前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[高并发场景优化]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Golang
...吞,Go简直就是为高并发而生的!每次看到它的协程(goroutine)和通道(channel),我就忍不住想:这不就是为我这种喜欢高效开发的人量身定制的语言嘛! 所以,今天咱们就来聊聊如何用Go语言构建一个高性能的服务器。嘿,别担心!我可不会整那些枯燥的理论大餐,咱们这就撸起袖子一起敲代码吧。来吧,跟着我,看看Go这小子到底是怎么一步步帮咱们搞定问题的,超有趣的! --- 2. 高性能服务器的核心要素 说到高性能服务器,其实核心无非就几个点:并发处理、内存管理、网络优化和代码结构。Go在这几个方面都有独到的优势,接下来咱们一个个拆解来看。 2.1 并发处理:协程的力量 先说并发处理吧。Go最大的特点之一就是协程(goroutine)。嘿,你知道为啥大家都说协程比线程“瘦”吗?就是因为它真的省空间啊!打个比方,一个协程的“小背包”(也就是栈内存)才不到2KB,可传统线程那背包大得吓人,动不动就几十KB起步,甚至能到上百KB。这差距,简直是一个小巧玲珑的手拿包和一个超大登山包的区别! 举个例子,假设我们要做一个聊天服务器,每秒钟需要处理上千个用户的请求。要是用那种老式的多线程方式,创建和销毁线程的代价大得会让你的服务器累得直不起腰,简直要崩溃了!但用Go的话,完全可以轻松应对: go package main import ( "fmt" "net/http" ) func handleRequest(w http.ResponseWriter, r http.Request) { fmt.Fprintf(w, "Hello, %s!", r.URL.Path[1:]) } func main() { http.HandleFunc("/", handleRequest) fmt.Println("Server started at :8080") err := http.ListenAndServe(":8080", nil) if err != nil { panic(err) } } 这段代码虽然简单,但它背后却隐藏着Go的魔力。嘿,你有没有试过访问这个地址:http://localhost:8080/username?当你这么做的时候,Go 这家伙就会偷偷摸摸地给你派来一个小帮手——一个协程,专门负责处理你的请求。而且更贴心的是,它完全不用你去管什么线程池那些听起来就头大的复杂玩意儿,简直是太省心了吧! 当然了,光靠协程还不够。为了确保程序的健壮性,我们需要合理地利用通道(channel)来进行通信。比如下面这个简单的生产者-消费者模型: go package main import ( "fmt" "time" ) func producer(ch chan<- int) { for i := 0; i < 5; i++ { ch <- i fmt.Println("Produced:", i) time.Sleep(500 time.Millisecond) } close(ch) } func consumer(ch <-chan int) { for num := range ch { fmt.Println("Consumed:", num) } } func main() { ch := make(chan int) go producer(ch) consumer(ch) } 在这个例子中,producer函数向通道发送数据,而consumer函数从通道接收数据。用这种方法,咱们就能又优雅又稳妥地搞定多线程里的同步难题,还不用担心被死锁给缠上。 --- 3. 内存管理 GC的奥秘 接下来谈谈内存管理。Go的垃圾回收器(GC)是它的一大亮点。就像用老式工具编程一样,C/C++这种传统语言就得让程序员自己动手去清理内存,稍不留神,就可能搞出内存泄漏,或者戳到那些讨厌的野指针,简直让人头大!而Go则完全解放了我们的双手,它会自动帮你清理不再使用的内存。 不过,GC也不是万能的。有时候,如果你对性能要求特别高,可能会遇到GC停顿的问题。为了解决这个问题,Go团队一直在优化GC算法。最新版本中引入了分代GC(Generational GC),大幅降低了停顿时间。 那么,我们在实际开发中应该如何减少GC的压力呢?最直接的方法就是尽量避免频繁的小对象分配。比如,我们可以复用一些常见的结构体,而不是每次都新建它们: go type Buffer struct { data []byte } func NewBuffer(size int) Buffer { return &Buffer{data: make([]byte, size)} } func (b Buffer) Reset() { b.data = b.data[:0] } func main() { buf := NewBuffer(1024) for i := 0; i < 100; i++ { buf.Reset() // 使用buf... } } 在这个例子中,我们通过Reset()方法复用了同一个Buffer实例,而不是每次都调用make([]byte, size)重新创建一个新的切片。这样可以显著降低GC的压力。 --- 4. 网络优化 TCP/IP的实战 再来说说网络优化。Go的net包提供了强大的网络编程支持,无论是HTTP、WebSocket还是普通的TCP/UDP,都能轻松搞定。特别是对那些高性能服务器而言,怎么才能又快又稳地搞定海量连接,这简直就是一个绕不开的大难题啊! 举个例子,假设我们要实现一个简单的HTTP长连接服务器。传统的做法可能是监听端口,然后逐个处理请求。但这种方式效率不高,特别是在高并发场景下。Go提供了一个更好的解决方案——使用net/http包的Serve方法: go package main import ( "log" "net/http" ) func handler(w http.ResponseWriter, r http.Request) { w.Write([]byte("Hello, World!")) } func main() { http.HandleFunc("/", handler) log.Fatal(http.ListenAndServe(":8080", nil)) } 这段代码看起来很简单,但它实际上已经具备了处理大量并发连接的能力。为啥呢?就是因为Go语言里的http.Server自带了一个超级能打的“工具箱”,里面有个高效的连接池和请求队列,遇到高并发的情况时,它就能像一个经验丰富的老司机一样,把各种请求安排得明明白白,妥妥地hold住场面! 当然,如果你想要更底层的控制,也可以直接使用net包来编写TCP服务器。比如下面这个简单的TCP回显服务器: go package main import ( "bufio" "fmt" "net" ) func handleConnection(conn net.Conn) { defer conn.Close() reader := bufio.NewReader(conn) for { message, err := reader.ReadString('\n') if err != nil { fmt.Println("Error reading:", err) break } fmt.Print("Received:", message) conn.Write([]byte(message)) } } func main() { listener, err := net.Listen("tcp", ":8080") if err != nil { fmt.Println("Error listening:", err) return } defer listener.Close() fmt.Println("Listening on :8080...") for { conn, err := listener.Accept() if err != nil { fmt.Println("Error accepting:", err) continue } go handleConnection(conn) } } 在这个例子中,我们通过listener.Accept()不断接受客户端连接,并为每个连接启动一个协程来处理请求。这种模式非常适合处理大量短连接的场景。 --- 5. 代码结构 模块化与可扩展性 最后,我们来聊聊代码结构。一个高性能的服务器不仅仅依赖于语言特性,还需要良好的设计思路。Go语言特别推崇把程序分成小块儿来写,就像搭积木一样,每个功能都封装成独立的小模块或包。这样不仅修 bug 的时候方便找问题,写代码的时候也更容易看懂,以后想加新功能啥的也简单多了。 比如,假设我们要开发一个分布式任务调度系统,可以按照以下方式组织代码: go // tasks.go package task type Task struct { ID string Name string Param interface{} } func NewTask(id, name string, param interface{}) Task { return &Task{ ID: id, Name: name, Param: param, } } // scheduler.go package scheduler import "task" type Scheduler struct { tasks []task.Task } func NewScheduler() Scheduler { return &Scheduler{ tasks: make([]task.Task, 0), } } func (s Scheduler) AddTask(t task.Task) { s.tasks = append(s.tasks, t) } func (s Scheduler) Run() { for _, t := range s.tasks { fmt.Printf("Executing task %s\n", t.Name) // 执行任务逻辑... } } 通过这种方式,我们将任务管理和调度逻辑分离出来,使得代码更加清晰易懂。同时,这样的设计也方便未来扩展新的功能,比如添加日志记录、监控指标等功能。 --- 6. 总结与展望 好了,到这里咱们就差不多聊完了如何用Go语言进行高性能服务器开发。说实话,写着这篇文章的时候,我脑海里突然蹦出大学时那股子钻研劲儿,感觉就像重新回到那些熬夜敲代码的日子了,整个人都热血上头!Go这门语言真的太带感了,简单到没话说,效率还超高,稳定性又好得没话说,简直就是程序员的救星啊! 不过,我也想提醒大家一句:技术再好,最终还是要服务于业务需求。不管你用啥法子、说啥话,老老实实问问自己:“这招到底管不管用?是不是真的解决问题了?”这才是真本事! 希望这篇文章对你有所帮助,如果你有任何疑问或者想法,欢迎随时留言讨论!让我们一起继续探索Go的无限可能吧!
