的应用带来了新挑战。随着《个人信息保护法》等法律法规在全球范围内的实施,企业在处理敏感数据时必须更加谨慎。在这种背景下,如何在保证数据安全的同时实现高效的大数据分析成为了一个亟待解决的问题。一些公司正在探索使用加密技术和联邦学习等方法,以确保数据在传输和处理过程中不被泄露。 另一方面,尽管Hadoop本身仍在持续迭代更新,但社区的关注点已经开始向边缘计算转移。边缘计算能够有效缓解中心化数据中心的压力,特别是在物联网设备数量激增的情况下。通过在靠近数据源的地方进行预处理,不仅可以降低延迟,还能减少带宽消耗。这为Hadoop未来的发展指明了一条新的路径。 总之,虽然Hadoop面临诸多挑战,但凭借其成熟的技术体系和广泛的应用基础,它仍然是许多企业和组织不可或缺的选择。未来,Hadoop可能会与其他新兴技术深度融合,共同推动大数据产业的进步。
2025-03-26 16:15:40
97
冬日暖阳
NodeJS
...ode.js 的健康管理应用,用户可以通过佩戴智能手环等设备,将心率、血压等生理指标实时上传至云端,医生则可随时随地查看患者的健康状况并提供个性化建议。这一创新模式不仅改善了医疗服务的可及性,也为慢性病管理带来了新的可能性。 值得注意的是,随着《个人信息保护法》等相关法律法规的出台,企业在开发此类实时监控系统时必须格外注意数据安全与隐私保护。一方面,企业需要严格遵守数据收集、存储和传输的相关规定;另一方面,还需加强技术手段,如加密通信、匿名化处理等,以防止敏感信息泄露。正如某网络安全专家所言:“技术本身没有善恶之分,关键在于如何正确使用。”因此,在追求技术创新的同时,企业应当始终将合规性和安全性放在首位,确保技术进步真正造福于社会。 总之,Node.js 和 WebSocket 技术的应用前景十分广阔,但同时也面临着诸多挑战。只有不断探索新技术、新方法,同时坚守法律底线和社会责任,才能让这一技术更好地服务于各行各业的发展需求。
2025-05-06 16:24:48
68
清风徐来
转载文章
...对NTP服务器的安全管理,以防止恶意攻击者通过篡改ntp服务来影响系统时间进而发动攻击。最近的一项案例显示,某大型企业因为未妥善配置NTP服务,导致其内部网络出现了严重的时间偏差,引发了数据同步混乱和安全隐患。 综上所述,时间同步技术不仅关乎计算机系统的正常运行,也对新兴技术的发展及网络安全防护起着至关重要的作用。无论是从技术研发前沿还是日常运维实践,深入理解并正确运用NTP及其他高精度时间同步协议都是不可或缺的一环。
2023-03-01 12:56:47
112
转载
转载文章
...: C++指针的内存管理相信是大部分C++入门程序员的梦魇,受到Boost的启发,C++11标准推出了智能指针,让我们从指针的内存管理中释放出来,几乎消灭所有new和delete。既然智能指针如此强大,今天我们来一窥智能指针的原理以及在多线程操作中需要注意的细节。 智能指针的由来 在远古时代,C++发明了指针这把双刃剑,既可以让程序员精确地控制堆上每一块内存,也让程序更容易发生crash,大大增加了使用指针的技术门槛。因此,从C++98开始便推出了auto_ptr,对裸指针进行封装,让程序员无需手动释放指针指向的内存区域,在auto_ptr生命周期结束时自动释放,然而,由于auto_ptr在转移指针所有权后会产生野指针,导致程序运行时crash,如下面示例代码所示: auto_ptr<int> p1(new int(10));auto_ptr<int> p2 = p1; //转移控制权p1 += 10; //crash,p1为空指针,可以用p1->get判空做保护 因此在C++11又推出了unique_ptr、shared_ptr、weak_ptr三种智能指针,慢慢取代auto_ptr。 unique_ptr的使用 unique_ptr是auto_ptr的继承者,对于同一块内存只能有一个持有者,而unique_ptr和auto_ptr唯一区别就是unique_ptr不允许赋值操作,也就是不能放在等号的右边(函数的参数和返回值例外),这一定程度避免了一些误操作导致指针所有权转移,然而,unique_str依然有提供所有权转移的方法move,调用move后,原unique_ptr就会失效,再用其访问裸指针也会发生和auto_ptr相似的crash,如下面示例代码,所以,即使使用了unique_ptr,也要慎重使用move方法,防止指针所有权被转移。 unique_ptr<int> up(new int(5));//auto up2 = up; // 编译错误auto up2 = move(up);cout << up << endl; //crash,up已经失效,无法访问其裸指针 除了上述用法,unique_ptr还支持创建动态数组。在C++中,创建数组有很多方法,如下所示: // 静态数组,在编译时决定了数组大小int arr[10];// 通过指针创建在堆上的数组,可在运行时动态指定数组大小,但需要手动释放内存int arr = new int[10];// 通过std::vector容器创建动态数组,无需手动释放数组内存vector<int> arr(10);// 通过unique_ptr创建动态数组,也无需手动释放数组内存,比vector更轻量化unique_ptr<int[]> arr(new int[10]); 这里需要注意的是,不管vector还是unique_ptr,虽然可以帮我们自动释放数组内存,但如果数组的元素是复杂数据类型时,我们还需要在其析构函数中正确释放内存。 真正的智能指针:shared_ptr auto_ptr和unique_ptr都有或多或少的缺陷,因此C++11还推出了shared_ptr,这也是目前工程内使用最多最广泛的智能指针,他使用引用计数(感觉有参考Objective-C的嫌疑),实现对同一块内存可以有多个引用,在最后一个引用被释放时,指向的内存才释放,这也是和unique_ptr最大的区别。 另外,使用shared_ptr过程中有几点需要注意: 构造shared_ptr的方法,如下示例代码所示,我们尽量使用shared_ptr构造函数或者make_shared的方式创建shared_ptr,禁止使用裸指针赋值的方式,这样会shared_ptr难于管理指针的生命周期。 // 使用裸指针赋值构造,不推荐,裸指针被释放后,shared_ptr就野了,不能完全控制裸指针的生命周期,失去了智能指针价值int p = new int(10);shared_ptr<int>sp = p;delete p; // sp将成为野指针,使用sp将crash// 将裸指针作为匿名指针传入构造函数,一般做法,让shared_ptr接管裸指针的生命周期,更安全shared_ptr<int>sp1(new int(10));// 使用make_shared,推荐做法,更符合工厂模式,可以连代码中的所有new,更高效;方法的参数是用来初始化模板类shared_ptr<int>sp2 = make_shared<int>(10); 禁止使用指向shared_ptr的裸指针,也就是智能指针的指针,这听起来就很奇怪,但开发中我们还需要注意,使用shared_ptr的指针指向一个shared_ptr时,引用计数并不会加一,操作shared_ptr的指针很容易就发生野指针异常。 shared_ptr<int>sp = make_shared<int>(10);cout << sp.use_count() << endl; //输出1shared_ptr<int> sp1 = &sp;cout << (sp1).use_count() << endl; //输出依然是1(sp1).reset(); //sp成为野指针cout << sp << endl; //crash 使用shared_ptr创建动态数组,在介绍unique_ptr时我们就讲过创建动态数组,而shared_ptr同样可以做到,不过稍微复杂一点,如下代码所示,除了要显示指定析构方法外(因为默认是T的析构函数,不是T[]),另外对外的数据类型依然是shared_ptr<T>,非常有迷惑性,看不出来是数组,最后不能直接使用下标读写数组,要先get()获取裸指针才可以使用下标。