前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[方法调用]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
ClickHouse
...们应该怎么办呢?其实方法还是有很多的,只是需要我们稍微动点脑筋罢了。 方法一:数据预处理 最直接的办法就是提前做好准备。你可以先把两张表格的数据合到一块儿,变成一个新表格,之后就在这个新表格里随便查啥都行。虽然听起来有点麻烦,但实际上这种方法非常有效。 比如说,我们可以创建一个新的视图,将两张表的内容联合起来: sql CREATE VIEW CombinedData AS SELECT u.id AS user_id, u.name AS username, o.order_id FROM User AS u JOIN Order AS o ON u.id = o.user_id; 这样,当你需要查询相关信息时,就可以直接从这个视图中获取,而不需要每次都做JOIN操作。 方法二:使用Materialized Views 另一种思路是利用Materialized Views(物化视图)。简单说吧,物化视图就像是提前算好答案的一张表格。一旦下面的数据改了,这张表格也会跟着自动更新,就跟变魔术似的!这种方式特别适合于那些经常被查询的数据模式。 例如,如果我们知道某个查询会频繁出现,就可以事先定义一个物化视图来加速: sql CREATE MATERIALIZED VIEW AggregatedOrders TO AggregatedTable AS SELECT user_id, COUNT(order_id) AS order_count FROM Orders GROUP BY user_id; 通过这种方式,每次查询时都不需要重新计算这些统计数据,从而大大提高了效率。 --- 4. 实战演练 动手试试看! 好了,理论讲得差不多了,现在该轮到实战环节啦!我来给大家展示几个具体的例子,看看如何在实际场景中应用上述提到的方法。 示例一:合并数据到单表 假设我们有两个表:Sales 和 Customers,它们分别记录了销售记录和客户信息。现在我们想找出每个客户的总销售额。 sql -- 创建视图 CREATE VIEW SalesByCustomer AS SELECT c.customer_id, c.name, SUM(s.amount) AS total_sales FROM Customers AS c JOIN Sales AS s ON c.customer_id = s.customer_id GROUP BY c.customer_id, c.name; -- 查询结果 SELECT FROM SalesByCustomer WHERE total_sales > 1000; 示例二:使用物化视图优化查询 继续上面的例子,如果我们发现SalesByCustomer视图被频繁访问,那么就可以进一步优化,将其转换为物化视图: sql -- 创建物化视图 CREATE MATERIALIZED VIEW SalesSummary ENGINE = MergeTree() ORDER BY customer_id AS SELECT customer_id, name, SUM(amount) AS total_sales FROM Sales JOIN Customers USING (customer_id) GROUP BY customer_id, name; -- 查询物化视图 SELECT FROM SalesSummary WHERE total_sales > 1000; 可以看到,相比之前的视图方式,物化视图不仅减少了重复计算,还提供了更好的性能表现。 --- 5. 总结与展望 总之,尽管ClickHouse在处理跨数据库或表的复杂查询方面存在一定的限制,但这并不意味着它无法胜任大型项目的需求。其实啊,只要咱们好好琢磨一下怎么安排和设计,这些问题根本就不用担心啦,还能把ClickHouse的好处发挥得足足的! 最后,我想说的是,技术本身并没有绝对的好坏之分,关键在于我们如何运用它。希望今天的分享能帮助你在使用ClickHouse的过程中更加得心应手。如果还有任何疑问或者想法,欢迎随时交流讨论哦! 加油,我们一起探索更多可能性吧!
2025-04-24 16:01:03
23
秋水共长天一色
Maven
...时声明了相同的类名或方法名,但版本不同,可能会引发编译错误。 xml org.example example-library 1.0.0 org.example example-library 1.0.1 四、解决方案与优化建议 1. 检查pom.xml文件 - 确保所有元素闭合、属性值正确。 - 使用IDE的自动完成功能或在线工具验证pom.xml的语法正确性。 2. 修正命令行参数 - 确认参数的拼写和格式正确。 - 使用Maven的help:effective-pom命令查看实际生效的pom.xml配置,确保与预期一致。 3. 解决依赖冲突 - 使用标签排除不必要的依赖。 - 更新或降级依赖版本以避免冲突。 - 使用Maven的dependency:tree命令查看依赖树,识别并解决潜在的冲突。 五、总结与反思 面对“Error:The project has a build goal with an invalid syntax”的挑战,关键在于细致地检查配置文件和构建命令,以及理解依赖关系。每一次遇到这样的错误,都是对Maven配置知识的深化学习机会。哎呀,你知道吗?就像你练习弹吉他一样,多用多练,咱们用Maven这个工具也能越来越顺手!它能帮咱们开发时节省不少时间,就像是有了个超级助手,能自动搞定那些繁琐的构建工作,让咱们的项目推进得飞快,没有那么多绊脚石挡道。是不是感觉挺酷的?咱们得好好加油,让这玩意儿成为咱们的拿手好戏! 六、结语 Maven作为项目构建管理工具,虽然强大且灵活,但也伴随着一定的复杂性和挑战。嘿!兄弟,这篇文章就是想给你支点招儿,让你在开发过程中遇到问题时能更顺手地找到解决方法,让编程这个事儿变得不那么头疼,提升你的码农体验感。别再为那些小bug烦恼了,跟着我的节奏,咱们一起搞定代码里的小麻烦,让编程之路畅通无阻!嘿,兄弟!听好了,每当你碰上棘手的问题,那可是你升级技能、长本事的绝佳机会!别急,拿出点好奇心,再添点耐心,咱们一起动手,一步步地去解谜,去学习,去挑战。就像在探险一样,慢慢你会发现自己的开发者之路越走越宽广,越来越精彩!所以啊,别怕困难,它们都是你的成长伙伴,加油,咱们一起成为更棒的开发者吧!
2024-08-09 16:06:13
93
初心未变
Kotlin
...象编程是一种程序设计方法,其核心思想是将数据和操作数据的方法封装成一个独立的对象。在Kotlin中,面向对象编程通过类、对象、继承、接口等概念得以实现,使得代码结构清晰,易于维护和扩展。 功能性编程(FP) , 功能性编程是一种编程范式,强调使用函数来表达计算过程,避免改变状态和使用副作用。Kotlin通过支持高阶函数、局部函数、递归等功能,将功能性编程的特性融入到语言中,提供了一种更简洁、更易于测试的编程方式。 跨平台开发(multi-platform development) , 跨平台开发是指编写一次代码可以在多个平台上运行的技术。Kotlin通过Kotlin/JS和Kotlin/Native等技术,支持在多种操作系统和设备上开发应用,包括Web浏览器、Android、iOS等,大大提高了开发效率和代码复用性。 零成本抽象(zero-cost abstractions) , 零成本抽象是Kotlin设计哲学的一部分,指的是在使用抽象概念(如泛型、高阶函数等)时,不会增加额外的运行时开销或代码复杂度。这使得开发者能够使用更高级别的抽象而不担心性能损失,从而提高代码的可读性和可维护性。 现代软件开发(modern software development) , 现代软件开发是指采用最新技术和最佳实践来创建高质量、可扩展和安全的软件系统的过程。Kotlin作为一门现代编程语言,结合了简洁的语法、强大的功能特性和跨平台支持,为现代软件开发提供了有力的工具,助力开发者构建更高效、更安全的应用程序。
2024-07-25 00:16:35
266
风轻云淡
转载文章
...结合了随机旋转角度的方法,还引入了像素扰动、局部变形等手段,极大地增加了自动破解工具的识别难度。同时,研究人员强调了验证码设计时兼顾用户体验的重要性,提倡使用无障碍设计以方便视障人士及其他特殊群体进行验证。 此外,对于ClearType字体渲染优化问题,微软等公司也在不断探索改进方案,力求在保证验证码安全性的前提下提升显示效果,减少毛边现象,提供更为平滑清晰的文字显示。而在实际应用中,如银行、社交平台等高安全需求场景,则纷纷开始采用多模态验证码,结合图形、语音等多种方式,构建更为立体全面的安全防护体系。 总之,验证码技术的演进充分体现了AI与安全领域的交叉融合,未来将进一步发展为智能、高效且人性化的身份验证机制,持续抵御自动化攻击,保障用户的网络安全。
2023-05-27 09:38:56
249
转载
Spark