2025-04-23 15:46:59
39
桃李春风一杯酒
Netty
...与大数据流处理平台的优化 1. Netty是什么?为什么它这么重要? 嗨,大家好!我是你们的老朋友,今天我们要聊聊一个超级厉害的技术——Netty。嘿,要是你对分布式系统、高能网络编程或者大数据流处理这些酷炫的东西感兴趣,那Netty可就太值得一试了!它就像是个隐藏的宝藏,能让你在这些领域玩得更溜。 首先,Netty是什么?简单来说,Netty是一个基于Java的异步事件驱动网络应用框架。它可以帮助开发者快速构建可扩展的服务器端应用程序。想象一下,你正在开发一个需要处理海量数据的大数据流处理平台,这时候Netty就显得尤为重要了。它不仅能够帮助我们高效地管理网络连接,还能让我们轻松应对高并发场景。 我第一次接触Netty的时候,真的被它的灵活性震撼到了。哎,说到程序员的烦心事,那肯定得提一提怎么让程序在被成千上万的人同时戳的时候还能稳如老狗啊!这事儿真心让人头大,尤其是看着服务器指标噌噌往上涨,心里直打鼓,生怕哪一秒就崩了。而Netty通过非阻塞I/O模型,完美解决了这个问题。这就像是一个超级能干的服务员,能够在同一时间同时服务上万个客人,而且就算有个客人纠结半天点菜(也就是某个请求拖拉),也不会耽误其他客人的服务,更不会让整个餐厅都停下来等他。 举个栗子: java EventLoopGroup bossGroup = new NioEventLoopGroup(); // 主线程组 EventLoopGroup workerGroup = new NioEventLoopGroup(); // 工作线程组 try { ServerBootstrap b = new ServerBootstrap(); // 启动辅助类 b.group(bossGroup, workerGroup) .channel(NioServerSocketChannel.class) // 使用NIO通道 .childHandler(new ChannelInitializer() { // 子处理器 @Override protected void initChannel(SocketChannel ch) throws Exception { ch.pipeline().addLast(new StringDecoder()); // 解码器 ch.pipeline().addLast(new StringEncoder()); // 编码器 ch.pipeline().addLast(new SimpleChannelInboundHandler() { @Override protected void channelRead0(ChannelHandlerContext ctx, String msg) throws Exception { System.out.println("Received message: " + msg); ctx.writeAndFlush("Echo: " + msg); // 回显消息 } }); } }); ChannelFuture f = b.bind(8080).sync(); // 绑定端口并同步等待完成 f.channel().closeFuture().sync(); // 等待服务关闭 } finally { workerGroup.shutdownGracefully(); bossGroup.shutdownGracefully(); } 这段代码展示了如何用Netty创建一个简单的TCP服务器。话说回来,Netty这家伙简直太贴心了,它的API设计得特别直观,想设置啥处理器或者监听事件都超简单,用起来完全没压力,感觉开发效率直接拉满! 2. 大数据流处理平台中的挑战 接下来,我们聊聊大数据流处理平台面临的挑战。在这个领域,我们通常会遇到以下几个问题: - 高吞吐量:我们需要处理每秒数百万条甚至更多的数据记录。 - 低延迟:对于某些实时应用场景(如股票交易),毫秒级的延迟都是不可接受的。 - 可靠性:数据不能丢失,必须保证至少一次投递。 - 扩展性:随着业务增长,系统需要能够无缝扩容。 这些问题听起来是不是很让人头大?但别担心,Netty正是为此而生的! 让我分享一个小故事吧。嘿,有次我正忙着弄个日志收集系统,结果一测试才发现,这传统的阻塞式I/O模型简直是“人形瓶颈”啊!流量一大就直接崩溃,完全hold不住那个高峰时刻,简直让人头大!于是,我开始研究Netty,并将其引入到项目中。哈哈,结果怎么样?系统的性能直接翻了三倍!这下我可真服了,选对工具真的太重要了,感觉像是找到了开挂的装备一样爽。 为了更好地理解这些挑战,我们可以看看下面这段代码,这是Netty中用来实现高性能读写的示例: java public class HighThroughputHandler extends ChannelInboundHandlerAdapter { private final ByteBuf buffer; public HighThroughputHandler() { buffer = Unpooled.buffer(1024); } @Override public void channelActive(ChannelHandlerContext ctx) throws Exception { for (int i = 0; i < 1024; i++) { buffer.writeByte((byte) i); } ctx.writeAndFlush(buffer.retain()); } @Override public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception { ctx.write(msg); } @Override public void channelReadComplete(ChannelHandlerContext ctx) throws Exception { ctx.flush(); } @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception { cause.printStackTrace(); ctx.close(); } } 在这段代码中,我们创建了一个自定义的处理器HighThroughputHandler,它能够在每次接收到数据后立即转发出去,从而实现高吞吐量的传输。 3. Netty如何优化大数据流处理平台? 现在,让我们进入正题——Netty是如何具体优化大数据流处理平台的呢? 3.1 异步非阻塞I/O Netty的核心优势在于其异步非阻塞I/O模型。这就相当于,当有请求进来的时候,Netty可不会给每个连接都专门安排一个“服务员”,而是让这些连接共用一个“服务团队”。这样既能节省人手,又能高效处理各种任务,多划算啊!这样做的好处是显著减少了内存占用和上下文切换开销。 假设你的大数据流处理平台每天要处理数十亿条数据记录,采用传统的阻塞式I/O模型,很可能早就崩溃了。而Netty则可以通过单线程处理数千个连接,极大地提高了资源利用率。 3.2 零拷贝技术 另一个让Netty脱颖而出的特点是零拷贝技术。嘿,咱们就拿快递打个比方吧!想象一下,你在家里等着收快递,但这个快递特别麻烦——它得先从仓库(相当于内核空间)送到快递员手里(用户空间),然后快递员再把东西送回到你家(又回到内核空间)。