前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[自定义指令 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Kibana
...说,数据保留策略就是定义数据的生命周期。比如说,“只留最近30天的记录”,或者是“超过一年的就自动清掉”。你可以根据业务需求灵活设置这些规则。 2.2 为什么我们需要它? 想象一下,如果你是一家电商平台的数据分析师,每天都会生成大量的日志文件。这些日志里可能包含了用户的购买记录、浏览行为等重要信息。不过呢,日子一长啊,那些早期的日志就变得没啥分析的意义了,反而是白白占着磁盘空间,挺浪费的。这时候,数据保留策略就能帮你解决这个问题。 再比如,如果你是一家医院的IT管理员,医疗设备产生的监控数据可能每秒都在增加。要是不赶紧把那些旧数据清理掉,系统非但会变得越来越卡,还可能出大问题,甚至直接“翻车”!所以,合理规划数据的生命周期是非常必要的。 --- 3. 如何在Kibana中设置数据保留策略? 接下来,咱们进入正题——具体操作步骤。相信我,这并不复杂,只要跟着我的节奏走,你一定能学会! 3.1 第一步:创建索引模式 首先,我们需要确保你的数据已经被正确地存储到Elasticsearch中,并且可以通过Kibana访问。如果还没有创建索引模式,可以按照以下步骤操作: bash 登录Kibana界面 1. 点击左侧菜单栏中的“Management”。 2. 找到“Stack Management”部分,点击“Index Patterns”。 3. 点击“Create index pattern”按钮。 4. 输入你的索引名称(例如 "logstash-"),然后点击“Next step”。 5. 选择时间字段(通常是@timestamp),点击“Create index pattern”完成配置。 > 思考点:这里的关键在于选择合适的索引名称和时间字段。如果你的时间字段命名不规范,后续可能会导致数据无法正确筛选哦! 3.2 第二步:设置索引生命周期策略 接下来,我们要为索引创建生命周期策略。这是Kibana中最核心的部分,直接决定了数据的保留方式。 示例代码: javascript PUT _ilm/policy/my_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "50gb", "max_age": "30d" } } }, "delete": { "min_age": "1y", "actions": { "delete": {} } } } } } 这段代码的意思是: - 热阶段(Hot Phase):当索引大小达到50GB或者超过30天时,触发滚动操作。 - 删除阶段(Delete Phase):超过1年后,自动删除该索引。 > 小贴士:这里的max_size和max_age可以根据你的实际需求调整。比如,如果你的服务器内存较小,可以将max_size调低一点。 3.3 第三步:将策略应用到索引 设置好生命周期策略后,我们需要将其绑定到具体的索引上。具体步骤如下: bash POST /my-index/_settings { "index.lifecycle.name": "my_policy", "index.lifecycle.rollover_alias": "my_index" } 这段代码的作用是将之前创建的my_policy策略应用到名为my-index的索引上。同时,通过rollover_alias指定滚动索引的别名。 --- 4. 实战案例 数据保留策略的实际效果 为了让大家更直观地理解数据保留策略的效果,我特意准备了一个小案例。假设你是一名电商公司的运维工程师,每天都会收到大量的订单日志,格式如下: json { "order_id": "123456789", "status": "success", "timestamp": "2023-09-01T10:00:00Z" } 现在,你想对这些日志进行生命周期管理,具体要求如下: - 最近3个月的数据需要保留。 - 超过3个月的数据自动归档到冷存储。 - 超过1年的数据完全删除。 实现方案: 1. 创建索引模式,命名为orders-。 2. 定义生命周期策略 javascript PUT _ilm/policy/orders_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "10gb", "max_age": "3m" } } }, "warm": { "actions": { "freeze": {} } }, "delete": { "min_age": "1y", "actions": { "delete": {} } } } } } 3. 将策略绑定到索引 bash POST /orders-/_settings { "index.lifecycle.name": "orders_policy", "index.lifecycle.rollover_alias": "orders" } 运行以上代码后,你会发现: - 每隔3个月,新的订单日志会被滚动到一个新的索引中。 - 超过3个月的旧数据会被冻结,存入冷存储。 - 超过1年的数据会被彻底删除,释放存储空间。 --- 5. 总结与展望 通过今天的分享,相信大家对如何在Kibana中设置数据保留策略有了更深的理解。虽然设置过程看似繁琐,但实际上只需要几步就能搞定。而且啊,要是咱们好好用数据保留这招,不仅能让系统跑得更快、更顺畅,还能帮咱们把那些藏在数据里的宝贝疙瘩给挖出来,多好呀! 最后,我想说的是,技术学习是一个不断探索的过程。如果你在实践中遇到问题,不妨多查阅官方文档或者向社区求助。毕竟,我们每个人都是技术路上的探索者,一起努力才能走得更远! 好了,今天的分享就到这里啦!如果你觉得这篇文章有用,记得点赞支持哦~咱们下次再见!
2025-04-30 16:26:33
16
风轻云淡
Groovy
...在Java里,你要是定义了一个方法,不加public的话,默认是包级私有的(package-private)。但在Groovy里,你完全可以省略掉这些修饰符。比如: groovy // Java风格的写法 public void sayHello() { println "Hello, World!" } // Groovy风格的写法 void sayHello() { println "Hello, World!" } 看到没?Groovy直接去掉了public,而且连分号都不要了!刚开始我还觉得这太随便了吧,但后来发现,这样反而让代码更简洁明了。不过嘛,这也引出了一个小麻烦:有时候我们一忙乎起来,就把那些多余的装饰符啥的忘得一干二净,结果一运行脚本,就蹦出个提示说“你这语法我不认啊”! 比如下面这段代码: groovy public int addNumbers(int a, int b) { return a + b; } 如果你就这么直接跑起来,Groovy会很严肃地告诉你:“兄弟,这里不需要public。”所以,以后写Groovy的时候,记得把Java的习惯改掉哦! --- 示例2:闭包与匿名函数的区别 再来说说闭包和匿名函数的事儿。Groovy的闭包功能非常强大,但它和Java的匿名函数还是有区别的。比如,Groovy允许你在闭包中省略参数类型,甚至完全不写参数。这听起来是不是很酷?但实际操作起来,可能会让你一头雾水。 比如,以下这段Java风格的代码: java Runnable task = new Runnable() { @Override public void run() { System.out.println("Running..."); } }; 换成Groovy后,你可以这样写: groovy def task = { println "Running..." } 是不是简单多了?但问题是,有些人可能会觉得既然这么方便,那就啥都省略掉吧。于是就有了这样的代码: groovy def task = { -> println "Running..." } 乍一看好像没问题,但实际上Groovy会提醒你:“兄弟,这里的箭头可以省略。所以说啊,在用闭包的时候可得留点心,别小看那些语法小细节,不然就可能出现“你这代码写的啥玩意儿,语法不支持!”的情况,那多尴尬啊! --- 三、进阶问题 动态类型与静态类型之争 Groovy的一大特点是支持动态类型,这意味着你可以在运行时改变变量的类型。这一点确实很灵活,但也容易让人误以为所有类型都可以自由转换。实际上,Groovy在某些情况下还是会严格检查类型的。 比如,下面这段代码: groovy int number = 10 number = "twenty" 在Java里,这种类型转换是绝对不允许的,但在Groovy里,你可能会天真地认为它会自动帮你搞定。不过呢,现实情况是,Groovy直接炸了,还特么甩出个异常,说:“喂喂喂,你是不是有病啊?这类型根本不搭吧!”所以啊,哪怕Groovy自称是动态类型的“自由之翼”,该注意的类型转换规矩还是得守着,别不当回事儿。 --- 四、总结 拥抱变化,享受编程的乐趣 写到这里,我想跟大家聊聊我的感受。Groovy虽然看似简单,但它的每一个设计都有其背后的逻辑。一开始上手的时候,肯定会被各种“不支持的语法”绊住脚,别担心,这其实就是我们学习的必经之路啊!每一次踩坑,都是一次成长的机会。 最后,送给大家一句话:编程不是为了追求完美,而是为了找到最适合自己的方式。如果你愿意花点时间去了解Groovy的独特之处,你会发现它不仅是一个工具,更是一种思维方式。所以,别怕犯错,勇敢地去尝试吧!