所以,不推荐使用shared_ptr来创建动态数组,尽量使用unique_ptr,这可是unique_ptr为数不多的优势了。 template <typename T>shared_ptr<T> make_shared_array(size_t size) {return shared_ptr<T>(new T[size], default_delete<T[]>());}shared_ptr<int>sp = make_shared_array(10); //看上去是shared<int>类型,实际上是数组sp.get()[0] = 100; //不能直接使用下标读写数组元素,需要通过get()方法获取裸指针后再操作 用shared_ptr实现多态,在我们使用裸指针时,实现多态就免不了定义虚函数,那么用shared_ptr时也不例外,不过有一处是可以省下的,就是析构函数我们不需要定义为虚函数了,如下面代码所示: class A {public:~A() {cout << "dealloc A" << endl;} };class B : public A {public:~B() {cout << "dealloc B" << endl;} };int main(int argc, const char argv[]) {A a = new B();delete a; //只打印dealloc Ashared_ptr<A>spa = make_shared<B>(); //析构spa是会先打印dealloc B,再打印dealloc Areturn 0;} 循环引用,笔者最先接触引用计数的语言就是Objective-C,而OC中最常出现的内存问题就是循环引用,如下面代码所示,A中引用B,B中引用A,spa和spb的强引用计数永远大于等于1,所以直到程序退出前都不会被退出,这种情况有时候在正常的业务逻辑中是不可避免的,而解决循环引用的方法最有效就是改用weak_ptr,具体可见下一章。 class A {public:shared_ptr<B> b;};class B {public:shared_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb;spb->a = spa;return 0;} //main函数退出后,spa和spb强引用计数依然为1,无法释放 刚柔并济:weak_ptr 正如上一章提到,使用shared_ptr过程中有可能会出现循环引用,关键原因是使用shared_ptr引用一个指针时会导致强引用计数+1,从此该指针的生命周期就会取决于该shared_ptr的生命周期,然而,有些情况我们一个类A里面只是想引用一下另外一个类B的对象,类B对象的创建不在类A,因此类A也无需管理类B对象的释放,这个时候weak_ptr就应运而生了,使用shared_ptr赋值给一个weak_ptr不会增加强引用计数(strong_count),取而代之的是增加一个弱引用计数(weak_count),而弱引用计数不会影响到指针的生命周期,这就解开了循环引用,上一章最后的代码使用weak_ptr可改造为如下代码。 class A {public:shared_ptr<B> b;};class B {public:weak_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb; //spb强引用计数为2,弱引用计数为1spb->a = spa; //spa强引用计数为1,弱引用计数为2return 0;} //main函数退出后,spa先释放,spb再释放,循环解开了使用weak_ptr也有需要注意的点,因为既然weak_ptr不负责裸指针的生命周期,那么weak_ptr也无法直接操作裸指针,我们需要先转化为shared_ptr,这就和OC的Strong-Weak Dance有点像了,具体操作如下:shared_ptr<int> spa = make_shared<int>(10);weak_ptr<int> spb = spa; //weak_ptr无法直接使用裸指针创建if (!spb.expired()) { //weak_ptr最好判断是否过期,使用expired或use_count方法,前者更快spb.lock() += 10; //调用weak_ptr转化为shared_ptr后再操作裸指针}cout << spa << endl; //20 智能指针原理 看到这里,智能指针的用法基本介绍完了,后面笔者来粗浅地分析一下为什么智能指针可以有效帮我们管理裸指针的生命周期。 使用栈对象管理堆对象 在C++中,内存会分为三部分,堆、栈和静态存储区,静态存储区会存放全局变量和静态变量,在程序加载时就初始化,而堆是由程序员自行分配,自行释放的,例如我们使用裸指针分配的内存;而最后栈是系统帮我们分配的,所以也会帮我们自动回收。因此,智能指针就是利用这一性质,通过一个栈上的对象(shared_ptr或unique_ptr)来管理一个堆上的对象(裸指针),在shared_ptr或unique_ptr的析构函数中判断当前裸指针的引用计数情况来决定是否释放裸指针。 shared_ptr引用计数的原理 一开始笔者以为引用计数是放在shared_ptr这个模板类中,但是细想了一下,如果这样将shared_ptr赋值给另一个shared_ptr时,是怎么做到两个shared_ptr的引用计数同时加1呢,让等号两边的shared_ptr中的引用计数同时加1?不对,如果还有第二个shared_ptr再赋值给第三个shared_ptr那怎么办呢?或许通过下面的类图便清楚个中奥秘。 [ boost中shared_ptr与weak_ptr类图 ] 我们重点关注shared_ptr<T>的类图,它就是我们可以直接操作的类,这里面包含裸指针T,还有一个shared_count的对象,而shared_count对象还不是最终的引用计数,它只是包含了一个指向sp_counted_base的指针,这应该就是真正存放引用计数的地方,包括强应用计数和弱引用计数,而且shared_count中包含的是sp_counted_base的指针,不是对象,这也就意味着假如shared_ptr<T> a = b,那么a和b底层pi_指针指向的是同一个sp_counted_base对象,这就很容易做到多个shared_ptr的引用计数永远保持一致了。 多线程安全 本章所说的线程安全有两种情况: 多个线程操作多个不同的shared_ptr对象 C++11中声明了shared_ptr的计数操作具有原子性,不管是赋值导致计数增加还是释放导致计数减少,都是原子性的,这个可以参考sp_counted_base的源码,因此,基于这个特性,假如有多个shared_ptr共同管理一个裸指针,那么多个线程分别通过不同的shared_ptr进行操作是线程安全的。 多个线程操作同一个shared_ptr对象 同样的道理,既然C++11只负责sp_counted_base的原子性,那么shared_ptr本身就没有保证线程安全了,加入两个线程同时访问同一个shared_ptr对象,一个进行释放(reset),另一个读取裸指针的值,那么最后的结果就不确定了,很有可能发生野指针访问crash。 作者:腾讯技术工程 https://mp.weixin.qq.com/s?__biz=MjM5ODYwMjI2MA==&mid=2649743462&idx=1&sn=c9d94ddc25449c6a0052dc48392a33c2&utm_source=tuicool&utm_medium=referralmp.weixin.qq.com 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_31467557/article/details/113049179。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-24 18:25:46
