前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[解决]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Sqoop
...料,想着一定要找出个解决办法来。 思考与尝试: 经过一番研究,我发现Sqoop默认情况下并不会对数据进行深度解析,这意味着如果数据本身存在问题,Sqoop可能无法正确处理。所以,为了验证这个假设,我又做了一次测试。 bash sqoop import \ --connect jdbc:mysql://localhost:3306/mydatabase \ --username root \ --password mypassword \ --table problematic_table \ --fields-terminated-by '\t' \ --lines-terminated-by '\n' 这次我特意指定了分隔符和换行符,希望能避免之前遇到的那些麻烦。嘿,没想到这次作业居然被我搞定了!中间经历了不少波折,不过好在最后算是弄懂了个中奥秘,也算没白费功夫。 --- 三、透明性的重要性 Sqoop到底懂不懂我的需求? 说到Sqoop的透明性,我觉得这是一个非常重要的概念。所谓的透明性嘛,简单来说,就是Sqoop能不能明白咱们的心思,然后老老实实地按咱们想的去干活儿,不添乱、不出错!显然,在我遇到的这些问题中,Sqoop的表现并不能让人满意。 举个例子来说,假设你有一个包含多列的大表,其中某些列的数据类型比较复杂(例如数组、嵌套对象等)。在这种情况下,Sqoop可能会因为无法正确识别这些数据类型而失败。更糟糕的是,它并不会给出明确的提示,而是默默地报错,让你一头雾水。 为了更好地应对这种情况,我在后续的工作中加入了更多的调试步骤。比如说啊,你可以先用describe这个命令去看看表的结构,确保所有的字段都乖乖地被正确识别了;接着呢,再用--check-column这个选项去瞅一眼,看看有没有重复的记录藏在里面。这样一来,虽然增加了工作量,但至少能减少不必要的麻烦。 示例代码: bash sqoop job --create my_job \ -- import \ --connect jdbc:mysql://localhost:3306/mydatabase \ --username root \ --password mypassword \ --table employees \ --check-column id \ --incremental append \ --last-value 0 这段代码展示了如何创建一个增量作业,用于定期更新目标目录中的数据。通过这种方式,可以有效避免一次性加载过多数据带来的性能瓶颈。 --- 四、总结与展望 与Sqoop共舞 总的来说,尽管Sqoop在某些场景下表现得不尽人意,但它依然是一个强大的工具。通过不断学习和实践,我相信自己能够更加熟练地驾驭它。未来的计划里,我特别想试试一些更酷的功能,比如说用Sqoop直接搞出Avro文件,或者把Spark整进来做分布式计算,感觉会超级带劲! 最后,我想说的是,技术这条路从来都不是一帆风顺的。遇到困难并不可怕,可怕的是我们因此放弃努力。正如那句话所说:“失败乃成功之母。”只要保持好奇心和求知欲,总有一天我们会找到属于自己的答案。 如果你也有类似的经历,欢迎随时交流!我们一起进步,一起成长! --- 希望这篇文章对你有所帮助,如果有任何疑问或者想要了解更多细节,请随时告诉我哦!
2025-03-22 15:39:31
93
风中飘零
Hadoop
...这么受欢迎呢?因为它解决了传统数据库在处理大规模数据时的瓶颈问题。比如说啊,你在一家电商公司当数据分析师,每天的工作就是跟上亿条用户的点击、浏览、下单这些行为记录打交道,简直就像在海量的信息海洋里淘宝一样!如果用传统的数据库,可能早就崩溃了。但Hadoop不一样,它可以将这些数据分散到多个服务器上进行并行处理,效率杠杠的! 不过,Hadoop的魅力远不止于此。嘿,大家好!今天我想跟你们分享一个关于Hadoop的超棒功能——它居然能让你在不同的访问控制协议之间轻松切换文件!是不是听着就很带感?哎呀,是不是觉得这事听着有点绕?别慌,我这就用大白话给你说道说道,保证你一听就明白! --- 二、什么是跨访问控制协议迁移? 首先,我们得明白什么是访问控制协议。简单说,就是规定谁可以访问你的数据以及他们能做些什么的规则。好比说啊,你有个公共文件柜,你想让一些人只能打开看看里面的东西,啥都不能动;但另外一些人呢,不仅能看,还能随便改,甚至直接把东西清空或者拿走。这就是访问控制协议的作用。 那么,“跨访问控制协议迁移”又是什么意思呢?想象一下,你有两个不同的系统,它们各自有自己的访问控制规则。比如说,一个是Linux那边的ACL(访问控制列表)系统,另一个则是Windows里的NTFS权限系统,两者各有各的玩法。现在,你要把文件从一个系统迁移到另一个系统,而且你还想保留原来的访问控制设置。这就需要用到跨访问控制协议迁移的技术了。 为什么要关心这个功能呢?因为现实世界中,企业往往会有多种操作系统和存储环境。要是你对文件的权限管理不当,那可就麻烦了,要么重要数据被泄露出去,要么一不小心就把东西给搞砸了。而Hadoop通过其强大的灵活性,完美地解决了这个问题。 --- 三、Hadoop如何实现跨访问控制协议迁移? 接下来,让我们来看看Hadoop是如何做到这一点的。其实,这主要依赖于Hadoop的分布式文件系统(HDFS)和它的API库。为了更好地理解,我们可以一步步来分析。 3.1 HDFS的基本概念 HDFS是Hadoop的核心组件之一,它是用来存储大量数据的分布式文件系统。这就像是一个超大号的硬盘,不过它有点特别,不是集中在一个地方存东西,而是把数据切成小块,分散到不同的“小房间”里去。这样做的好处是即使某个节点坏了,也不会影响整个系统的运行。 HDFS还提供了一套丰富的接口,允许开发者自定义文件的操作行为。这就为实现跨访问控制协议迁移提供了可能性。 3.2 实现步骤 实现跨访问控制协议迁移大致分为以下几个步骤: (1)读取源系统的访问控制信息 第一步是获取源系统的访问控制信息。比如,如果你正在从Linux系统迁移到Windows系统,你需要先读取Linux上的ACL配置。 java // 示例代码:读取Linux ACL import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import java.io.IOException; public class AccessControlReader { public static void main(String[] args) throws IOException { Path path = new Path("/path/to/source/file"); FileSystem fs = FileSystem.get(new Configuration()); // 获取ACL信息 String acl = fs.getAclStatus(path).toString(); System.out.println("Source ACL: " + acl); } } 这段代码展示了如何使用Hadoop API读取Linux系统的ACL信息。可以看到,Hadoop已经为我们封装好了相关的API,调用起来非常方便。 (2)转换为目标系统的格式 接下来,我们需要将读取到的访问控制信息转换为目标系统的格式。比如,将Linux的ACL转换为Windows的NTFS权限。 java // 示例代码:模拟ACL到NTFS的转换 public class AclToNtfsConverter { public static void convert(String linuxAcl) { // 这里可以编写具体的转换逻辑 System.out.println("Converting ACL to NTFS: " + linuxAcl); } } 虽然这里只是一个简单的打印函数,但实际上你可以根据实际需求编写复杂的转换算法。 (3)应用到目标系统 最后一步是将转换后的权限应用到目标系统上。这一步同样可以通过Hadoop提供的API来完成。 java // 示例代码:应用NTFS权限 public class NtfsPermissionApplier { public static void applyPermissions(Path targetPath, String ntfsPermissions) { try { // 模拟应用权限的过程 System.out.println("Applying NTFS permissions to " + targetPath.toString() + ": " + ntfsPermissions); } catch (Exception e) { e.printStackTrace(); } } } 通过这三个步骤,我们就完成了从源系统到目标系统的访问控制协议迁移。 --- 四、实战演练 一个完整的案例 为了让大家更直观地理解,我准备了一个完整的案例。好啦,想象一下,我们现在要干的事儿就是把一个文件从一台Linux服务器搬去Windows服务器,而且还得保证这个文件在新家里的“门禁权限”跟原来一模一样,不能搞错! 4.1 准备工作 首先,确保你的开发环境中已经安装了Hadoop,并且配置好相关的依赖库。此外,还需要准备两台机器,一台装有Linux系统,另一台装有Windows系统。 4.2 编写代码 接下来,我们编写代码来实现迁移过程。首先是读取Linux系统的ACL信息。 java // 读取Linux ACL Path sourcePath = new Path("/source/file.txt"); FileSystem linuxFs = FileSystem.get(new Configuration()); String linuxAcl = linuxFs.getAclStatus(sourcePath).toString(); System.out.println("Linux ACL: " + linuxAcl); 然后,我们将这些ACL信息转换为NTFS格式。 java // 模拟ACL到NTFS的转换 AclToNtfsConverter.convert(linuxAcl); 最后,将转换后的权限应用到Windows系统上。 java // 应用NTFS权限 Path targetPath = new Path("\\\\windows-server\\file.txt"); NtfsPermissionApplier.applyPermissions(targetPath, "Full Control"); 4.3 执行结果 执行完上述代码后,你会发现文件已经被成功迁移到了Windows系统,并且保留了原有的访问控制设置。是不是很神奇? --- 五、总结与展望 通过这篇文章,我相信你对Hadoop支持文件的跨访问控制协议迁移有了更深的理解。Hadoop不仅是一个强大的工具,更是一种思维方式的转变。它就像个聪明的老师,不仅教我们怎么用分布式的思路去搞定问题,还时不时敲打我们:嘿,别忘了数据的安全和规矩可不能丢啊! 未来,随着技术的发展,Hadoop的功能会越来越强大。我希望你能继续探索更多有趣的话题,一起在这个充满挑战的世界里不断前行! 加油吧,程序员们!