2025-03-13 16:20:58
61
笑傲江湖
转载文章
...佳境矣。 高级程序员定义软件功能、做开发计划推进和管理。可以带几个个帮手把产品规划的功能实现,你是团队中的”大手“,遇到难题也是你亲自攻艰克难。 所以,一个高级程序员,他的职责很清晰: 1、负责产品核心复杂功能的方案设计、编码实现 2、负责疑难BUG分析诊断、攻关解决 架构师 到了架构师级别,想必你已经学会降龙十八掌,可登堂入世,成为一位准(lao)专(you)家(tiao)。 我们大喊声:“单打独斗,老衲谁也不惧!“,遂开始领导一众技术高手,指点武功,来设计和完成一个系统,大多是分布式,高并发的系统架构平台。 架构师的任务是为公司产品的业务问题提供高质量技术解决方案,主要着眼于系统的"技术实现" 。 架构师的主要分类: 可能每条产品线都设置了架构师,也可能多条生产品线的的后端是由一个架构师设计的平台提供,所以架构师也是有所不同的,其分类如下: 软件架构师 信息架构师 网站架构师 其主要职责如下: 1、需求分析:“知彼”有时比“知已”还重要。管理市场,产品等的需求,确立关键需求。坚持技术上的优秀与需求的愿景统一,提升技术负债意识,提供技术选项,风险预判,工期等解决方案。 2、架构设计:在产品功能中抽取中非功能的需求,由关键需求变成概念型架构。列出功能树,分层治之,如用户界面层、系统交互层,数据管理层。达成高扩展,高可用,高性能,高安全,易运维,易部署,易接入等能力。 3、功能设计与实现:对架构设计的底层代码级别实现。如公共核心类,接口实现,应用发现规则、接口变更等。 技术经理 人生就是不断上升的过程,你已经到达经理的层次了。如今的你,需要不断提高领导力,需要定期召开团队会议讨论问题。 首先我们要更加自信,在工作中显示自己的功力,给讲话增添力量。如:“本次项目虽然有很大的困难,我们也需苦战到底。当然示先垂范,身先士卒,方能成功!” 技术经理有时候也可能叫系统分析员,一些小公司可能会整个公司或者部门有一个技术经理。技术经理承担的角色主要是系统分析、架构搭建、系统构建、代 码走查等工作,如果说项目经理是总统,那么技术经理就是总理。当然不是所有公司都是这样的,有些公司项目经理是不管技术团队的,只做需求、进度和同客户沟 通,那么这个时候的项目经理就好像工厂里的跟单人员了,这种情况在外包公司比较多。对于技术经理来说,着重于技术方面,你需要知道某种功能用哪些技术合 适,需要知道某项功能需要多长的开发时间等。同时,技术经理也应该承担提高团队整体技术水平的工作。 你需要和大家站在一起,因为人们也都有解决问题的能力,更需要有以下的能力与责任: 1、任务管理:开发工作量评估、定立开发流程、分配和追踪开发任务 2、质量管理:代码review、开发风险判断/报告/协调解决 3、效率提升:代码底层研发和培训、最佳代码实践规范总结与推广、自动化生产工具、自动化部署工具 4、技术能力提升:招聘面试、试题主拟、新人指导、项目复盘与改进 技术总监 如果一个研发团队超过20人,有多条产品线或业务量很大,这时已经有多个技术经理在负责每个业务,这时需要一位技术总监。 主要职责: 1、组建平台研发部,与架构师共建软件公共平台,方便各条产品业务线研发。 2、通过技术平台、通过高一层的职权,管理和协调公司各个部门与本部门各条线。现在每个产品线都应该有合格的技术经理和高级程序员。 结语:我们相信,每个人都能成为IT大神。现在开始,找个师兄带你入门,让你的学习之路不再迷茫。 这里推荐我们的前端学习交流圈:784783012,里面都是学习前端的从最基础的HTML+CSS+JS【炫酷特效,游戏,插件封装,设计模式】到移动端HTML5的项目实战的学习资料都有整理,送给每一位前端小伙伴。 最新技术,与企业需求同步。好友都在里面学习交流,每天都会有大牛定时讲解前端技术! 点击:前端技术分享 本篇文章为转载内容。原文链接:https://blog.csdn.net/webDk/article/details/88917912。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-05-10 13:13:48
755
转载
MySQL
...件中的一个参数,用于定义单个MySQL实例可打开的最大文件描述符数量,文章中将其从默认值调整为65535以解决文件描述符不足的问题,是优化数据库性能的关键配置项。
2025-04-17 16:17:44
109
山涧溪流_
转载文章
...Codes)是一组预定义的数值,代表了键盘上的每一个键。在编程环境中,特别是Python使用win32api模块进行键盘和鼠标操作模拟时,VK_CODE是一个字典结构,将字符或特殊键与对应的虚拟键码关联起来。例如,在文中提到的VK_CODE A 等于0x41,表示字母\ A\ 在系统内部被识别为0x41这个特定数值,程序通过调用keybd_event函数并传入对应虚拟键码来模拟按下或释放该键。 win32api模块 , win32api是Python的一个库,提供了对Windows API(应用程序接口)的访问功能。它允许Python程序员以编程方式执行许多Windows操作系统的底层任务,如模拟用户输入、控制窗口、处理文件和目录等。在本文中,作者利用win32api模块中的mouse_event和keybd_event函数实现了对鼠标点击、移动以及键盘按键的模拟操作,这对于自动化测试、脚本编写以及需要自动交互的应用场景尤为实用。 用户界面自动化(UI Automation) , 用户界面自动化是一种软件测试方法和技术,旨在通过编写脚本或程序代替人工操作,实现对应用程序用户界面的各种元素(如按钮、文本框、菜单等)进行自动化的点击、输入、验证等交互行为。在本文中,作者通过Python win32api模块模拟键盘和鼠标事件,从而实现在Windows环境下对用户界面的自动化控制,这是用户界面自动化的一种具体实践形式,常用于提高测试效率、减少重复工作并确保软件功能稳定可靠。
2023-06-07 19:00:58
54
转载
转载文章
...ze=(6,9))定义饼状图的标签,标签是列表labels = [ '实践与经验','交流与反馈','培训与学习']每个标签占多大,会自动去算百分比sizes = [70,20,10]colors = ['red','yellowgreen','lightskyblue']colors = ['gray','00FFFF','FF1493']灰、粉、蓝绿将某部分爆炸出来, 使用括号,将第一块分割出来,数值的大小是分割出来的与其他两块的间隙explode = (0.05,0.05,0)patches,l_text,p_text = plt.pie(sizes,explode=explode,labels=labels,colors=colors,labeldistance = 1.1,autopct = '%3.1f%%',shadow = False,startangle = 90,pctdistance = 0.6)labeldistance,文本的位置离远点有多远,1.1指1.1倍半径的位置autopct,圆里面的文本格式,%3.1f%%表示小数有三位,整数有一位的浮点数shadow,饼是否有阴影startangle,起始角度,0,表示从0开始逆时针转,为第一块。一般选择从90度开始比较好看pctdistance,百分比的text离圆心的距离patches, l_texts, p_texts,为了得到饼图的返回值,p_texts饼图内部文本的,l_texts饼图外label的文本改变文本的大小方法是把每一个text遍历。