...三、优化小文件处理的方法 针对上述问题,我们可以采用以下几种方法来优化Spark在读取大量小文件时的性能。 1. 使用Dataframe API Dataframe API是Spark 2.x版本新增的一个重要特性,它可以让我们更方便地处理结构化数据。相比于RDD,Dataframe API可真是个贴心小能手,它提供的接口不仅瞅着更直观,操作起来更是高效溜溜的。这样一来,咱们就能把那些不必要的中间转换和操作通通“踢飞”,让数据处理变得轻松又愉快!另外,Dataframe API还超级给力地支持一些更高级的操作,比如聚合、分组什么的,这对于处理那些小文件可真是帮了大忙了! 下面是一个简单的例子,展示如何使用Dataframe API来读取小文件: java val df = spark.read.format("csv") .option("header", "true") .option("inferSchema", "true") .load("/path/to/files/") 在这个例子中,我们使用read函数从指定目录下读取CSV文件,并将其转化为DataFrame。然后,我们可以通过各种函数对DataFrame进行操作,如show、filter、groupBy等。 2. 使用Spark SQL Spark SQL是一种高级抽象,用于查询关系表。就像Dataframe API那样,Spark SQL也给我们带来了一种超级实用又高效的处理小文件的方法,一点儿也不复杂,特别接地气儿。Spark SQL还自带了一堆超级实用的内置函数,比如COUNT、SUM、AVG这些小帮手,用它们来处理小文件,那速度可真是嗖嗖的,轻松又高效。 下面是一个简单的例子,展示如何使用Spark SQL来读取小文件: scss val df = spark.sql("SELECT FROM /path/to/files/") 在这个例子中,我们使用sql函数来执行SQL语句,从而从指定目录下读取CSV文件并转化为DataFrame。 3. 使用Partitioner Partitioner是Spark的一种内置机制,用于将数据分割成多个块。当我们处理大量小文件时,可以使用Partitioner来提高处理效率。其实呢,我们可以这样来操作:比如说,按照文件的名字呀,或者文件里边的内容这些规则,把那些小文件分门别类地整理一下。就像是给不同的玩具放在不同的抽屉里一样,每个类别都单独放到一个文件夹里面去存储,这样一来就清清楚楚、井井有条啦!这样一来,每次我们要读取文件的时候,就只需要瞄一眼一个文件夹里的内容,压根不需要把整个目录下的所有文件都翻个底朝天。 下面是一个简单的例子,展示如何使用Partitioner来处理小文件: python val partitioner = new HashPartitioner(5) val rdd = sc.textFile("/path/to/files/") .map(line => (line.split(",").head, line)) .partitionBy(partitioner) val output = rdd.saveAsTextFile("/path/to/output/") 在这个例子中,我们首先使用textFile函数从指定目录下读取文本文件,并将其转化为RDD。接着,我们运用一个叫做map的神奇小工具,就像魔法师挥动魔杖那样,把每一行文本巧妙地一分为二,一部分是文件名,另一部分则是内容。然后,我们采用了一个叫做partitionBy的神奇函数,就像把RDD里的数据放进不同的小篮子里那样,按照文件名给它们分门别类。这样一来,每个“篮子”里都恰好装了5个小文件,整整齐齐,清清楚楚。最后,我们使用saveAsTextFile函数将RDD保存为文本文件。因为我们已经按照文件名把文件分门别类地放进不同的“小桶”里了,所以现在每次找文件读取的时候,就不用像无头苍蝇一样满目录地乱窜,只需要轻轻松松打开一个文件夹,就能找到我们需要的文件啦! 四、结论 通过以上三种方法,我们可以有效地优化Spark在读取大量小文件时的性能。Dataframe API和Spark SQL提供了简单且高效的API,可以快速处理结构化数据。Partitioner这个小家伙,就像个超级有条理的文件整理员,它能够按照特定的规则,麻利地把那些小文件分门别类放好。这样一来,当你需要读取文件的时候,就仿佛拥有了超能力一般,嗖嗖地提升读取速度,让效率飞起来!当然啦,这只是入门级别的小窍门,真正要让方案火力全开,还得瞅准实际情况灵活变通,不断打磨和优化才行。
2023-09-19 23:31:34
45
清风徐来-t
Beego
...测试单元——函数或者方法进行独立验证的过程。在Go语言的江湖里,我们完全可以手握beego自带的那个叫beego.Test()的小家伙,再配上人气颇高的第三方工具库ginkgo,还有那个大家伙go test命令,三者强强联手,就能轻松愉快地搞定单元测试这回事儿。 1.2 Beego支持的单元测试 Beego通过beego.Test()函数提供了简单的单元测试功能,我们可以通过创建一个_test.go文件,并在其中定义需要测试的方法,如下所示: go package models import ( "github.com/astaxie/beego" "testing" ) func TestUserModel(t testing.T) { user := &User{Name: "Test User"} err := user.Insert() if err != nil { t.Errorf("Error inserting user: %v", err) } beego.BeeApp.Config["orm.logsql"] = false user, err = UserModel().GetBy("name", "Test User") if err != nil || user.Name != "Test User" { t.Errorf("Failed to retrieve user by name") } } 上述代码测试了User Model的Insert()和GetBy()方法是否能正确工作。 三、Ginkgo与Go Test结合的单元测试 1.3 Ginkgo介绍及配置 Ginkgo是一个行为驱动开发(BDD)测试框架,配合go test命令使用能提供更加灵活且强大的单元测试功能。首先安装Ginkgo和依赖包github.com/onsi/gomega: bash go get github.com/onsi/ginkgo go get github.com/onsi/gomega 然后,在项目根目录下创建一个goroot/bin/Godeps/_workspace/pkg/mod/github.com/onsi/ginkgo/v1.16.5/examples/hello_world目录,并运行以下命令生成测试套件: bash cd goroot/bin/Godeps/_workspace/pkg/mod/github.com/onsi/ginkgo/v1.16.5/examples/hello_world ginkgo init 接着在hello_world_test.go中编写如下内容: go package main import ( "fmt" "github.com/onsi/ginkgo" "github.com/onsi/gomega" ) var _ = ginkgo.Describe("Hello World App", func() { ginkgo.BeforeEach(func() { fmt.Println("Before Each") }) ginkgo.Context("Given the app is running", func() { itShouldSayHello := func(expected string) { ginkgo.By("Starting the app") result := runApp() ginkgo.By("Verifying the result") gomega.Expect(result).To(gomega.Equal(expected)) } ginkgo.It("should say 'Hello, World!'", itShouldSayHello("Hello, World!")) }) }) 执行测试命令: bash goroot/bin/go test -tags=ginkgo . -covermode=count -coverprofile=coverage.txt 四、集成测试的概念与应用 2.1 集成测试是什么? 集成测试是在软件各个模块之间交互的基础上,验证各模块组合后能否按预期协同工作的过程。在Web开发中,常常会涉及数据库操作、路由处理、中间件等多个部分之间的集成。 2.2 Beego集成测试示例 Beego通过中间件机制使得集成测试变得相对容易。我们完全可以在控制器这一层面上,动手编写集成测试。就拿检查路由、处理请求、保存数据这些操作来说,都是我们可以验证的对象。比如,想象一下你正在玩一个游戏,你要确保从起点到终点的每一个步骤(就好比路由和请求处理)都能顺畅进行,而且玩家的所有进度都能被稳妥地记录下来(这就类似数据持久化的过程)。这样,咱们就能在实际运行中对整个系统做全面健康检查啦!创建一个controller_test.go文件并添加如下内容: go package controllers import ( "net/http" "testing" "github.com/astaxie/beego" "github.com/stretchr/testify/assert" ) type MockUserService struct{} func (m MockUserService) GetUser(id int64) (User, error) { return &User{ID: id, Name: fmt.Sprintf("User %d", id)}, nil } func TestUserController_GetByID(t testing.T) { userService := &MockUserService{} ctrl := NewUserController(userService) beego.SetController(&ctrl) request, _ := http.NewRequest("GET", "/users/1", nil) response := new(http.Response) defer response.Body.Close() _ctrl := beego.NewControllerWithRequest(request) _ctrl.ServeHTTP(response, nil) if response.StatusCode != http.StatusOK { t.Fatalf("Expected status code 200 but got %d", response.StatusCode) } userData, err := getUserFromResponse(response) assert.NoError(t, err) assert.NotNil(t, userData) assert.Equal(t, "User 1", userData.Name) } func getUserFromResponse(r http.Response) (User, error) { var user User err := json.Unmarshal(r.Body, &user) return &user, err } 五、结论 通过以上讲解,相信你已经掌握了如何在Beego项目中编写单元测试和集成测试,它们各自对代码质量保障和功能协作的有效性不容忽视。在实际做项目的时候,咱们得瞅准不同的应用场景,灵活选用最对口的测试方案。并且,持续打磨、改进测试覆盖面,这样一来,你的代码质量就能妥妥地更上一个台阶,杠杠的!祝你在Beego开发之旅中,既能写出高质量的代码,又能保证万无一失的功能交付!