141
转载
Netty
...2 零拷贝技术与内存管理 接下来,咱们聊聊另一个关键点:零拷贝技术与内存管理。 在高并发场景下,频繁的数据传输会导致内存占用飙升,进而引发GC(垃圾回收)风暴。Netty通过零拷贝技术很好地解决了这个问题。简单说呢,零拷贝技术就像是给数据开了一条“直达通道”,不用再把数据倒来倒去地复制一遍,就能让它直接从这儿跑到那儿。 举个例子,假设我们要将文件内容发送给远程客户端,传统的做法是先将文件读取到内存中,然后再逐字节写入Socket输出流。这样不仅效率低下,还会浪费大量内存资源。Netty 这家伙可聪明了,它能用 FileRegion 类直接把文件塞进 Socket 通道里,这样就省得在内存里来回倒腾数据啦,效率蹭蹭往上涨! java // 使用FileRegion发送文件 FileInputStream fileInputStream = new FileInputStream(new File("data.txt")); FileRegion region = new DefaultFileRegion(fileInputStream.getChannel(), 0, fileSize); channel.writeAndFlush(region); 在这段代码中,我们利用DefaultFileRegion将文件内容直接传递给了Netty的通道,大大提升了传输效率。 --- 3.3 长连接复用与心跳检测 第三个重要的机制是长连接复用与心跳检测。 在高并发环境下,频繁创建和销毁TCP连接的成本是非常高的。所以啊,Netty这个家伙超级聪明,它能让一个TCP连接反复用,不用每次都重新建立新的连接。这就像是你跟朋友煲电话粥,不用每次说完一句话就挂断重拨,直接接着聊就行啦,省心又省资源! 与此同时,为了防止连接因为长时间闲置而失效,Netty还引入了心跳检测机制。简单说吧,就像你隔一会儿给对方发个“我还在线”的消息,就为了确认你们的联系没断就行啦! java // 设置心跳检测参数 Bootstrap bootstrap = new Bootstrap(); bootstrap.option(ChannelOption.SO_KEEPALIVE, true); // 开启TCP保活功能 bootstrap.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 5000); // 设置连接超时时间 在这里,我们通过设置SO_KEEPALIVE选项开启了TCP保活功能,并设置了最长的连接等待时间为5秒。这样一来,即使网络出现短暂中断,Netty也会自动尝试恢复连接。 --- 3.4 数据缓冲与批量处理 最后一个要点是数据缓冲与批量处理。 在网络通信过程中,数据的大小和频率往往不可控。要是每次传来的数据都一点点的,那老是去处理这些小碎数据,就会多花不少功夫啦。Netty通过内置的缓冲区(Buffer)解决了这个问题。 例如,我们可以使用ByteBuf来存储和处理接收到的数据。ByteBuf就像是内存管理界的“万金油”,不仅能够灵活地伸缩大小,还能轻松应对各种编码需求,简直是程序员手里的瑞士军刀! java // 创建一个ByteBuf实例 ByteBuf buffer = Unpooled.buffer(1024); buffer.writeBytes(data); // 处理数据 while (buffer.readableBytes() > 0) { byte b = buffer.readByte(); process(b); } 在这段代码中,我们首先创建了一个容量为1024字节的缓冲区,然后将接收到的数据写入其中。接着,我们通过循环逐个读取并处理缓冲区中的数据。这种方式不仅可以提高处理效率,还能更好地应对突发流量。 --- 四、总结与展望 好了,朋友们,今天的分享就到这里啦!通过上面的内容,相信大家对Netty的故障恢复机制有了更深的理解。不管是应对各种意外情况的异常处理,还是能让数据传输更高效的零拷贝技术,又或者是能重复利用长连接和设置数据缓冲这些招数,Netty可真是个实力派选手啊! 不过,技术的世界永远没有尽头。Netty虽然已经足够优秀,但在某些特殊场景下仍可能存在局限性。未来的日子啊,我超级期待能看到更多的小伙伴,在Netty的基础上大展身手,把自己的系统捯饬得既聪明又靠谱,简直就像给它装了个“智慧大脑”一样! 最后,我想说的是,技术的学习是一个不断探索的过程。希望大家能在实践中积累经验,在挑战中成长进步。如果你有任何疑问或者想法,欢迎随时留言交流哦! 祝大家都能写出又快又稳的代码,一起迈向技术巅峰吧!😎
2025-03-19 16:22:40
79
红尘漫步
转载文章
...etes集群更便捷的管理支持,并增强了对macOS Monterey和Windows 11操作系统的兼容性。 此外,随着容器安全问题受到越来越多的关注,Docker也正在强化其安全特性。2022年,Docker宣布将与Snyk等安全工具进行深度集成,以实现容器镜像漏洞扫描及修复的一体化流程。同时,业界也在探索零信任安全模型如何应用于容器领域,以确保容器在整个生命周期内的安全性。 另一方面,考虑到容器编排的重要性,Kubernetes作为主流的容器编排平台,其与Docker的协同使用愈发紧密。通过学习官方文档或社区教程,用户可以深入了解如何利用Docker构建并推送镜像至私有仓库,再由Kubernetes调度器拉取这些镜像以部署复杂的应用服务网格。 综上所述,掌握Docker不仅是了解基础容器技术的关键,而且还需要关注其最新发展动态和技术生态演进,例如新版本特性、安全增强措施以及与Kubernetes等生态系统组件的深度融合。对于希望进一步提升DevOps能力的专业人士来说,持续跟进Docker相关领域的前沿研究与实践案例,无疑能为自身技术栈的丰富与完善提供强大支撑。
2023-11-26 15:47:20
538
转载
Mahout
...的数据,实现智能资产管理、个性化金融服务等创新应用。同时,随着法律法规的完善和技术标准的统一,实时光流分析与AI在金融行业的应用将更加规范和成熟,为金融市场的健康发展提供坚实的技术支撑。 实时光流分析与AI在金融领域的深度融合,正引领着金融科技创新的新潮流,不仅推动了金融行业的数字化转型,也为全球经济的可持续发展注入了新的活力。随着技术的不断进步与应用场景的不断拓展,这一领域的发展前景无疑充满了无限可能。
2024-09-06 16:26:39
59
月影清风
Docker
...el,还有哪些服务器管理工具推荐? 1. 为什么我们需要服务器管理工具? 嗨,朋友们!最近我在折腾服务器的时候,突然意识到一个问题——管理服务器真的太麻烦了!尤其是当你需要部署各种服务、配置环境、监控性能时,简直就像在玩拼图游戏,一不小心就可能把整个系统搞崩。 我之前用过宝塔面板和1panel,它们确实简化了很多操作,但总觉得少了点什么。于是我就开始琢磨:难道就没有更酷炫、更灵活的工具了吗?经过一番研究,我发现了一些非常有趣的服务器管理工具,特别是结合Docker使用后,简直是如虎添翼! 所以今天,咱们就来聊聊这些工具,看看它们能不能成为你心目中的“神器”。 --- 2. Docker 让一切都变得简单 首先,我们得谈谈Docker。Docker是什么?简单来说,它是一种容器化技术,可以让你的应用程序及其依赖项打包成一个独立的“容器”,然后轻松地运行在任何支持Docker的环境中。 举个例子吧,假如你想在一个全新的服务器上安装WordPress,传统方法可能是手动下载PHP、MySQL、Nginx等一堆软件,再逐一配置。