2025-04-29 15:54:59
78
风轻云淡
转载文章
...,选定数据结构往往是解决问题的核心,比如我们做一道算法题,往往就要先确定数据结构,再根据这个数据结构去思考怎么解题。 如果没有数据结构的基础知识,也就没有谈算法的意义了,很多时候即使你会使用一些封装好的编程api,但你却不知道其背后的实现原理,比如hashmap,linkedlist这些Java里的集合类,实际上都是JDK封装好的基础数据结构。 如何学习数据结构 第一次接触 我第一次接触数据结构这门课还是4年前,那这时候我在准备考研,专业课考的就是数据结构与算法,作为一个非科班的小白,对这个东西可以说是一窍不通。 这个时候的我只有一点点c语言的基础,基本上可以忽略不计,所以小白同学也可以按照这个思路进行学习。 数据结构基本上是考研的必考科目,所以我一开始使用的是考研的复习书籍,《天勤数据结构》和《王道数据结构》这两个家的书都是专门为计算机考研服务的,可以直接百度,这两本书对于我这种小白来说居然都是可以看懂的,所以,用来入门也是ok的。 入门学习阶段 最早的时候我并没有直接看书,而是先打算先看视频,因为视频更好理解呀,找视频的办法就是百度,于是当时找到的最好资源就是《郝斌的数据结构》这个视频应该是很早之前录制的了,但是对于小白来说是够用的,特别基础,讲的很仔细。 从最开始的数组、线性表,再讲到栈和队列,以及后面更复杂的二叉树、图、哈希表,大概有几十个视频,那个时候正值暑假,我按照每天一个视频的进度看完了,看的时候还得时不时地实践一下,更有助于理解。 看完了这个系列的视频之后,我又转战开始啃书了,视频里讲的都是数据结构的基础,而书上除了基础之外,还有一些算法题目,比如你学完了线性表和链表之后,书上就会有相关的算法题,比如数组的元素置换,链表的逆置等等,这些在日后看来很容易的题目,当时把我难哭了。 好在大部分题目是有讲解的,看完讲解之后还能安抚一下我受伤的心灵。 记住这本书,我在考研之前翻了至少有三四遍。 强化学习阶段 完成了第一波视频+书籍的学习之后,我们应该已经对数据结构有了初步的了解了,对一些简单的数据结构算法也应该有所了解了,比如栈的入栈和出栈,队列的进队和出队,二叉树的先序遍历和后续遍历、层次遍历,图的最短路径算法,深度优先遍历等等。 有了一定的基础之后,我们需要对哪方面进行强化学习呢? 那就要看你学习数据结构的目的是什么了,比如你学习数据结构是为了能做算法题,那么接下来你应该重点去学习算法方面的知识,后续我们也将有一篇新的文章来讲怎么学习算法,敬请期待。 当然,我当时主要是复习考研,所以还是针对专业课的历年真题来复习,像我们的卷子中就考察了很多关于哈希表、最短路径算法、KMP算法、赫夫曼算法以及最短路径算法的应用。 对于考卷上的一些知识点,我觉得掌握的并不是很好,于是又买了《王道数据结构》以及一些并没有什么卵用的书回来看,再次强化了基础。 并且,由于我们的复试通常会考察一些比较经典的算法问题,所以我又花了很多时间去学习这些算法题,这些题目并非数据结构的基础算法,所以在之前的书和视频中可能找不到答案。 于是我又在网上搜到了另一个系列视频《小甲鱼的数据结构视频》里面除了讲解数据结构之外,还讲解了更多经典的算法题,比如八皇后问题,汉诺塔问题,马踏棋盘,旅行商问题等,这些问题对于新手来说真的是很头大的,使用视频学习确实效果更佳。 实践阶段 纸上得来终觉浅,绝知此事要躬行。 众所周知,算法题和数学题一样,需要多加练习,而且考研的时候必须要手写算法,于是我就经常在纸上写(抄)算法,你还别说,就算是抄,多抄几次也有助于理解。 很多基础的算法,比如层次遍历,深度优先遍历和广度优先遍历,多写几遍更有助理解,再比如稍微复杂一点的迪杰斯特拉算法,不多写几遍你可真记不住。 除了在纸上写之外,更好的办法自然是在电脑上敲了,写Java的使用Java写,写C++ 的用C++ 写,总之用自己擅长的语言实现就好,尴尬的是我当时只会c,所以就只好老老实实地用devc++写简单的c语言程序了。 至此,我们也算是学会了数据结构的基础知识了,至少知道每个数据结构的特性,会写常见的数据结构算法,甚至偶尔还能掏出一个八皇后出来。 推荐资源 书籍 《天勤数据结构》 《王道数据结构》 如果你要考研的话,这两本书可不要错过 严蔚敏《数据结构C语言版》 这本书是大学本科计算机专业常用的教科书,年代久远,可以看看,官方也有配套的教学视频 《大话数据结构》 官方教材大家都懂的,比较不接地气,这本书对于很多新手来说是更适合入门的书籍。 《数据结构与算法Java版》 如果你是学Java的,想有一本Java语言描述的数据结构书籍,可以试试这本,但是这本书显然比较复杂,不适合入门使用。 视频 《郝斌数据结构》 这个视频上文有提到过,年代比较久远,但是入门足够了。 《小甲鱼数据结构与算法》 这个视频比较新,更加全面,有很多关于经典算法的教程,作者也入驻了B站,有兴趣也可以到B站看他的视频。 总结 关于数据结构的学习,我们就讲到这里了,如果还有什么疑问也可以到我公众号里找我探讨,虽然我们提到了算法,但是这里只关注一些基础的数据结构算法,后续会有关于“怎么学算法“的文章推出,敬请期待。 本篇文章为转载内容。原文链接:https://blog.csdn.net/a724888/article/details/104586757。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-12 23:35:52
133
转载
ZooKeeper
...道怎么应对,就能轻松解决这个问题。 那么,CommitQueueFullException到底是怎么回事呢?简单来说,ZooKeeper内部有一个请求队列,用来存储客户端发来的各种操作请求(比如创建节点、删除节点等)。嘿嘿,想象一下,这就好比一个超挤的电梯,已经装满了人,再有人想挤进去肯定会被拒之门外啦!ZooKeeper也一样,当它的小“队伍”排满了的时候,新来的请求就别想加塞儿了,直接就被它无情地“拒绝”了,然后还甩给你一个“异常”的小牌子,意思是说:“兄弟,这儿真的装不下了!”这种情况通常发生在高并发场景下,或者是网络延迟导致请求堆积。 为了更好地理解这个问题,我们可以看看下面这段代码: java import org.apache.zookeeper.ZooKeeper; import org.apache.zookeeper.CreateMode; public class ZookeeperExample { public static void main(String[] args) throws Exception { // 创建ZooKeeper实例 ZooKeeper zk = new ZooKeeper("localhost:2181", 5000, event -> { System.out.println("ZooKeeper event: " + event); }); // 创建一个节点 String nodePath = zk.create("/testNode", "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT); System.out.println("Node created at path: " + nodePath); // 关闭连接 zk.close(); } } 在这个简单的例子中,我们尝试创建一个ZooKeeper实例并创建一个节点。如果这个时候ZooKeeper的队列满了,就会抛出CommitQueueFullException。所以,接下来我们要做的就是想办法避免这种情况的发生。 --- 二、为什么会出现CommitQueueFullException? 在深入讨论解决方案之前,我觉得有必要先搞清楚为什么会发生这种异常。其实,这背后涉及到了ZooKeeper的一些设计细节。 首先,ZooKeeper的队列大小是由配置文件中的zookeeper.commitlog.capacity参数决定的。默认情况下,这个值是比较小的,可能只有几兆字节。想象一下,你的应用像一个忙碌的快递站,接到了无数订单(也就是那些请求)。但要是快递小哥忙得顾不上送货,订单就会越堆越多,很快整个站点就塞满了,连下一份订单都没地方放了! 其次,网络环境也是一个重要因素。有时候,客户端和服务端之间的网络延迟会导致请求堆积。就算客户端那边请求没那么频繁,但要是服务端反应慢了,照样会出问题啊。 最后,还有一个容易被忽视的原因就是客户端的连接数过多。每个连接都会占用一定的资源,包括内存和CPU。要是连上的用户太多了,但服务器的“体力”又不够强(比如内存、CPU之类的资源有限),那它就很容易“忙不过来”,导致请求都排着队等着,根本处理不完。 说到这里,我忍不住想吐槽一下自己曾经犯过的错误。嘿,有次我在测试环境里弄了个能扛大流量的程序,结果发现ZooKeeper老是蹦出个叫“CommitQueueFullException”的错误,烦得不行!我当时就纳闷了:“我明明设了个挺合理的线程池大小啊,怎么还出问题了呢?”后来一查才发现,坏事了,是客户端的连接数配少了,结果请求都堵在那儿了,就像高速公路堵车一样。真是教训深刻啊! --- 三、如何优雅地处理CommitQueueFullException? 既然知道了问题的根源,那接下来就要谈谈具体的解决办法了。我觉得可以从以下几个方面入手: 1. 调整队列大小 最直接的办法当然是增大队列的容量。通过修改zookeeper.commitlog.capacity参数,可以让ZooKeeper拥有更大的缓冲空间。其实嘛,这个方法也不是啥灵丹妙药,毕竟咱们手头的硬件资源就那么多,要是傻乎乎地把队列弄得太长,说不定反而会惹出别的麻烦,比如让系统跑得更卡之类的。 代码示例: properties zookeeper.commitlog.capacity=10485760 上面这段配置文件的内容表示将队列大小调整为10MB。你可以根据实际情况进行调整。 2. 优化客户端逻辑 很多时候,CommitQueueFullException并不是因为服务器的问题,而是客户端的请求模式不合理造成的。比如说,你是否可以合并多个小请求为一个大请求?或者是否可以采用批量操作的方式减少请求次数? 举个例子,假设你在做一个日志采集系统,每天需要向ZooKeeper写入成千上万个临时节点。与其每次都往一个节点里写东西,不如一口气往多个节点里写,这样能大大减少你发出的请求次数,省事儿又高效! 代码示例: java List nodesToCreate = Arrays.asList("/node1", "/node2", "/node3"); List createdNodes = zk.create("/batch/", new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL, nodesToCreate.size()); System.out.println("Created nodes: " + createdNodes); 在这段代码中,我们一次性创建了三个临时节点,而不是分别调用三次create()方法。这样的做法不仅减少了请求次数,还提高了效率。 3. 增加服务器资源 如果以上两种方法都不能解决问题,那么可能就需要考虑升级服务器硬件了。比如增加内存、提升CPU性能,甚至更换更快的磁盘。当然,这通常是最后的选择,因为它涉及到成本和技术难度。 4. 使用异步API ZooKeeper提供了同步和异步两种API,其中异步API可以在一定程度上缓解CommitQueueFullException的问题。异步API可酷了!你提交个请求,它立马给你返回结果,根本不用傻等那个响应回来。这样一来啊,就相当于给任务队列放了个假,压力小了很多呢! 代码示例: java import org.apache.zookeeper.AsyncCallback.StringCallback; public class AsyncExample implements StringCallback { @Override public void processResult(int rc, String path, Object ctx, String name) { if (rc == 0) { System.out.println("Node created successfully at path: " + name); } else { System.err.println("Failed to create node with error code: " + rc); } } public static void main(String[] args) throws Exception { ZooKeeper zk = new ZooKeeper("localhost:2181", 5000, null); zk.createAsync("/asyncTest", "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT, new AsyncExample(), null); } } 在这段代码中,我们使用了createAsync()方法来异步创建节点。相比于同步版本,这种方式不会阻塞主线程,从而降低了队列满的风险。 --- 四、总结与展望 通过今天的探讨,我相信大家都对CommitQueueFullException有了更深刻的理解。嘿,别被这个错误吓到!其实啊,它也没那么可怕。只要你找到对的方法,保证分分钟搞定,就跟玩儿似的! 回顾整个过程,我觉得最重要的是要保持冷静和耐心。遇到技术难题的时候啊,别慌!先搞清楚它到底是个啥问题,就像剥洋葱一样,一层层搞明白本质。接着呢,就一步一步地去找解决的办法,慢慢来,总能找到出路的!就像攀登一座高山一样,每一步都需要脚踏实地。 最后,我想鼓励大家多动手实践。理论固然重要,但真正的成长来自于不断的尝试和失败。希望大家能够在实际项目中运用今天学到的知识,创造出更加优秀的应用! 好了,今天的分享就到这里啦!如果你还有什么疑问或者想法,欢迎随时交流哦~
2025-03-16 15:37:44
10
林中小径
Redis
...- 4. 如何解决锁的隔离性问题? 诶,说到这里,问题来了——如果两个不同的业务逻辑都需要用到同一个锁怎么办?比如订单系统和积分系统都想操作同一个用户的数据,这时候就需要考虑锁的隔离性了。换句话说,我们需要确保不同业务逻辑之间的锁不会互相干扰。 示例代码 2:基于命名空间的隔离策略 python def acquire_namespace_lock(redis_client, namespace, lock_name, timeout=10): 构造带命名空间的锁名称 lock_key = f"{namespace}:{lock_name}" result = redis_client.set(lock_key, "locked", nx=True, ex=timeout) return bool(result) def release_namespace_lock(redis_client, namespace, lock_name): lock_key = f"{namespace}:{lock_name}" script = """ if redis.call("get", KEYS[1]) == ARGV[1] then return redis.call("del", KEYS[1]) else return 0 end """ redis_client.eval(script, keys=[lock_key], args=["locked"]) 在这个版本中,我们在锁的名字前面加上了命名空间前缀,比如orders:place_order和points:update_score。这样一来,不同业务逻辑就可以使用独立的锁,避免相互影响。 --- 5. 进阶 如何处理锁竞争与性能优化? 当然啦,现实中的分布式锁并不会总是那么顺利,有时候会出现大量请求同时争抢同一个锁的情况。这时我们可能需要引入队列机制或者批量处理的方式来降低系统的压力。 示例代码 3:使用Redis的List模拟队列 python def enqueue_request(redis_client, queue_key, request_data): redis_client.rpush(queue_key, request_data) def dequeue_request(redis_client, queue_key): return redis_client.lpop(queue_key) def process_queue(redis_client, lock_key, queue_key): while True: 先尝试获取锁 if not acquire_lock(redis_client, lock_key): time.sleep(0.1) 等待一段时间再重试 continue 获取队列中的第一个请求并处理 request = dequeue_request(redis_client, queue_key) if request: handle_request(request) 释放锁 release_lock(redis_client, lock_key) 这段代码展示了如何利用Redis的List结构来管理请求队列。想象一下,好多用户一起抢同一个东西,场面肯定乱哄哄的对吧?这时候,咱们就让他们老老实实排成一队,然后派一个专门的小哥挨个儿去处理他们的请求。这样一来,大家就不会互相“打架”了,事情也能更顺利地办妥。 --- 6. 总结与反思 兄弟们,通过今天的讨论,我相信大家都对如何在Redis中实现分布式锁有了更深刻的理解了吧?虽然Redis本身已经足够强大,但我们仍然需要根据实际需求对其进行适当的扩展和优化。比如刚才提到的命名空间隔离、队列机制等,这些都是非常实用的小技巧。 不过呢,我也希望大家能记住一点——技术永远不是一成不变的。业务越做越大,技术也日新月异的,咱们得不停地充电,学点新鲜玩意儿,试试新招数才行啊!就像今天的分布式锁一样,也许明天就会有更高效、更优雅的解决方案出现。所以,保持好奇心,勇于探索未知领域,这才是程序员最大的乐趣所在! 好了,今天就聊到这里啦,祝大家在编程的路上越走越远!如果有任何疑问或者想法,欢迎随时找我交流哦~
2025-04-22 16:00:29
58
寂静森林
ElasticSearch