2024-02-09 10:43:01
459
落叶归根-t
RabbitMQ
...publish()方法中的mandatory参数设置为true)是实现消息重新入队的基础。 - 确认机制:通过配置confirm.select,可以确保消息被正确地投递到队列中。这有助于检测消息投递失败的情况,从而触发重新入队流程。 - 死信交换:当消息经过一系列处理后仍不符合接收条件时,可能会被转移到死信队列中。合理配置死信策略,可以避免死信积累,确保消息正常流转。 第三部分:实现消息重新入队的步骤 步骤一:配置持久化 在RabbitMQ中,确保消息持久化是实现重新入队的第一步。通过生产者代码添加持久化标志: python import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='my_queue', durable=True) message = "Hello, RabbitMQ!" channel.basic_publish(exchange='', routing_key='my_queue', body=message, properties=pika.BasicProperties(delivery_mode=2)) 设置消息持久化 connection.close() 步骤二:使用确认机制 通过confirm.select来监听消息确认状态,确保消息成功到达队列: python def on_delivery_confirmation(method_frame): if method_frame.method.delivery_tag in sent_messages: print(f"Message {method_frame.method.delivery_tag} was successfully delivered") else: print("Failed to deliver message") sent_messages = [] connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.confirm_delivery() channel.basic_consume(queue='my_queue', on_message_callback=callback, auto_ack=False) channel.start_consuming() 步骤三:处理异常与重新入队 在消费端,通过捕获异常并重新发送消息到队列来实现重新入队: python import pika def callback(ch, method, properties, body): try: process_message(body) except Exception as e: print(f"Error processing message: {e}") ch.basic_nack(delivery_tag=method.delivery_tag, requeue=True) def process_message(message): 处理逻辑... pass connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='my_queue') channel.basic_qos(prefetch_count=1) channel.basic_consume(queue='my_queue', on_message_callback=callback) channel.start_consuming() 第四部分:实践与优化 在实际应用中,合理设计队列的命名空间、消息TTL、死信策略等,可以显著提升系统的健壮性和性能。此外,监控系统状态、定期清理死信队列也是维护系统健康的重要措施。 结语 消息重新入队是RabbitMQ提供的一种强大功能,它不仅增强了系统的容错能力,还为开发者提供了灵活的错误处理机制。通过上述步骤的学习和实践,相信你已经对如何在RabbitMQ中实现消息重新入队有了更深入的理解。嘿,兄弟!听我一句,你得明白,做事情可不能马虎。每一个小步骤,每一个细节,都像是你在拼图时放的一块小片儿,这块儿放对了,整幅画才好看。所以啊,在你搞设计或者实现方案的时候,千万要细心点儿,谨慎点儿,别急躁,慢慢来,细节决定成败你知道不?这样出来的成果,才能经得起推敲,让人满意!愿你在构建分布式系统时,能够充分利用RabbitMQ的强大功能,打造出更加稳定、高效的应用。
2024-08-01 15:44:54
179
素颜如水
转载文章
...是一类常见的机器学习方法。它是对给定的数据集学到一个模型对新示例进行分类的过程。下图所示为一个流程图的决策树,长方形代表判断模块(decision block),椭圆形代表终止模块(terminating block),表示已经得出结论,可以终止运行。从判断模块引出的左右箭头称作分支(branch),可以达到另一个判断模块或终止模块。 决策过程是基于树结构来进行决策的。如下图,首先检查邮件域名地址,如果地址为myEmployer.com,则将其分类为“无聊时需要阅读的邮件”。否则,则检查邮件内容里是否包含单词“曲棍球”,如果包含则归类为“需要及时处理的朋友邮件”,如果不包含则归类到“无需阅读的垃圾邮件” 流程图形式的决策树 显然,决策过程的最终结论对应了我们所希望的判定结果,例如"需要阅读"或"不需要阅读”。 决策过程中提出的每个判定问题都是对某个属性的"测试",如邮件地址域名为?是否包含“曲棍球”? 每个测试的结果或是导出最终结论,或是导出进一步的判定问题,其考虑范围是在上次决策结果的限定范围之内,例如若邮件地址域名不是myEmployer.com之后再判断是否包含“曲棍球”。 一般的,决策树包含一个根节点、若干个内部节点和若干个叶节点。根节点包含样本全集;叶节点对应于决策结果,例如“无聊时需要阅读的邮件”。其他每个结点则对应于一个属性测试;每个节点包含的样本集合根据属性测试的结果被划分到子结点中。 决策树学习基本算法 显然,决策树的生成是一个递归过程.在决策树基本算法中,有三种情形会导致递归返回: (1)当前结点包含的样本全属于同一类别,无需划分; (2)当前属性集为空,或是所有样本在所有属性上取值相同,无法划分; (3)当前结点包含的样本集合为空,不能划分。 2、划分选择 决策树算法的关键是如何选择最优划分属性。一般而言,随着划分过程不断进行,我们希望决策树的分支结点所包含的样本尽可能属于同一类别,即结点的"纯度" (purity)越来越高。 (1)信息增益 信息熵 "信息熵" (information entropy)是度量样本集合纯度最常用的一种指标,定义为信息的期望。假定当前样本集合 D 中第 k 类样本所占的比例为 ,则 D 的信息熵定义为: H(D)的值越小,则D的纯度越高。信息增益 一般而言,信息增益越大,则意味着使周属性 来进行划分所获得的"纯度提升"越大。因此,我们可用信息增益来进行决策树的划分属性选择,信息增益越大,属性划分越好。 以西瓜书中表 4.1 中的西瓜数据集 2.0 为例,该数据集包含17个训练样例,用以学习一棵能预测设剖开的是不是好瓜的决策树.显然,。 在决策树学习开始时,根结点包含 D 中的所有样例,其中正例占 ,反例占 信息熵计算为: 我们要计算出当前属性集合{色泽,根蒂,敲声,纹理,脐部,触感}中每个属性的信息增益。以属性"色泽"为例,它有 3 个可能的取值: {青绿,乌黑,浅自}。若使用该属性对 D 进行划分,则可得到 3 个子集,分别记为:D1 (色泽=青绿), D2 (色泽2=乌黑), D3 (色泽=浅白)。 子集 D1 包含编号为 {1,4,6,10,13,17} 的 6 个样例,其中正例占 p1=3/6 ,反例占p2=3/6; D2 包含编号为 {2,3,7,8, 9,15} 的 6 个样例,其中正例占 p1=4/6 ,反例占p2=2/6; D3 包含编号为 {5,11,12,14,16} 的 5 个样例,其中正例占 p1=1/5 ,反例占p2=4/5; 根据信息熵公式可以计算出用“色泽”划分之后所获得的3个分支点的信息熵为: 根据信息增益公式计算出属性“色泽”的信息增益为(Ent表示信息熵): 类似的,可以计算出其他属性的信息增益: 显然,属性"纹理"的信息增益最大,于是它被选为划分属性。图 4.3 给出了基于"纹理"对根结点进行划分的结果,各分支结点所包含的样例子集显示在结点中。 然后,决策树学习算法将对每个分支结点做进一步划分。以图 4.3 中第一个分支结点( "纹理=清晰" )为例,该结点包含的样例集合 D 1 中有编号为 {1, 2, 3, 4, 5, 6, 8, 10, 15} 的 9 个样例,可用属性集合为{色泽,根蒂,敲声,脐部 ,触感}。基于 D1计算出各属性的信息增益: "根蒂"、 "脐部"、 "触感" 3 个属性均取得了最大的信息增益,可任选其中之一作为划分属性.类似的,对每个分支结点进行上述操作,最终得到的决策树如圈 4.4 所示。 3、剪枝处理 剪枝 (pruning)是决策树学习算法对付"过拟合"的主要手段。决策树剪枝的基本策略有"预剪枝" (prepruning)和"后剪枝 "(post" pruning) [Quinlan, 1993]。 预剪枝是指在决策树生成过程中,对每个结点在划分前先进行估计,若当前结点的划分不能带来决策树泛化性能提升,则停止划 分并将当前结点标记为叶结点; 后剪枝则是先从训练集生成一棵完整的决策树,然后自底向上地对非叶结点进行考察,若将该结点对应的子树替换为叶结点能带来决策树泛化性能提升,则将该子树替换为叶结点。 往期回顾 ● 带你详细了解机器视觉竞赛—ILSVRC竞赛 ● 到底什么是“机器学习”?机器学习有哪些基本概念?(简单易懂) ● 带你自学Python系列(一):变量和简单数据类型(附思维导图) ● 带你自学Python系列(二):Python列表总结-思维导图 ● 2018年度最强的30个机器学习项目! ● 斯坦福李飞飞高徒Johnson博士论文: 组成式计算机视觉智能(附195页PDF) ● 一文详解计算机视觉的广泛应用:网络压缩、视觉问答、可视化、风格迁移 本篇文章为转载内容。原文链接:https://blog.csdn.net/Sophia_11/article/details/113355312。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-27 21:53:08