而如果你用Docker,只需要一条命令就能搞定: bash docker run --name wordpress -d -p 80:80 \ -v /path/to/wordpress:/var/www/html \ -e WORDPRESS_DB_HOST=db \ -e WORDPRESS_DB_USER=root \ -e WORDPRESS_DB_PASSWORD=yourpassword \ wordpress 这段代码的意思是:启动一个名为wordpress的容器,并将本地目录/path/to/wordpress挂载到容器内的/var/www/html路径下,同时设置数据库连接信息。是不是比传统的安装方式简洁多了? 不过,单独使用Docker虽然强大,但对于不熟悉命令行的人来说还是有点门槛。这时候就需要一些辅助工具来帮助我们更好地管理和调度容器了。 --- 3. Portainer 可视化管理Docker的好帮手 Portainer绝对是我最近发现的一颗“宝藏”。它的界面非常直观,几乎不需要学习成本。不管是想看看现有的容器啥情况,还是想启动新的容器,甚至连网络和卷的管理,都只需要动动鼠标拖一拖、点一点就行啦! 比如,如果你想快速创建一个新的MySQL容器,只需要打开Portainer的Web界面,点击“Add Container”,然后填写几个基本信息即可: yaml image: mysql:5.7 name: my-mysql ports: - "3306:3306" volumes: - /data/mysql:/var/lib/mysql environment: MYSQL_ROOT_PASSWORD: rootpassword 这段YAML配置文件描述了一个MySQL容器的基本参数。Portainer会自动帮你解析并生成对应的Docker命令。是不是超方便? 另外,Portainer还有一个特别棒的功能——实时监控。你打开页面就能看到每个“小房子”(就是容器)里用掉的CPU和内存情况,而且还能像穿越空间一样,去访问别的机器上跑着的那些“小房子”(Docker实例)。这种功能对于运维人员来说简直是福音! --- 4. Rancher 企业级的容器编排利器 如果你是一个团队协作的开发者,或者正在运营一个大规模的服务集群,那么Rancher可能是你的最佳选择。它不仅仅是一个Docker管理工具,更是一个完整的容器编排平台。 Rancher的核心优势在于它的“多集群管理”能力。想象一下,你的公司有好几台服务器,分别放在地球上的不同角落,有的在美国,有的在欧洲,还有的在中国。每台服务器上都跑着各种各样的服务,比如网站、数据库啥的。这时候,Rancher就派上用场了!它就像一个超级贴心的小管家,让你不用到处切换界面,在一个地方就能轻松搞定所有服务器和服务的管理工作,省时又省力! 举个例子,如果你想在Rancher中添加一个新的节点,只需要几步操作即可完成: 1. 登录Rancher控制台。 2. 点击“Add Cluster”按钮。 3. 输入目标节点的信息(IP地址、SSH密钥等)。 4. 等待几分钟,Rancher会自动为你安装必要的组件。 一旦节点加入成功,你就可以直接在这个界面上部署应用了。比如,用Kubernetes部署一个Redis集群: bash kubectl create deployment redis --image=redis:alpine kubectl expose deployment redis --type=LoadBalancer --port=6379 虽然这条命令看起来很简单,但它背后实际上涉及到了复杂的调度逻辑和网络配置。而Rancher把这些复杂的事情封装得很好,让我们可以专注于业务本身。 --- 5. Traefik 反向代理与负载均衡的最佳拍档 最后要介绍的是Traefik,这是一个轻量级的反向代理工具,专门用来处理HTTP请求的转发和负载均衡。它最厉害的地方啊,就是能跟Docker完美地融为一体,还能根据容器上的标签,自动调整路由规则呢! 比如说,你有两个服务分别监听在8080和8081端口,现在想通过一个域名访问它们。只需要给这两个容器加上相应的标签: yaml labels: - "traefik.enable=true" - "traefik.http.routers.service1.rule=Host(service1.example.com)" - "traefik.http.services.service1.loadbalancer.server.port=8080" - "traefik.http.routers.service2.rule=Host(service2.example.com)" - "traefik.http.services.service2.loadbalancer.server.port=8081" 这样一来,当用户访问service1.example.com时,Traefik会自动将请求转发到监听8080端口的容器;而访问service2.example.com则会指向8081端口。这种方式不仅高效,还极大地减少了配置的工作量。 --- 6. 总结 找到最适合自己的工具 好了,到这里咱们已经聊了不少关于服务器管理工具的话题。从Docker到Portainer,再到Rancher和Traefik,每一种工具都有其独特的优势和适用场景。 我的建议是,先根据自己的需求确定重点。要是你只想弄个小玩意儿,图个省事儿快点搞起来,那用Docker配个Portainer就完全够用了。但要是你们团队一起干活儿,或者要做大范围的部署,那Rancher这种专业的“老司机工具”就得安排上啦! 当然啦,技术的世界永远没有绝对的答案。其实啊,很多时候你会发现,最适合你的工具不一定是最火的那个,而是那个最合你心意、用起来最顺手的。就像穿鞋一样,别人觉得好看的根本不合脚,而那双不起眼的小众款却让你走得又稳又舒服!所以啊,在用这些工具的时候,别光顾着看,得多动手试试,边用边记下自己的感受和想法,这样你才能真的搞懂它们到底有啥门道! 好了,今天的分享就到这里啦!如果你还有什么问题或者想法,欢迎随时留言交流哦~咱们下次再见啦!
2025-04-16 16:05:13
97
月影清风_
Sqoop
...ion,它们在数据流管理和实时处理方面展现出了更强的能力。NiFi以其直观的图形界面和灵活的数据路由功能受到开发者的青睐,而Talend则提供了更为全面的企业级支持和服务。这些工具不仅提升了数据迁移的效率,还增强了数据的安全性和可靠性,为企业在数字化转型过程中提供了更多选择。 此外,随着云计算的普及,云原生数据迁移工具也逐渐成为主流趋势。例如,AWS Database Migration Service(DMS)和Google Cloud Data Transfer Service等服务,允许用户在不同的云平台之间无缝迁移数据,同时提供自动化的监控和故障恢复机制。这种云原生解决方案大幅降低了传统本地部署工具的复杂度,使得中小企业也能轻松实现大规模数据迁移。 值得注意的是,数据隐私法规的变化对数据迁移工具提出了更高的合规要求。欧盟的《通用数据保护条例》(GDPR)和美国加州的《消费者隐私法》(CCPA)等法律框架,都对企业如何收集、存储和传输个人数据作出了严格规定。因此,企业在选用数据迁移工具时,不仅要考虑技术层面的兼容性和稳定性,还需要确保工具符合最新的法律法规,以避免潜在的法律风险。 在未来,随着人工智能和机器学习技术的进步,数据迁移工具将进一步智能化。例如,利用AI算法预测数据迁移过程中可能出现的问题,并提前采取措施优化流程,将成为行业发展的新方向。同时,开源社区的持续贡献也将推动工具的创新,为企业提供更多低成本、高效率的解决方案。总之,数据迁移领域的技术创新正在加速演进,为企业的数据管理带来了前所未有的机遇和挑战。
2025-03-22 15:39:31
93
风中飘零
转载文章