调用set_size方法设置它的属性for t in l_text:t.set_size(25)for t in p_text:t.set_size(20) 设置x,y轴刻度一致,这样饼图才能是圆的plt.axis('equal')plt.legend(loc="upper left",frameon=False,fontsize=20,borderaxespad=-5)plt.title('721法则', y=-0.1,fontsize=30,loc="center")plt.savefig("721法则.png")plt.show() 下图还是我画的,当然,没有上面那个美观。 第二个图import matplotlib.pyplot as pltplt.rcParams['font.family']='SimHei'plt.figure(figsize=(6, 9))labels = '实践与经验','交流与反馈','培训与学习'sizes = [70.0,20.0,10.0]explode = (0.1,0,0)colors = ['gray','00FFFF','FF1493']plt.pie(sizes,explode=explode,labels=labels,colors=colors,labeldistance=1.1,\autopct='%d%%',shadow=True,counterclock=False)plt.legend(loc="upper left",frameon=False,fontsize=18,borderaxespad=-5)plt.axis('equal')plt.title('721法则', y=-0.1,fontsize=18)plt.savefig("721法则.png")plt.show() 结论:我们不但要会画,还要学着画得尽可能美,实践是唯一的途径。 Python入门教程 如果你现在还是不会Python也没关系,下面我会给大家免费分享一份Python全套学习资料, 包含视频、源码、课件,希望能帮到那些不满现状,想提升自己却又没有方向的朋友,可以和我一起来学习交 流。 ① Python所有方向的学习路线图,清楚各个方向要学什么东西 ② 600多节Python课程视频,涵盖必备基础、爬虫和数据分析 ③ 100多个Python实战案例,含50个超大型项目详解,学习不再是只会理论 ④ 20款主流手游迫解 爬虫手游逆行迫解教程包 ⑤ 爬虫与反爬虫攻防教程包,含15个大型网站迫解 ⑥ 爬虫APP逆向实战教程包,含45项绝密技术详解 ⑦ 超300本Python电子好书,从入门到高阶应有尽有 ⑧ 华为出品独家Python漫画教程,手机也能学习 ⑨ 历年互联网企业Python面试真题,复习时非常方便 👉Python学习视频600合集👈 观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 👉实战案例👈 光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。 👉100道Python练习题👈 检查学习结果。 👉面试刷题👈 资料领取 上述这份完整版的Python全套学习资料已经上传CSDN官方,朋友们如果需要可以微信扫描下方CSDN官方认证二维码输入“领取资料” 即可领取 好文推荐 了解python的前景:https://blog.csdn.net/weixin_49891576/article/details/127187029 了解python的兼职:https://blog.csdn.net/weixin_49891576/article/details/127125308 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_49891576/article/details/130861900。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-04 23:38:21
105
转载
Mongo
...t // 首先,我们定义Map函数 db.sales.mapReduce( function() { // 输出键为产品ID,值为销售金额 emit(this.product_id, this.amount); }, function(key, values) { // 将所有销售金额相加得到总销售额 var total = 0; for (var i = 0; i < values.length; i++) { total += values[i]; } return total; }, { "out": { "inline": 1, "pipeline": [ {"$group": {"_id": "$_id", "total_sales": {$sum: "$value"} }} ] } } ); 这段代码首先通过map()函数将每个销售记录映射到键为product_id和值为amount的键值对。哎呀,这事儿啊,就像是这样:首先,你得有个列表,这个列表里头放着一堆商品,每一项商品下面还有一堆数字,那是各个商品的销售价格。然后,咱们用一个叫 reduce() 的魔法棒来处理这些数据。这个魔法棒能帮咱们把每一样商品的销售价格加起来,就像数钱一样,算出每个商品总共卖了多少钱。这样一来,我们就能知道每种商品的总收入啦!哎呀,你懂的,我们用out这个参数把结果塞进了一个临时小盒子里面。然后,我们用$group这个魔法棒,把数据一通分类整理,看看哪些地方数据多,哪些地方数据少,这样就给咱们的数据做了一次大扫除,整整齐齐的。 3. 性能优化与注意事项 在使用MapReduce时,有几个关键点需要注意,以确保最佳性能: - 数据分区:合理的数据分区可以显著提高MapReduce的效率。通常,我们会根据数据的分布情况选择合适的分区策略。 - 内存管理:MapReduce操作可能会消耗大量内存,特别是在处理大型数据集时。合理设置maxTimeMS选项,限制任务运行时间,避免内存溢出。 - 错误处理:在实际应用中,处理潜在的错误和异常情况非常重要。例如,使用try-catch块捕获并处理可能出现的异常。 4. 进阶技巧与高级应用 对于那些追求更高效率和更复杂数据处理场景的开发者来说,以下是一些进阶技巧: - 使用索引:在Map阶段,如果数据集中有大量的重复键值对,使用索引可以在键的查找过程中节省大量时间。 - 异步执行:对于高并发的应用场景,可以考虑将MapReduce操作异步化,利用MongoDB的复制集和分片集群特性,实现真正的分布式处理。 结语 MapReduce在MongoDB中的应用,为我们提供了一种高效处理大数据集的强大工具。哎呀,看完这篇文章后,你可不光是知道了啥是MapReduce,啥时候用,还能动手在自己的项目里把MapReduce用得溜溜的!就像是掌握了新魔法一样,你学会了怎么给这玩意儿加点料,让它在你的项目里发挥出最大效用,让工作效率蹭蹭往上涨!是不是感觉整个人都精神多了?这不就是咱们追求的效果嘛!嘿,兄弟!听好了,掌握新技能最有效的办法就是动手去做,尤其是像MapReduce这种技术。别光看书上理论,找一个你正在做的项目,大胆地将MapReduce实践起来。你会发现,通过实战,你的经验会大大增加,对这个技术的理解也会更加深入透彻。所以,行动起来吧,让自己的项目成为你学习路上的伙伴,你肯定能从中学到不少东西!让我们继续在数据处理的旅程中探索更多可能性!