284
转载
转载文章
...其他多媒体内容的标准方法。在文章中提到,MP4文件格式是构建于MPEG-4第12部分的基础之上。 Box , 在MP4文件格式中,“Box”是一个核心概念,它是文件结构的基本组成单元。每个“Box”都包含一个Header和Data两部分,Header包含了该Box的大小Size和类型Type等关键信息,而Data部分则可以是实际的数据内容或者其他的子Box。通过一系列不同类型的Box,MP4文件能够组织和封装各种音视频数据以及相关的元数据。 FullBox , 作为MP4文件中Box的一个子类,FullBox在基础的Box结构上额外添加了version和flags两个字段。其中,version字段用来表示当前Box所遵循的版本信息;而flags字段是一组标志位,用于标识特定的属性或状态。当解析器遇到未知的version或type时,可以根据这些附加信息来决定如何处理该Box的内容。FullBox的引入为MP4文件提供了更灵活的扩展性和兼容性。
2024-01-21 17:43:21
437
转载
JSON
...成了一段空行。用这种方法,就能把文章分得清清楚楚的,读起来也顺溜多了! --- 六、代码实践 从理论到实战 说了这么多理论,让我们动手试试看吧!下面是一些简单的代码示例,展示如何在JavaScript中生成和解析带有换行符的JSON数据。 示例1:生成JSON字符串 javascript const data = { poem: "静夜思\n床前明月光,\n疑是地上霜。\n举头望明月,\n低头思故乡。", email: "亲爱的李四:\n\n很高兴收到您的来信。以下是我的回复:\n\n第一段内容...\n第二段内容..." }; // 将对象转换为JSON字符串 const jsonString = JSON.stringify(data); console.log(jsonString); 运行这段代码后,你会看到类似这样的输出: json {"poem":"静夜思\\n床前明月光,\\n疑是地上霜。\\n举头望明月,\\n低头思故乡。","email":"亲爱的李四:\\n\\n很高兴收到您的来信。以下是我的回复:\\n\\n第一段内容...\\n第二段内容..."} 可以看到,在生成的JSON字符串中,所有的\n都被转义成了\\n。 示例2:解析JSON字符串 javascript const jsonString = '{"poem":"静夜思\\n床前明月光,\\n疑是地上霜。\\n举头望明月,\\n低头思故乡。","email":"亲爱的李四:\\n\\n很高兴收到您的来信。以下是我的回复:\\n\\n第一段内容...\\n第二段内容..."}'; // 将JSON字符串解析回对象 const parsedData = JSON.parse(jsonString); console.log(parsedData.poem); console.log(parsedData.email); 运行这段代码后,你会看到如下输出: 静夜思 床前明月光, 疑是地上霜。 举头望明月, 低头思故乡。 亲爱的李四: 很高兴收到您的来信。以下是我的回复: 第一段内容... 第二段内容... 瞧!我们的换行符终于生效啦! --- 七、总结与反思 好了,今天的分享就到这里啦!通过这篇文章,我们不仅了解了如何在JSON中处理多次换行的内容,还学习了一些实用的小技巧。虽然JSON看似简单,但它背后隐藏着很多有趣的细节。希望这些知识能帮助你在未来的编程旅程中更加游刃有余。 最后,我想说的是,编程不仅仅是冷冰冰的技术活儿,它也是一种艺术形式。每一次解决问题的过程,都充满了挑战和乐趣。所以,不管遇到什么困难,都别轻易放弃,试着去思考、去尝试,说不定下一个突破就在前方等着你呢! 祝大家 coding愉快! 😊
2025-04-02 15:38:06
51
时光倒流_
HBase
...se的性能测试与调优方法 1. 引言 在大数据时代,HBase作为一款开源、分布式、面向列族的NoSQL数据库,因其卓越的水平扩展性及海量数据处理能力而备受瞩目。不过,在实际操作里头,对HBase做性能测试和调优这个步骤可是超级重要的!这不仅仅关系到系统的坚挺度和运转快慢,更直接影响到我们处理业务的速度有多快,还有用户使用起来舒不舒服,爽不爽的问题。这篇文咱要接地气地聊聊怎么给HBase做性能测试的大事儿,还会手把手教大家一些超实用的调优诀窍和小技巧。 2. HBase性能测试基础 在着手进行HBase性能测试前,我们需要先了解其基本工作原理。HBase基于Hadoop HDFS存储数据,利用RegionServer处理读写请求,通过Zookeeper进行集群协调。所以,平常我们聊性能测试时,经常会提到几个关键指标。就好比,读写速度怎么样,响应时间快不快,能同时处理多少请求,还有资源利用效率高不高,这些都是咱们评估性能表现的重点要素~ 示例代码(创建表并插入数据): java Configuration config = HBaseConfiguration.create(); config.set("hbase.zookeeper.quorum", "zk_host:2181"); HTable table = new HTable(config, "test_table"); Put put = new Put(Bytes.toBytes("row_key")); put.add(Bytes.toBytes("cf"), Bytes.toBytes("cq"), Bytes.toBytes("value")); table.put(put); 3. HBase性能测试方法 (1)基准测试 使用Apache BenchMark工具(如YCSB,Yahoo! Cloud Serving Benchmark),可以模拟不同场景下的读写压力,以此评估HBase的基础性能。比如说,我们可以尝试调整各种不同的参数来考验HBase,就好比设置不同数量的同时在线用户,改变他们的操作行为(比如读取或者写入数据),甚至调整数据量的大小。然后,咱们就可以通过观察HBase在这些极限条件下的表现,看看它是否能够坚挺如初,表现出色。 (2)监控分析 利用HBase自带的监控接口或第三方工具(如Grafana+Prometheus)实时收集并分析集群的各项指标,如RegionServer负载均衡状况、内存使用率、磁盘I/O、RPC延迟等,以发现可能存在的性能瓶颈。 4. HBase性能调优策略 (1)配置优化 - 网络参数:调整hbase.client.write.buffer大小以适应网络带宽和延迟。 - 内存分配:合理分配BlockCache和MemStore的空间,以平衡读写性能。 - Region大小:根据数据访问模式动态调整Region大小,防止热点问题。 (2)架构优化 - 增加RegionServer节点,提高并发处理能力。 - 采用预分裂策略避免Region快速膨胀导致的性能下降。 (3)数据模型优化 - 合理设计RowKey,实现热点分散,提升查询效率。 - 根据查询需求选择合适的列族压缩算法,降低存储空间占用。 5. 实践案例与思考过程 在一次实践中,我们发现某业务场景下HBase读取速度明显下滑。经过YCSB压测后,定位到RegionServer的BlockCache已满,导致频繁的磁盘IO。于是我们决定给BlockCache扩容,让它变得更大些,同时呢,为了让热点现象不再那么频繁出现,我们对RowKey的结构进行了大刀阔斧的改造。这一系列操作下来,最终咱们成功让系统的性能蹭蹭地往上提升啦!在这个过程中,我们可是实实在在地感受到了,摸清业务特性、一针见血找准问题所在,还有灵活运用各种调优手段的重要性,这简直就像是打游戏升级一样,缺一不可啊! 6. 结语 性能测试与调优是HBase运维中的必修课,它需要我们既具备扎实的技术理论知识,又要有敏锐的洞察力和丰富的实践经验。经过对HBase从头到脚、一丝不苟的性能大考验,再瞅瞅咱的真实业务场景,咱们能针对性地使出一些绝招进行调优。这样一来,HBase就能更溜地服务于我们的业务需求,在大数据的世界里火力全开,展现它那无比强大的能量。
2023-03-14 18:33:25
580
半夏微凉
转载文章
...是线性代数和数值统计方法的集合。 Richard Johnson 和 Dean Wichern,2012·应用多元统计分析 Wolfgang Karl Hardle 和 Leopold Simar,2015·应用多元统计分析 也有一些在线的书籍,这些书籍可以在维基百科线性代数词条的最后一部分内容中可以看到。 线性代数大学课程 大学的线性代数课程是有用的,这使得本科生学习到他们应该掌握的线性代数内容。而作为一名机器学习实践者,大学的线性代数课程内容可能超过你所需掌握的内容,但这也能为你学习机器学习相关线性代数内容打下坚实的基础。 现在许多大学课程提供幻灯片的讲义、笔记等PDF电子版内容。有些大学甚至提供了预先录制的讲座视频,这无疑是珍贵的。 我鼓励你通过使用大学课程教材,深入学习相关课程来加深对机器学习中特定主题的理解。而不需要完全从头学到尾,这对于机器学习从业者来说太费时间了。 美国顶尖学校推荐的课程如下: Gilbert Strang·麻省理工学院·线性代数 Philip Klein·布朗大学·计算科学中的矩阵 Rachel Thomas·旧金山大学·针对编程者的线性代数计算 线性代数在线课程 与线性代数大学课程不同,在线课程作为远程教育而言显得不是那么完整,但这对于机器学习从业者而言学起来相当的快。推荐的一些在线课程如下: 可汗学院·线性代数 edX·线性代数:前沿基础 问答平台 目前网络上存在大量的问答平台,读者们可以在上面进行相关话题的讨论。以下是我推荐的一些问答平台,在这里要注意,一定要记得定期访问之前发布的问题及坛友的解答。 数学栈交换中的线性代数标记 交叉验证的线性代数标记 堆栈溢出的线性代数标记 Quora上的线性代数主题 Reddit上的数学主题 Numpy资源 如果你是用Python实现相关的机器学习项目,那么Numpy对你而言是非常有帮助的。 Numpy API文档写得很好,以下是一些参考资料,读者可以阅读它们来了解更多关于Numpy的工作原理及某些特定的功能。 Numpy参考 Numpy数组创建例程 Numpy数组操作例程 Numpy线性代数 Scipy线性代数 如果你同时也在寻找关于Numpy和Scipy更多的资源,下面有几个好的参考教材: 2017·用Python进行数据分析 2017·Elegant Scipy 2015·Numpy指南 作者信息 Jason Brownlee,机器学习专家,专注于机器学习教育 文章原标题《Top Resources for Learning Linear Algebra for Machine Learning》,作者:Jason Brownlee, 译者:海棠,审阅:袁虎。 原文链接 干货好文,请关注扫描以下二维码: 本篇文章为转载内容。原文链接:https://blog.csdn.net/yunqiinsight/article/details/79722954。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-14 09:21:43