这就像是数据在网络通信里来回折腾了好几趟,一会儿在系统深处待着,一会儿又被搬出来给应用用,真是费劲啊!这种操作不仅耗时,还会消耗大量CPU资源。 Netty通过ZeroCopy机制,直接将数据从文件系统传递到网络套接字,避免了不必要的内存拷贝。这种做法不仅加快了数据传输速度,还降低了系统的整体负载。 这里有一个实际的例子: java FileRegion region = new DefaultFileRegion(fileChannel, 0, fileSize); ctx.write(region); 上述代码展示了如何利用Netty的零拷贝功能发送大文件,无需手动加载整个文件到内存中。 3.3 灵活的消息编解码 在大数据流处理平台中,数据格式多种多样,可能包括JSON、Protobuf、Avro等。Netty提供了一套强大的消息编解码框架,允许开发者根据需求自由定制解码逻辑。 例如,如果你的数据是以Protobuf格式传输的,可以这样做: java public class ProtobufDecoder extends MessageToMessageDecoder { @Override protected void decode(ChannelHandlerContext ctx, ByteBuf in, List out) throws Exception { byte[] data = new byte[in.readableBytes()]; in.readBytes(data); MyProtoMessage message = MyProtoMessage.parseFrom(data); out.add(message); } } 通过这种方式,我们可以轻松解析复杂的数据结构,同时保持代码的整洁性和可维护性。 3.4 容错与重试机制 最后但同样重要的是,Netty内置了强大的容错与重试机制。在网上聊天或者传输文件的时候,有时候会出现消息没发出去、对方迟迟收不到的情况,就像快递丢了或者送慢了。Netty这个小助手可机灵了,它会赶紧发现这些问题,然后试着帮咱们把没送到的消息重新发一遍,就像是给快递员多派一个人手,保证咱们的信息能安全顺利地到达目的地。 java RetryHandler retryHandler = new RetryHandler(maxRetries); ctx.pipeline().addFirst(retryHandler); 上面这段代码展示了如何添加一个重试处理器到Netty的管道中,让它在遇到错误时自动重试。 4. 总结与展望 经过这一番探讨,相信大家已经对Netty及其在大数据流处理平台中的应用有了更深入的理解。Netty可不只是个工具库啊,它更像是个靠谱的小伙伴,陪着咱们一起在高性能网络编程的大海里劈波斩浪、寻宝探险! 当然,Netty也有它的局限性。比如说啊,遇到那种超级复杂的业务场景,你可能就得绞尽脑汁写一堆专门定制的代码,不然根本搞不定。还有呢,这门技术的学习难度有点大,刚上手的小白很容易觉得晕头转向,不知道该怎么下手。但我相信,只要坚持实践,总有一天你会爱上它。 未来,随着5G、物联网等新技术的发展,大数据流处理的需求将会更加旺盛。而Netty凭借其卓越的性能和灵活性,必将在这一领域继续发光发热。所以,不妨大胆拥抱Netty吧,它会让你的开发之旅变得更加精彩! 好了,今天的分享就到这里啦!如果你有任何疑问或者想法,欢迎随时交流。记住,编程之路没有终点,只有不断前进的脚步。加油,朋友们!
2025-04-26 15:51:26
46
青山绿水
转载文章
...10K I/O 模型优化 工作模型优化 C1000K C10M 总结 C10K 和 C1000K 的首字母 C 是 Client 的缩写。 C10K 是单机同时处理 1 万个请求(并发连接 1 万)的问题 C1000K 是单机支持处理 100 万个请求(并发连接 100 万)的问题。 C10K C10K 问题最早由 Dan Kegel 在 1999 年提出。那时的服务器还只是 32 位系统,运行着 Linux 2.2 版本(后来又升级到了 2.4 和 2.6,而 2.6 才支持 x86_64),只配置了很少的内存(2GB)和千兆网卡。 怎么在这样的系统中支持并发 1 万的请求呢? 从资源上来说,对 2GB 内存和千兆网卡的服务器来说,同时处理 10000 个请求,只要每个请求处理占用不到 200KB(2GB/10000)的内存和 100Kbit (1000Mbit/10000)的网络带宽就可以。 物理资源是足够的,是软件的问题,特别是网络的 I/O 模型问题。 I/O 的模型,文件 I/O和网络 I/O 模型也类似。 在 C10K 以前,Linux 中网络处理都用同步阻塞的方式,也就是每个请求都分配一个进程或者线程。 请求数只有 100 个时,这种方式自然没问题,但增加到 10000 个请求时,10000 个进程或线程的调度、上下文切换乃至它们占用的内存,都会成为瓶颈。 每个请求分配一个线程的方式不合适,为了支持 10000 个并发请求,有两个问题需要我们解决 第一,怎样在一个线程内处理多个请求,也就是要在一个线程内响应多个网络 I/O。以前的同步阻塞方式下,一个线程只能处理一个请求,到这里不再适用,是不是可以用非阻塞 I/O 或者异步 I/O 来处理多个网络请求呢? 第二,怎么更节省资源地处理客户请求,也就是要用更少的线程来服务这些请求。是不是可以继续用原来的 100 个或者更少的线程,来服务现在的 10000 个请求呢? I/O 模型优化 异步、非阻塞 I/O 的解决思路是我们在网络编程中经常用到的 I/O 多路复用(I/O Multiplexing) 两种 I/O 事件通知的方式:水平触发和边缘触发,它们常用在套接字接口的文件描述符中。 水平触发:只要文件描述符可以非阻塞地执行 I/O ,就会触发通知。也就是说,应用程序可以随时检查文件描述符的状态,然后再根据状态,进行 I/O 操作。 边缘触发:只有在文件描述符的状态发生改变(也就是 I/O 请求达到)时,才发送一次通知。这时候,应用程序需要尽可能多地执行 I/O,直到无法继续读写,才可以停止。如果 I/O 没执行完,或者因为某种原因没来得及处理,那么这次通知也就丢失了。 I/O 多路复用的方法有很多实现方法,我带你来逐个分析一下。 第一种,使用非阻塞 I/O 和水平触发通知,比如使用 select 或者 poll。 根据刚才水平触发的原理,select 和 poll 需要从文件描述符列表中,找出哪些可以执行 I/O ,然后进行真正的网络 I/O 读写。由于 I/O 是非阻塞的,一个线程中就可以同时监控一批套接字的文件描述符,这样就达到了单线程处理多请求的目的。所以,这种方式的最大优点,是对应用程序比较友好,它的 API 非常简单。 但是,应用软件使用 select 和 poll 时,需要对这些文件描述符列表进行轮询,这样,请求数多的时候就会比较耗时。并且,select 和 poll 还有一些其他的限制。 select 使用固定长度的位相量,表示文件描述符的集合,因此会有最大描述符数量的限制。比如,在 32 位系统中,默认限制是 1024。并且,在 select 内部,检查套接字状态是用轮询的方法,再加上应用软件使用时的轮询,就变成了一个 O(n^2) 的关系。 而 poll 改进了 select 的表示方法,换成了一个没有固定长度的数组,这样就没有了最大描述符数量的限制(当然还会受到系统文件描述符限制)。但应用程序在使用 poll 时,同样需要对文件描述符列表进行轮询,这样,处理耗时跟描述符数量就是 O(N) 的关系。 