...番折腾,我终于找到了解决办法。嘿,大家好啊!今天想跟你们聊聊我的故事和一些小感悟,也算是把我踩过的坑、学到的东西分享给大家吧。希望对那些正被同一个问题烦得抓头发的朋友有点用,咱们一起想办法解决它! --- 1. 初识NodeNotActiveException:我的第一次“崩溃” 事情是这样的,我最近在搭建一个基于ElasticSearch的日志分析系统。一切看起来都很顺利,数据导入、索引创建啥的都没问题。但当我尝试对某些节点进行操作时,突然蹦出了这么一行错误: org.elasticsearch.cluster.block.ClusterBlockException: blocked by: [SERVICE_UNAVAILABLE/2/no active shards]; 当时我心里那个急啊!赶紧去查文档,发现这是NodeNotActiveException的表现之一。简单说吧,就好比某个关键的小哥突然“罢工”了,可能是因为它内存不够用,或者网络断了啥的,结果整个团队的工作都乱套了,没法正常运转了。 我当时就纳闷了:“这不是应该自动恢复吗?为啥还要报错呢?”后来才明白,虽然ElasticSearch确实有自我修复机制,但有时候我们需要手动干预才能让它恢复正常。 --- 2. 理解背后的逻辑 为什么会出现这种问题? 在深入了解之前,我觉得有必要先搞清楚这个异常的根本原因。其实NodeNotActiveException并不是什么特别复杂的概念,它主要出现在以下几种情况: - 节点宕机:某个节点由于硬件故障或者网络问题离线了。 - 磁盘空间不足:如果某个节点的磁盘满了,ElasticSearch会自动将其标记为不可用。 - 配置错误:比如分配给节点的资源不够,导致其无法启动。 对于我来说,问题出在第二个点上——磁盘空间不足。我当时为了省钱,给服务器分配的空间少得可怜,结果没多久就发现磁盘直接爆满,把自己都吓了一跳!于是ElasticSearch很生气,直接把该节点踢出了集群。 --- 3. 解决方案一 扩容磁盘空间 既然问题找到了,那就动手解决吧!首先,我决定先扩展磁盘容量。这一步其实很简单,只要登录服务器,增加磁盘大小就行。具体步骤如下: bash 查看当前磁盘状态 df -h 扩展磁盘(假设你已经购买了额外的存储) sudo growpart /dev/xvda 1 sudo resize2fs /dev/xvda1 完成后记得重启ElasticSearch服务: bash sudo systemctl restart elasticsearch 重启之后,神奇的事情发生了——我的节点重新上线了!不过这里有个小技巧分享给大家:如果你不确定扩容是否成功,可以通过以下命令检查磁盘使用情况: bash df -h 看到磁盘空间变大了,心里顿时舒坦了不少。 --- 4. 解决方案二 调整ElasticSearch配置 当然啦,仅仅扩容还不够,还需要优化ElasticSearch的配置文件。特别是那些容易导致内存不足或磁盘占用过高的参数,比如indices.memory.index_buffer_size和indices.store.throttle.max_bytes_per_sec。修改后的配置文件大概长这样: yaml cluster.routing.allocation.disk.threshold_enabled: true cluster.routing.allocation.disk.watermark.low: 85% cluster.routing.allocation.disk.watermark.high: 90% cluster.routing.allocation.disk.watermark.flood_stage: 95% cluster.info.update.interval: 30s 这些设置的意思是告诉ElasticSearch,当磁盘使用率达到85%时开始警告,达到90%时限制写入,超过95%时完全停止操作。这样可以有效避免再次出现类似的问题。 --- 5. 实战演练 代码中的应对策略 除了调整配置,我们还可以通过编写脚本来监控和处理NodeNotActiveException。比如,下面这段Java代码展示了如何捕获异常并记录日志: java import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.client.RestClient; import org.elasticsearch.client.indices.CreateIndexRequest; import org.elasticsearch.client.indices.CreateIndexResponse; public class ElasticSearchExample { public static void main(String[] args) { RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("localhost", 9200, "http"))); try { CreateIndexRequest request = new CreateIndexRequest("test_index"); CreateIndexResponse response = client.indices().create(request, RequestOptions.DEFAULT); System.out.println("Index created: " + response.isAcknowledged()); } catch (Exception e) { if (e instanceof ClusterBlockException) { System.err.println("Cluster block detected: " + e.getMessage()); } else { System.err.println("Unexpected error: " + e.getMessage()); } } finally { try { client.close(); } catch (IOException ex) { System.err.println("Failed to close client: " + ex.getMessage()); } } } } 这段代码的作用是在创建索引时捕获可能发生的异常,并根据异常类型采取不同的处理方式。如果遇到ClusterBlockException,我们可以选择延迟重试或者其他补偿措施。 --- 6. 总结与反思 成长路上的一课 通过这次经历,我深刻体会到,作为一名开发者,不仅要掌握技术细节,还要学会从实际问题出发,找到最优解。NodeNotActiveException这个错误看着不起眼,但其实背后有不少门道呢!比如说,你的服务器硬件是不是有点吃不消了?集群那边有没有啥小毛病没及时发现?还有啊,咱们平时运维的时候是不是也有点松懈了?这些都是得好好琢磨的地方! 最后,我想说的是,技术学习的过程就像爬山一样,有时候会遇到陡峭的山坡,但只要坚持下去,总能看到美丽的风景。希望这篇文章能给大家带来一些启发和帮助!如果还有其他疑问,欢迎随时交流哦~
2025-03-14 15:40:13
64
林中小径
转载文章
...L749Ad; 这就解决了playlist.m3u8 文件获取问题:json[‘data’][‘video_url’] 第一个难题解决!!; 综上所述,整理一下具体采集流程: 获取vid = 0Q8mMY0xXDL749Ad (就是链接中的参数); 通过 https://vmobile.douyu.com/video/getInfo?vid=0Q8mMY0xXDL749Ad 获取 playlist.m3u8 文件地址; 解析 playlist.m3u8 文件提取所有 .ts文件; 下载所有 .ts 文件; 合并 .ts 成视频文件输出; Python实现 不要开启线程池,因为会有一些问题 app.py config 中可以配置 import requestsimport reimport jsonimport timeimport pymongoimport psutilfrom hashlib import md5from moviepy.editor import from multiprocessing import Pool基本配置config = {'UID':'gKpdxKRWXwaW',用户ID'CID':104,栏目ID'TYPE':1, 1=>按用户id采集列表,2=>按栏目ID采集列表'TIME_START':1,起始时间'TIME_ENT':500,结束时间'PAGE_START':1,起始页'PAGE_END':10,结束页'TIME_GE':0,每个下载间隔时间'POOL':False,是否开启线程池'CHECKID':True, True 过滤已经下载过的视频 False 不过滤'FILE_PATH':'F:/ceshi/',下载目录,【会自动创建文件夹】'TS_PATH':'F:/ceshi/download/',缓存文件目录,【会自动创建文件夹】'DB_URL':'localhost',数据库地址'DB_NAME':'douyu',数据库名称''DB_TABLE':'douyu'数据库表}MongoDB初始化client = pymongo.MongoClient(config['DB_URL'])mango_db = client[config['DB_NAME']]MongoDB存储def save_to_mango(result):if mango_db[config['DB_TABLE']].insert_one({'vid':result}):print('成功存储到MangoDB')return Truereturn FalseMongoDB验证重复def check_to_mongo(vid):count = mango_db[config['DB_TABLE']].find({'vid':vid}).count()if count==0:return Falsereturn True删除文件def del_file(page):if os.path.exists(page): 删除文件,可使用以下两种方法。os.remove(page) os.unlink(my_file)else:print('no such file:%s' % page)循环列表删除文件def loop_del_file(arr):for item in arr:del_file(item)请求器def get_content_requests(url):headers = {}headers['user-agent']='Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.131 Safari/537.36'headers['cookie'] = 'dy_did=07f83a57d1d2e22942e0883200001501; acf_did=07f83a57d1d2e22942e0883200001501; Hm_lvt_e99aee90ec1b2106afe7ec3b199020a7=1556514266,1557050422,1557208315; acf_auth=; acf_auth_wl=; acf_uid=; acf_nickname=; acf_username=; acf_own_room=; acf_groupid=; acf_notification=; acf_phonestatus=; _dys_lastPageCode=page_video,page_video; Hm_lpvt_e99aee90ec1b2106afe7ec3b199020a7=1557209469; _dys_refer_action_code=click_author_video_cate2'try:req_content = requests.get(url,headers = headers)if req_content.status_code == 200:return req_contentprint('请求失败:',url)return Noneexcept:print('请求失败:', url)return None把时间换算成秒def str_to_int(time):try:time_array = time.split(':')time_int = (int(time_array[0])60)+int(time_array[1])return time_intexcept:print('~~~~~计算视频时间失败~~~~~')return None提取需要采集的数据def get_list(html,type = 1):data = []try:list_json = json.loads(str(html))for om in list_json['data']['list']:gtime = str_to_int(om['video_str_duration'])if gtime > config['TIME_START'] and gtime < config['TIME_ENT']:if type == 2:data.append({'title': om['title'], 'vid': om['url'].split('show/')[1]})else:data.append({'title': om['title'], 'vid': om['hash_id']})return dataexcept:print('~~~~~数据提取失败~~~~~')return None解析playlist.m3u8def get_ts_list(m3u8):data = []try:html_m3u8_json = json.loads(m3u8)m3u8_text = get_content_requests(html_m3u8_json['data']['video_url'])m3u8_vurl =html_m3u8_json['data']['video_url'].split('playlist.m3u8?')[0]if m3u8_text:get_text = re.findall(',\n(.?).ts(.?)\n',m3u8_text.text,re.S)for item in get_text:data.append(m3u8_vurl+item[0]+'.ts'+item[1])return datareturn Noneexcept:print('~~~~~解析playlist.m3u8失败~~~~~')return None 杀死moviepy产生的特定进程def killProcess(): 处理python程序在运行中出现的异常和错误try: pids方法查看系统全部进程pids = psutil.pids()for pid in pids: Process方法查看单个进程p = psutil.Process(pid) print('pid-%s,pname-%s' % (pid, p.name())) 进程名if p.name() == 'ffmpeg-win64-v4.1.exe': 关闭任务 /f是强制执行,/im对应程序名cmd = 'taskkill /f /im ffmpeg-win64-v4.1.exe 2>nul 1>null' python调用Shell脚本执行cmd命令os.system(cmd)except:pass下载.ts文件def download_ts(m3u8_list,name):try:if not os.path.exists(config['FILE_PATH']):os.makedirs(config['FILE_PATH'])if not os.path.exists(config['TS_PATH']):os.makedirs(config['TS_PATH'])if os.path.exists(config['FILE_PATH']+name+'.mp4'):name = name+'_'+str(int(time.time()))print('开始下载:',name)L = []R = []for p in m3u8_list:ts_find = get_content_requests(p)file_ts = '{0}{1}.ts'.format(config['TS_PATH'],md5(ts_find.content).hexdigest())with open(file_ts,'wb') as f:f.write(ts_find.content)R.append(file_ts)hebing = VideoFileClip(file_ts)L.append(hebing)killProcess()print('下载完成:',file_ts)mp4file = '{0}{1}.mp4'.format(config['FILE_PATH'],name)final_clip = concatenate_videoclips(L)final_clip.to_videofile(mp4file, fps=24, remove_temp=True)killProcess()loop_del_file(R)print('\n下载完成:',name)print('')return Trueexcept:print('~~~~~合成.ts文件失败~~~~~')return None下载视频列表def list_get_kong(list_json):for item in list_json:y = Trueif config['CHECKID']:if check_to_mongo(item['vid']):print('~~~~~检测到重复项~~~~~')y = Falseif y:get_show_html = get_content_requests('https://vmobile.douyu.com/video/getInfo?vid=' + item['vid'])if get_show_html:m3u8_list = get_ts_list(get_show_html.text)if m3u8_list:download = download_ts(m3u8_list, item['title'])if download: save_to_mango(item['vid'])time.sleep(config['TIME_GE'])控制器def main(page):if config['TYPE']==1:print('~~~~~按用户ID采集~~~~~')listurl = 'https://v.douyu.com/video/author/getAuthorVideoListByNew?up_id={0}&cate2_id=0&limit=30&page={1}'.format(config['UID'],page)get_list_html = get_content_requests(listurl)if get_list_html:list_json = get_list(get_list_html.text,1)if list_json:list_get_kong(list_json)else:print('~~~~~按列表ID采集~~~~~')listurl = 'https://v.douyu.com/video/video/listData?page={1}&cate2Id={0}&action=new'.format(config['CID'],page)get_list_html = get_content_requests(listurl)if get_list_html:list_json = get_list(get_list_html.text,2)if list_json:list_get_kong(list_json)初始化if __name__=='__main__':if config['POOL']:groups = [x for x in range(config['PAGE_START'],config['PAGE_END']+1)]pool = Pool()pool.map(main, groups)else:for item in range(config['PAGE_START'],config['PAGE_END']+1):main(item)print('~~~~~已经完成【所有操作】~~~~~') 总结:众所周知,BiliBili是一个学习的网站! 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_35875470/article/details/89857445。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-18 11:34:00