326
转载
Etcd
...saction()方法定义了一个事务,先检查账户A的余额是否大于等于100,如果是的话,就把钱从A转到B。整个过程啊,要么全都搞定,要么就啥也不干,这不就是分布式事务最理想的状态嘛! 2.3 观察者模式 Etcd还有一个很酷的功能叫观察者模式,你可以监听某个key的变化,并实时做出反应。这对于监控系统状态或者触发某些事件非常有用。 比如: python for event in client.watch('/my-key'): print(event) 这段代码会一直监听/my-key的变化,一旦有更新就会打印出来。 --- 3. 实战演练 用Etcd实现分布式事务 现在咱们来实战一下,看看怎么用Etcd搞定分布式事务。假设我们要实现一个简单的库存管理系统。 3.1 场景描述 假设我们有两个服务A和服务B,服务A负责扣减库存,服务B负责记录日志。要让这两个步骤像一个整体似的,中间不能出岔子,那我们就得靠Etcd来管着分布式锁和事务了。 3.2 代码实现 Step 1: 初始化Etcd客户端 python import etcd3 client = etcd3.client(host='localhost', port=2379) Step 2: 获取分布式锁 python 创建一个租约,有效期为10秒 lease = client.lease(10) 尝试获取锁 lock_key = '/inventory-lock' try: lock_result = client.put(lock_key, 'locked', lease=lease) print("Lock acquired!") except Exception as e: print(f"Failed to acquire lock: {e}") Step 3: 执行事务操作 python 假设当前库存是100件 stock_key = '/inventory' current_stock = int(client.get(stock_key)[0].decode('utf-8')) if current_stock >= 10: 开始事务 success, _ = client.transaction( compare=[ client.transactions.version(stock_key) == current_stock ], success=[ client.transactions.put(stock_key, str(current_stock - 10)) ], failure=[] ) if success: print("Inventory updated successfully!") else: print("Failed to update inventory due to race condition.") else: print("Not enough stock available.") Step 4: 释放锁 python 租约到期后自动释放锁 lease.revoke() print("Lock released.") --- 4. 总结与展望 写到这里,我觉得咱们已经掌握了如何用Etcd来进行分布式事务管理。其实啊,事情没那么吓人!别看整个流程听着挺绕的,但只要你把分布式锁、事务操作还有观察者模式这些“法宝”都搞明白了,不管啥情况都能游刃有余地搞定,妥妥的! 不过,我也想提醒大家,分布式事务并不是万能药。有时候,过度依赖分布式事务反而会让系统变得更加复杂。所以,在实际开发中,我们需要根据业务需求权衡利弊。 最后,希望大家都能用好Etcd这个利器,让自己的分布式系统更加健壮和高效!如果你还有其他问题,欢迎随时来找我讨论,咱们一起进步!
2025-03-21 15:52:27
54
凌波微步
Hadoop
...xtIO.Read”方法从数据源中读取数据,并将其转换为PCollection类型。接下来,我们要用一个叫“KV.of”的小技巧,把每一条数据都变个身,变成一个个键值对。这个键呢,就是咱们平常说的单词,而对应的值呢,就是一个简简单单的1。就像是给每个单词贴上了一个标记“已出现,记1次”。最后,我们将处理后的数据保存到Google Cloud Storage中的指定位置。 五、结论 总的来说,Hadoop与Apache NiFi和Apache Beam的集成都是非常容易的。只需要按照上述步骤进行操作,并编写相应的数据处理代码即可。而且,你知道吗,Apache NiFi和Apache Beam都超级贴心地提供了灵活度爆棚的API接口,这就意味着我们完全可以按照自己的小心思,随心所欲定制咱们的数据处理流程,就像DIY一样自由自在!相信过不了多久,Hadoop和ETL工具的牵手合作将会在大数据处理圈儿掀起一股强劲风潮,成为大伙儿公认的关键趋势。
2023-06-17 13:12:22
582
繁华落尽-t
Beego
...说的是,无论采用哪种方法,最重要的是始终保持对安全性的高度警惕,并不断学习最新的安全知识和技术。希望这篇文章能对你有所帮助! --- 希望这样的风格和内容符合您的期待,如果有任何具体需求或想要进一步探讨的部分,请随时告诉我!
2024-10-31 16:13:08
166
初心未变
转载文章
...查 8.EV视频相关方法 9.WINDOW自带剪辑方法 10.快捷键大全 11.B站上传合集 12.查看WIN电脑配置 1.调整桌面的图标大小 搜索注册表,在运行里键入regedit就可以进入了,修改计算机\HKEY_CURRENT_USER\Control Panel\Desktop\WindowMetrics中的IconSpacing,IconVerticalSpacing等值可以进行调整,之后重启电脑使得修改生效即可. 2.怎么把我的电脑放到桌面上win10 引用别人的链接:win10中如何把我的电脑放到桌面上 3.分屏 分屏的方法 4.磁盘清理大法 C:\Users\HP\AppData--占的空间很大 C:\Users\HP\AppData\Roaming\Code --大 C:\Users\HP\AppData\Roaming\Code\User\workspaceStorage ---大! C:\Users\HP\AppData\Roaming\Code\User\workspaceStorage\281c5e08bf4f59f783a3aa64953fdc77\ms-vscode.cpptools ---大!! C:\Users\HP\AppData\Roaming--文件夹能删除吗 C:\Users\HP\Documents\Tencent Files D:\014-电子书\017-杂乱下载C盘\腾讯\5723\Image--腾讯聊天的图 C:\Users\HP\AppData\Local\Microsoft---6G 5.hiberfil.sys&swapfile.sys 可参考的相关hiberfi.sys和swapfile.sys的链接 今天HP1号的C盘满了,昨天还有5G的,今天只有2G了,发现了这两个文件.hiberfil.sys有3.12G,swapfile.sys256M. 经查,“hiberfil.sys”是系统休眠文件,其大小和物理内存一样大,这里我要解释下两个名字,计算机的休眠(hibernate)与睡眠(sleep),我们常用的是sleep功能, 即电脑放置一段时间, 进入低耗状态, 工作态度保存在内存里, 恢复时1-2秒就可以恢复原状态.这个功能是实用的, 也是最常用的. hibernate是把工作状态即所有内存中的数据,写入到硬盘(这就是hiberfil.sys文件),然后关闭系统,在下次启动开机时,将保持的数据写回内存,虽然需要花费些时间,但好处就是你正在进行中的工作,都会被保存起来,就算断电以后也不回消失,这也就是为什么经常有人说几个月不用关机的原因,当然休眠并不是必须的,完全看你这个需求了,如果确实有需要也不用care这点硬盘啦。有网友说--这个文件大小的描述错误,hiberfil.sys的大小并≠内存大小,因为该文件貌似是压缩过。我的内存是8G,这个.hiberfil.sys有3.12G,这样看这个网友说的对的. hiberfi.sys的链接 首先分清SLEEP睡眠和HIBERNATE休眠两个概念. 我们常用的是SLEEP睡眠功能, 也就是电脑经过一定时间后, 进入低功耗状态, 工作态度保存在内存里, 恢复时1-2秒就可以恢复原状态.这个功能是实用的, 也是最常用的. 而休眠是把工作状态即所有内存信息写入硬盘,如有2-4G内存,即要写入2-4G的文件到硬盘,然后才能关机,开机恢复要读取2-4G的文件到内存,才能恢复原界面.而大文件的读写要花大量 的时间,已经不亚于正常开机了,所以现在休眠功能很不实用(针对1G以上内存). 