除此之外,应用程序每次调用 select 和 poll 时,还需要把文件描述符的集合,从用户空间传入内核空间,由内核修改后,再传出到用户空间中。这一来一回的内核空间与用户空间切换,也增加了处理成本。 有没有什么更好的方式来处理呢?答案自然是肯定的。 第二种,使用非阻塞 I/O 和边缘触发通知,比如 epoll。既然 select 和 poll 有那么多的问题,就需要继续对其进行优化,而 epoll 就很好地解决了这些问题。 epoll 使用红黑树,在内核中管理文件描述符的集合,这样,就不需要应用程序在每次操作时都传入、传出这个集合。 epoll 使用事件驱动的机制,只关注有 I/O 事件发生的文件描述符,不需要轮询扫描整个集合。 不过要注意,epoll 是在 Linux 2.6 中才新增的功能(2.4 虽然也有,但功能不完善)。由于边缘触发只在文件描述符可读或可写事件发生时才通知,那么应用程序就需要尽可能多地执行 I/O,并要处理更多的异常事件。 第三种,使用异步 I/O(Asynchronous I/O,简称为 AIO)。 在前面文件系统原理的内容中,我曾介绍过异步 I/O 与同步 I/O 的区别。异步 I/O 允许应用程序同时发起很多 I/O 操作,而不用等待这些操作完成。而在 I/O 完成后,系统会用事件通知(比如信号或者回调函数)的方式,告诉应用程序。这时,应用程序才会去查询 I/O 操作的结果。 异步 I/O 也是到了 Linux 2.6 才支持的功能,并且在很长时间里都处于不完善的状态,比如 glibc 提供的异步 I/O 库,就一直被社区诟病。同时,由于异步 I/O 跟我们的直观逻辑不太一样,想要使用的话,一定要小心设计,其使用难度比较高。 工作模型优化 了解了 I/O 模型后,请求处理的优化就比较直观了。 使用 I/O 多路复用后,就可以在一个进程或线程中处理多个请求,其中,又有下面两种不同的工作模型。 第一种,主进程 + 多个 worker 子进程,这也是最常用的一种模型。这种方法的一个通用工作模式就是:主进程执行 bind() + listen() 后,创建多个子进程;然后,在每个子进程中,都通过 accept() 或 epoll_wait() ,来处理相同的套接字。 比如,最常用的反向代理服务器 Nginx 就是这么工作的。它也是由主进程和多个 worker 进程组成。主进程主要用来初始化套接字,并管理子进程的生命周期;而 worker 进程,则负责实际的请求处理。我画了一张图来表示这个关系。 这里要注意,accept() 和 epoll_wait() 调用,还存在一个惊群的问题。换句话说,当网络 I/O 事件发生时,多个进程被同时唤醒,但实际上只有一个进程来响应这个事件,其他被唤醒的进程都会重新休眠。 其中,accept() 的惊群问题,已经在 Linux 2.6 中解决了; 而 epoll 的问题,到了 Linux 4.5 ,才通过 EPOLLEXCLUSIVE 解决。 为了避免惊群问题, Nginx 在每个 worker 进程中,都增加一个了全局锁(accept_mutex)。这些 worker 进程需要首先竞争到锁,只有竞争到锁的进程,才会加入到 epoll 中,这样就确保只有一个 worker 子进程被唤醒。 不过,根据前面 CPU 模块的学习,你应该还记得,进程的管理、调度、上下文切换的成本非常高。那为什么使用多进程模式的 Nginx ,却具有非常好的性能呢? 这里最主要的一个原因就是,这些 worker 进程,实际上并不需要经常创建和销毁,而是在没任务时休眠,有任务时唤醒。只有在 worker 由于某些异常退出时,主进程才需要创建新的进程来代替它。 当然,你也可以用线程代替进程:主线程负责套接字初始化和子线程状态的管理,而子线程则负责实际的请求处理。由于线程的调度和切换成本比较低,实际上你可以进一步把 epoll_wait() 都放到主线程中,保证每次事件都只唤醒主线程,而子线程只需要负责后续的请求处理。 第二种,监听到相同端口的多进程模型。在这种方式下,所有的进程都监听相同的接口,并且开启 SO_REUSEPORT 选项,由内核负责将请求负载均衡到这些监听进程中去。这一过程如下图所示。 由于内核确保了只有一个进程被唤醒,就不会出现惊群问题了。比如,Nginx 在 1.9.1 中就已经支持了这种模式。 不过要注意,想要使用 SO_REUSEPORT 选项,需要用 Linux 3.9 以上的版本才可以。 C1000K 基于 I/O 多路复用和请求处理的优化,C10K 问题很容易就可以解决。不过,随着摩尔定律带来的服务器性能提升,以及互联网的普及,你并不难想到,新兴服务会对性能提出更高的要求。 很快,原来的 C10K 已经不能满足需求,所以又有了 C100K 和 C1000K,也就是并发从原来的 1 万增加到 10 万、乃至 100 万。从 1 万到 10 万,其实还是基于 C10K 的这些理论,epoll 配合线程池,再加上 CPU、内存和网络接口的性能和容量提升。大部分情况下,C100K 很自然就可以达到。 那么,再进一步,C1000K 是不是也可以很容易就实现呢?这其实没有那么简单了。 首先从物理资源使用上来说,100 万个请求需要大量的系统资源。比如, 假设每个请求需要 16KB 内存的话,那么总共就需要大约 15 GB 内存。 而从带宽上来说,假设只有 20% 活跃连接,即使每个连接只需要 1KB/s 的吞吐量,总共也需要 1.6 Gb/s 的吞吐量。千兆网卡显然满足不了这么大的吞吐量,所以还需要配置万兆网卡,或者基于多网卡 Bonding 承载更大的吞吐量。 其次,从软件资源上来说,大量的连接也会占用大量的软件资源,比如文件描述符的数量、连接状态的跟踪(CONNTRACK)、网络协议栈的缓存大小(比如套接字读写缓存、TCP 读写缓存)等等。 最后,大量请求带来的中断处理,也会带来非常高的处理成本。这样,就需要多队列网卡、中断负载均衡、CPU 绑定、RPS/RFS(软中断负载均衡到多个 CPU 核上),以及将网络包的处理卸载(Offload)到网络设备(如 TSO/GSO、LRO/GRO、VXLAN OFFLOAD)等各种硬件和软件的优化。 C1000K 的解决方法,本质上还是构建在 epoll 的非阻塞 I/O 模型上。只不过,除了 I/O 模型之外,还需要从应用程序到 Linux 内核、再到 CPU、内存和网络等各个层次的深度优化,特别是需要借助硬件,来卸载那些原来通过软件处理的大量功能。 C10M 显然,人们对于性能的要求是无止境的。再进一步,有没有可能在单机中,同时处理 1000 万的请求呢?这也就是 C10M 问题。 实际上,在 C1000K 问题中,各种软件、硬件的优化很可能都已经做到头了。特别是当升级完硬件(比如足够多的内存、带宽足够大的网卡、更多的网络功能卸载等)后,你可能会发现,无论你怎么优化应用程序和内核中的各种网络参数,想实现 1000 万请求的并发,都是极其困难的。 究其根本,还是 Linux 内核协议栈做了太多太繁重的工作。从网卡中断带来的硬中断处理程序开始,到软中断中的各层网络协议处理,最后再到应用程序,这个路径实在是太长了,就会导致网络包的处理优化,到了一定程度后,就无法更进一步了。 要解决这个问题,最重要就是跳过内核协议栈的冗长路径,把网络包直接送到要处理的应用程序那里去。这里有两种常见的机制,DPDK 和 XDP。 第一种机制,DPDK,是用户态网络的标准。它跳过内核协议栈,直接由用户态进程通过轮询的方式,来处理网络接收。 