2024-08-13 15:48:45
148
柳暗花明又一村
转载文章
...化,CPU也会对执行指令做一些优化调整,目的是提高代码的执行效率,但这样的优化,有时候会带来不期望的结果。如例: void foo_update( foo new_fp ){spin_lock(&foo_mutex);foo old_fp = gbl_foo;new_fp-》a = 1;new_fp-》b = ‘b’;new_fp-》c = 100;gbl_foo = new_fp;spin_unlock(&foo_mutex);synchronize_rcu();kfee(old_fp);} 这段代码中,我们期望的是6,7,8行的代码在第10行代码之前执行。但优化后的代码并不会对执行顺序做出保证。在这种情形下,一个读线程很可能读到 new_fp,但new_fp的成员赋值还没执行完成。单独线程执行dosomething(fp-》a, fp-》b , fp-》c ) 的 这个时候,就有不确定的参数传入到dosomething,极有可能造成不期望的结果,甚至程序崩溃。可以通过优化屏障来解决该问题,RCU机制对优化屏障做了包装,提供了专用的API来解决该问题。这时候,第十行不再是直接的指针赋值,而应该改为 : rcu_assign_pointer(gbl_foo,new_fp);rcu_assign_pointer的实现比较简单,如下:define rcu_assign_pointer(p, v) \__rcu_assign_pointer((p), (v), __rcu)define __rcu_assign_pointer(p, v, space) \do { \smp_wmb(); \(p) = (typeof(v) __force space )(v); \} while (0) 我们可以看到它的实现只是在赋值之前加了优化屏障 smp_wmb来确保代码的执行顺序。另外就是宏中用到的__rcu,只是作为编译过程的检测条件来使用的。 在DEC Alpha CPU机器上还有一种更强悍的优化,如下所示: void foo_read(void){rcu_read_lock();foo fp = gbl_foo;if ( fp != NULL )dosomething(fp-》a, fp-》b ,fp-》c);rcu_read_unlock();} 第六行的 fp-》a,fp-》b,fp-》c会在第3行还没执行的时候就预先判断运行,当他和foo_update同时运行的时候,可能导致传入dosomething的一部分属于旧的gbl_foo,而另外的属于新的。这样会导致运行结果的错误。为了避免该类问题,RCU还是提供了宏来解决该问题: define rcu_dereference(p) rcu_dereference_check(p, 0)define rcu_dereference_check(p, c) \__rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)define __rcu_dereference_check(p, c, space) \({ \typeof(p) _________p1 = (typeof(p)__force )ACCESS_ONCE(p); \rcu_lockdep_assert(c, “suspicious rcu_dereference_check()” \usage”); \rcu_dereference_sparse(p, space); \smp_read_barrier_depends(); \(typeof(p) __force __kernel )(_________p1)); \})staTIc inline int rcu_read_lock_held(void){if (!debug_lockdep_rcu_enabled())return 1;if (rcu_is_cpu_idle())return 0;if (!rcu_lockdep_current_cpu_online())return 0;return lock_is_held(&rcu_lock_map);} 这段代码中加入了调试信息,去除调试信息,可以是以下的形式(其实这也是旧版本中的代码): define rcu_dereference(p) ({ \typeof(p) _________p1 = p; \smp_read_barrier_depends(); \(_________p1); \}) 在赋值后加入优化屏障smp_read_barrier_depends()。我们之前的第四行代码改为 foo fp = rcu_dereference(gbl_foo);,就可以防止上述问题。 数据读取的完整性 还是通过例子来说明这个问题: 如图我们在原list中加入一个节点new到A之前,所要做的第一步是将new的指针指向A节点,第二步才是将Head的指针指向new。这样做的目的是当插入操作完成第一步的时候,对于链表的读取并不产生影响,而执行完第二步的时候,读线程如果读到new节点,也可以继续遍历链表。如果把这个过程反过来,第一步head指向new,而这时一个线程读到new,由于new的指针指向的是Null,这样将导致读线程无法读取到A,B等后续节点。从以上过程中,可以看出RCU并不保证读线程读取到new节点。如果该节点对程序产生影响,那么就需要外部调用来做相应的调整。如在文件系统中,通过RCU定位后,如果查找不到相应节点,就会进行其它形式的查找,相关内容等分析到文件系统的时候再进行叙述。 我们再看一下删除一个节点的例子: 如图我们希望删除B,这时候要做的就是将A的指针指向C,保持B的指针,然后删除程序将进入宽限期检测。由于B的内容并没有变更,读到B的线程仍然可以继续读取B的后续节点。B不能立即销毁,它必须等待宽限期结束后,才能进行相应销毁操作。由于A的节点已经指向了C,当宽限期开始之后所有的后续读操作通过A找到的是C,而B已经隐藏了,后续的读线程都不会读到它。这样就确保宽限期过后,删除B并不对系统造成影响。 小结 RCU的原理并不复杂,应用也很简单。但代码的实现确并不是那么容易,难点都集中在了宽限期的检测上,后续分析源代码的时候,我们可以看到一些极富技巧的实现方式。 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_50662680/article/details/128449401。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-25 09:31:10
105
转载
转载文章
...中,HTTP传输协议定义了客户端(如Web浏览器)与服务器之间的通信格式和规则,包括请求消息的结构(如GET、POST方法以及URL、头部信息等组成部分)、响应消息的结构(如状态码、头部信息和消息体)等。通过遵循HTTP协议,Web服务器可以接收和解析客户端的请求,然后按照指定格式返回响应内容给客户端。
2023-05-30 18:31:58
90
转载
NodeJS
...dex.js"]:定义容器启动时默认执行的命令。 保存完Dockerfile后,我们可以试着构建镜像了。 --- 5. 构建并运行Docker镜像 在项目根目录下运行以下命令来构建镜像: bash docker build -t my-node-app . 这里的. 表示当前目录,my-node-app是我们给镜像起的名字。构建完成后,可以用以下命令查看是否成功生成了镜像: bash docker images 输出应该类似这样: REPOSITORY TAG IMAGE ID CREATED SIZE my-node-app latest abcdef123456 2 minutes ago 150MB 接着,我们可以启动容器试试看: bash docker run -d -p 3000:3000 my-node-app 参数解释: - -d:以后台模式运行容器。 - -p 3000:3000:将主机的3000端口映射到容器的3000端口。 - my-node-app:使用的镜像名称。 启动成功后,访问http://localhost:3000/,你会发现依然可以看到“Hello World”!这说明我们的Docker化部署已经初步完成了。 --- 6. 进阶 多阶段构建优化镜像大小 虽然上面的方法可行,但生成的镜像体积有点大(大约150MB左右)。有没有办法让它更小呢?答案是有!这就是Docker的“多阶段构建”。 修改后的Dockerfile如下: dockerfile 第一阶段:构建阶段 FROM node:16-alpine AS builder WORKDIR /app COPY package.json ./ RUN npm install COPY . . RUN npm run build 假设你有一个build脚本 第二阶段:运行阶段 FROM node:16-alpine WORKDIR /app COPY --from=builder /app/dist ./dist 假设build后的文件存放在dist目录下 COPY package.json ./ RUN npm install --production EXPOSE 3000 CMD ["node", "dist/index.js"] 这里的关键在于“--from=builder”,它允许我们在第二个阶段复用第一个阶段的结果。这样就能让开发工具和测试依赖 stays 在它们该待的地方,而不是一股脑全塞进最终的镜像里,这样一来镜像就能瘦成一道闪电啦! --- 7. 总结与展望 写到这里,我相信你已经对如何用Docker部署Node.js应用有了基本的认识。虽然过程中可能会遇到各种问题,但每一次尝试都是成长的机会。记得多查阅官方文档,多动手实践,这样才能真正掌握这项技能。 未来,随着云计算和微服务架构的普及,容器化将成为每个开发者必备的技能之一。所以,别犹豫啦,赶紧去试试呗!要是你有什么不懂的,或者想聊聊自己的经历,就尽管来找我聊天,咱们一起唠唠~咱们一起进步! 最后,祝大家都能早日成为Docker高手!😄
2025-05-03 16:15:16
32
海阔天空
Tornado