休眠的HIBERFIL.SYS这个文件就是用来休眠时保存内存状态用的.会占用C盘等同内存容量的空间(以2G内存为例,这个文件也为2G),所以完全可以删掉而不影响大家使用.还会大大节省C盘空间的占用。 操作: 以管理员运行CMD, 打以下命令: POWERCFG -H OFF 即自动删除该文件. 大家看处理前后C盘空间的变化就知道了. 怎么以管理员运行: 在“所有程序”->“附件”->“命令提示符”上右键,选“以管理员运行” 如果本身是以管理员身份登录,直接运行cmd即可。 我做的测试: 文件位置C:\hiberfil.sys “pagefile.sys”是页面交换文件(即虚拟内存),这个文件不能删除,不过可以改变其大小和存放位置. 6.windows中的休眠与睡眠 windows中的休眠与睡眠 7.WPS中如何不做拼写检查 WPS中如何不做拼写检查 8.EV视频相关方法 如何利用EV视频剪辑软件合并视频 EV剪辑怎么给视频添加字幕 9.WINDOW自带剪辑方法 WIN10自带剪辑视频的方法 10.快捷键大全 快捷键大全 11.B站上传合集 B站上传合集 12.查看WIN电脑配置 13.windows远程桌面链接 win+Rmstsc 14.word中的边框和底纹如何应用于文字,段落和页面 word中边框和底纹——应用于文字、段落、页面分别如何设置? 本篇文章为转载内容。原文链接:https://blog.csdn.net/Edidaughter/article/details/111231562。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-01 13:02:11
116
转载
Java
...中带有相关视图名称的方法(如@GetMapping("/home")映射到WEB-INF/views/homePage.jsp)时,浏览器却无法显示出预期的JSP页面内容,且并未抛出任何异常,而是默认返回了空响应或者错误状态码。 三、问题分析与排查 面对这一看似简单的配置失效问题,我们首先需要进行如下几个方面的排查: 1. 检查视图解析器配置 确保视图解析器org.springframework.web.servlet.view.InternalResourceViewResolver已被正确注册并设置了prefix与suffix属性。检查Spring Boot启动类(如WebMvcConfig.java或Application.java中的WebMvcConfigurer实现): java @Configuration public class WebMvcConfig implements WebMvcConfigurer { @Override public void configureViewResolvers(ViewResolverRegistry registry) { InternalResourceViewResolver resolver = new InternalResourceViewResolver(); resolver.setPrefix("/WEB-INF/views/"); resolver.setSuffix(".jsp"); registry.viewResolver(resolver); } } 2. 模块间依赖与资源路径映射 确认module-web是否正确引入了module-views的相关JSP文件,并指定了正确的资源路径。查看module-web的pom.xml或build.gradle文件中对视图资源模块的依赖路径: xml com.example module-views 1.0.0 war runtime classes // Gradle dependencies { runtimeOnly 'com.example:module-views:1.0.0' } 以及主启动类(如Application.java)中的静态资源映射配置: java @SpringBootApplication public class Application { @Bean TomcatServletWebServerFactory tomcat() { TomcatServletWebServerFactory factory = new TomcatServletWebServerFactory(); factory.addContextCustomizer((TomcatWebServerContext context) -> { // 将模块视图目录映射到根URL下 context.addWelcomeFile("index.jsp"); WebResourceRoot resourceRoot = new TomcatWebResourceRoot(context, "static", "/"); resourceRoot.addDirectory(new File("src/main/resources/static")); context.setResources(resourceRoot); }); return factory; } public static void main(String[] args) { SpringApplication.run(Application.class, args); } } 3. 检查JSP引擎配置 确保Tomcat服务器配置已启用JSP支持。在module-web对应的application.properties或application.yml文件中配置JSP引擎: properties server.tomcat.jsp-enabled=true server.tomcat.jsp.version=2.3 或者在module-web的pom.xml或build.gradle文件中为Tomcat添加Jasper依赖: xml org.apache.tomcat.embed tomcat-embed-jasper provided // Gradle dependencies { implementation 'org.apache.tomcat.embed:tomcat-embed-jasper:9.0.54' } 4. 控制器与视图名称匹配验证 在完成上述配置后,请务必核实Controller中返回的视图名称与其实际路径是否一致。如果存在命名冲突或者拼写错误,将会导致Spring MVC无法找到预期的JSP视图: java @GetMapping("/home") public String home(Model model) { return "homePage"; // 视图名称应更改为"WEB-INF/views/homePage.jsp" } 四、总结与解决办法 综上所述,Spring Boot返回JSP无效的问题可能源于多个因素的叠加效应,包括但不限于视图解析器配置不完整、模块间依赖关系未正确处理、JSP引擎支持未开启、或Controller与视图名称之间的不对应等。要解决这个问题,需从以上几个方面进行逐一排查和修正。 切记,在面对这类问题时,要保持冷静并耐心地定位问题所在,仔细分析配置文件、源代码和日志输出,才能准确找出症结所在,进而成功解决问题。这不仅让我们实实在在地磨炼了编程功夫,更是让咱们对Spring Boot这家伙的工作内幕有了更深的洞察。这样一来,我们在实际项目中遇到问题时,调试和应对的能力都像坐火箭一样嗖嗖提升啦!
2024-02-17 11:18:11
271
半夏微凉_t
DorisDB
...题时的常见错误及解决方法 错误1:备份失败,日志提示“空间不足” 原因:这通常是因为备份文件的大小超过了可用磁盘空间。 解决方法: 1. 检查磁盘空间 首先确认备份目录的磁盘空间是否足够。 2. 调整备份策略 考虑使用增量备份,仅备份自上次备份以来发生变化的数据部分,减少单次备份的大小。 3. 优化数据存储 定期清理不再需要的数据,释放更多空间。 python 示例代码:设置增量备份 dorisdb_backup = dorisdb.BackupManager() dorisdb_backup.set_incremental_mode(True) 错误2:备份过程中断电导致数据损坏 原因:断电可能导致正在执行的备份任务中断,数据完整性受损。 解决方法: 1. 使用持久化存储 确保备份操作在非易失性存储设备上进行,如SSD或RAID阵列。 2. 实施数据同步 在多个节点间同步数据,即使部分节点在断电时仍能继续备份过程。 python 示例代码:设置持久化备份 dorisdb_backup = dorisdb.BackupManager() dorisdb_backup.enable_persistence() 5. 数据恢复实战 当备份数据出现问题时,及时且正确的恢复策略至关重要。DorisDB提供了多种恢复选项,从完全恢复到特定时间点的恢复,应根据实际情况灵活选择。 步骤1:识别问题并定位 首先,确定是哪个备份文件或时间点出了问题,这需要详细的日志记录和监控系统来辅助。 步骤2:选择恢复方式 - 完全恢复:将数据库回滚到最近的备份状态。 - 时间点恢复:选择一个具体的时间点进行恢复,以最小化数据丢失。 步骤3:执行恢复操作 使用DorisDB的恢复功能,确保数据的一致性和完整性。 python 示例代码:执行时间点恢复 dorisdb_restore = dorisdb.RestoreManager() dorisdb_restore.restore_to_timepoint('2023-03-15T10:30:00Z') 6. 结语 数据备份和恢复是数据库管理中的重要环节,正确理解和应用DorisDB的相关功能,能够有效避免和解决备份过程中遇到的问题。通过本篇讨论,我们不仅了解了常见的备份错误及其解决方案,还学习了如何利用DorisDB的强大功能,确保数据的安全性和业务的连续性。记住,每一次面对挑战都是成长的机会,不断学习和实践,你的数据管理技能将愈发成熟。 --- 以上内容基于实际应用场景进行了概括和举例说明,旨在提供一种实用的指导框架,帮助读者在实际工作中应对数据备份和恢复过程中可能出现的问题。希望这些信息能够对您有所帮助!