119
转载
转载文章
...好了,问题基本上已经解决了,接下来我们需要将图片存到我们的系统里,这里我将图片保存到我的电脑桌面上,并按照分类来存储图片。 首先是要获取桌面路径,在utils包下创建Download类,添加getDesktop方法,代码如下: public static File getDesktop(){FileSystemView fsv = FileSystemView.getFileSystemView();File path=fsv.getHomeDirectory(); return path;} 接着我们再该类中添加下载图片的方法: //urlPath为网络图片的路径,savePath为要保存的本地路径(这里指定为桌面下的images文件夹)public static void download(String urlPath,String savePath) throws Exception {// 构造URLURL url = new URL(urlPath);// 打开连接URLConnection con = url.openConnection();//设置请求超时为5scon.setConnectTimeout(51000);// 输入流InputStream is = con.getInputStream();// 1K的数据缓冲byte[] bs = new byte[1024];// 读取到的数据长度int len;// 输出的文件流File sf=new File(savePath);int randomNo=(int)(Math.random()1000000);String filename=urlPath.substring(urlPath.lastIndexOf("/")+1,urlPath.length());//获取服务器上图片的名称filename=new java.text.SimpleDateFormat("yyyy-MM-dd-HH-mm-ss").format(new Date())+randomNo+filename;//时间+随机数防止重复OutputStream os = new FileOutputStream(sf.getPath()+"\\"+filename);// 开始读取while ((len = is.read(bs)) != -1) {os.write(bs, 0, len);}// 完毕,关闭所有链接os.close();is.close();} 写好后,我们再完善一下JsouPic中的getPic方法。 public static void getPic(String kind) throws Exception {//get请求方式进行请求Document root_doc = Jsoup.connect("http://www.netbian.com/" + kind + "/").get();//获取分页标签,用于获取总页数Elements els = root_doc.select("main .page a");Integer page = Integer.parseInt(els.eq(els.size() - 2).text());for (int i = 1; i < page; i++) {Document document = null;//这里判断的是当前页号是否为1,如果为1就不拼页号,否则拼上对应的页号if (i == 1) {document = Jsoup.connect("http://www.netbian.com/" + kind + "/index.htm").get();} else {document = Jsoup.connect("http://www.netbian.com/" + kind + "/index_" + i + ".htm").get();}File desktop = Download.getDesktop();Download.checkPath(desktop.getPath() + "\\images\\" + kind);//获取每个分页链接里面a标签的链接,进入链接页面获取当前图拼的大尺寸图片Elements elements = document.select("main .list li a");for (Element element : elements) {String href = element.attr("href");if (href.startsWith("/")) {String picUrl = "http://www.netbian.com" + href;Document document1 = Jsoup.connect(picUrl).get();Elements elements1 = document1.select(".endpage .pic p a img");Download.download(elements1.attr("src"), desktop.getPath() + "\\images\\" + kind);} }} } 在Download类中,我添加了checkPath方法,用于判断目录是否存在,不存在就创建一个。 public static void checkPath(String savePath) throws Exception {File file = new File(savePath);if (!file.exists()){file.mkdirs();} } 最后在mainapp包内创建PullPic类,并添加主方法。 package com.asahi.mainapp;import com.asahi.common.Kind;import com.asahi.common.PrintLog;import com.asahi.utils.JsoupPic;import java.util.Scanner;public class PullPic {public static void main(String[] args) throws Exception {new PullPic().downloadPic();}public void downloadPic() throws Exception {System.out.println("启动程序>>\n请输入所爬取的分类:");Scanner scanner = new Scanner(System.in);String kind = scanner.next();while(!Kind.contains(kind)){System.out.println("分类不存在,请重新输入:");kind = scanner.next();}System.out.println("分类输入正确!");System.out.println("开始下载>>");JsoupPic.getPic(kind);} } 三、成果展示 最终的运行结果如下: 最终的代码已上传到我的github中,点击“我的github”进行查看。 在学习Java爬虫的过程中,我收获了很多,一开始做的时候确实遇到了很多困难,这次写的获取图片也是最基础的,还可以继续深入。本来我想写一个通过多线程来获取图片来着,也尝试着去写了一下,越写越跑偏,暂时先放着不处理吧,等以后有时间再来弄,我想问题应该不大,只是考虑的东西有很多。希望大家多多指点不足,有哪些需要改进的地方,我也好多学习学习๑乛◡乛๑。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_39693281/article/details/108463868。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-12 10:26:04
130
转载
转载文章
...特别慢,该如何排查和解决? 项目内存或者CPU占用率过高如何排查? ConcurrentHashmap原理 数据库分库分表 MQ相关,为什么kafka这么快,什么是零拷贝? 小算法题 http和https协议区别,具体原理 四面(Leader) 手画自己项目的架构图,并且针对架构和中间件提问 印象最深的一本技术书籍是什么? 五面(HR) 没什么过多的问题,主要就是聊了一下自己今后的职业规划,告知了薪资组成体系等等。 插播一条福利!!!最近整理了一套1000道面试题的文档(详细内容见文首推荐文章),以及大厂面试真题,和最近看的几本书。 需要刷题和跳槽的朋友,这些可以免费赠送给大家,帮忙转发文章,宣传一下,后台私信【面试】免费领取! 小天:好像问了两次看书的情况诶?现在面试还问这个? 程序员H:是啊,幸亏之前为了弄懂JVM还看了两本书,不然真不知道说啥了! 小天:看来,我也要找几本书去看了,感情没看过两本书都不敢跳槽了! 程序员H:对了,还有简历,告诉你一个捷径 简历尽量写好一些,项目经验突出: 1、自己的知识广度和深度 2、自身的优势 3、项目的复杂性和难度以及指标 4、自己对于项目做的贡献或者优化 程序员H:唉~这还不能走可怎么办呀!你说,我把主管打一顿,是不是马上就可以走了? 小天:... 查看全文 http://www.taodudu.cc/news/show-3387369.html 相关文章: 阿里菜鸟面经 Java后端开发 社招三年 已拿offer 阿里 菜鸟网络(一面) 2021年阿里菜鸟网络春招实习岗面试分享,简历+面试+面经全套资料! 阿里菜鸟国际Java研发面经(三面+总结):JVM+架构+MySQL+Redis等 2021年3月29日 阿里菜鸟实习面试(一面)(含部分总结) mongodb 子文档排序_猫鼬101:基础知识,子文档和人口简介 特征工程 计算方法Gauss-Jordan消去法求线性方程组的解 使用(VAE)生成建模,理解可变自动编码器背后的数学原理 视觉SLAM入门 -- 学习笔记 - Part2 带你入门nodejs第一天——node基础语法及使用 python3数据结构_Python3-数据结构 debezium-connect-oracle使用 相关数值分析多种算法代码 android iphone treeview,Android之IphoneTreeView带组指示器的ExpandableListView效果 nginx rewrite功能使用 3-3 OneHot编码 JavaWeb:shiro入门小案例 MySQL的定义、操作、控制、查询语言的用法 MongoDB入门学习(三):MongoDB的增删查改 赋值、浅复制和深复制解析 以及get/set应用 他是吴恩达导师,被马云聘为「达摩院」首座 Jordan 标准型定理 列主元的Gauss-Jordan消元法-python实现 Jordan 块的几何 若尔当型(The Jordan form) 第七章 其他神经网络类型 解决迁移系统后无法配置启用WindowsRE环境的问题 宝塔面板迁移系统盘/www到数据盘/home 使用vmware vconverter从物理机迁移系统到虚拟机P2V 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_62695120/article/details/124510157。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-08 20:01:49
68
转载
转载文章
...iaDB的高可用集群解决方案,用户不仅可以享受到一键部署、自动备份恢复、弹性伸缩等便捷服务,还能通过精细权限管理和日志审计等功能确保数据安全合规。因此,了解和研究云环境下的数据库运维策略,对于提升企业IT基础设施水平至关重要。 同时,在数据库主从复制领域,MySQL 8.0及MariaDB的新版本中增强了GTID(全局事务标识符)功能,简化了主从配置流程,并提高了数据同步的一致性和可靠性。结合最新的数据库监控工具如Prometheus和Grafana,可以实时监测主从复制状态,及时发现并解决潜在问题,这对于构建高性能、高可用的分布式数据库架构具有重要意义。 综上所述,紧跟数据库技术发展潮流,关注MariaDB等开源数据库软件的更新动态,探索云端数据库运维实践与高可用性设计,无疑将助力企业在数字化转型过程中更好地利用数据库这一关键基础设施,以支撑更加复杂多变的业务场景需求。
2023-07-12 10:11:01
310
转载
转载文章
...g只有部分下降了) 解决方案:只需要在function refresh(){}的双循环里面增加以下代码: if(squareSet[i][j] == null) continue; 完整代码如下: var table; //游戏桌面var squareWidth = 50; //方块宽高var boardWidth = 10; //行列数var squareSet = []; //方块信息集合(二维数组)每个元素保存该方块的全部信息var baseScore = 5; //第一块的分数var stepScore = 10; //每多一块的累加分数var totalScore = 0; //当前总分var targetScore = 1500; //目标分var choose = []; //选中的连通小方块var timer = null; //闪烁定时器var flag = true; //锁,防止点击事件中响应其他点击或移入时间var tempSquare = null; //临时方块function refresh(){for (var i = 0; i < squareSet.length; i++) {for (var j = 0; j < squareSet[i].length; j++) {if(squareSet[i][j] == null) continue; // 点击后数组中可能有空值需要跳过squareSet[i][j].style.background="url(pic/"+squareSet[i][j].num+".png)"squareSet[i][j].style.left=squareSet[i][j].colsquareWidth+"px";squareSet[i][j].style.bottom=squareSet[i][j].rowsquareWidth+"px";} }}function createSquare(value,row,col){ //创建小方块,传入参数为颜色、行、列,初始化时使用。var temp = document.createElement('div'); //创建div dom对象temp.style.height = squareWidth + "px";temp.style.width = squareWidth + "px";temp.style.position = "absolute"; //相对于背景绝对定位temp.num = value;temp.col = col;temp.row = row;return temp; //返回这个创建出来的对象}function goBack(){ //还原样式if(timer != null){ //清空计时器clearInterval(timer);}for(var i = 0 ; i < squareSet.length ; i ++){for(var j = 0 ; j < squareSet[i].length ; j ++){squareSet[i][j].style.border = "0px solid white";squareSet[i][j].style.transform = "scale(0.95)";} }}function checkLinked(square , arr){ // 递归连通图算法arr.push(square); // 将当前方块放入选中数组中// check leftif( square.col > 0 && //未到边界squareSet[square.row][square.col - 1].num == square.num && //颜色相同arr.indexOf(squareSet[square.row][square.col - 1]) == -1) { //不在choose中,避免循环判断checkLinked(squareSet[square.row][square.col - 1] , arr);}// check rightif( square.col < boardWidth - 1 &&squareSet[square.row][square.col + 1].num == square.num &&arr.indexOf(squareSet[square.row][square.col + 1]) == -1) {checkLinked(squareSet[square.row][square.col + 1] , arr);}// check upif( square.row < boardWidth - 1 &&squareSet[square.row + 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row + 1][square.col]) == -1) {checkLinked(squareSet[square.row + 1][square.col] , arr);}// check downif( square.row > 0 &&squareSet[square.row - 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row - 1][square.col]) == -1) {checkLinked(squareSet[square.row - 1][square.col] , arr);} }function flicker(arr){ // 选中连通的小方块可以闪烁var num = 0;timer = setInterval(function(){for(var i = 0 ; i < arr.length ; i ++){arr[i].style.border = "3px solid BFEFFF";//有个框arr[i].style.transform = "scale(" + (0.9 + (0.05 Math.pow(-1 , num))) + ")";//一闪一闪}num ++; // 注意这里所采用的数学技巧,仍然使用transform:scale(val)来进行缩放。