说起轮询,你肯定会下意识认为它是低效的象征,但是进一步反问下自己,它的低效主要体现在哪里呢?是查询时间明显多于实际工作时间的情况下吧!那么,换个角度来想,如果每时每刻都有新的网络包需要处理,轮询的优势就很明显了。比如: 在 PPS 非常高的场景中,查询时间比实际工作时间少了很多,绝大部分时间都在处理网络包; 而跳过内核协议栈后,就省去了繁杂的硬中断、软中断再到 Linux 网络协议栈逐层处理的过程,应用程序可以针对应用的实际场景,有针对性地优化网络包的处理逻辑,而不需要关注所有的细节。 此外,DPDK 还通过大页、CPU 绑定、内存对齐、流水线并发等多种机制,优化网络包的处理效率。 第二种机制,XDP(eXpress Data Path),则是 Linux 内核提供的一种高性能网络数据路径。它允许网络包,在进入内核协议栈之前,就进行处理,也可以带来更高的性能。XDP 底层跟我们之前用到的 bcc-tools 一样,都是基于 Linux 内核的 eBPF 机制实现的。 XDP 的原理如下图所示: 你可以看到,XDP 对内核的要求比较高,需要的是 Linux 4.8 以上版本,并且它也不提供缓存队列。基于 XDP 的应用程序通常是专用的网络应用,常见的有 IDS(入侵检测系统)、DDoS 防御、 cilium 容器网络插件等。 总结 C10K 问题的根源,一方面在于系统有限的资源;另一方面,也是更重要的因素,是同步阻塞的 I/O 模型以及轮询的套接字接口,限制了网络事件的处理效率。Linux 2.6 中引入的 epoll ,完美解决了 C10K 的问题,现在的高性能网络方案都基于 epoll。 从 C10K 到 C100K ,可能只需要增加系统的物理资源就可以满足;但从 C100K 到 C1000K ,就不仅仅是增加物理资源就能解决的问题了。这时,就需要多方面的优化工作了,从硬件的中断处理和网络功能卸载、到网络协议栈的文件描述符数量、连接状态跟踪、缓存队列等内核的优化,再到应用程序的工作模型优化,都是考虑的重点。 再进一步,要实现 C10M ,就不只是增加物理资源,或者优化内核和应用程序可以解决的问题了。这时候,就需要用 XDP 的方式,在内核协议栈之前处理网络包;或者用 DPDK 直接跳过网络协议栈,在用户空间通过轮询的方式直接处理网络包。 当然了,实际上,在大多数场景中,我们并不需要单机并发 1000 万的请求。通过调整系统架构,把这些请求分发到多台服务器中来处理,通常是更简单和更容易扩展的方案。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_23864697/article/details/114626793。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-11 18:25:52
260
转载
转载文章
...,如果是集群部署,高并发情况下那个性能更好。 1.2 Java中间件二面 技术二面考察范围: 问了项目相关的技术实现细节 数据库相关:索引、索引底层实现、mysql相关的行锁、表锁等 redis相关:架构设计、数据一致性问题 容器:容器的设计原理等技术 二面题目: 参与的项目,选一个,技术难度在哪里? Collections.sort底层排序方式 负载均衡的原理设计模式与重构,谈谈你对重构的理解 谈谈redis相关的集群有哪些成熟方案? 再谈谈一致hash算法(redis)? 数据库索引,B+树的特性和建树过程 Mysql相关的行锁,表锁;乐观锁,悲观锁 谈谈多线程和并发工具的使用 谈谈redis的架构和组件 Redis的数据一致性问题(分布式多节点环境&单机环境) Docker容器 1.3 Java中间件三面 技术三面考察范围: 主要谈到了高并发的实现方案 以及中间件:redis、rocketmq、kafka等的架构设计思路 最后问了平时怎么提升技术的技术 三面题目 高并发情况下,系统是如何支撑大量的请求的? 接着上面的问题,延伸到了中间件,kafka、redis、rocketmq、mycat等设计思路和适用场景等 最近上过哪些技术网站;最近再看那些书。 工作和生活中遇见最大的挑战,怎么去克服? 未来有怎样的打算 1.4 Java中间件四面 最后,你懂的,主要就是HR走流程了,主要问了未来的职业规划。 02 头条Java后台3面 2.1 头条一面 讲讲jvm运行时数据库区 讲讲你知道的垃圾回收算法 jvm内存模型jmm 内存泄漏与内存溢出的区别 select、epool 的区别?底层的数据结构是什么? mysql数据库默认存储引擎,有什么优点 优化数据库的方法,从sql到缓存到cpu到操作系统,知道多少说多少 什么情景下做分表,什么情景下做分库 linkedList与arrayList区别 适用场景 array list是如何扩容的 volatile 关键字的作用?Java 内存模型? java lock的实现,公平锁、非公平锁 悲观锁和乐观锁,应用中的案例,mysql当中怎么实现,java中的实现 2.2 头条二面 Java 内存分配策略? 多个线程同时请求内存,如何分配? Redis 底层用到了哪些数据结构? 使用 Redis 的 set 来做过什么? Redis 使用过程中遇到什么问题? 搭建过 Redis 集群吗? 如何分析“慢查询”日志进行 SQL/索引 优化? MySQL 索引结构解释一下?(B+ 树) MySQL Hash 索引适用情况?举下例子? 2.3 头条三面 如何保证数据库与redis缓存一致的Redis 的并发竞争问题是什么? 如何解决这个问题? 了解 Redis 事务的 CAS 方案吗? 如何保证 Redis 高并发、高可用? Redis 的主从复制原理,以及Redis 的哨兵原理? 如果让你写一个消息队列,该如何进行架构设计啊?说一下你的思路。 MySQL数据库主从同步怎么实现? 秒杀模块怎么设计的,如何压测,抗压手段 03 今日头条Java后台研发三面 3.1 一面 concurrent包下面用过哪些? countdownlatch功能实现 synchronized和lock区别,重入锁thread和runnable的区别 AtomicInteger实现原理(CAS自旋) java并发sleep与wait、notify与notifyAll的区别 如何实现高效的同步链表 java都有哪些加锁方式(synchronized、ReentrantLock、共享锁、读写锁等) 设计模式(工厂模式、单例模式(几种情况)、适配器模式、装饰者模式) maven依赖树,maven的依赖传递,循环依赖 3.2 二面 synchronized和reentrantLock的区别,synchronized用在代码快、方法、静态方法时锁的都是什么? 介绍spring的IOC和AOP,分别如何实现(classloader、动态代理)JVM的内存布局以及垃圾回收原理及过程 讲一下,讲一下CMS垃圾收集器垃圾回收的流程,以及CMS的缺点 redis如何处理分布式服务器并发造成的不一致OSGi的机制spring中bean加载机制,bean生成的具体步骤,ioc注入的方式spring何时创建- applicationContextlistener是监听哪个事件? 介绍ConcurrentHashMap原理,用的是哪种锁,segment有没可能增大? 