...超级简单对不对?我们定义了一个 MainHandler 类继承自 tornado.web.RequestHandler,重写了它的 get 方法,当收到 GET 请求时就会执行这个方法,并向客户端返回 "Hello, Tornado!"。然后呢,就用 make_app 这个函数把路由和这个处理器绑在一起,最后再启动服务器,让它开始监听 8888 端口。 运行后打开浏览器输入 http://localhost:8888,就能看到页面显示 "Hello, Tornado!" 了。是不是特别爽?不过别急着高兴,这只是万里长征的第一步呢! --- 3. 引入Google Cloud Secret Manager:让秘密不再裸奔 现在我们知道如何用 Tornado 做点事情了,但问题是,如果我们的应用程序需要用到一些敏感信息(例如数据库连接字符串),该怎么办呢?直接写在代码里吗?当然不行!这就是为什么我们要引入 Google Cloud Secret Manager。 3.1 安装依赖库 首先需要安装 Google Cloud 的官方 Python SDK: bash pip install google-cloud-secret-manager 3.2 获取Secret Manager中的值 假设我们在 Google Cloud Console 上已经创建了一个名为 my-secret 的密钥,并且它里面保存了我们的数据库密码。我们可以这样从 Secret Manager 中读取这个值: python from google.cloud import secretmanager def access_secret_version(project_id, secret_id, version_id): client = secretmanager.SecretManagerServiceClient() name = f"projects/{project_id}/secrets/{secret_id}/versions/{version_id}" response = client.access_secret_version(name=name) payload = response.payload.data.decode('UTF-8') return payload 使用示例 db_password = access_secret_version("your-project-id", "my-secret", "latest") print(f"Database Password: {db_password}") 这段代码做了什么呢?很简单,它实例化了一个 SecretManagerServiceClient 对象,然后根据提供的项目 ID、密钥名称以及版本号去访问对应的密钥内容。注意这里的 version_id 参数可以设置为 "latest" 来获取最新的版本。 --- 4. 将两者结合起来 构建更安全的应用 那么问题来了,怎么才能让 Tornado 和 Google Cloud Secret Manager 协同工作呢?其实答案很简单——我们可以将从 Secret Manager 获取到的敏感数据注入到 Tornado 的配置对象中,从而在整个应用范围内使用这些信息。 4.1 修改Tornado应用以支持从Secret Manager加载配置 让我们修改之前的 MainHandler 类,让它从 Secret Manager 中加载数据库密码并用于某种操作(比如查询数据库)。为了简化演示,这里我们假设有一个 get_db_password 函数负责完成这项任务: python from google.cloud import secretmanager def get_db_password(): client = secretmanager.SecretManagerServiceClient() name = f"projects/{YOUR_PROJECT_ID}/secrets/my-secret/versions/latest" response = client.access_secret_version(name=name) return response.payload.data.decode('UTF-8') class MainHandler(tornado.web.RequestHandler): def initialize(self, db_password): self.db_password = db_password def get(self): self.write(f"Connected to database with password: {self.db_password}") def make_app(): db_password = get_db_password() return tornado.web.Application([ (r"/", MainHandler, {"db_password": db_password}), ]) 在这个例子中,我们在 make_app 函数中调用了 get_db_password() 来获取数据库密码,并将其传递给 MainHandler 的构造函数作为参数。这样一来,每个 MainHandler 实例都会拥有自己的数据库密码属性。 --- 5. 总结与展望 好了朋友们,今天的分享就到这里啦!通过这篇文章,我们了解了如何利用 Tornado 和 Google Cloud Secret Manager 来构建更加安全可靠的 Web 应用。虽然过程中遇到了不少挑战,但最终的效果还是让我感到非常满意。 未来的话,我还想尝试更多有趣的功能组合,比如结合 Redis 缓存提高性能,或者利用 Pub/Sub 实现消息队列机制。如果你也有类似的想法或者遇到什么问题,欢迎随时跟我交流呀! 最后祝大家 coding愉快,记得保护好自己的秘密哦~ 😊
2025-04-09 15:38:23
43
追梦人
转载文章
...分点。 新生代农民工定义:出生于20世纪80年代以后,年龄在16周岁及以上,在异地以非农就业为主的农业户籍人口 推荐阅读: 世界的真实格局分析,地球人类社会底层运行原理 不是你需要中台,而是一名合格的架构师(附各大厂中台建设PPT) 企业IT技术架构规划方案 论数字化转型——转什么,如何转? 华为干部与人才发展手册(附PPT) 企业10大管理流程图,数字化转型从业者必备! 【中台实践】华为大数据中台架构分享.pdf 华为的数字化转型方法论 华为如何实施数字化转型(附PPT) 超详细280页Docker实战文档!开放下载 华为大数据解决方案(PPT) 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45727359/article/details/119745674。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-28 17:16:54
62
转载
转载文章
...定的标准接口规范,它定义了一组用于进程间通信和同步的函数和协议。在文中,MPI被用作在两台机器上运行并行程序的关键技术手段,通过mpirun命令调用MPI接口函数,使得分布在不同计算机上的多个进程能够高效协同工作。 mpirun命令 , mpirun是MPICH或其它MPI实现提供的一个实用程序,用于启动并管理基于MPI的应用程序。在文章所述场景中,mpirun命令用于指定运行MPI程序时参与计算的进程数量(np参数)、运行主机列表(-hosts参数)以及执行的可执行文件路径等信息,从而协调多台计算机上的MPI进程执行分布式计算任务。 防火墙设置 , 防火墙是一种网络安全性设施,用于控制进出特定网络的数据包,确保仅允许合法、安全的网络流量通过。在文中,由于防火墙对计算机之间的通信进行了限制,导致MPI进程间的连接失败,需要调整或临时关闭防火墙规则以便于MPI程序能够在多台计算机间正常通信和执行并行计算任务。 共享目录 , 共享目录是指在网络环境中的一个或多个用户可以访问的同一文件系统位置,通常通过网络文件系统(NFS)或其他共享协议实现。在本篇文章中,为了确保MPI并行程序在多台机器间正确运行,需要将包含可执行文件和其他必要资源的目录设置为共享,确保所有参与计算的节点都能够访问到这些资源。
2023-04-09 11:52:38
113
转载
Go-Spring
... 在这个例子中,我们定义了一个简单的HTTP服务器,其中包含了错误处理逻辑。如果在处理请求时遇到错误,processRequest函数会返回一个error对象。哎呀,兄弟!这事儿得这么干:首先,咱们得动用 writeError 这个功能,把出错的提示给记到日记本里头去。要是服务器启动的时候遇到啥问题,那咱们就别藏着掖着,直接把错误的信息给大伙儿瞧一瞧,这样大家也好知道哪儿出了岔子,好及时修修补补。 2. 日志记录的最佳实践 日志记录是监控系统健康状况、追踪错误来源以及优化应用性能的关键手段。哎呀,你懂的,GoSpring这个家伙可厉害了!它能跟好多不同的日志工具玩得转,比如那个基础的log,还有那个火辣辣的zap。想象一下,就像是你有好多不同口味的冰淇淋可以选择,无论是奶油味、巧克力味还是草莓味,GoSpring都能给你完美的体验。而且,它还能让你自己来调调口味,比如你想让日志多一些颜色、或者想让它在特定的时候特别响亮,GoSpring都能满足你,真的超贴心的! 示例代码: go package main import ( "log" "os" "go.uber.org/zap" ) func main() { // 初始化日志器 sugarLogger := zap.NewExample().Sugar() defer sugarLogger.Sync() http.HandleFunc("/", func(w http.ResponseWriter, r http.Request) { sugarLogger.Info("Processing request", zap.String("method", r.Method), zap.String("path", r.URL.Path)) }) err := http.ListenAndServe(":8080", nil) if err != nil { sugarLogger.Fatal("Server start error", zap.Error(err)) } } 在这个例子中,我们使用了go.uber.org/zap库来初始化日志器。咱们用个俏皮点的糖糖(Sugar())功能做了一个小版的日志记录工具,这样就能更轻松地往里面塞进各种日志信息了。就像是给日记本添上了便利贴,想记录啥就直接贴上去,简单又快捷!当服务器启动失败时,日志器会自动记录错误信息并结束程序执行。 3. 结合错误处理与日志记录的最佳实践 在实际应用中,错误处理和日志记录通常是紧密相连的。正确的错误处理策略应该包括: - 异常捕获:确保捕获所有潜在的错误,并适当处理或记录它们。 - 上下文信息:在日志中包含足够的上下文信息,帮助快速定位问题根源。 - 日志级别:根据错误的严重程度选择合适的日志级别(如INFO、ERROR)。 - 错误重试:对于可以重试的操作,实现重试机制,并在日志中记录重试尝试。 示例代码: go package main import ( "context" "math/rand" "time" "go.uber.org/zap" ) func main() { rand.Seed(time.Now().UnixNano()) ctx, cancel := context.WithTimeout(context.Background(), 5time.Second) defer cancel() for i := 0; i < 10; i++ { err := makeNetworkCall(ctx) if err != nil { zap.Sugar().Errorf("Network call %d failed: %s", i, err) } else { zap.Sugar().Infof("Network call %d succeeded", i) } time.Sleep(1 time.Second) } } func makeNetworkCall(ctx context.Context) error { time.Sleep(time.Duration(rand.Intn(10)) time.Millisecond) return fmt.Errorf("network call failed after %d ms", rand.Intn(10)) } 在这个例子中,我们展示了如何在一个循环中处理网络调用,同时利用context来控制调用的超时时间。在每次调用失败时,我们记录详细的错误信息和调用次数。这种做法有助于在出现问题时快速响应和诊断。 结论 通过上述实践,我们可以看到GoSpring如何通过结构化错误处理和日志记录来提升应用的健壮性和维护性。哎呀,兄弟!如果咱们能好好执行这些招数,那可真是大有裨益啊!不仅能大大缩短遇到问题时,咱们得花多少时间去修复,还能省下一大笔银子呢!更棒的是,还能让咱们团队里的小伙伴们,心往一处想,劲往一处使,互相理解,配合得天衣无缝。这感觉,就像是大家在一块儿打游戏,每个人都有自己的角色,但又都为了一个共同的目标而努力,多带劲啊!哎呀,你知道吗?当咱们的应用越做越大,用GoSpring的那些工具和好方法,简直就是如虎添翼啊!这样咱就能打造出一个既稳如泰山又快如闪电,还特别容易打理的系统。想象一下,就像给你的小花园施肥浇水,让每一朵花都长得茁壮又美丽,是不是感觉棒极了?所以啊,别小看了这些工具和最佳实践,它们可是你建大事业的得力助手!