2024-07-28 16:23:58
431
山涧溪流
Consul
...来选择合适的服务进行调用。 go package main import ( "fmt" "time" "github.com/hashicorp/consul/api" ) func main() { c, err := api.NewClient(&api.Config{ Address: "localhost:8500", }) if err != nil { fmt.Println("Error creating Consul client:", err) os.Exit(1) } // 查询特定标签的服务 opts := &api.QueryOptions{ WaitIndex: 0, } // 通过服务名称和标签获取服务列表 services, _, err := c.Health().ServiceQuery("example-service", "example", opts) if err != nil { fmt.Println("Error querying services:", err) os.Exit(1) } for _, svc := range services { fmt.Printf("Found service: %s (ID: %s, Address: %s:%d)\n", svc.Service.Name, svc.Service.ID, svc.Service.Address, svc.Service.Port) } } 5. 性能与扩展性 Consul通过其设计和优化,能够处理大规模的服务注册和发现需求。通过集群部署,可以进一步提高系统的可用性和性能。同时,Consul支持多数据中心部署,满足了跨地域服务部署的需求。 6. 总结 Consul作为一个强大的服务发现工具,不仅提供了简单易用的API接口,还具备高度的可定制性和扩展性。哎呀,你知道吗?把Consul整合进服务网格里头,就像给你的交通系统装上了智能导航!这样一来,各个服务之间的信息交流不仅快得跟风一样,还超级稳,就像在高速公路上开车,既顺畅又安全。这可是大大提升了工作效率,让咱们的服务运行起来更高效、更可靠!随着微服务架构的普及,Consul成为了构建现代服务网格不可或缺的一部分。兄弟,尝试着运行这些示例代码,你会发现如何在真正的工程里用Consul搞服务发现其实挺好玩的。就像是给你的编程技能加了个新魔法,让你在项目中找服务就像玩游戏一样简单!这样一来,你不仅能把这玩意儿玩得溜,还能深刻体会到它的魅力和实用性。别担心,跟着我,咱们边做边学,保证让你在实际操作中收获满满!
2024-08-05 15:42:27
34
青春印记
转载文章
...0.6.3 原文安装方法: ndn-cxx-0.6.3:http://named-data.net/doc/ndn-cxx/current/INSTALL.html NFD-0.6.3:https://named-data.net/doc/NFD/0.6.3/INSTALL.html 开始 本人搭了很久,脑袋都大了,终于在经历了千辛万苦之后把这个鬼东西给搭出来了。ndn-cxx-0.6.3是基础,NFD要依赖ndn-cxx的库,所以我们先来安装ndn-cxx。 我是直接从网站上下载的两个源代码,所以安装过程中和指导文献有所不同。 安装ubuntu 16.04.5 安装之后,有几个安装过程中需要用到的软件: 打开终端 ctrl+alt+t sudo apt-get updatesudo apt-get install vimsudo apt-get install curl 之后,我们把下载好的ndn-cxx 0.6.3和NFD 0.6.3拷贝到:/usr/local/lib 路径下(不要问为啥,计算机路径这个东西真是恶心人),完成之后我们开始安装ndn-cxx 0.6.3 安装ndn-cxx 0.6.3 打开终端: ctrl+alt+t sudo apt-get install build-essential libsqlite3-dev libboost-all-dev libssl-dev sudo apt-get install doxygen graphviz python-sphinx python-pip 这里指导安装步骤还有sudo pip install sphinxcontrib-doxylink sphinxcontrib-googleanalytics,这个可能是以前的版本需要的依赖的包,但在0.6.3中并不需要,而且装上还会报错(卡在这里好久),因此我们就不装这个。 之后我们进入ndn-cxx 0.6.3的根目录: cd /usr/local/lib/ndn-cxx-0.6.3 接连执行以下命令 sudo ./waf configuresudo ./wafsudo ./waf install 在运行第2个命令的时候,会出现如下结果: 我们这里不用理会(不知道为啥,虽然出了ERROR,但是还是可以运行,可能最后他只是出了个WARNING,而且在过程中,WARNING都是可以忽略的)。等出现如图所示的结果: 我们就可以进行下一步: sudo ldconfig sudo ./waf configure --with-examplessudo ./wafsudo ./waf install 到此,ndn-cxx 0.6.3的环境就装好了。 安装NFD 0.6.3 打开终端,按照以下代码依次输入: sudo apt-get install software-properties-common sudo add-apt-repository ppa:named-data/ppasudo apt-get update sudo apt-get install nfd 原文指导步骤,之后是利用git命令下载ndn-cxx和nfd,因为我们提前下载过了并拷贝进虚拟机,因此,在此忽略该步骤。 sudo apt-get install build-essential pkg-config libboost-all-dev \libsqlite3-dev libssl-dev libpcap-dev sudo apt-get install doxygen graphviz python-sphinx 之后,我们进入nfd 0.6.3根目录: cd /usr/local/lib/nfd-0.6.3 进入root模式,安装一个库(很重要,因为我们不是利用git命令安装,这步必不可少;否则下一步下面会报错中断): sudo sucurl -L https://github.com/zaphoyd/websocketpp/archive/0.7.0.tar.gz > websocket.tar.gztar zxf websocket.tar.gz -C websocketpp/ --strip 1exit 之后,执行以下命令: sudo ./waf configuresudo ./wafsudo ./waf install 同样,过程中出现WARNING不用管。 最后,一定记着执行以下命令: sudo cp /usr/local/etc/ndn/nfd.conf.sample /usr/local/etc/ndn/nfd.conf 这样才能成功开启nfd。 至此,ndn-cxx 0.6.3和nfd 0.6.3全部安装完成。 执行示例程序 打开终端,运行nfd nfd-start(可能需要输入密码) 在ndn-cxx 0.6.3根目录下打开终端,进入examples目录,或者直接在example目录下打开终端(我选择这种方式,因为懒)。 这里,必须先运行producer程序,再运行consumer程序,作为学计算机的,应该不需要解释为啥了吧。 在一个终端下执行producer命令: ./producer 再打开一个终端,执行consumer命令: ./consumer 这时就可以成功看到交互了,但是有点儿问题,consumer会出现warning,如图所示: 这是为啥呢,好像是因为最近的版本,必须为interest报文指定一个默认前缀,为了之后的APP功能设计,详情请看以下链接: http://named-data.net/doc/ndn-cxx/current/doxygen/d1/d81/classndn_1_1Interest.htmla0275843d0eda5134e7fd7e787f972e78 这里我们怎么修改才能让他不显示这个warning呢?按照以下步骤: 进入ndn-cxx 的src目录: cd /usr/local/lib/ndn-cxx-0.6.3/src 修改interest.cpp文件,因为权限设置,我们在root下使用vim命令修改: sudo su(输入密码)vim interest.cpp找到 static bool hasDefaultCanBePrefixWarning = false将false改为true 之后,我们在ndn-cxx 0.6.3目录下再编译运行一下就行了,即: sudo ./waf configure --with-examplessudo ./wafsudo ./waf install 之后再examples目录再执行两个程序,就可以得到结果: 至此环境已经搭好,目前正准备进行后续工作。。。。。 望各位大佬手下留情,转载注明出处,感谢感谢!!!! 本篇文章为转载内容。原文链接:https://blog.csdn.net/silent_time/article/details/84146586。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-30 19:22:59
321
转载
转载文章
...具体参看以下详细设置方法 二、WIFI设置方法 1、在“开始”—“设置”—“连线”中点选“连接”,然后选择“高级”在“选择自动使用的网络”下方点“选择网络”,然后看到两个下拉空格,第一个是“在程序自动连接到Internet时,使用:”,点选“新建”,在弹出的新窗口里有“请为这些设置输入名称”,在下方空格处编辑“Internet设置”或者其他你喜欢的名字,然后点选该页面下方的 “调制解调器”里面不要填写任何东西(注意一定不要填写任何东西),再点选该页面下方的“代理服务器设置”钩选“此网路连接到Internet”,下方的“此网络使用代理服务器连接到Internet”千万不要选择,点选“ok”,wifi设置初步完成。 2、网卡设置:“开始”—“设置”—“连接”中点选“无线网络管理员”,在弹出页面的右下方点选“菜单”,点选上弹菜单中的“开启WI-FI”,如果无线路由器设置正常的话,这时点选“网络搜寻”,在新页面中的“网路名称”下方就可以看到你的无线路由器品牌如“Dlink”“TP-link”等,点选出现在“配置无线网络”下方的这个品牌名字,弹出新的窗口,在“要访问的网络”下方选择“所有可用的”,然后点选“网络适配器”,在“我的网卡连线到”项目中选择“默认Internet设置”,在“点击适配器以修改设置”下方,点选“AUSU 802.11b+g Wireless Card”,弹出新窗口,点选“使用服务器分配的IP地址”(也可以选择“使用特定的IP地址”,那么就可以省略以下步骤),并在“IP地址”栏填入公司或者单位分配给的IP,如“192.168.50.122”,在“子网掩码”填入公司的子网掩码,在 “网关”中填入公司的网关;完成这些后,点选“名称服务器”,在新窗口的“DNS”和“备用DNS”中填入公司的“DNS”,然后一路“OK”,完成网卡设定。