解释mysql索引、b树,为啥不用平衡二叉树、红黑树 Zookeeper如何同步配置 3.3 三面 Java线程池ThreadPoolEcecutor参数,基本参数,使用场景 MySQL的ACID讲一下,延伸到隔离级别 dubbo的实现原理,说说RPC的要点 GC停顿原因,如何降低停顿? JVM如何调优、参数怎么调? 如何用工具分析jvm状态(visualVM看堆中对象的分配,对象间的引用、是否有内存泄漏,jstack看线程状态、是否死锁等等) 描述一致性hash算法 分布式雪崩场景如何避免? 再谈谈消息队列 04 抖音Java 三面 4.1 一面: hashmap,怎么扩容,怎么处理数据冲突? 怎么高效率的实现数据迁移? Linux的共享内存如何实现,大概说了一下。 socket网络编程,说一下TCP的三次握手和四次挥手同步IO和异步IO的区别? Java GC机制?GC Roots有哪些? 红黑树讲一下,五个特性,插入删除操作,时间复杂度? 快排的时间复杂度,最坏情况呢,最好情况呢,堆排序的时间复杂度呢,建堆的复杂度是多少 4.2 二面: 自我介绍,主要讲讲做了什么和擅长什么 设计模式了解哪些? AtomicInteger怎么实现原子修改的? ConcurrentHashMap 在Java7和Java8中的区别? 为什么Java8并发效率更好?什么情况下用HashMap,什么情况用ConcurrentHashMap? redis数据结构? redis数据淘汰机制? 4.3 三面(约五十分钟): mysql实现事务的原理(MVCC) MySQL数据主从同步是如何实现的? MySQL索引的实现,innodb的索引,b+树索引是怎么实现的,为什么用b+树做索引节点,一个节点存了多少数据,怎么规定大小,与磁盘页对应。 如果Redis有1亿个key,使用keys命令是否会影响线上服务? Redis的持久化方式,aod和rdb,具体怎么实现,追加日志和备份文件,底层实现原理的话知道么? 遇到最大困难是什么?怎么克服? 未来的规划是什么? 你想问我什么? 05 百度三面 5.1 百度一面 自我介绍 Java中的多态 为什么要同时重写hashcode和equals Hashmap的原理 Hashmap如何变线程安全,每种方式的优缺点 垃圾回收机制 Jvm的参数你知道的说一下 设计模式了解的说一下啊 手撕一个单例模式 手撕算法:反转单链表 手撕算法:实现类似微博子结构的数据结构,输入一系列父子关系,输出一个类似微博评论的父子结构图 手写java多线程 手写java的soeket编程,服务端和客户端 手撕算法: 爬楼梯,写出状态转移方程 智力题:时针分针什么时候重合 5.2 百度二面(现场) 自我介绍 项目介绍 服务器如何负载均衡,有哪些算法,哪个比较好,一致性哈希原理,怎么避免DDOS攻击请求打到少数机器。 TCP连接中的三次握手和四次挥手,四次挥手的最后一个ack的作用是什么,为什么要time wait,为什么是2msl。 数据库的备份和恢复怎么实现的,主从复制怎么做的,什么时候会出现数据不一致,如何解决。 Linux查看cpu占用率高的进程 手撕算法:给定一个数字三角形,找到从顶部到底部的最小路径和。每一步可以移动到下面一行的相邻数字上。 然后继续在这个问题上扩展 求出最短那条的路径 递归求出所有的路径 设计模式讲一下熟悉的 会不会滥用设计模式 多线程条件变量为什么要在while体里 你遇到什么挫折,怎么应对和处理 5.3 百度三面(现场) 自我介绍 项目介绍 Redis的特点 Redis的持久化怎么做,aof和rdb,有什么区别,有什么优缺点。 Redis使用哨兵部署会有什么问题,我说需要扩容的话还是得集群部署。 说一下JVM内存模型把,有哪些区,分别干什么的 说一下gc算法,分代回收说下 MySQL的引擎讲一下,有什么区别,使用场景呢 分布式事务了解么 反爬虫的机制,有哪些方式 06 蚂蚁中间件团队面试题 6.1 蚂蚁中间件一面: 自我介绍 JVM垃圾回收算法和垃圾回收器有哪些,最新的JDK采用什么算法。 新生代和老年代的回收机制。 讲一下ArrayList和linkedlist的区别,ArrayList与HashMap的扩容方式。 Concurrenthashmap1.8后的改动。 Java中的多线程,以及线程池的增长策略和拒绝策略了解么。 Tomcat的类加载器了解么 Spring的ioc和aop,Springmvc的基本架构,请求流程。 HTTP协议与Tcp有什么区别,http1.0和2.0的区别。 Java的网络编程,讲讲NIO的实现方式,与BIO的区别,以及介绍常用的NIO框架。 索引什么时候会失效变成全表扫描 介绍下分布式的paxos和raft算法 6.2 蚂蚁中间件二面 你在项目中怎么用到并发的。 消息队列的使用场景,谈谈Kafka。 你说了解分布式服务,那么你怎么理解分布式服务。 Dubbo和Spring Clound的区别,以及使用场景。 讲一下docker的实现原理,以及与JVM的区别。 MongoDB、Redis和Memcached的应用场景,各自优势 MongoDB有事务吗 Redis说一下sorted set底层原理 讲讲Netty为什么并发高,相关的核心组件有哪些 6.3 蚂蚁中间件三面 完整的画一个分布式集群部署图,从负载均衡到后端数据库集群。 分布式锁的方案,Redis和Zookeeper哪个好,如果是集群部署,高并发情况下哪个性能更好。 分布式系统的全局id如何实现。 数据库万级变成亿级,你如何来解决。 常见的服务器雪崩是由什么引起的,如何来防范。 异地容灾怎么实现 常用的高并发技术解决方案有哪些,以及对应的解决步骤。 07 京东4面(Java研发) 7.1 一面(基础面:约1小时) 自我介绍,主要讲讲做了什么和擅长什么 springmvc和spring-boot区别 @Autowired的实现原理 Bean的默认作用范围是什么?其他的作用范围? 索引是什么概念有什么作用?MySQL里主要有哪些索引结构?哈希索引和B+树索引比较? Java线程池的原理?线程池有哪些?线程池工厂有哪些线程池类型,及其线程池参数是什么? hashmap原理,处理哈希冲突用的哪种方法? 还知道什么处理哈希冲突的方法? Java GC机制?GC Roots有哪些? Java怎么进行垃圾回收的?什么对象会进老年代?垃圾回收算法有哪些?为什么新生代使用复制算法? HashMap的时间复杂度?HashMap中Hash冲突是怎么解决的?链表的上一级结构是什么?Java8中的HashMap有什么变化?红黑树需要比较大小才能进行插入,是依据什么进行比较的?其他Hash冲突解决方式? hash和B+树的区别?分别应用于什么场景?哪个比较好? 项目里有个数据安全的,aes和md5的区别?详细点 7.2 二面(问数据库较多) 自我介绍 为什么MyISAM查询性能好? 事务特性(acid) 隔离级别 SQL慢查询的常见优化步骤? 说下乐观锁,悲观锁(select for update),并写出sql实现 TCP协议的三次握手和四次挥手过程? 用到过哪些rpc框架 数据库连接池怎么实现 Java web过滤器的生命周期 7.3 三面(综合面;约一个小时) 自我介绍。 ConcurrentHashMap 在Java7和Java8中的区别?为什么Java8并发效率更好?什么情况下用HashMap,什么情况用ConcurrentHashMap? 加锁有什么机制? ThreadLocal?应用场景? 数据库水平切分,垂直切分的设计思路和切分顺序 Redis如何解决key冲突 soa和微服务的区别? 单机系统演变为分布式系统,会涉及到哪些技术的调整?请从前面负载到后端详细描述。 设计一个秒杀系统? 