2024-07-31 16:06:44
277
月下独酌
Beego
...式,包含键值对的形式定义各种配置项。例如,appname 和 port 分别定义了应用名称和监听端口号。配置文件的正确性和完整性直接影响程序的运行状态,因此需要严格检查其格式和内容。Beego 提供了专门的方法来加载和解析配置文件,确保程序能够顺利读取必要的参数。 日志记录 , 日志记录是指将程序运行过程中的重要信息(如错误、警告或调试信息)保存到文件或输出到控制台的过程。文中提到的日志记录主要用于监控配置文件加载是否成功。通过使用 Beego 提供的日志模块,开发者可以设置日志的格式和级别,例如记录日期、时间和错误发生的具体位置。当配置文件加载失败时,日志会输出详细的错误信息,帮助开发者快速定位问题。这种机制对于复杂系统的维护和故障排查至关重要,能够显著提高开发效率。
2025-04-13 15:33:12
24
桃李春风一杯酒
NodeJS
...的搭建过程,提供路由定义、中间件支持以及模板引擎集成等功能。在本文中,Express 被用来快速搭建一个 HTTP 服务,为 WebSocket 提供基础的服务器支持,并通过 app.get() 方法处理根路径的请求,返回一个简单的 HTML 页面作为客户端入口。 进度条 , 进度条是一种常见的用户界面元素,通常用于表示某个操作的完成百分比或当前状态。在本文中,进度条被用来直观地展示从服务器接收到的监控数据,例如 CPU 使用率、内存占用和磁盘使用率。当客户端接收到 WebSocket 推送的随机生成的监控数据后,JavaScript 代码会解析数据并将对应的值设置为进度条的当前值,从而动态更新页面上的可视化效果,让用户能够清晰地了解系统的实时运行状况。
2025-05-06 16:24:48
71
清风徐来
转载文章
...习惯用如下这种方式来定义导航条: Home About Blog 下面是W3C给出的一个代码示例: The Wiki Center Of Exampland Home Current Events ...more... Demos in Exampland Written by A. N. Other. Public demonstrations Demolitions ...more... Public demonstrations ...more... Demolitions ...more... ...more... Edit | Delete | Rename © copyright 1998 Exampland Emperor 关键自li,em,dl,ul,ol,footer,header,nav,aside,article section 版块 用于划分页面上的不同区域,或者划分文章里不同的节 header 页面头部或者版块(section)头部 footer 页面底部或者(section)底部 nav 导航 (包含链接 ... html5新特性-header,nav,footer,aside,article,section等各元素的详解 Html5新增了27个元素,废弃了16个元素,根据现有的标准规范,把HTML5的元素按优先级定义为结构性属性.级块性元素.行内语义性元素和交互性元素四大类. 下面是对各标签的详解,section.he ... h5中的结构元素header、nav、article、aside、section、footer介绍 结构元素不具有任何样式,只是使页面元素的的语义更加明确. header元素 header元素是一种具有引导和导航作用的的结构元素,该元素可以包含所有通常放在页面头部的内容.header元素通常用来放置 ... html5,html5教程 html5,html5教程 1.向后兼容 HTML5是这样被定义的:能向后兼容目前UA处理内容的方式.为了让语言更简单,一些老的元素和Attribute被舍弃.比如一些纯粹用于展现的元素(译注:即非语 ... 一步HTML5教程学会体系 HTML5是HTML最新的版本,万维网联盟. HTML5是下一代的HTML标准,HTML5是为了在移动设备上支持多媒体. 新特性: 绘画的canvas元素,用于媒介回放的video和audio元素,对 ... IT兄弟连 HTML5教程 了解HTML5的主流应用1 在很多人眼里,HTML5与互联网营销密切相关,但其实从开发者的角度而言,它是一种网页标准,定义了浏览器语言的编写规范.伴随HTML5标准尘埃落定,浏览器对HTML5特性的逐步支持,再加上国内对HTML ... 【转帖】39个让你受益的HTML5教程 39个让你受益的HTML5教程 闲话少说,本文作者为大家收集了网上学习HTML5的资源,期望它们可以帮助大家更好地学习HTML5. 好人啊! 不过,作者原来说的4 ... 【特别推荐】Web 开发人员必备的经典 HTML5 教程 对于我来说,Web 前端开发是最酷的职业之一,因为你可以用新的技术发挥,创造出一些惊人的东西.唯一的问题是,你需要跟上这个领域的发展脚步,因此,你必须不断的学习,不断的前进.本文将分享能够帮助您快速掌 ... HTML5教程之本地存储SessionStorage SessionStorage: 将数据保存在session对象中,所谓session是指用户在浏览某个网站时,从进入网站到浏览器关闭所经过的这段时间会话,也就是用户浏览这个网站所花费的时间就是sess ... 随机推荐 【转】MySQL索引背后的数据结构及算法原理 摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ... IIS7 / IIS7.5 URL 重写 HTTP 重定向到 HTTPS(转) 转自: http://www.cnblogs.com/yipu/p/3880518.html 1.购买SSL证书,参考:http://www.cnblogs.com/yipu/p/3722135. ... OpenGL的glViewPort窗口设置函数实现分屏 之前实现过全景图片查看(OpenGL的几何变换3之内观察全景图),那么我们需要进行分屏该如何实现呢?如下图: 没错就是以前提过的glViewPort函数,废话不多说了,我直接上代码: //从这里开始进 ... hdu 4764 Stone (巴什博弈,披着狼皮的羊,小样,以为换了身皮就不认识啦) 今天(2013/9/28)长春站,最后一场网络赛! 3~5分钟后有队伍率先发现伪装了的签到题(博弈) 思路: 与取石头的巴什博弈对比 题目要求第一个人取数字在[1,k]间的某数x,后手取x加[1,k] ... android报表图形引擎(AChartEngine)demo解析与源码 AchartEngine支持多种图表样式,本文介绍两种:线状表和柱状表. AchartEngine有两种启动的方式:一种是通过ChartFactory.getView()方式来直接获取到view ... CSS长度单位及区别 em ex px pt in 1. css相对长度单位 Ø em 元素的字体高度 Ø ex 字体x的高度 Ø px ... es6的箭头函数 1.使用语法 : 参数 => 函数语句; 分为以下几种形式 : (1) ()=>语句 ( )=> statement 这是一种简写方法省略了花括号和return 相当于 ()=&g ... pdfplumber库解析pdf格式 参考地址:https://github.com/jsvine/pdfplumber 简单的pdf转换文本: import pdfplumber with pdfplumber.open(path) a ... KMP替代算法——字符串Hash 很久以前写的... 今天来谈谈一种用来替代KMP算法的奇葩算法--字符串Hash 例题:给你两个字符串p和s,求出p在s中出现的次数.(字符串长度小于等于1000000) 字符串的Hash 根据字面意 ... SSM_CRUD新手练习(5)测试mapper 上一篇我们使用逆向工程生成了所需要的bean.dao和对应的mapper.xml文件,并且修改好了我们需要的数据库查询方法. 现在我们来测试一下DAO层,在test包下新建一个MapperTest.j ... 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_35666639/article/details/118169985。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-16 11:42:34
252
转载
转载文章