完成以上两个设定后建议重启机器,然后就可以用WIFI上网、上QQ和MSN了。 三、GPRS设置方法 1、在“开始”—“设置”—“连接”中点选“连接”,然后选择 “高级”,在 “选择自动使用的网络”下方点“选取网络”,然后看到两个下拉空格,第二个是“在程序自动连接到专用网络时,使用:”即上面提到的“单位设定”。 2、点选“新建”,在弹出窗口里有“请为这些设置输入名称”,在下方空格处编辑“中国移动”(最好设置为这个名称),然后点选该页面下方的“调制解调器”,点选“新建”,在弹出的新页面中有“请为连接输入名称”,请填写“中国移动彩信”,在“选择调制解调器”的下拉菜单中选择“蜂窝电话线路(GPRS)” 3、然后点“下一步”,在新弹出的窗口中的“存取点名称”下放填写“cmwap”(这里一定不能填写cmnet,否则就是采用cmnet接入网络,你将面对0.03元/K的收费以及月末数百元的cmnet网络费用了) 4、继续点选“下一步”,新窗口出现“使用者名称”、“密码”、“域”,这些都不要填写,直接点选“高级”,在进阶的tcp/ip窗口中点选“使用服务器分配的IP地址”,其他不要选择 5、点选下方“服务器”,进入“高级”的“服务器”窗口,点选“使用服务器分配的地址”,然后点选“ok”退出到第4步的页面即“中国移动彩信”的设定页面,点选“完成”。这时机器会退到第1步的最终界面即“中国移动”设定页面 6、在这个页面下放,点选“代理服务器设置”,钩选“此网络连接到Internet”,然后再钩选“此网络使用代理服务器连接到Internet”,并在下方的“代理服务器”内填入“10.0.0.172” 7、接着点选该页面的“高级”,“点击代理服务器类型更改其设置”中点“HTTP”在弹出窗口中的“服务器”下填入“10.0.0.172”,端口“80”(该步骤也可以留空不填,如果不填写的话,GPRS就不能通过WAP代理上WWW网站,本人选择填写,这样在没有WIFI热点的情况下,机子也可以通过WAP代理上WWW的网站,当然选择填写的话会出现打开IE自动连接GPRS而不是连接WIFI的情况,不过可以在连接一开始时点选弹出小窗口中的“取消”来取消GPRS的连接,从而达到用WIFI连接互联网的效果) 8、点选“ok”后返回到前一个页面,点选“WAP”,在在弹出窗口中的“服务器”下填入“10.0.0.172”,端口“9201”,同样的方法,设定“安全WAP”服务器为“10.0.0.172”,端口填“9203”,设定“Socks”服务器为“10.0.0.172”,端口“1080” 9、点选“ok”返回到第6步的最终界面,再点选“ok”退出到第2步的初始页面即“网路管理”页面,再连续点选“ok”,完成设置 四、彩信设置方法 1、“开始”—“信息”—“MMS” 2、在“MMS”页面中,点选“菜单”,上弹菜单选择“MMS设定” 3、在“选择并打开一个情景式以查看更多选项”的下方点选“新建” 4、在新窗口中的“情景式名称”右边填入“中国移动彩信”,在“彩信服务器”右边填入 http://mmsc.monternet.com”,在“数据连接”右边选择“中国移动”,在“网关”右边选择“WAP1.0 网关”,在“IP地址”右边填入“10.0.0.172”,在“端口”右边填入“9201”,最后选择完成。 转载于:https://www.cnblogs.com/hzleihuan/archive/2007/12/14/994344.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30468137/article/details/98040981。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-23 17:26:09
84
转载
Beego
...上按的手印,用加密的方法保证了这东西是没被偷看或者变过样,而且能确认是它家快递员送来的,不是冒牌货。 在Beego框架中,我们可以利用第三方库如jwt-go来简化JWT的生成和验证过程。首先,需要在项目的依赖文件中添加如下内容: bash go get github.com/dgrijalva/jwt-go 接下来,在你的控制器中引入并使用jwt-go库: go package main import ( "github.com/dgrijalva/jwt-go" "github.com/beego/beego/v2/client/orm" "net/http" ) // 创建JWT密钥 var jwtKey = []byte("your-secret-key") type User struct { Id int64 orm:"column(id);pk" Name string orm:"column(name)" } func main() { // 初始化ORM orm.RegisterModel(new(User)) // 示例:创建用户并生成JWT令牌 user := &User{Name: "John Doe"} err := orm.Insert(user) if err != nil { panic(err) } token, err := createToken(user.Id) if err != nil { panic(err) } http.HandleFunc("/login", func(w http.ResponseWriter, r http.Request) { w.Write([]byte(token)) }) http.ListenAndServe(":8080", nil) } func createToken(userId int64) (string, error) { claims := jwt.StandardClaims{ Issuer: "YourApp", ExpiresAt: time.Now().Add(time.Hour 24).Unix(), Subject: userId, } token := jwt.NewWithClaims(jwt.SigningMethodHS256, claims) return token.SignedString(jwtKey) } 2. JWT验证与解码 在用户请求资源时,我们需要验证JWT的有效性。Beego框架允许我们通过中间件轻松地实现这一功能: go func authMiddleware(next http.HandlerFunc) http.HandlerFunc { return func(w http.ResponseWriter, r http.Request) { tokenHeader := r.Header.Get("Authorization") if tokenHeader == "" { http.Error(w, "Unauthorized", http.StatusUnauthorized) return } tokenStr := strings.Replace(tokenHeader, "Bearer ", "", 1) token, err := jwt.Parse(tokenStr, func(token jwt.Token) (interface{}, error) { if _, ok := token.Method.(jwt.SigningMethodHMAC); !ok { return nil, fmt.Errorf("Unexpected signing method: %v", token.Header["alg"]) } return jwtKey, nil }) if err != nil { http.Error(w, "Unauthorized", http.StatusUnauthorized) return } if !token.Valid { http.Error(w, "Unauthorized", http.StatusUnauthorized) return } next.ServeHTTP(w, r) } } http.HandleFunc("/protected", authMiddleware(http.HandlerFunc(func(w http.ResponseWriter, r http.Request) { claims := token.Claims.(jwt.MapClaims) userID := int(claims["subject"].(float64)) // 根据UserID获取用户信息或其他操作... }))) 3. 刷新令牌与过期处理 为了提高用户体验并减少用户在频繁登录的情况下的不便,可以实现一个令牌刷新机制。当JWT过期时,用户可以发送请求以获取新的令牌。这通常涉及到更新JWT的ExpiresAt字段,并相应地更新数据库中的记录。 go func refreshToken(w http.ResponseWriter, r http.Request) { claims := token.Claims.(jwt.MapClaims) userID := int(claims["subject"].(float64)) // 更新数据库中的用户信息以延长有效期 err := orm.Update(&User{Id: userID}, "expires_at = ?", time.Now().Add(time.Hour24)) if err != nil { http.Error(w, "Internal Server Error", http.StatusInternalServerError) return } newToken, err := createToken(userID) if err != nil { http.Error(w, "Internal Server Error", http.StatusInternalServerError) return } w.Write([]byte(newToken)) } 4. 总结与展望 通过上述步骤,我们不仅实现了JWT在Beego框架下的集成与管理,还探讨了其在实际应用中的实用性和灵活性。JWT令牌的生命周期管理对于增强Web应用的安全性和用户体验至关重要。哎呀,你懂的,就是说啊,咱们程序员小伙伴们要是能不断深入研究密码学这门学问,然后老老实实地跟着那些最佳做法走,那在面对各种安全问题的时候就轻松多了,咱开发出来的系统自然就又稳当又高效啦!就像是有了金刚钻,再硬的活儿都能干得溜溜的! 在未来的开发中,持续关注安全漏洞和最佳实践,不断优化和升级JWT的实现策略,将有助于进一步提升应用的安全性和性能。哎呀,随着科技这玩意儿越来越发达,咱们得留意一些新的认证方式啦。比如说 OAuth 2.0 啊,这种东西挺适合用在各种不同的场合和面对各种变化的需求时。你想想,就像咱们出门逛街,有时候用钱包,有时候用手机支付,对吧?认证机制也一样,得根据不同的情况选择最合适的方法,这样才能更灵活地应对各种挑战。所以,探索并尝试使用 OAuth 2.0 这类工具,让咱们的技术应用更加多样化和适应性强,听起来挺不错的嘛!
2024-10-15 16:05:11
70
风中飘零
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tail -f /var/log/syslog
- 实时查看系统日志文件。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"