},300);//闪烁的时间}function selectScore(){ //可以显示当前选中小方块的得分var score = 0;for(var i = 0 ; i < choose.length ; i ++){score += (baseScore + i stepScore);}document.getElementById('selectScore').innerHTML = choose.length + " blocks " + score + " points";document.getElementById('selectScore').style.opacity = 1;// 设置时间间隔1秒后显示消失的过渡动画setTimeout(function(){document.getElementById('selectScore').style.opacity = 0;document.getElementById('selectScore').style.transition = "opacity 1s";},1000);}function mouseOver(obj){ //鼠标移入区域响应// 还原所有样式goBack();// 检查相邻choose = [];checkLinked(obj , choose);// 闪烁flicker(choose);// 显示分数selectScore();}function move(){//纵向下落,采用快慢指针算法for(var i = 0 ; i < boardWidth ; i ++){var pointer = 0; //慢指针for(var j = 0 ; j < boardWidth ; j ++){if(squareSet[j][i] != null){ //按行遍历if(pointer != j){ //快慢指针不同步说明中间有空元素squareSet[pointer][i] = squareSet[j][i]; //慢指针设成快指针元素squareSet[j][i].row = pointer;squareSet[j][i] = null; //快指针处置空}pointer ++; //该行非空时慢指针增加} }}// 横向移动(当出现一列为空时)for(var i = 0 ; i < squareSet[0].length ;){ //必须注意循环结束条件的判断if(squareSet[0][i] == null){ //逻辑:只需判断最低层为空,该行则全为空for(var j = 0 ; j < boardWidth ; j ++){squareSet[j].splice(i , 1); //splice删除数组squareSet[j]中从i开始的1个元素}continue;//注意移动后i不应改变了}i ++;}refresh();}function init(){ // JS调用入口table = document.getElementById('pop_star'); // 获取到最外层的父元素作为桌面document.getElementById('targetScore').innerHTML = "Target Score : " + targetScore; //显示目标分数用innerHTML// 循环初始化星星区域for(var i = 0 ; i < boardWidth ; i ++){squareSet[i] = new Array(); //二维数组的创建,对每一个元素new Array()创建新数组for(var j = 0 ; j < boardWidth ; j ++){var square = createSquare(Math.floor(Math.random() 5) , i , j);// 鼠标移入事件square.onmouseover = function(){mouseOver(this);}// 鼠标点击事件square.onclick = function(){//对锁进行控制if(!flag || choose.length == null){return;}flag = false;tempSquare = null;//更新分数var score = 0;for(var i = 0 ; i < choose.length ; i ++){score += (baseScore + i stepScore);}totalScore += score;document.getElementById('nowScore').innerHTML = "Current Score : " + totalScore;//为移除增加一个延迟动画,为了防止闭包,这里采用立即执行函数for(var i = 0 ; i < choose.length ; i ++){(function(i){setTimeout(function(){squareSet[choose[i].row][choose[i].col] = null; //为状态数组置空table.removeChild(choose[i]); //将其从桌面上移除} , i 100);})(i);}//需要等星星消除完毕后再移动,故需增加一个延迟setTimeout(function(){move(); //调用移动函数},choose.length 100);}squareSet[i][j] = square; //必须将新创建的方块放回到数组中table.appendChild(square); //需要将创建的新元素添加到桌面上} }refresh(); //每次页面内容发生变化需要重绘页面}window.onload = function(){init();} // window.onload 保证了在页面全部加载完毕后再执行JS代码 第四阶段:消灭全部星星,返回结果 最终完整版代码如下: var table; //游戏桌面var squareWidth = 50; //方块宽高var boardWidth = 10; //行列数var squareSet = []; //方块信息集合(二维数组)每个元素保存该方块的全部信息var baseScore = 5; //第一块的分数var stepScore = 10; //每多一块的累加分数var totalScore = 0; //当前总分var targetScore = 1500; //目标分var choose = []; //选中的连通小方块var timer = null; //闪烁定时器var flag = true; //锁,防止点击事件中响应其他点击或移入时间var tempSquare = null; //临时方块function refresh(){ //重绘画板,每次鼠标点击后刷新for(var i = 0 ; i < squareSet.length ; i ++){for(var j = 0 ; j < squareSet[i].length ; j ++){if(squareSet[i][j] == null) continue; // 点击后数组中可能有空值需要跳过squareSet[i][j].row = i; //更新当前的行列数squareSet[i][j].col = j;squareSet[i][j].style.backgroundImage = "url(./pic/" + squareSet[i][j].num + ".png)"squareSet[i][j].style.backgroundSize = "cover"; //占满范围squareSet[i][j].style.transform = "scale(0.95)"; //美观效果让不同星星之间留出空隙(缩小至0.95倍大小)squareSet[i][j].style.left = squareSet[i][j].col squareWidth + "px"; // 别忘了加"px"squareSet[i][j].style.bottom = squareSet[i][j].row squareWidth + "px";squareSet[i][j].style.transition = "left 0.3s, bottom 0.3s";} }}function createSquare(value,row,col){ //创建小方块,传入参数为颜色、行、列,初始化时使用。var temp = document.createElement('div'); //创建div dom对象temp.style.height = squareWidth + "px";temp.style.width = squareWidth + "px";temp.style.display = "inline-block"; //需要让对象元素能排列一排temp.style.position = "absolute"; //相对于背景绝对定位temp.style.boxSizing = "border-box"; //重要:不会使增加的边框溢出覆盖到旁边的元素temp.style.borderRadius = "12px";temp.num = value;temp.col = col;temp.row = row;return temp; //返回这个创建出来的对象}function goBack(){ //还原样式if(timer != null){ //清空计时器clearInterval(timer);}for(var i = 0 ; i < squareSet.length ; i ++){for(var j = 0 ; j < squareSet[i].length ; j ++){if(squareSet[i][j] == null) continue;squareSet[i][j].style.border = "0px solid white";squareSet[i][j].style.transform = "scale(0.95)";} }}function checkLinked(square , arr){ // 递归连通图算法if(square == null) return; // 递归边界arr.push(square); // 将当前方块放入选中数组中// check leftif( square.col > 0 && //未到边界squareSet[square.row][square.col - 1] && //左侧有块squareSet[square.row][square.col - 1].num == square.num && //颜色相同arr.indexOf(squareSet[square.row][square.col - 1]) == -1) { //不在choose中,避免循环判断checkLinked(squareSet[square.row][square.col - 1] , arr);}// check rightif( square.col < boardWidth - 1 &&squareSet[square.row][square.col + 1] &&squareSet[square.row][square.col + 1].num == square.num &&arr.indexOf(squareSet[square.row][square.col + 1]) == -1) {checkLinked(squareSet[square.row][square.col + 1] , arr);}// check upif( square.row < boardWidth - 1 &&squareSet[square.row + 1][square.col] &&squareSet[square.row + 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row + 1][square.col]) == -1) {checkLinked(squareSet[square.row + 1][square.col] , arr);}// check downif( square.row > 0 &&squareSet[square.row - 1][square.col] &&squareSet[square.row - 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row - 1][square.col]) == -1) {checkLinked(squareSet[square.row - 1][square.col] , arr);} }function flicker(arr){ // 选中连通的小方块可以闪烁var num = 0;timer = setInterval(function(){for(var i = 0 ; i < arr.length ; i ++){arr[i].style.border = "3px solid BFEFFF";arr[i].style.transform = "scale(" + (0.9 + (0.05 Math.pow(-1 , num))) + ")";}num ++; // 注意这里所采用的数学技巧,仍然使用transform:scale(val)来进行缩放。},300);}function selectScore(){ //可以显示当前选中小方块的得分var score = 0;for(var i = 0 ; i < choose.length ; i ++){score += (baseScore + i stepScore);}if(score == 0) return;document.getElementById('selectScore').innerHTML = choose.length + " blocks " + score + " points";document.getElementById('selectScore').style.opacity = 1;document.getElementById('selectScore').style.transition = null;// 设置时间间隔1秒后显示消失的过渡动画setTimeout(function(){document.getElementById('selectScore').style.opacity = 0;document.getElementById('selectScore').style.transition = "opacity 1s";},1000);}function mouseOver(obj){ //鼠标移入区域响应// 加锁,点击事件过程中不允许其他点击事件与移入事件if(!flag){tempSquare = obj;return;}// 还原所有样式goBack();// 检查相邻choose = [];checkLinked(obj , choose);if(choose.length <= 1){choose = [];return;}// 闪烁flicker(choose);// 显示分数selectScore();}function move(){ //下落移动控制//纵向下落,采用快慢指针算法for(var i = 0 ; i < boardWidth ; i ++){var pointer = 0; //慢指针for(var j = 0 ; j < boardWidth ; j ++){if(squareSet[j][i] != null){ //按行遍历if(pointer != j){ //快慢指针不同步说明中间有空元素squareSet[pointer][i] = squareSet[j][i]; //慢指针设成快指针元素squareSet[j][i].row = pointer;squareSet[j][i] = null; //快指针处置空}pointer ++; //该行非空时慢指针增加} }}// 横向移动(当出现一列为空时)for(var i = 0 ; i < squareSet[0].length ;){ // 注意循环终止条件的判断!!!