...时,实现多态就免不了定义虚函数,那么用shared_ptr时也不例外,不过有一处是可以省下的,就是析构函数我们不需要定义为虚函数了,如下面代码所示: class A {public:~A() {cout << "dealloc A" << endl;} };class B : public A {public:~B() {cout << "dealloc B" << endl;} };int main(int argc, const char argv[]) {A a = new B();delete a; //只打印dealloc Ashared_ptr<A>spa = make_shared<B>(); //析构spa是会先打印dealloc B,再打印dealloc Areturn 0;} 循环引用,笔者最先接触引用计数的语言就是Objective-C,而OC中最常出现的内存问题就是循环引用,如下面代码所示,A中引用B,B中引用A,spa和spb的强引用计数永远大于等于1,所以直到程序退出前都不会被退出,这种情况有时候在正常的业务逻辑中是不可避免的,而解决循环引用的方法最有效就是改用weak_ptr,具体可见下一章。 class A {public:shared_ptr<B> b;};class B {public:shared_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb;spb->a = spa;return 0;} //main函数退出后,spa和spb强引用计数依然为1,无法释放 刚柔并济:weak_ptr 正如上一章提到,使用shared_ptr过程中有可能会出现循环引用,关键原因是使用shared_ptr引用一个指针时会导致强引用计数+1,从此该指针的生命周期就会取决于该shared_ptr的生命周期,然而,有些情况我们一个类A里面只是想引用一下另外一个类B的对象,类B对象的创建不在类A,因此类A也无需管理类B对象的释放,这个时候weak_ptr就应运而生了,使用shared_ptr赋值给一个weak_ptr不会增加强引用计数(strong_count),取而代之的是增加一个弱引用计数(weak_count),而弱引用计数不会影响到指针的生命周期,这就解开了循环引用,上一章最后的代码使用weak_ptr可改造为如下代码。 class A {public:shared_ptr<B> b;};class B {public:weak_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb; //spb强引用计数为2,弱引用计数为1spb->a = spa; //spa强引用计数为1,弱引用计数为2return 0;} //main函数退出后,spa先释放,spb再释放,循环解开了使用weak_ptr也有需要注意的点,因为既然weak_ptr不负责裸指针的生命周期,那么weak_ptr也无法直接操作裸指针,我们需要先转化为shared_ptr,这就和OC的Strong-Weak Dance有点像了,具体操作如下:shared_ptr<int> spa = make_shared<int>(10);weak_ptr<int> spb = spa; //weak_ptr无法直接使用裸指针创建if (!spb.expired()) { //weak_ptr最好判断是否过期,使用expired或use_count方法,前者更快spb.lock() += 10; //调用weak_ptr转化为shared_ptr后再操作裸指针}cout << spa << endl; //20 智能指针原理 看到这里,智能指针的用法基本介绍完了,后面笔者来粗浅地分析一下为什么智能指针可以有效帮我们管理裸指针的生命周期。 使用栈对象管理堆对象 在C++中,内存会分为三部分,堆、栈和静态存储区,静态存储区会存放全局变量和静态变量,在程序加载时就初始化,而堆是由程序员自行分配,自行释放的,例如我们使用裸指针分配的内存;而最后栈是系统帮我们分配的,所以也会帮我们自动回收。因此,智能指针就是利用这一性质,通过一个栈上的对象(shared_ptr或unique_ptr)来管理一个堆上的对象(裸指针),在shared_ptr或unique_ptr的析构函数中判断当前裸指针的引用计数情况来决定是否释放裸指针。 shared_ptr引用计数的原理 一开始笔者以为引用计数是放在shared_ptr这个模板类中,但是细想了一下,如果这样将shared_ptr赋值给另一个shared_ptr时,是怎么做到两个shared_ptr的引用计数同时加1呢,让等号两边的shared_ptr中的引用计数同时加1?不对,如果还有第二个shared_ptr再赋值给第三个shared_ptr那怎么办呢?或许通过下面的类图便清楚个中奥秘。 [ boost中shared_ptr与weak_ptr类图 ] 我们重点关注shared_ptr<T>的类图,它就是我们可以直接操作的类,这里面包含裸指针T,还有一个shared_count的对象,而shared_count对象还不是最终的引用计数,它只是包含了一个指向sp_counted_base的指针,这应该就是真正存放引用计数的地方,包括强应用计数和弱引用计数,而且shared_count中包含的是sp_counted_base的指针,不是对象,这也就意味着假如shared_ptr<T> a = b,那么a和b底层pi_指针指向的是同一个sp_counted_base对象,这就很容易做到多个shared_ptr的引用计数永远保持一致了。 多线程安全 本章所说的线程安全有两种情况: 多个线程操作多个不同的shared_ptr对象 C++11中声明了shared_ptr的计数操作具有原子性,不管是赋值导致计数增加还是释放导致计数减少,都是原子性的,这个可以参考sp_counted_base的源码,因此,基于这个特性,假如有多个shared_ptr共同管理一个裸指针,那么多个线程分别通过不同的shared_ptr进行操作是线程安全的。 多个线程操作同一个shared_ptr对象 同样的道理,既然C++11只负责sp_counted_base的原子性,那么shared_ptr本身就没有保证线程安全了,加入两个线程同时访问同一个shared_ptr对象,一个进行释放(reset),另一个读取裸指针的值,那么最后的结果就不确定了,很有可能发生野指针访问crash。 作者:腾讯技术工程 https://mp.weixin.qq.com/s?__biz=MjM5ODYwMjI2MA==&mid=2649743462&idx=1&sn=c9d94ddc25449c6a0052dc48392a33c2&utm_source=tuicool&utm_medium=referralmp.weixin.qq.com 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_31467557/article/details/113049179。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-24 18:25:46
141
转载
Netty
...java // 定义一个ChannelFutureListener,用于监听连接状态 ChannelFuture future = channel.connect(remoteAddress); future.addListener((ChannelFutureListener) futureListen -> { if (!futureListen.isSuccess()) { System.out.println("连接失败,尝试重新连接..."); // 这里可以加入重试逻辑 scheduleRetry(); } }); 在这段代码中,我们通过addListener为连接操作添加了一个监听器。如果连接失败,我们会打印一条日志并调用scheduleRetry()方法。这个办法啊,特别适合用来搞那种简单的重试操作,比如说隔一会儿就再试试重新连上啥的,挺实用的! 当然啦,实际项目中可能需要更复杂的重试策略,比如指数退避算法。不过Netty已经为我们提供了足够的灵活性,剩下的就是根据需求去实现啦! --- 3.2 零拷贝技术与内存管理 接下来,咱们聊聊另一个关键点:零拷贝技术与内存管理。 在高并发场景下,频繁的数据传输会导致内存占用飙升,进而引发GC(垃圾回收)风暴。Netty通过零拷贝技术很好地解决了这个问题。简单说呢,零拷贝技术就像是给数据开了一条“直达通道”,不用再把数据倒来倒去地复制一遍,就能让它直接从这儿跑到那儿。 举个例子,假设我们要将文件内容发送给远程客户端,传统的做法是先将文件读取到内存中,然后再逐字节写入Socket输出流。这样不仅效率低下,还会浪费大量内存资源。Netty 这家伙可聪明了,它能用 FileRegion 类直接把文件塞进 Socket 通道里,这样就省得在内存里来回倒腾数据啦,效率蹭蹭往上涨! java // 使用FileRegion发送文件 FileInputStream fileInputStream = new FileInputStream(new File("data.txt")); FileRegion region = new DefaultFileRegion(fileInputStream.getChannel(), 0, fileSize); channel.writeAndFlush(region); 在这段代码中,我们利用DefaultFileRegion将文件内容直接传递给了Netty的通道,大大提升了传输效率。 --- 3.3 长连接复用与心跳检测 第三个重要的机制是长连接复用与心跳检测。 在高并发环境下,频繁创建和销毁TCP连接的成本是非常高的。所以啊,Netty这个家伙超级聪明,它能让一个TCP连接反复用,不用每次都重新建立新的连接。这就像是你跟朋友煲电话粥,不用每次说完一句话就挂断重拨,直接接着聊就行啦,省心又省资源! 与此同时,为了防止连接因为长时间闲置而失效,Netty还引入了心跳检测机制。