7.4 四面(HR面) 你自己最大优势和劣势是什么 平时遇见过什么样的挑战,怎么去克服的 工作中遇见了技术解决不了的问题,你的应对思路? 你的兴趣爱好? 未来的职业规划是什么? 08 美团java高级开发3面 8.1 美团一面 自我介绍 项目介绍 Redis介绍 了解redis源码么 了解redis集群么 Hashmap的原理,增删的情况后端数据结构如何位移 hashmap容量为什么是2的幂次 hashset的源码 object类你知道的方法 hashcode和equals 你重写过hashcode和equals么,要注意什么 假设现在一个学生类,有学号和姓名,我现在hashcode方法重写的时候,只将学号参与计算,会出现什么情况? 往set里面put一个学生对象,然后将这个学生对象的学号改了,再put进去,可以放进set么?并讲出为什么 Redis的持久化?有哪些方式,原理是什么? 讲一下稳定的排序算法和不稳定的排序算法 讲一下快速排序的思想 8.2 美团二面 自我介绍 讲一下数据的acid 什么是一致性 什么是隔离性 Mysql的隔离级别 每个隔离级别是如何解决 Mysql要加上nextkey锁,语句该怎么写 Java的内存模型,垃圾回收 线程池的参数 每个参数解释一遍 然后面试官设置了每个参数,给了是个线程,让描述出完整的线程池执行的流程 Nio和IO有什么区别 Nio和aio的区别 Spring的aop怎么实现 Spring的aop有哪些实现方式 动态代理的实现方式和区别 Linux了解么 怎么查看系统负载 Cpu load的参数如果为4,描述一下现在系统处于什么情况 Linux,查找磁盘上最大的文件的命令 Linux,如何查看系统日志文件 手撕算法:leeetcode原题 22,Generate Parentheses,给定 n 对括号,请- 写一个函数以将其生成新的括号组合,并返回所有组合结果。 8.3 美团三面(现场) 三面没怎么问技术,问了很多技术管理方面的问题 自我介绍 项目介绍 怎么管理项目成员 当意见不一致时,如何沟通并说服开发成员,并举个例子 怎么保证项目的进度 数据库的索引原理 非聚簇索引和聚簇索引 索引的使用注意事项 联合索引 从底层解释最左匹配原则 Mysql对联合索引有优化么?会自动调整顺序么?哪个版本开始优化? Redis的应用 Redis的持久化的方式和原理 技术选型,一个新技术和一个稳定的旧技术,你会怎么选择,选择的考虑有哪些 说你印象最深的美团点评技术团队的三篇博客 最近在学什么新技术 你是怎么去接触一门新技术的 会看哪些书 怎么选择要看的书 最后 由于篇幅限制,小编在此截出几张知识讲解的图解,有需要的程序猿(媛)可以点赞后戳这里免费领取全部资料获取哦 子 怎么保证项目的进度 数据库的索引原理 非聚簇索引和聚簇索引 索引的使用注意事项 联合索引 从底层解释最左匹配原则 Mysql对联合索引有优化么?会自动调整顺序么?哪个版本开始优化? Redis的应用 Redis的持久化的方式和原理 技术选型,一个新技术和一个稳定的旧技术,你会怎么选择,选择的考虑有哪些 说你印象最深的美团点评技术团队的三篇博客 最近在学什么新技术 你是怎么去接触一门新技术的 会看哪些书 怎么选择要看的书 最后 由于篇幅限制,小编在此截出几张知识讲解的图解,有需要的程序猿(媛)可以点赞后戳这里免费领取全部资料获取哦 [外链图片转存中…(img-SFREePIJ-1624074891834)] [外链图片转存中…(img-5kF3pkiC-1624074891834)] [外链图片转存中…(img-HDVXfOMR-1624074891835)] [外链图片转存中…(img-RyaAC5jy-1624074891836)] [外链图片转存中…(img-iV32C5Ok-1624074891837)] 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_57285325/article/details/118051767。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-13 23:43:59
85
转载
转载文章
...些功能在实时系统、高并发场景和分布式架构中具有广泛的应用价值。为了紧跟技术发展动态并进一步探讨其实际应用场景,以下是一些延伸阅读的推荐内容: 1. 最新实践案例:近期,某知名电商平台在其秒杀活动系统中采用Redis的发布订阅模式优化了库存扣减与订单创建流程,确保了数据一致性的同时显著提升了系统吞吐量。深入分析这一案例,我们可以学习如何在实际项目中结合使用Redis的多种特性来解决复杂业务问题。 2. 技术深度解析:“Redis 6.2版本对事务和Lua脚本执行机制的改进”——随着Redis新版本的迭代更新,其对事务处理和Lua脚本的支持更加完善,比如新增的多线程支持大幅提高了Lua脚本执行性能,同时针对事务模型也进行了增强,以更好地满足高并发环境下的需求。 3. 行业发展趋势:“基于Redis构建微服务架构中的事件驱动系统”——文章讨论了在微服务架构中如何利用Redis的发布订阅模式构建事件驱动的服务间通信机制,并辅以具体实例阐述了这种方式如何提升系统的响应速度与可扩展性。 4. 学术研究视角:“从CAP理论角度看Redis在分布式系统中的作用”——学术界针对Redis在分布式系统中的角色进行了深度剖析,尤其是针对消息队列和发布订阅模式在满足CAP定理中的权衡问题,为开发者提供了理论指导和实践启示。 5. 实用教程分享:“利用Lua脚本实现Redis高级功能实战指南”——一些技术博客和社区发布了系列教程,详细介绍了如何编写高效安全的Lua脚本来处理复杂的Redis操作,如自定义原子操作、限流控制等,是广大开发者进阶Redis应用能力的实用参考资源。
2024-03-18 12:25:04
541
转载
转载文章
...应用,对内存管理以及并发编程的理解深度直接影响着软件开发的质量与效率。在实际工作中,不仅需要掌握上述四种引用类型(强引用、软引用、弱引用和虚引用)的原理及应用场景,还需关注近年来Java虚拟机(JVM)在垃圾回收机制上的新进展和优化策略。 例如,在最新版本的JDK中,G1垃圾收集器已成为默认选项,并引入了ZGC和Shenandoah等低延迟垃圾收集器,它们针对大内存应用环境提供了更高效的内存管理和回收策略。深入理解这些现代垃圾收集器的工作原理和调优手段,有助于开发者在设计大规模并发系统时做出更为合理的技术选型。 同时,对于容器类库的演进也不能忽视。除了文中提到的ConcurrentHashMap和Queue接口外,近年来响应式编程的兴起推动了如Flow API和反应式流Reactive Streams在Java生态中的应用,这些新的数据结构和编程模型同样适用于高并发场景,为解决多线程同步问题提供了新的思路。 此外,关于ThreadLocal导致的内存泄漏问题,开发者应当结合具体业务场景谨慎使用,并时刻关注Java社区对此类问题的解决方案和技术动态。例如,通过及时移除无用的ThreadLocal实例或者采用更安全的设计模式替代,可以有效防止此类内存泄露的发生。 综上所述,不断跟进Java技术的最新发展动态,深入学习并灵活运用内存管理与并发编程的相关知识,是每一位Java开发者持续提升技术水平的关键所在。同时,了解并掌握诸如JDK的新特性、垃圾收集器的发展趋势以及容器类库的更新迭代等内容,将有助于在实践中应对各种复杂情况,构建出高效稳定的应用程序。
2023-07-21 16:19:45