因为数组长度会更新if(squareSet[0][i] == null){ //逻辑:只需判断最低层为空,该行则全为空for(var j = 0 ; j < boardWidth ; j ++){squareSet[j].splice(i , 1); //splice删除数组squareSet[j]中从i开始的1个元素}continue;//注意移动后i不应改变了}i ++;}refresh();}function isFinish(){ //判断游戏结束flag = true; //重要:需要先解锁,保证后续鼠标事件可以被响应for(var i = 0 ; i < squareSet.length ; i ++){for(var j = 0 ; j < squareSet[i].length ; j ++){if(squareSet[i][j] == null) continue; //遍历每一元素判断连通var temp = [];checkLinked(squareSet[i][j] , temp);if(temp.length > 1) return false; //若有某一元素仍有多块连通,则游戏未结束} }return flag;}function init(){ // JS调用入口table = document.getElementById('pop_star'); // 获取到最外层的父元素作为桌面document.getElementById('targetScore').innerHTML = "Target Score : " + targetScore; //显示目标分数用innerHTML// 循环初始化星星区域for(var i = 0 ; i < boardWidth ; i ++){squareSet[i] = new Array(); //二维数组的创建,对每一个元素new Array()创建新数组for(var j = 0 ; j < boardWidth ; j ++){var square = createSquare(Math.floor(Math.random() 5) , i , j);// 鼠标移入事件square.onmouseover = function(){mouseOver(this);}// 鼠标点击事件square.onclick = function(){//对锁进行控制if(!flag || choose.length == null){return;}flag = false;tempSquare = null;//更新分数var score = 0;for(var i = 0 ; i < choose.length ; i ++){score += (baseScore + i stepScore);}totalScore += score;document.getElementById('nowScore').innerHTML = "Current Score : " + totalScore;//为移除增加一个延迟动画,为了防止闭包,这里采用立即执行函数for(var i = 0 ; i < choose.length ; i ++){(function(i){setTimeout(function(){squareSet[choose[i].row][choose[i].col] = null; //为状态数组置空table.removeChild(choose[i]); //将其从桌面上移除} , i 50);})(i);}//需要等星星消除完毕后再移动,故需增加一个延迟setTimeout(function(){move(); //调用移动函数setTimeout(function(){var judge = isFinish();if(judge){ //游戏达到结束条件if(totalScore > targetScore){alert('Congratulations! You win!');}else{alert('Mission Failed!');} }else{flag = true;choose = [];mouseOver(tempSquare); //处理可能存在的冲突} },300 + choose.length 75); //需要一个判断延迟},choose.length 50);}squareSet[i][j] = square; //必须将新创建的方块放回到数组中table.appendChild(square); //需要将创建的新元素添加到桌面上} }refresh(); //每次页面内容发生变化需要重绘页面}window.onload = function(){init();} // window.onload 保证了在页面全部加载完毕后再执行JS代码 效果 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_56471396/article/details/128681321。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-08 15:26:34
516
转载
转载文章
...求选择适合的消息队列解决方案。 同时,对于Java开发者而言,《Java Message Service (JMS)实战》一书提供了大量关于利用JMS进行消息传递的实战案例和最佳实践,有助于读者在实际项目中更加熟练地运用JMS与Oracle AQ结合,构建高性能、高可用的消息驱动系统。 综上所述,无论是紧跟Oracle AQ的最新发展动态,还是探究开源替代方案与相关技术书籍的学习,都将帮助开发者更好地掌握消息队列技术,并将其应用于实际工作中,以提升系统的整体性能与稳定性。
2023-12-17 14:22:22
138
转载
转载文章
...nd 类进行重构: 解决问题一的方法:不使用数组,而是使用 Set 解决问题二的方法:添加一个新的方法,用于收集依赖 // 保存当前需要收集的响应式函数let activeReactviceFn = nullclass Depend {constructor() {this.reactiveFns = new Set()}depend() {if (activeReactviceFn) {this.reactiveFns.add(activeReactviceFn)} }addDepend(reactiveFn) {this.reactiveFns.add(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }// 对象的响应式const obj = {name: 'why', // depend 对象age: 18 // depend 对象}/ 封装一个响应式函数 /function watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)const objProxy = new Proxy(obj, {get: function (target, key, receiver) {// 根据 target key 获取对应的 depnedconst depend = getDepend(target, key)// 给 depend 对象中添加响应式函数depend.depend()return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} })watchFn(function () {console.log(objProxy.name, '--------------')console.log(objProxy.name, '++++++++++++++')})objProxy.name = 'kobe'/ why --------------why ++++++++++++++kobe --------------kobe ++++++++++++++/ 4.7 创建响应式对象 目前的响应式是针对于obj一个对象的,我们可以创建出来一个函数,针对所有的对象都可以变成响应式对象 / 保存当前需要收集的响应式函数 /let activeReactviceFn = null/ 依赖收集类 /class Depend {constructor() {this.reactiveFns = new Set()}depend() {if (activeReactviceFn) {this.reactiveFns.add(activeReactviceFn)} }addDepend(reactiveFn) {this.reactiveFns.add(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }/ 封装一个响应式函数 /function watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}/ 创建响应式对象函数 /function reactive(obj) {// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)return new Proxy(obj, {get: function (target, key, receiver) {// 根据 target key 获取对应的 depnedconst depend = getDepend(target, key)// 给 depend 对象中添加响应式函数depend.depend()return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} })}const info = reactive({address: '广州市',height: 1.88})watchFn(() => {console.log(info.address, '---')})info.address = '北京市' 4.8 Vue2 响应式原理 前面所实现的响应式的代码,其实就是 Vue3 中的响应式原理: Vue3 主要是通过 Proxy 来监听数据的变化以及收集相关的依赖的 Vue2 中通过 Object.defineProerty的方式来实现对象属性的监听 可以将 reactive 函数进行如下的重构: 在传入对象时,我们可以遍历所有的 key,并且通过属性存储描述符来监听属性的获取和修改 在 setter 和 getter 方法中的逻辑和前面的 Proxy 是一致的 / 保存当前需要收集的响应式函数 /let activeReactviceFn = null/ 依赖收集类 /class Depend {constructor() {this.reactiveFns = new Set()}depend() {if (activeReactviceFn) {this.reactiveFns.add(activeReactviceFn)} }addDepend(reactiveFn) {this.reactiveFns.add(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }/ 封装一个响应式函数 /function watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}/ 创建响应式对象函数 /function reactive(obj) {Object.keys(obj).forEach((key) => {let value = obj[key]Object.defineProperty(obj, key, {get: function () {const dep = getDepend(obj, key)dep.depend()return value},set: function (newValue) {value = newValueconst dep = getDepend(obj, key)dep.notify()} })})return obj}const info = reactive({address: '广州市',height: 1.88})watchFn(() => {console.log(info.address, '---')})info.address = '北京市' 本篇文章为转载内容。原文链接:https://blog.csdn.net/wanghuan1020/article/details/126774033。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-11 12:37:47
679
转载
转载文章
...第三方控件,然而这些解决问题的方法要么很麻烦,比如改配置,要么不稳定,比如文件上G以后,上传要么死掉,要么卡住,通过设置web.config并不能很好的解决这些问题。 这是一个Html5统治浏览器的时代,在这个新的时代,这种问题已被简化并解决,我们可以利用Html5分片上传的技术,那么Plupload则是一个对此技术进行封装的前端脚本库,这个库的好处是可以自动检测浏览器是否支持html5技术,不支持再检测是否支持flash技术,甚至是sliverlight技术,如果支持,就使用检测到的技术。 那么这个库到哪里下载,怎么搭建呢,比较懒的童鞋还是用Install-Package Plupload搞定吧,一个命令搞定所有事 Plupload支持的功能这里就不细说了,什么批量上传,这里我没有用到,主要是感觉它支持的事件非常丰富,文件选取后的事件,文件上传中的事件(可获得文件的上传进度),文件上传成功的事件,文件上传失败的事件,等等 我的例子主要是上传一个单个文件,并显示上传的进度条(使用jQuery的一个进度条插件) 下面的例子主要是为文件上传交给 UploadCoursePackage.ashx 来处理 /ProgressBar/ var progressBar = $("loading").progressbar({ width: '500px', color: 'B3240E', border: '1px solid 000000' }); /Plupload/ //实例化一个plupload上传对象 var uploader = new plupload.Uploader({ browse_button: 'browse', //触发文件选择对话框的按钮,为那个元素id runtimes: 'html5,flash,silverlight,html4',//兼容的上传方式 url: "Handlers/UploadCoursePackage.ashx", //后端交互处理地址 max_retries: 3, //允许重试次数 chunk_size: '10mb', //分块大小 rename: true, //重命名 dragdrop: false, //允许拖拽文件进行上传 unique_names: true, //文件名称唯一性 filters: { //过滤器 max_file_size: '999999999mb', //文件最大尺寸 mime_types: [ //允许上传的文件类型 { title: "Zip", extensions: "zip" }, { title: "PE", extensions: "pe" } ] }, //自定义参数 (键值对形式) 此处可以定义参数 multipart_params: { type: "misoft" }, // FLASH的配置 flash_swf_url: "../Scripts/plupload/Moxie.swf", // Silverligh的配置 silverlight_xap_url: "../Scripts/plupload/Moxie.xap", multi_selection: false //true:ctrl多文件上传, false 单文件上传 }); //在实例对象上调用init()方法进行初始化 uploader.init(); uploader.bind('FilesAdded', function (uploader, files) { $("<%=fileSource.ClientID %>").val(files[0].name); $.ajax( { type: 'post', url: 'HardDiskSpace.aspx/GetHardDiskFreeSpace', data: {}, dataType: 'json', contentType: 'application/json;charset=utf-8', success: function (result) { //选择文件以后检测服务器剩余磁盘空间是否够用 if (files.length > 0) { if (parseInt(files[0].size) > parseInt(result.d)) { $('error-msg').text("文件容量大于剩余磁盘空间,请联系管理员!"); } else { $('error-msg').text(""); } } }, error: function (xhr, err, obj) { $('error-msg').text("检测服务器剩余磁盘空间失败"); } }); }); uploader.bind('UploadProgress', function (uploader, file) { var percent = file.percent; progressBar.progress(percent); }); uploader.bind('FileUploaded', function (up, file, callBack) { var data = $.parseJSON(callBack.response); if (data.statusCode === "1") { $("<%=hfPackagePath.ClientID %>").val(data.filePath); var id = $("<%=hfCourseID.ClientID %>").val(); __doPostBack("save", id); } else { hideLoading(); $('error-msg').text(data.message); } }); uploader.bind('Error', function (up, err) { alert("文件上传失败,错误信息: " + err.message); }); /Plupload/ 后台 UploadCoursePackage.ashx 的代码也重要,主要是文件分片跟不分片的处理方式不一样 using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.IO; namespace WebUI.Handlers { /// <summary> /// UploadCoursePackage 的摘要说明 /// </summary> public class UploadCoursePackage : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; int statuscode = 1; string message = string.Empty; string filepath = string.Empty; if (context.Request.Files.Count > 0) { try { string resourceDirectoryName = System.Configuration.ConfigurationManager.AppSettings["resourceDirectory"]; string path = context.Server.MapPath("~/" + resourceDirectoryName); if (!Directory.Exists(path)) Directory.CreateDirectory(path); int chunk = context.Request.Params["chunk"] != null ? int.Parse(context.Request.Params["chunk"]) : 0; //获取当前的块ID,如果不是分块上传的。