简单说吧,就像你隔一会儿给对方发个“我还在线”的消息,就为了确认你们的联系没断就行啦! java // 设置心跳检测参数 Bootstrap bootstrap = new Bootstrap(); bootstrap.option(ChannelOption.SO_KEEPALIVE, true); // 开启TCP保活功能 bootstrap.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 5000); // 设置连接超时时间 在这里,我们通过设置SO_KEEPALIVE选项开启了TCP保活功能,并设置了最长的连接等待时间为5秒。这样一来,即使网络出现短暂中断,Netty也会自动尝试恢复连接。 --- 3.4 数据缓冲与批量处理 最后一个要点是数据缓冲与批量处理。 在网络通信过程中,数据的大小和频率往往不可控。要是每次传来的数据都一点点的,那老是去处理这些小碎数据,就会多花不少功夫啦。Netty通过内置的缓冲区(Buffer)解决了这个问题。 例如,我们可以使用ByteBuf来存储和处理接收到的数据。ByteBuf就像是内存管理界的“万金油”,不仅能够灵活地伸缩大小,还能轻松应对各种编码需求,简直是程序员手里的瑞士军刀! java // 创建一个ByteBuf实例 ByteBuf buffer = Unpooled.buffer(1024); buffer.writeBytes(data); // 处理数据 while (buffer.readableBytes() > 0) { byte b = buffer.readByte(); process(b); } 在这段代码中,我们首先创建了一个容量为1024字节的缓冲区,然后将接收到的数据写入其中。接着,我们通过循环逐个读取并处理缓冲区中的数据。这种方式不仅可以提高处理效率,还能更好地应对突发流量。 --- 四、总结与展望 好了,朋友们,今天的分享就到这里啦!通过上面的内容,相信大家对Netty的故障恢复机制有了更深的理解。不管是应对各种意外情况的异常处理,还是能让数据传输更高效的零拷贝技术,又或者是能重复利用长连接和设置数据缓冲这些招数,Netty可真是个实力派选手啊! 不过,技术的世界永远没有尽头。Netty虽然已经足够优秀,但在某些特殊场景下仍可能存在局限性。未来的日子啊,我超级期待能看到更多的小伙伴,在Netty的基础上大展身手,把自己的系统捯饬得既聪明又靠谱,简直就像给它装了个“智慧大脑”一样! 最后,我想说的是,技术的学习是一个不断探索的过程。希望大家能在实践中积累经验,在挑战中成长进步。如果你有任何疑问或者想法,欢迎随时留言交流哦! 祝大家都能写出又快又稳的代码,一起迈向技术巅峰吧!😎
2025-03-19 16:22:40
79
红尘漫步
Mahout
...ming。这可以通过定义一个DStream(Data Stream)对象来完成,该对象代表了数据流的抽象表示。 scala import org.apache.spark.streaming._ import org.apache.spark.streaming.dstream._ val sparkConf = new SparkConf().setAppName("RealtimeMahoutAnalysis").setMaster("local[2]") val sc = new SparkContext(sparkConf) valssc = new StreamingContext(sc, Seconds(1)) // 创建StreamingContext,时间间隔为1秒 val inputStream = TextFileStream("/path/to/your/data") // 假设数据来自文件系统 val dstream = inputStream foreachRDD { rdd => rdd.map { line => val fields = line.split(",") (fields(0), fields.slice(1, fields.length)) } } - Mahout模型训练:然后,我们可以使用Mahout中的算法对数据进行预处理和建模。例如,假设我们想要进行用户行为的聚类分析,可以使用Mahout的KMeans算法。 scala import org.apache.mahout.cf.taste.hadoop.recommender.KNNRecommender import org.apache.mahout.cf.taste.impl.model.file.FileDataModel import org.apache.mahout.cf.taste.impl.neighborhood.ThresholdUserNeighborhood import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity import org.apache.mahout.math.RandomAccessSparseVector import org.apache.hadoop.conf.Configuration val dataModel = new FileDataModel(new File("/path/to/your/data.csv")) val neighborhood = new ThresholdUserNeighborhood(0.5, dataModel, new Configuration()) val similarity = new PearsonCorrelationSimilarity(dataModel) val recommender = new GenericUserBasedRecommender(dataModel, neighborhood, similarity) val recommendations = dstream.map { (user, ratings) => val userVector = new RandomAccessSparseVector(ratings.size()) for ((itemId, rating) <- ratings) { userVector.setField(itemId.toInt, rating.toDouble) } val recommendation = recommender.recommend(user, userVector) (user, recommendation.map { (itemId, score) => (itemId, score) }) } - 结果输出:最后,我们可以将生成的推荐结果输出到合适的目标位置,如日志文件或数据库,以便后续分析和应用。 scala recommendations.foreachRDD { rdd => rdd.saveAsTextFile("/path/to/output") } 5. 总结与展望 通过将Mahout与Spark Streaming集成,我们能够构建一个强大的实时流数据分析平台,不仅能够实时处理大量数据,还能利用Mahout的高级机器学习功能进行深入分析。哎呀,这个融合啊,就像是给数据分析插上了翅膀,能即刻飞到你眼前,又准确得不得了!这样一来,咱们做决定的时候,心里那根弦就更紧了,因为有它在身后撑腰,决策那可是又稳又准,妥妥的!哎呀,随着科技车轮滚滚向前,咱们的Mahout和Spark Streaming这对好搭档,未来肯定会越来越默契,联手为我们做决策时,用上实时数据这个大宝贝,提供更牛逼哄哄的武器和方法!想象一下,就像你用一把锋利的剑,能更快更准地砍下胜利的果实,这俩家伙在数据战场上,就是那把超级厉害的宝剑,让你的决策快人一步,精准无比! --- 以上内容是基于实际的编程实践和理论知识的融合,旨在提供一个从概念到实现的全面指南。哎呀,当真要将这个系统或者项目实际铺展开来的时候,咱们得根据手头的实际情况,比如数据的个性、业务的流程和咱们的技术底子,来灵活地调整策略,让一切都能无缝对接,发挥出最大的效用。就像是做菜,得看食材的新鲜度,再搭配合适的调料,才能做出让人满意的美味佳肴一样。所以,别死板地照搬方案,得因地制宜,因材施教,这样才能确保我们的工作既高效又有效。
2024-09-06 16:26:39
59
月影清风
Sqoop
...qoop job命令定义了一个名为my_job的作业,用于从MySQL数据库的employees表中导入数据到HDFS的目标目录中。该作业通过指定--check-column参数检查是否有重复记录,并使用--incremental append模式追加新数据,从而实现了高效的增量数据迁移。这种方法特别适合于需要持续更新的大规模数据集。
2025-03-22 15:39:31
93
风中飘零
ElasticSearch
...rk配置项正是用来定义这些阈值的,默认值分别为85%、90%和95%。合理设置这些参数能够有效预防磁盘空间耗尽引发的NodeNotActiveException,从而保障集群的稳定运行。
2025-03-14 15:40:13
64
林中小径
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
uniq file.txt
- 移除文件中相邻的重复行。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"