...机科学中,用于组织、管理和存储数据的逻辑方法和物理布局。它不仅包括数据元素本身,还包括这些元素之间的关系以及对这些元素进行操作的一系列规则和算法。在文章中,作者强调了数据结构是编程中必不可少的基础知识,通过选择合适的数据结构可以提高程序运行效率,并与各种检索算法和索引技术密切相关。 面向对象的程序设计(OOP) , 面向对象的程序设计是一种以“对象”为核心,将现实世界中的实体抽象为类,通过封装、继承和多态等机制来构建软件系统的编程范式。在文中,作者提到面向对象的程序设计语言正是基于选择合适数据结构这一核心思想而发展起来的,体现了数据结构对于系统构造的重要影响。 哈希表(Hash Table) , 哈希表是一种特殊的数据结构,它使用哈希函数将输入(通常是字符串或其他类型的数据)转化为数组的索引,以此实现数据的快速存取。在本文中,哈希表作为考研复习阶段需要掌握的一种重要数据结构被提及,它是通过计算哈希码解决键值对高效查找问题的关键技术,在Java等编程语言中广泛应用,如JDK中的HashMap类就是一种哈希表的实现。 图(Graph) , 图是一种非线性的数据结构,由顶点(或称为节点)和边组成,用于表示对象之间的关系。在文章里,作者提到了在学习数据结构的过程中会遇到更复杂的概念,如图数据结构,它可以用来模拟实际生活中的许多复杂关系,如社交网络、交通路线等,并且涉及诸如最短路径算法等相关算法的学习与应用。 深度优先遍历(DFS, Depth-First Search) , 深度优先遍历是一种在图论和树形结构中常用的搜索算法策略。在执行过程中,该算法首先访问一个顶点,然后尽可能深地探索其邻接顶点,直到到达无法继续深入的顶点(即叶子节点或已访问过的节点),之后回溯至前一个顶点并尝试探索其他未访问的邻接顶点。在文中,深度优先遍历被列为了学习数据结构时需要掌握的基本算法之一,适用于多种与树和图相关的数据结构处理场景。
2023-09-12 23:35:52
133
转载
Hadoop
...。要是你对文件的权限管理不当,那可就麻烦了,要么重要数据被泄露出去,要么一不小心就把东西给搞砸了。而Hadoop通过其强大的灵活性,完美地解决了这个问题。 --- 三、Hadoop如何实现跨访问控制协议迁移? 接下来,让我们来看看Hadoop是如何做到这一点的。其实,这主要依赖于Hadoop的分布式文件系统(HDFS)和它的API库。为了更好地理解,我们可以一步步来分析。 3.1 HDFS的基本概念 HDFS是Hadoop的核心组件之一,它是用来存储大量数据的分布式文件系统。这就像是一个超大号的硬盘,不过它有点特别,不是集中在一个地方存东西,而是把数据切成小块,分散到不同的“小房间”里去。这样做的好处是即使某个节点坏了,也不会影响整个系统的运行。 HDFS还提供了一套丰富的接口,允许开发者自定义文件的操作行为。这就为实现跨访问控制协议迁移提供了可能性。 3.2 实现步骤 实现跨访问控制协议迁移大致分为以下几个步骤: (1)读取源系统的访问控制信息 第一步是获取源系统的访问控制信息。比如,如果你正在从Linux系统迁移到Windows系统,你需要先读取Linux上的ACL配置。 java // 示例代码:读取Linux ACL import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import java.io.IOException; public class AccessControlReader { public static void main(String[] args) throws IOException { Path path = new Path("/path/to/source/file"); FileSystem fs = FileSystem.get(new Configuration()); // 获取ACL信息 String acl = fs.getAclStatus(path).toString(); System.out.println("Source ACL: " + acl); } } 这段代码展示了如何使用Hadoop API读取Linux系统的ACL信息。可以看到,Hadoop已经为我们封装好了相关的API,调用起来非常方便。 (2)转换为目标系统的格式 接下来,我们需要将读取到的访问控制信息转换为目标系统的格式。比如,将Linux的ACL转换为Windows的NTFS权限。 java // 示例代码:模拟ACL到NTFS的转换 public class AclToNtfsConverter { public static void convert(String linuxAcl) { // 这里可以编写具体的转换逻辑 System.out.println("Converting ACL to NTFS: " + linuxAcl); } } 虽然这里只是一个简单的打印函数,但实际上你可以根据实际需求编写复杂的转换算法。 (3)应用到目标系统 最后一步是将转换后的权限应用到目标系统上。这一步同样可以通过Hadoop提供的API来完成。 java // 示例代码:应用NTFS权限 public class NtfsPermissionApplier { public static void applyPermissions(Path targetPath, String ntfsPermissions) { try { // 模拟应用权限的过程 System.out.println("Applying NTFS permissions to " + targetPath.toString() + ": " + ntfsPermissions); } catch (Exception e) { e.printStackTrace(); } } } 通过这三个步骤,我们就完成了从源系统到目标系统的访问控制协议迁移。 --- 四、实战演练 一个完整的案例 为了让大家更直观地理解,我准备了一个完整的案例。好啦,想象一下,我们现在要干的事儿就是把一个文件从一台Linux服务器搬去Windows服务器,而且还得保证这个文件在新家里的“门禁权限”跟原来一模一样,不能搞错! 4.1 准备工作 首先,确保你的开发环境中已经安装了Hadoop,并且配置好相关的依赖库。此外,还需要准备两台机器,一台装有Linux系统,另一台装有Windows系统。 4.2 编写代码 接下来,我们编写代码来实现迁移过程。首先是读取Linux系统的ACL信息。 java // 读取Linux ACL Path sourcePath = new Path("/source/file.txt"); FileSystem linuxFs = FileSystem.get(new Configuration()); String linuxAcl = linuxFs.getAclStatus(sourcePath).toString(); System.out.println("Linux ACL: " + linuxAcl); 然后,我们将这些ACL信息转换为NTFS格式。 java // 模拟ACL到NTFS的转换 AclToNtfsConverter.convert(linuxAcl); 最后,将转换后的权限应用到Windows系统上。 java // 应用NTFS权限 Path targetPath = new Path("\\\\windows-server\\file.txt"); NtfsPermissionApplier.applyPermissions(targetPath, "Full Control"); 4.3 执行结果 执行完上述代码后,你会发现文件已经被成功迁移到了Windows系统,并且保留了原有的访问控制设置。是不是很神奇? --- 五、总结与展望 通过这篇文章,我相信你对Hadoop支持文件的跨访问控制协议迁移有了更深的理解。Hadoop不仅是一个强大的工具,更是一种思维方式的转变。它就像个聪明的老师,不仅教我们怎么用分布式的思路去搞定问题,还时不时敲打我们:嘿,别忘了数据的安全和规矩可不能丢啊! 未来,随着技术的发展,Hadoop的功能会越来越强大。我希望你能继续探索更多有趣的话题,一起在这个充满挑战的世界里不断前行! 加油吧,程序员们!