chunk则为0 string fileName = context.Request.Params["name"]; //这里写的比较潦草。判断文件名是否为空。 string type = context.Request.Params["type"]; //在前面JS中不是定义了自定义参数multipart_params的值么。其中有个值是type:"misoft",此处就可以获取到这个值了。获取到的type="misoft"; string ext = Path.GetExtension(fileName); //fileName = string.Format("{0}{1}", Guid.NewGuid().ToString(), ext); filepath = resourceDirectoryName + "/" + fileName; fileName = Path.Combine(path, fileName); //对文件流进行存储 需要注意的是 files目录必须存在(此处可以做个判断) 根据上面的chunk来判断是块上传还是普通上传 上传方式不一样 ,导致的保存方式也会不一样 FileStream fs = new FileStream(fileName, chunk == 0 ? FileMode.OpenOrCreate : FileMode.Append); //write our input stream to a buffer Byte[] buffer = null; if (context.Request.ContentType == "application/octet-stream" && context.Request.ContentLength > 0) { buffer = new Byte[context.Request.InputStream.Length]; context.Request.InputStream.Read(buffer, 0, buffer.Length); } else if (context.Request.ContentType.Contains("multipart/form-data") && context.Request.Files.Count > 0 && context.Request.Files[0].ContentLength > 0) { buffer = new Byte[context.Request.Files[0].InputStream.Length]; context.Request.Files[0].InputStream.Read(buffer, 0, buffer.Length); } //write the buffer to a file. if (buffer != null) fs.Write(buffer, 0, buffer.Length); fs.Close(); statuscode = 1; message = "上传成功"; } catch (Exception ex) { statuscode = -1001; message = "保存时发生错误,请确保文件有效且格式正确"; Util.LogHelper logger = new Util.LogHelper(); string path = context.Server.MapPath("~/Logs"); logger.WriteLog(ex.Message, path); } } else { statuscode = -404; message = "上传失败,未接收到资源文件"; } string msg = "{\"statusCode\":\"" + statuscode + "\",\"message\":\"" + message + "\",\"filePath\":\"" + filepath + "\"}"; context.Response.Write(msg); } public bool IsReusable { get { return false; } } } } 再附送一个检测服务器端硬盘剩余空间的功能吧 using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Web; using System.Web.Script.Services; using System.Web.Services; using System.Web.UI; using System.Web.UI.WebControls; namespace WebUI { public partial class CheckHardDiskFreeSpace : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { } /// <summary> /// 获取磁盘剩余容量 /// </summary> /// <returns></returns> [WebMethod] public static string GetHardDiskFreeSpace() { const string strHardDiskName = @"F:\"; var freeSpace = string.Empty; var drives = DriveInfo.GetDrives(); var myDrive = (from drive in drives where drive.Name == strHardDiskName select drive).FirstOrDefault(); if (myDrive != null) { freeSpace = myDrive.TotalFreeSpace+""; } return freeSpace; } } } 效果展示: 详细配置信息可以参考这篇文章:http://blog.ncmem.com/wordpress/2019/08/12/plupload%e4%b8%8a%e4%bc%a0%e6%95%b4%e4%b8%aa%e6%96%87%e4%bb%b6%e5%a4%b9-2/ 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45525177/article/details/100654639。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-19 09:43:46
127
转载
转载文章
...计算相结合,提升他们解决实际问题的能力。 此外,艺术家和设计师也在利用颜色叠加的原理进行创新实践。例如,荷兰艺术家埃舍尔借助颜色叠加创作出视错觉艺术作品,展示出二维空间内不同颜色相互作用产生的神奇效果。而在时尚界,设计师们通过面料上的颜色叠加与透明度变化,营造出丰富多变且极具层次感的视觉体验。 总的来说,颜色叠加这一基本原理不仅在科普实验中有生动体现,更在科技、教育、艺术等多个领域发挥着重要作用,不断推动着人类对色彩世界的深入理解和广泛利用。
2024-01-20 16:20:26
468
转载
Ruby
...突然插队过来捣乱! 解决方案: 为了避免这种混乱,我们需要使用线程安全的操作,比如Mutex(互斥锁)。Mutex可以确保每次只有一个线程能够修改某个变量。 修正后的代码: ruby 正确的代码 require 'thread' counter = 0 mutex = Mutex.new threads = [] 5.times do |i| threads << Thread.new do 100_000.times do mutex.synchronize { counter += 1 } end end end threads.each(&:join) puts "Counter: {counter}" 总结: 这一段代码告诉我们,共享状态是一个雷区。如果你非要用共享变量,记得给它加上锁,不然后果不堪设想。 --- 4. 示例二 死锁的诅咒 场景描述: 有时候,我们会遇到更复杂的情况,比如两个线程互相等待对方释放资源。哎呀,这种情况就叫“死锁”,简直就像两只小猫抢一个玩具,谁都不肯让步,结果大家都卡在那里动弹不得,程序也就这样傻乎乎地停在原地,啥也干不了啦! 问题出现: 想象一下,你有两个线程,A线程需要获取锁X,B线程需要获取锁Y。想象一下,A和B两个人都想打开两把锁——A拿到了锁X,B拿到了锁Y。然后呢,A心想:“我得等B先把他的锁Y打开,我才能继续。”而B也在想:“等A先把她的锁X打开,我才能接着弄。”结果俩人就这么干等着,谁也不肯先放手,最后就成了“死锁”——就像两个人在拔河,谁都不松手,僵在那里啥也干不成。 代码示例: ruby 死锁的代码 lock_a = Mutex.new lock_b = Mutex.new thread_a = Thread.new do lock_a.synchronize do puts "Thread A acquired lock A" sleep(1) lock_b.synchronize do puts "Thread A acquired lock B" end end end thread_b = Thread.new do lock_b.synchronize do puts "Thread B acquired lock B" sleep(1) lock_a.synchronize do puts "Thread B acquired lock A" end end end thread_a.join thread_b.join 分析: 在这段代码中,两个线程都在尝试获取两个不同的锁,但由于它们的顺序不同,最终导致了死锁。运行这段代码时,你会发现程序卡住了,没有任何输出。 解决方案: 为了避免死锁,我们需要遵循“总是按照相同的顺序获取锁”的原则。比如,在上面的例子中,我们可以强制让所有线程都先获取锁A,再获取锁B。 修正后的代码: ruby 避免死锁的代码 lock_a = Mutex.new lock_b = Mutex.new thread_a = Thread.new do [lock_a, lock_b].each do |lock| lock.synchronize do puts "Thread A acquired lock {lock.object_id}" end end end thread_b = Thread.new do [lock_a, lock_b].each do |lock| lock.synchronize do puts "Thread B acquired lock {lock.object_id}" end end end thread_a.join thread_b.join 总结: 死锁就像一只隐形的手,随时可能掐住你的喉咙。记住,保持一致的锁顺序是关键! --- 5. 示例三 不恰当的线程池 场景描述: 线程池是一种管理线程的方式,它可以复用线程,减少频繁创建和销毁线程的开销。但在实际使用中,很多人会因为配置不当而导致性能下降甚至崩溃。 问题出现: 假设你创建了一个线程池,但线程池的大小设置得不合理。哎呀,这就好比做饭时锅不够大,菜都堆在那儿煮不熟,菜要是放太多呢,锅又会冒烟、潽得到处都是,最后饭也没做好。线程池也一样,太小了任务堆成山,程序半天没反应;太大了吧,电脑资源直接被榨干,啥事也干不成,还得收拾烂摊子! 代码示例: ruby 线程池的错误用法 require 'thread' pool = Concurrent::FixedThreadPool.new(2) 20.times do |i| pool.post do sleep(1) puts "Task {i} completed" end end pool.shutdown pool.wait_for_termination 分析: 在这个例子中,线程池的大小被设置为2,但有20个任务需要执行。哎呀,这就好比你请了个帮手,但他一次只能干两件事,其他事儿就得排队等着,得等前面那两件事儿干完了,才能轮到下一件呢!这种情况下,整个程序的执行时间会显著延长。 解决方案: 为了优化线程池的性能,我们需要根据系统的负载情况动态调整线程池的大小。可以使用Concurrent::CachedThreadPool,它会根据当前的任务数量自动调整线程的数量。 修正后的代码: ruby 使用缓存线程池 require 'concurrent' pool = Concurrent::CachedThreadPool.new 20.times do |i| pool.post do sleep(1) puts "Task {i} completed" end end sleep(10) 给线程池足够的时间完成任务 pool.shutdown pool.wait_for_termination 总结: 线程池就像一把双刃剑,用得好可以提升效率,用不好则会成为负担。记住,线程池的大小要根据实际情况灵活调整。 --- 6. 示例四 忽略异常的代价 场景描述: 并发编程的一个常见问题是,线程中的异常不容易被察觉。如果你没有妥善处理这些异常,程序可能会因为一个小错误而崩溃。 问题出现: 假设你有一个线程在执行某个操作时抛出了异常,但你没有捕获它,那么整个线程池可能会因此停止工作。 代码示例: ruby 忽略异常的代码 threads = [] 5.times do |i| threads << Thread.new do raise "Error in thread {i}" if i == 2 puts "Thread {i} completed" end end threads.each(&:join) 分析: 在这个例子中,当i == 2时,线程会抛出一个异常。哎呀糟糕!因为我们没抓住这个异常,程序直接就挂掉了,别的线程啥的也别想再跑了。 解决方案: 为了防止这种情况发生,我们应该在每个线程中添加异常捕获机制。比如,可以用begin-rescue-end结构来捕获异常并进行处理。 修正后的代码: ruby 捕获异常的代码 threads = [] 5.times do |i| threads << Thread.new do begin raise "Error in thread {i}" if i == 2 puts "Thread {i} completed" rescue => e puts "Thread {i} encountered an error: {e.message}" end end end threads.each(&:join) 总结: 异常就像隐藏在暗处的敌人,稍不注意就会让你措手不及。学会捕获和处理异常,是成为一个优秀的并发编程者的关键。 --- 7. 结语 好了,今天的分享就到这里啦!并发编程确实是一项强大的技能,但也需要谨慎对待。大家看看今天这个例子,是不是觉得有点隐患啊?希望能引起大家的注意,也学着怎么避开这些坑,别踩雷了! 最后,我想说的是,编程是一门艺术,也是一场冒险。每次遇到新挑战,我都觉得像打开一个神秘的盲盒,既兴奋又紧张。不过呢,光有好奇心还不够,还得有点儿耐心,就像种花一样,得一点点浇水施肥,不能急着看结果。相信只要我们不断学习、不断反思,就一定能写出更加优雅、高效的代码! 祝大家编码愉快!
2025-04-25 16:14:17
32
凌波微步
转载文章