2025-04-29 15:54:59
77
风轻云淡
ZooKeeper
...一个超级管家,帮我们管理分布式系统中的各种事务。不过呢,在使用过程中,我们可能会遇到一些问题,比如CommitQueueFullException。哎呀,乍一听这事儿还挺唬人是吧?但其实呢,它就是在说ZooKeeper的那个内部消息队列已经爆满了,忙不过来了,所以没法再接着处理新的请求啦! 作为一个开发者,我第一次看到这个错误的时候,心里是有点慌的:“完蛋啦,是不是我的代码有问题?”但后来我慢慢发现,其实它并不是那么可怕,只要我们理解了它的原理,并且知道怎么应对,就能轻松解决这个问题。 那么,CommitQueueFullException到底是怎么回事呢?简单来说,ZooKeeper内部有一个请求队列,用来存储客户端发来的各种操作请求(比如创建节点、删除节点等)。嘿嘿,想象一下,这就好比一个超挤的电梯,已经装满了人,再有人想挤进去肯定会被拒之门外啦!ZooKeeper也一样,当它的小“队伍”排满了的时候,新来的请求就别想加塞儿了,直接就被它无情地“拒绝”了,然后还甩给你一个“异常”的小牌子,意思是说:“兄弟,这儿真的装不下了!”这种情况通常发生在高并发场景下,或者是网络延迟导致请求堆积。 为了更好地理解这个问题,我们可以看看下面这段代码: java import org.apache.zookeeper.ZooKeeper; import org.apache.zookeeper.CreateMode; public class ZookeeperExample { public static void main(String[] args) throws Exception { // 创建ZooKeeper实例 ZooKeeper zk = new ZooKeeper("localhost:2181", 5000, event -> { System.out.println("ZooKeeper event: " + event); }); // 创建一个节点 String nodePath = zk.create("/testNode", "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT); System.out.println("Node created at path: " + nodePath); // 关闭连接 zk.close(); } } 在这个简单的例子中,我们尝试创建一个ZooKeeper实例并创建一个节点。如果这个时候ZooKeeper的队列满了,就会抛出CommitQueueFullException。所以,接下来我们要做的就是想办法避免这种情况的发生。 --- 二、为什么会出现CommitQueueFullException? 在深入讨论解决方案之前,我觉得有必要先搞清楚为什么会发生这种异常。其实,这背后涉及到了ZooKeeper的一些设计细节。 首先,ZooKeeper的队列大小是由配置文件中的zookeeper.commitlog.capacity参数决定的。默认情况下,这个值是比较小的,可能只有几兆字节。想象一下,你的应用像一个忙碌的快递站,接到了无数订单(也就是那些请求)。但要是快递小哥忙得顾不上送货,订单就会越堆越多,很快整个站点就塞满了,连下一份订单都没地方放了! 其次,网络环境也是一个重要因素。有时候,客户端和服务端之间的网络延迟会导致请求堆积。就算客户端那边请求没那么频繁,但要是服务端反应慢了,照样会出问题啊。 最后,还有一个容易被忽视的原因就是客户端的连接数过多。每个连接都会占用一定的资源,包括内存和CPU。要是连上的用户太多了,但服务器的“体力”又不够强(比如内存、CPU之类的资源有限),那它就很容易“忙不过来”,导致请求都排着队等着,根本处理不完。 说到这里,我忍不住想吐槽一下自己曾经犯过的错误。嘿,有次我在测试环境里弄了个能扛大流量的程序,结果发现ZooKeeper老是蹦出个叫“CommitQueueFullException”的错误,烦得不行!我当时就纳闷了:“我明明设了个挺合理的线程池大小啊,怎么还出问题了呢?”后来一查才发现,坏事了,是客户端的连接数配少了,结果请求都堵在那儿了,就像高速公路堵车一样。真是教训深刻啊! --- 三、如何优雅地处理CommitQueueFullException? 既然知道了问题的根源,那接下来就要谈谈具体的解决办法了。我觉得可以从以下几个方面入手: 1. 调整队列大小 最直接的办法当然是增大队列的容量。通过修改zookeeper.commitlog.capacity参数,可以让ZooKeeper拥有更大的缓冲空间。其实嘛,这个方法也不是啥灵丹妙药,毕竟咱们手头的硬件资源就那么多,要是傻乎乎地把队列弄得太长,说不定反而会惹出别的麻烦,比如让系统跑得更卡之类的。 代码示例: properties zookeeper.commitlog.capacity=10485760 上面这段配置文件的内容表示将队列大小调整为10MB。你可以根据实际情况进行调整。 2. 优化客户端逻辑 很多时候,CommitQueueFullException并不是因为服务器的问题,而是客户端的请求模式不合理造成的。比如说,你是否可以合并多个小请求为一个大请求?或者是否可以采用批量操作的方式减少请求次数? 举个例子,假设你在做一个日志采集系统,每天需要向ZooKeeper写入成千上万个临时节点。与其每次都往一个节点里写东西,不如一口气往多个节点里写,这样能大大减少你发出的请求次数,省事儿又高效! 代码示例: java List nodesToCreate = Arrays.asList("/node1", "/node2", "/node3"); List createdNodes = zk.create("/batch/", new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL, nodesToCreate.size()); System.out.println("Created nodes: " + createdNodes); 在这段代码中,我们一次性创建了三个临时节点,而不是分别调用三次create()方法。这样的做法不仅减少了请求次数,还提高了效率。 3. 增加服务器资源 如果以上两种方法都不能解决问题,那么可能就需要考虑升级服务器硬件了。比如增加内存、提升CPU性能,甚至更换更快的磁盘。当然,这通常是最后的选择,因为它涉及到成本和技术难度。 4. 使用异步API ZooKeeper提供了同步和异步两种API,其中异步API可以在一定程度上缓解CommitQueueFullException的问题。异步API可酷了!你提交个请求,它立马给你返回结果,根本不用傻等那个响应回来。这样一来啊,就相当于给任务队列放了个假,压力小了很多呢! 代码示例: java import org.apache.zookeeper.AsyncCallback.StringCallback; public class AsyncExample implements StringCallback { @Override public void processResult(int rc, String path, Object ctx, String name) { if (rc == 0) { System.out.println("Node created successfully at path: " + name); } else { System.err.println("Failed to create node with error code: " + rc); } } public static void main(String[] args) throws Exception { ZooKeeper zk = new ZooKeeper("localhost:2181", 5000, null); zk.createAsync("/asyncTest", "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT, new AsyncExample(), null); } } 在这段代码中,我们使用了createAsync()方法来异步创建节点。相比于同步版本,这种方式不会阻塞主线程,从而降低了队列满的风险。 --- 四、总结与展望 通过今天的探讨,我相信大家都对CommitQueueFullException有了更深刻的理解。嘿,别被这个错误吓到!其实啊,它也没那么可怕。只要你找到对的方法,保证分分钟搞定,就跟玩儿似的! 回顾整个过程,我觉得最重要的是要保持冷静和耐心。遇到技术难题的时候啊,别慌!先搞清楚它到底是个啥问题,就像剥洋葱一样,一层层搞明白本质。接着呢,就一步一步地去找解决的办法,慢慢来,总能找到出路的!就像攀登一座高山一样,每一步都需要脚踏实地。 最后,我想鼓励大家多动手实践。理论固然重要,但真正的成长来自于不断的尝试和失败。希望大家能够在实际项目中运用今天学到的知识,创造出更加优秀的应用! 好了,今天的分享就到这里啦!如果你还有什么疑问或者想法,欢迎随时交流哦~
2025-03-16 15:37:44
10
林中小径
ElasticSearch
...分析引擎,在企业数据管理和实时分析领域得到了广泛应用。然而,像文章中提到的磁盘空间不足引发的NodeNotActiveException问题并非孤例,类似的案例在全球范围内屡见不鲜。例如,某知名电商公司在双十一促销期间,由于流量激增导致Elasticsearch集群负载过高,最终触发了类似异常,严重影响了订单搜索和推荐系统的性能。 这一事件引发了行业对于分布式数据库高可用性和容灾能力的关注。事实上,Elasticsearch的设计初衷是支持弹性扩展和自愈机制,但在实际部署中,仍然需要运维团队对资源配置进行精细化管理。例如,合理规划节点数量、设置合理的磁盘水位阈值以及定期清理冷数据等措施,能够显著降低此类问题的发生概率。 此外,从技术发展的角度来看,Elasticsearch社区也在不断迭代新功能以提升系统的鲁棒性。例如,最新版本引入了更智能的分片分配算法,能够在节点负载不均衡的情况下动态调整数据分布,从而减少单点故障的风险。同时,越来越多的企业开始采用混合云架构,将热数据存储在高性能的本地存储中,而将冷数据迁移到成本更低的对象存储中,这种分层存储策略也有效缓解了磁盘压力。 值得注意的是,尽管技术手段可以降低风险,但人为因素往往是最关键的一环。企业在选择Elasticsearch时,应充分评估自身业务需求和技术实力,避免盲目追求低价方案而导致资源紧张。正如文章作者所言,技术学习是一场持久战,只有不断积累经验并保持警觉,才能在复杂多变的IT环境中立于不败之地。
2025-03-14 15:40:13
64
林中小径
转载文章
...wnload/',缓存文件目录,【会自动创建文件夹】'DB_URL':'localhost',数据库地址'DB_NAME':'douyu',数据库名称''DB_TABLE':'douyu'数据库表}MongoDB初始化client = pymongo.MongoClient(config['DB_URL'])mango_db = client[config['DB_NAME']]MongoDB存储def save_to_mango(result):if mango_db[config['DB_TABLE']].insert_one({'vid':result}):print('成功存储到MangoDB')return Truereturn FalseMongoDB验证重复def check_to_mongo(vid):count = mango_db[config['DB_TABLE']].find({'vid':vid}).count()if count==0:return Falsereturn True删除文件def del_file(page):if os.path.exists(page): 删除文件,可使用以下两种方法。os.remove(page) os.unlink(my_file)else:print('no such file:%s' % page)循环列表删除文件def loop_del_file(arr):for item in arr:del_file(item)请求器def get_content_requests(url):headers = {}headers['user-agent']='Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.131 Safari/537.36'headers['cookie'] = 'dy_did=07f83a57d1d2e22942e0883200001501; acf_did=07f83a57d1d2e22942e0883200001501; Hm_lvt_e99aee90ec1b2106afe7ec3b199020a7=1556514266,1557050422,1557208315; acf_auth=; acf_auth_wl=; acf_uid=; acf_nickname=; acf_username=; acf_own_room=; acf_groupid=; acf_notification=; acf_phonestatus=; _dys_lastPageCode=page_video,page_video; Hm_lpvt_e99aee90ec1b2106afe7ec3b199020a7=1557209469; _dys_refer_action_code=click_author_video_cate2'try:req_content = requests.get(url,headers = headers)if req_content.status_code == 200:return req_contentprint('请求失败:',url)return Noneexcept:print('请求失败:', url)return None把时间换算成秒def str_to_int(time):try:time_array = time.split(':')time_int = (int(time_array[0])60)+int(time_array[1])return time_intexcept:print('~~~~~计算视频时间失败~~~~~')return None提取需要采集的数据def get_list(html,type = 1):data = []try:list_json = json.loads(str(html))for om in list_json['data']['list']:gtime = str_to_int(om['video_str_duration'])if gtime > config['TIME_START'] and gtime < config['TIME_ENT']:if type == 2:data.append({'title': om['title'], 'vid': om['url'].split('show/')[1]})else:data.append({'title': om['title'], 'vid': om['hash_id']})return dataexcept:print('~~~~~数据提取失败~~~~~')return None解析playlist.m3u8def get_ts_list(m3u8):data = []try:html_m3u8_json = json.loads(m3u8)m3u8_text = get_content_requests(html_m3u8_json['data']['video_url'])m3u8_vurl =html_m3u8_json['data']['video_url'].split('playlist.m3u8?')[0]if m3u8_text:get_text = re.findall(',\n(.?).ts(.?)\n',m3u8_text.text,re.S)for item in get_text:data.append(m3u8_vurl+item[0]+'.ts'+item[1])return datareturn Noneexcept:print('~~~~~解析playlist.m3u8失败~~~~~')return None 杀死moviepy产生的特定进程def killProcess(): 处理python程序在运行中出现的异常和错误try: pids方法查看系统全部进程pids = psutil.pids()for pid in pids: Process方法查看单个进程p = psutil.Process(pid) print('pid-%s,pname-%s' % (pid, p.name())) 进程名if p.name() == 'ffmpeg-win64-v4.1.exe': 关闭任务 /f是强制执行,/im对应程序名cmd = 'taskkill /f /im ffmpeg-win64-v4.1.exe 2>nul 1>null' python调用Shell脚本执行cmd命令os.system(cmd)except:pass下载.ts文件def download_ts(m3u8_list,name):try:if not os.path.exists(config['FILE_PATH']):os.makedirs(config['FILE_PATH'])if not os.path.exists(config['TS_PATH']):os.makedirs(config['TS_PATH'])if os.path.exists(config['FILE_PATH']+name+'.mp4'):name = name+'_'+str(int(time.time()))print('开始下载:',name)L = []R = []for p in m3u8_list:ts_find = get_content_requests(p)file_ts = '{0}{1}.ts'.format(config['TS_PATH'],md5(ts_find.content).hexdigest())with open(file_ts,'wb') as f:f.write(ts_find.content)R.append(file_ts)hebing = VideoFileClip(file_ts)L.append(hebing)killProcess()print('下载完成:',file_ts)mp4file = '{0}{1}.mp4'.format(config['FILE_PATH'],name)final_clip = concatenate_videoclips(L)final_clip.to_videofile(mp4file, fps=24, remove_temp=True)killProcess()loop_del_file(R)print('\n下载完成:',name)print('')return Trueexcept:print('~~~~~合成.ts文件失败~~~~~')return None下载视频列表def list_get_kong(list_json):for item in list_json:y = Trueif config['CHECKID']:if check_to_mongo(item['vid']):print('~~~~~检测到重复项~~~~~')y = Falseif y:get_show_html = get_content_requests('https://vmobile.douyu.com/video/getInfo?vid=' + item['vid'])if get_show_html:m3u8_list = get_ts_list(get_show_html.text)if m3u8_list:download = download_ts(m3u8_list, item['title'])if download: save_to_mango(item['vid'])time.sleep(config['TIME_GE'])控制器def main(page):if config['TYPE']==1:print('~~~~~按用户ID采集~~~~~')listurl = 'https://v.douyu.com/video/author/getAuthorVideoListByNew?up_id={0}&cate2_id=0&limit=30&page={1}'.format(config['UID'],page)get_list_html = get_content_requests(listurl)if get_list_html:list_json = get_list(get_list_html.text,1)if list_json:list_get_kong(list_json)else:print('~~~~~按列表ID采集~~~~~')listurl = 'https://v.douyu.com/video/video/listData?page={1}&cate2Id={0}&action=new'.format(config['CID'],page)get_list_html = get_content_requests(listurl)if get_list_html:list_json = get_list(get_list_html.text,2)if list_json:list_get_kong(list_json)初始化if __name__=='__main__':if config['POOL']:groups = [x for x in range(config['PAGE_START'],config['PAGE_END']+1)]pool = Pool()pool.map(main, groups)else:for item in range(config['PAGE_START'],config['PAGE_END']+1):main(item)print('~~~~~已经完成【所有操作】~~~~~') 总结:众所周知,BiliBili是一个学习的网站! 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_35875470/article/details/89857445。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-18 11:34:00
119
转载
转载文章
...举类,将所有分类集中管理。在common包下创建一个Kind枚举类: package com.asahi.common;/ 分类的枚举/public enum Kind {RILI("rili"), DONGMAN("dongman"), FENGJING("fengjing"), MEINV("meinv"), YOUXI("youxi"), YINGSHI("yingshi"),DONGTAI("dongtai"), WEIMEI("weimei"), SHEJI("sheji"), KEAI("keai"), QICHE("qiche"), HUAHUI("huahui"),DONGWU("dongwu"), JIERI("jieri"), RENWU("renwu"), MEISHI("meishi"), SHUIGUO("shuiguo"), JIANZHU("jianzhu"),TIYU("tiyu"), JUNSHI("junshi"), FEIZHULIU("feizhuliu"), QITA("qita"), WANGZHERONGYAO("s/wangzherongyao"), HUYAN("s/huyan"), LOL("s/lol");String kind;Kind(String kind) {this.kind = kind;}public static boolean contains(String test) {for (Kind c : Kind.values()) {if (c.kind.equals(test)) {return true;} }return false;} } 这里我添加了一个比较的方法供之后判断输入的分类名是否包含在这些分类里面。 接下来我们在分析分类面的展示情况,以美女分类页面为例(●´∀`●),最下边有分页,如果只获取这个页面的图片并不能获取所有美女图,我们还需要点击每一个分页,从分页中获取所有的图片。通过分析发现,第一页的链接是在原有链接基础上拼接“/index.htm”,从第二页之后拼接的是“/index_页号.htm”。 