...无法在较短时间内迅速解决,无法一次性装入内存。本文在前人的基础上总结一下解决此类问题的办法。那么有什么解决办法呢? 时间复杂度方面,我们可以采用巧妙的算法搭配合适的数据结构,如Bloom filter/Hash/bit-map/堆/数据库或倒排索引/trie树。空间复杂度方面,分而治之/hash映射。 海量数据处理的基本方法总结起来分为以下几种: 分而治之/hash映射 + hash统计 + 堆/快速/归并排序; 双层桶划分; Bloom filter/Bitmap; Trie树/数据库/倒排索引; 外排序; 分布式处理之Hadoop/Mapreduce。 前提基础知识: 1 byte= 8 bit。 int整形一般为4 bytes 共32位bit。 2^32=4G。 1G=2^30=10.7亿。 1 分而治之+hash映射+快速/归并/堆排序 问题1 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url? 分析:50亿64=320G大小空间。 算法思想1:hash 分解+ 分而治之 + 归并 遍历文件a,对每个url根据某种hash规则求取hash(url)/1024,然后根据所取得的值将url分别存储到1024个小文件(a0~a1023)中。这样每个小文件的大约为300M。如果hash结果很集中使得某个文件ai过大,可以在对ai进行二级hash(ai0~ai1024)。 这样url就被hash到1024个不同级别的目录中。然后可以分别比较文件,a0VSb0……a1023VSb1023。求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_map中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_map中,如果是,那么就是共同的url,存到文件里面就可以了。 把1024个级别目录下相同的url合并起来。 问题2 有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。 解决思想1:hash分解+ 分而治之 +归并 顺序读取10个文件a0~a9,按照hash(query)%10的结果将query写入到另外10个文件(记为 b0~b9)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。 找一台内存2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件c0~c9。 对这10个文件c0~c9进行归并排序(内排序与外排序相结合)。每次取c0~c9文件的m个数据放到内存中,进行10m个数据的归并,即使把归并好的数据存到d结果文件中。如果ci对应的m个数据全归并完了,再从ci余下的数据中取m个数据重新加载到内存中。直到所有ci文件的所有数据全部归并完成。 解决思想2: Trie树 如果query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。在这种假设前提下,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。 问题3: 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。 类似问题:怎么在海量数据中找出重复次数最多的一个? 解决思想: hash分解+ 分而治之+归并 顺序读文件中,对于每个词x,按照hash(x)/(10244)存到4096个小文件中。这样每个文件大概是250k左右。如果其中的有的文件超过了1M大小,还可以按照hash继续往下分,直到分解得到的小文件的大小都不超过1M。 对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100词及相应的频率存入文件。这样又得到了4096个文件。 下一步就是把这4096个文件进行归并的过程了。(类似与归并排序) 问题4 海量日志数据,提取出某日访问百度次数最多的那个IP 解决思想: hash分解+ 分而治之 + 归并 把这一天访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有2^32个IP。同样可以采用hash映射的方法,比如模1024,把整个大文件映射为1024个小文件。 再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。 然后再在这1024组最大的IP中,找出那个频率最大的IP,即为所求。 问题5 海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。 解决思想: 分而治之 + 归并。 注意TOP10是取最大值或最小值。如果取频率TOP10,就应该先hash分解。 在每台电脑上求出TOP10,采用包含10个元素的堆完成(TOP10小,用最大堆,TOP10大,用最小堆)。比如求TOP10大,我们首先取前10个元素调整成最小堆,如果发现,然后扫描后面的数据,并与堆顶元素比较,如果比堆顶元素大,那么用该元素替换堆顶,然后再调整为最小堆。最后堆中的元素就是TOP10大。 求出每台电脑上的TOP10后,然后把这100台电脑上的TOP10组合起来,共1000个数据,再利用上面类似的方法求出TOP10就可以了。 问题6 在2.5亿个整数中找出不重复的整数,内存不足以容纳这2.5亿个整数。 解决思路1 : hash 分解+ 分而治之 + 归并 2.5亿个int数据hash到1024个小文件中a0~a1023,如果某个小文件大小还大于内存,进行多级hash。每个小文件读进内存,找出只出现一次的数据,输出到b0~b1023。最后数据合并即可。 解决思路2 : 2-Bitmap 如果内存够1GB的话,采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存2^322bit=1GB内存。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。 注意,如果是找出重复的数据,可以用1-bitmap。第一次bit位由0变1,第二次查询到相应bit位为1说明是重复数据,输出即可。 问题7 一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数中的中数? 解决思想1 : hash分解 + 排序 按照升序顺序把这些数字,hash划分为N个范围段。假设数据范围是2^32 的unsigned int 类型。理论上第一台机器应该存的范围为0~(2^32)/N,第i台机器存的范围是(2^32)(i-1)/N~(2^32)i/N。hash过程可以扫描每个机器上的N个数,把属于第一个区段的数放到第一个机器上,属于第二个区段的数放到第二个机器上,…,属于第N个区段的数放到第N个机器上。注意这个过程每个机器上存储的数应该是O(N)的。 然后我们依次统计每个机器上数的个数,一次累加,直到找到第k个机器,在该机器上累加的数大于或等于(N^2)/2,而在第k-1个机器上的累加数小于(N^2)/2,并把这个数记为x。那么我们要找的中位数在第k个机器中,排在第(N^2)/2-x位。然后我们对第k个机器的数排序,并找出第(N^2)/2-x个数,即为所求的中位数的复杂度是O(N^2)的。 解决思想2: 分而治之 + 归并 先对每台机器上的数进行排序。排好序后,我们采用归并排序的思想,将这N个机器上的数归并起来得到最终的排序。找到第(N^2)/2个便是所求。复杂度是O(N^2 lgN^2)的。 2 Trie树+红黑树+hash_map 这里Trie树木、红黑树或者hash_map可以认为是第一部分中分而治之算法的具体实现方法之一。 问题1 上千万或上亿数据(有重复),统计其中出现次数最多的钱N个数据。 解决思路: 红黑树 + 堆排序 如果是上千万或上亿的int数据,现在的机器4G内存可以能存下。所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计重复次数。 然后取出前N个出现次数最多的数据,可以用包含N个元素的最小堆找出频率最大的N个数据。 问题2 1000万字符串,其中有些是重复的,需要把重复的全部去掉,保留没有重复的字符串。请怎么设计和实现? 解决思路:trie树。 这题用trie树比较合适,hash_map也应该能行。 问题3 一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。 解决思路: trie树 + 堆排序 这题是考虑时间效率。 1. 用trie树统计每个词出现的次数,时间复杂度是O(nlen)(len表示单词的平准长度)。 2. 然后找出出现最频繁的前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(nlg10)。 总的时间复杂度,是O(nle)与O(nlg10)中较大的哪一个。 问题4 搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录,这些查询串的重复读比较高,虽然总数是1千万,但是如果去除重复和,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就越热门。请你统计最热门的10个查询串,要求使用的内存不能超过1G。 解决思想 : trie树 + 堆排序 采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。 3 BitMap或者Bloom Filter 3.1 BitMap BitMap说白了很easy,就是通过bit位为1或0来标识某个状态存不存在。可进行数据的快速查找,判重,删除,一般来说适合的处理数据范围小于82^32。否则内存超过4G,内存资源消耗有点多。 问题1 已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。 解决思路: bitmap 8位最多99 999 999,需要100M个bit位,不到12M的内存空间。我们把0-99 999 999的每个数字映射到一个Bit位上,所以只需要99M个Bit==12MBytes,这样,就用了小小的12M左右的内存表示了所有的8位数的电话 问题2 2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。 解决思路:2bit map 或者两个bitmap。 将bit-map扩展一下,用2bit表示一个数即可,00表示未出现,01表示出现一次,10表示出现2次及以上,11可以暂时不用。 在遍历这些数的时候,如果对应位置的值是00,则将其置为01;如果是01,将其置为10;如果是10,则保持不变。需要内存大小是2^32/82=1G内存。 或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map,都是一样的道理。 3.2 Bloom filter Bloom filter可以看做是对bit-map的扩展。 参考july大神csdn文章 Bloom Filter 详解 4 Hadoop+MapReduce 参考引用july大神 csdn文章 MapReduce的初步理解 Hadoop框架与MapReduce模式 转载请注明本文地址: 大数据——海量数据处理的基本方法总结 本篇文章为转载内容。原文链接:https://blog.csdn.net/hong2511/article/details/80842704。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-01 12:40:17
541
转载
Spark
...开反向加速器似的! 解决办法也很简单——要么增加节点的内存配置,要么减少需要缓存的数据规模。当然,这需要根据实际情况权衡利弊。 2.2 序列化方式的选择不当 另一个容易被忽视的问题是序列化方式的选择。Spark提供了多种序列化机制,包括JavaSerializer、KryoSerializer等。不同的序列化方式会影响数据的大小以及读取效率。 我曾经试过直接使用默认的JavaSerializer,结果发现性能非常差。后来改用了KryoSerializer之后,才明显感觉到速度有所提升。话说回来啊,用 KryoSerializer 的时候可别忘了先给所有要序列化的类都注册好,不然程序很可能就“翻车”报错啦! java import org.apache.spark.serializer.KryoRegistrator; import com.esotericsoftware.kryo.Kryo; public class MyRegistrator implements KryoRegistrator { @Override public void registerClasses(Kryo kryo) { kryo.register(MyClass.class); // 注册其他需要序列化的类... } } 然后在SparkConf中设置: java SparkConf conf = new SparkConf(); conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer"); conf.set("spark.kryo.registrator", "MyRegistrator"); 2.3 缓存时机的选择失误 还有一个关键点在于缓存的时机。有些人一启动任务就赶紧给数据加上.cache(),觉得这样数据就能一直乖乖待在内存里,不用再费劲去读了。但实际上,这种做法并不总是最优解。 比如,在某些情况下,数据可能只会在特定阶段被频繁访问,而在其他阶段则很少用到。要是你提前把这部分数据缓存了,不光白白占用了宝贵的内存空间,搞不好后面真要用缓存的地方还找不到足够的空位呢! 因此,合理规划缓存策略非常重要。比如说,在某个任务快开始了,你再随手调用一下.cache()这个方法,这样就能保证数据乖乖地待在内存里,别到时候卡壳啦! 三、实践案例 如何正确使用分布式缓存? 接下来,我想分享几个具体的案例,帮助大家更好地理解和运用分布式缓存。 案例1:简单的词频统计 假设我们有一个文本文件,里面包含了大量的英文单词。我们的目标是统计每个单词出现的次数。为了提高效率,我们可以先将文件内容缓存起来,然后再进行处理。 scala val textFile = sc.textFile("hdfs://path/to/input.txt") textFile.cache() val wordCounts = textFile.flatMap(_.split(" ")) .map(word => (word, 1)) .reduceByKey(_ + _) wordCounts.collect().foreach(println) 在这个例子中,.cache()方法确保了textFile RDD的内容只被加载一次,并且可以被后续的操作共享。其实嘛,要是没用缓存的话,每次你调用flatMap或者map的时候,都得重新去原始数据里翻一遍,这就跟每次出门都得把家里所有东西再检查一遍似的,纯属给自己找麻烦啊! 案例2:多步骤处理流程 有时候,一个任务可能会涉及到多个阶段的处理,比如过滤、映射、聚合等等。在这种情况下,合理安排缓存的位置尤为重要。 python from pyspark.sql import SparkSession spark = SparkSession.builder.appName("WordCount").getOrCreate() df = spark.read.text("hdfs://path/to/input.txt") 第一步:将文本拆分为单词 words = df.selectExpr("split(value, ' ') as words").select("words.") 第二步:缓存中间结果 words.cache() 第三步:统计每个单词的出现次数 word_counts = words.groupBy("value").count() word_counts.show() 这里,我们在第一步处理完之后立即调用了.cache()方法,目的是为了保留中间结果,方便后续步骤复用。要是不这么干啊,那每走一步都得把上一步的算一遍,想想就费劲,效率肯定低得让人抓狂。 四、总结与展望 通过今天的讨论,相信大家对Spark的分布式缓存有了更深刻的认识。虽然它能带来显著的性能提升,但也并非万能药。其实啊,要想把它用得溜、用得爽,就得先搞懂它是怎么工作的,再根据具体的情况去灵活调整。不然的话,它的那些本事可就都浪费啦! 未来,随着硬件条件的不断改善以及算法优化的持续推进,相信Spark会在更多领域展现出更加卓越的表现。嘿,咱们做开发的嘛,就得有颗永远好奇的心!就跟追剧似的,新技术一出就得赶紧瞅两眼,说不定哪天就用上了呢。别怕麻烦,多学点东西总没错,说不定哪天就能整出个大招儿来! 最后,感谢大家耐心阅读这篇文章。如果你有任何疑问或者想法,欢迎随时交流!让我们一起努力,共同进步吧!
2025-05-02 15:46:14
81
素颜如水
转载文章
...de是做不到的。虽然解决这个问题在技术上可能非常具有挑战性,但我们可以通过构建一个与FFI注册码模式匹配并恢复必要信息的项目特定分析器来解决这个问题,FFI Navigator就这样诞生了,作者仍然是陈天奇博士。 安装方式如下: 建议使用源码安装git clone https://github.com/tqchen/ffi-navigator.git 安装python依赖cd ffi-navigator/pythonpython setyp.py install vscode需要安装FFI Navigator插件,直接搜索安装即可(安装到服务器端)。 最后需要在.vscode/setting.json进行配置,内容如下: {"python.analysis.extraPaths": ["${workspaceFolder}/python"], // 添加额外导入路径, 告诉pylance自定义的python库在哪里"ffi_navigator.pythonpath": "/home/liyanpeng/anaconda3/envs/tvmenv/bin/python", // 配置FFI Navigator"python.defaultInterpreterPath": "/home/liyanpeng/anaconda3/envs/tvmenv/bin/python","files.associations": {"type_traits": "cpp","fstream": "cpp","thread": "cpp",".tcc": "cpp"} } 更详细内容可以参考项目链接。 结束语 对于vscode的使用技巧及C/C++相关的配置,这里不再详细的介绍了,感兴趣的小伙伴们可以了解下。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_42730750/article/details/126723224。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-12 20:04:26
87
转载
转载文章
转载文章
...景调整卡表相关参数,解决实际遇到的性能瓶颈问题。比如,如何根据应用特点选择合适的卡表大小、调整扫描频率以平衡GC开销与应用响应时间。 4. 学术研究论文:查阅近年来关于垃圾收集器优化的学术论文,比如《A Study of the G1 Garbage Collector》、《The Z Garbage Collector》等,可深入了解卡表设计背后的理论依据,以及研究人员为提升GC效率所做的各种尝试和改进。 5. 官方文档及源码阅读:直接研读Oracle官方发布的Java SE HotSpot VM Garbage Collection Tuning Guide,以及JDK源码中的CardTableBarrierSet等相关类实现,可以更直观地把握卡表的具体工作流程和技术细节。同时,关注JDK开发团队的博客、邮件列表讨论等,获取第一手的更新信息和未来发展方向。
2023-12-16 20:37:50
246
转载
转载文章
...源项目也提供了强大的解决方案。例如,Apollo拥有丰富的定时任务调度策略以及灵活的分片、依赖处理机制,能够有效应对高并发场景下的定时任务管理需求。 与此同时,云原生环境下的Kubernetes CronJob也是一个值得关注的方向。CronJob作为Kubernetes的一部分,可以根据Cron表达式在集群中调度容器化的定时任务,实现了与容器编排平台的高度集成。 此外,在深入研究定时任务原理时,可以追溯到操作系统级别的定时器和调度算法,如Linux系统的timerfd和POSIX信号定时器机制,这些底层技术为上层应用提供精确且高效的定时服务。 总之,随着技术的演进与发展,Java定时任务的实现方式日趋丰富多样,开发者应根据实际应用场景选择最适合的技术方案,同时关注社区前沿动态,以确保所采用的定时任务技术始终与时俱进。
2023-10-27 18:50:19
344
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
curl -I http://example.com
- 获取HTTP头部信息。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"