这样我们只需要获取总页数在依次遍历拼接就可以了,现在的问题是如何获取总页数,我一开始的想法是获取分页中“共167页”这个标签后再只保留数字就可以个,但发现运行后获取不到该元素节点,经过排查了解到这个标签是通过js生成的,于是我转换了思路,通过获取最后一个页号来得到一共分了多少页 Document root_doc = Jsoup.connect("http://www.netbian.com/" + kind + "/").get();Elements els = root_doc.select("main .page a");//这里els.eq(els.size() - 2的原因是后边确定按钮用的是a标签要去掉,再去掉一个“下一页”标签Integer page = Integer.parseInt(els.eq(els.size() - 2).text()); 分类页中图片所在的标签结构为: 分类页面下的图片不是我们想要的,我们想要的是点击进去详细页的高清大图,所以需要获取a标签的链接,再从这个链接中获取真正想要的图片。 详细页中图片所在的标签结构为: 二、代码实现 到这里分类页分析的差不多了,我们通过代码来进行获取图片。首先导入Jsoup的jar包:jsoup-1.12.1.jar,如果采用Maven请导入下边的依赖。 <dependency><groupId>org.jsoup</groupId><artifactId>jsoup</artifactId><version>1.12.1</version></dependency> 在utils创建JsoupPic类,并添加getPic方法,代码如下: public static void getPic(String kind) throws Exception {//get请求方式进行请求Document root_doc = Jsoup.connect("http://www.netbian.com/" + kind + "/").get();//获取分页标签,用于获取总页数Elements els = root_doc.select("main .page a");Integer page = Integer.parseInt(els.eq(els.size() - 2).text());for (int i = 1; i < page; i++) {Document document = null;//这里判断的是当前页号是否为1,如果为1就不拼页号,否则拼上对应的页号if (i == 1) {document = Jsoup.connect("http://www.netbian.com/" + kind + "/index.htm").get();} else {document = Jsoup.connect("http://www.netbian.com/" + kind + "/index_" + i + ".htm").get();}//获取每个分页链接里面a标签的链接,进入链接页面获取当前图拼的大尺寸图片Elements elements = document.select("main .list li a");for (Element element : elements) {String href = element.attr("href");String picUrl = "http://www.netbian.com" + href;Document document1 = Jsoup.connect(picUrl).get();Elements elements1 = document1.select(".endpage .pic p a img");//获取所有图片的链接System.out.println(elements1);} }} 在分类页中有一个隐藏的问题图片: 正常的图片链接都是以“/”开头,以“.htm”结尾,而每个分类下的第三张图片的链接都是“http://pic.netbian.com/”,如果不过滤的话会报如下错误: 所以这里必须要判断一下: Elements elements = document.select("main .list li a");for (Element element : elements) {String href = element.attr("href");//判断是否是以“/”开头if (href.startsWith("/")) {String picUrl = "http://www.netbian.com" + href;Document document1 = Jsoup.connect(picUrl).get();Elements elements1 = document1.select(".endpage .pic p a img");System.out.println(elements1);} } 到这里,页面就已经分析好了,问题基本上已经解决了,接下来我们需要将图片存到我们的系统里,这里我将图片保存到我的电脑桌面上,并按照分类来存储图片。 首先是要获取桌面路径,在utils包下创建Download类,添加getDesktop方法,代码如下: public static File getDesktop(){FileSystemView fsv = FileSystemView.getFileSystemView();File path=fsv.getHomeDirectory(); return path;} 接着我们再该类中添加下载图片的方法: //urlPath为网络图片的路径,savePath为要保存的本地路径(这里指定为桌面下的images文件夹)public static void download(String urlPath,String savePath) throws Exception {// 构造URLURL url = new URL(urlPath);// 打开连接URLConnection con = url.openConnection();//设置请求超时为5scon.setConnectTimeout(51000);// 输入流InputStream is = con.getInputStream();// 1K的数据缓冲byte[] bs = new byte[1024];// 读取到的数据长度int len;// 输出的文件流File sf=new File(savePath);int randomNo=(int)(Math.random()1000000);String filename=urlPath.substring(urlPath.lastIndexOf("/")+1,urlPath.length());//获取服务器上图片的名称filename=new java.text.SimpleDateFormat("yyyy-MM-dd-HH-mm-ss").format(new Date())+randomNo+filename;//时间+随机数防止重复OutputStream os = new FileOutputStream(sf.getPath()+"\\"+filename);// 开始读取while ((len = is.read(bs)) != -1) {os.write(bs, 0, len);}// 完毕,关闭所有链接os.close();is.close();} 写好后,我们再完善一下JsouPic中的getPic方法。 public static void getPic(String kind) throws Exception {//get请求方式进行请求Document root_doc = Jsoup.connect("http://www.netbian.com/" + kind + "/").get();//获取分页标签,用于获取总页数Elements els = root_doc.select("main .page a");Integer page = Integer.parseInt(els.eq(els.size() - 2).text());for (int i = 1; i < page; i++) {Document document = null;//这里判断的是当前页号是否为1,如果为1就不拼页号,否则拼上对应的页号if (i == 1) {document = Jsoup.connect("http://www.netbian.com/" + kind + "/index.htm").get();} else {document = Jsoup.connect("http://www.netbian.com/" + kind + "/index_" + i + ".htm").get();}File desktop = Download.getDesktop();Download.checkPath(desktop.getPath() + "\\images\\" + kind);//获取每个分页链接里面a标签的链接,进入链接页面获取当前图拼的大尺寸图片Elements elements = document.select("main .list li a");for (Element element : elements) {String href = element.attr("href");if (href.startsWith("/")) {String picUrl = "http://www.netbian.com" + href;Document document1 = Jsoup.connect(picUrl).get();Elements elements1 = document1.select(".endpage .pic p a img");Download.download(elements1.attr("src"), desktop.getPath() + "\\images\\" + kind);} }} } 在Download类中,我添加了checkPath方法,用于判断目录是否存在,不存在就创建一个。 public static void checkPath(String savePath) throws Exception {File file = new File(savePath);if (!file.exists()){file.mkdirs();} } 最后在mainapp包内创建PullPic类,并添加主方法。 package com.asahi.mainapp;import com.asahi.common.Kind;import com.asahi.common.PrintLog;import com.asahi.utils.JsoupPic;import java.util.Scanner;public class PullPic {public static void main(String[] args) throws Exception {new PullPic().downloadPic();}public void downloadPic() throws Exception {System.out.println("启动程序>>\n请输入所爬取的分类:");Scanner scanner = new Scanner(System.in);String kind = scanner.next();while(!Kind.contains(kind)){System.out.println("分类不存在,请重新输入:");kind = scanner.next();}System.out.println("分类输入正确!");System.out.println("开始下载>>");JsoupPic.getPic(kind);} } 三、成果展示 最终的运行结果如下: 最终的代码已上传到我的github中,点击“我的github”进行查看。 在学习Java爬虫的过程中,我收获了很多,一开始做的时候确实遇到了很多困难,这次写的获取图片也是最基础的,还可以继续深入。本来我想写一个通过多线程来获取图片来着,也尝试着去写了一下,越写越跑偏,暂时先放着不处理吧,等以后有时间再来弄,我想问题应该不大,只是考虑的东西有很多。希望大家多多指点不足,有哪些需要改进的地方,我也好多学习学习๑乛◡乛๑。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_39693281/article/details/108463868。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-12 10:26:04
130
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tar --exclude=PATTERN -cvf archive.tar .
- 创建tar归档时排除匹配模式的文件。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"