328
转载
MySQL
...态设置的系统变量,并优化了全局变量与会话变量的处理机制,使得管理员可以根据实时负载更加灵活地调整数据库配置。 同时,针对特定场景下的系统变量调优策略也值得研究。例如,在高并发访问环境中,合理设置“innodb_buffer_pool_size”、“innodb_log_file_size”等与内存管理和事务日志相关的系统变量,可以显著提升数据库性能并降低延迟。此外,“max_connections”的设置也需要结合服务器硬件资源以及实际并发连接需求进行科学规划。 值得注意的是,随着云原生数据库服务的发展,许多云服务商提供了对MySQL系统变量自动调节的服务,如AWS RDS的参数组功能,能够根据实例类型、工作负载模式智能调整系统变量,减轻运维负担的同时确保数据库运行效率。 综上所述,不仅需要熟练掌握MySQL系统变量的查看与设置方法,更要紧跟技术发展趋势,结合实际情况及数据库最佳实践进行深度调优,以实现数据库系统的高效稳定运行。
2023-09-12 09:01:49
113
算法侠
Java
...同步手段。然而,随着并发编程复杂度的提升以及对性能要求的日益严格,现代Java库引入了更高级的并发工具类,如java.util.concurrent Semaphore类。该类是对传统信号量概念的增强实现,不仅支持计数信号量,还提供公平性选项,确保线程按照等待时间顺序获取许可。 近期,一篇发布于InfoQ的技术文章《深入剖析Java并发之Semaphore源码与实战》(链接需替换为实际链接)就对此进行了详细的解读。文中作者不仅深入剖析了JDK中Semaphore类的设计原理与源码实现,还结合实例探讨了如何在生产者消费者、数据库连接池等常见场景中合理运用Semaphore进行线程同步控制,从而避免死锁并优化系统性能。 此外,对于更复杂的同步问题,读者还可以进一步了解和研究其他Java并发工具类,例如ReentrantLock、CountDownLatch、CyclicBarrier等。这些工具通过灵活的设计和API,能够更好地适应不同场景下的同步需求,并帮助开发者编写出更加健壮、高效的多线程程序。 同时,值得注意的是,虽然诸如Semaphore这样的工具能有效解决同步问题,但过度依赖或不恰当使用也可能导致新的问题产生。因此,在实际开发过程中,理解并发编程的本质,遵循“最小权限原则”来设计线程间的交互,始终是提高程序并发能力的关键所在。在最新的Java版本更新中,也不断有针对并发特性的改进和完善,持续关注并跟进学习最新技术动态,将有助于开发者更好地应对高并发环境下的挑战。
2023-07-08 19:38:20
352
键盘勇士
Java
...障等先进技术,实现了并发标记与整理,极大地提升了大规模应用在高并发、低延迟场景下的性能表现。 同时,OpenJDK社区也在持续优化其他垃圾回收器。例如,Shenandoah GC是OpenJDK的一个实验性项目,它通过使用“并发压缩”技术来减少GC暂停时间,适用于那些无法接受长时间STW(Stop-The-World)的应用程序。尽管其设计理念与ZGC有相似之处,但Shenandoah更加注重降低中等规模堆内存环境下的停顿时间。 此外,对于云原生和容器化环境下的Java应用,新一代的Epsilon垃圾回收器提供了“无操作”模式,仅专注于资源占用最小化,特别适合于短生命周期或对响应时间要求极为严格的微服务场景。 综上所述,随着技术的发展,Java垃圾回收领域的研究和创新从未止步,不断为开发者提供更高效、更灵活的内存管理工具,以适应日益复杂的软件系统需求。对于系统管理员和技术决策者而言,紧跟这些最新的垃圾回收技术动态,结合实际业务场景进行合理选择和调优,是提升系统整体性能和稳定性的关键所在。
2023-11-22 10:36:57
339
逻辑鬼才
转载文章
...程可能涉及到更复杂的场景和技术点。 近期,随着微服务架构的普及以及云存储服务的广泛应用,高效、安全地上传和管理各类文件资源的需求日益凸显。例如,某公司近日推出了全新的图片处理中间件,它不仅可以生成高质量的二维码,还内置了丰富的图像转换工具,包括将BufferedImage无缝转换为多种文件格式(如MultipartFile),以便直接与Spring Boot框架的文件上传接口集成。 同时,开发者需要注意的是,虽然上述流程能够完成基本的转换操作,但在大数据量或高并发环境下,还需要考虑内存优化、流式处理及异步上传等策略。例如,通过使用Java NIO(非阻塞I/O)技术提高大文件上传效率,或者利用多线程技术进行并发处理,减少单个请求的响应时间。 此外,对于安全性要求较高的场景,还可以结合现代加密算法对图像数据进行加密处理,确保在流转过程中不被篡改或泄露敏感信息。一些前沿研究甚至探讨了如何在保证数据安全的同时,实现对图像内容的部分模糊处理以保护用户隐私。 总之,从BufferedImage到MultipartFile的转换仅仅是Java图形处理及文件上传功能中的一个环节,深入理解和掌握相关的底层原理和技术方案,有助于开发者应对更多复杂的应用需求,并在实际项目中提供更加稳定、高效的服务。
2023-11-25 22:36:21
315
转载
Java
...类型的基本特性和应用场景后,我们发现这两种数据结构在实际开发中的重要性不言而喻。近期,随着Java 17的发布,集合框架在性能优化、API增强方面有了新的进展。例如,在JDK 16中引入了records特性,它可以直接转换为List或Map,简化了数据类的创建,增强了集合类型的易用性。 另外,针对并发环境下的集合操作,JUC(Java并发工具包)中的CopyOnWriteArrayList和ConcurrentHashMap等并发容器得到了进一步优化,提升了多线程环境下List和Map的操作效率和安全性。尤其在大数据处理、高并发服务场景下,合理利用这些并发集合能有效降低锁竞争,提高系统整体性能。 此外,业界专家对集合框架的设计理念及其实现原理进行了深度解读。例如,Oracle官方博客近期发表了一篇关于“为何选择HashMap而非Hashtable”的技术文章,详尽分析了两者的实现差异以及在不同场景下的适用性。同时,对于List接口的具体实现类ArrayList和LinkedList,也有开发者通过实例对比,探讨了在不同操作(如增删元素、遍历查找)下选用哪种实现更为高效。 总而言之,随着Java版本的迭代更新以及社区对集合框架的持续探索与实践,List和Map的应用将更加广泛且深入,它们将在现代软件开发中发挥更大的作用,帮助开发者应对复杂的数据管理和处理需求。因此,了解并掌握最新的集合框架使用技巧和最佳实践,无疑对提升编程能力具有重要意义。
2023-06-18 15:10:50
279
软件工程师
HTML
...这对于大数据处理和高并发场景具有显著优势。 在企业级应用开发中,迭代器模式常与其他设计模式如装饰者模式、组合模式等结合使用,以实现更为复杂的数据遍历逻辑。例如,在Spring框架中,集合类型的Bean属性注入时就巧妙地运用了迭代器模式来遍历并初始化集合元素。 此外,对于Java开发者而言,了解和掌握高级特性如lambda表达式结合Stream API进行数据处理也是当前提升编程效率的关键点。这些新特性不仅简化了迭代代码,还极大地提高了代码可读性和维护性,是迭代器模式在现代编程实践中的重要延伸。 同时,值得注意的是,虽然迭代器在处理集合类数据时作用显著,但在非线性数据结构(如图、树)的遍历中,我们可能需要采用广度优先搜索、深度优先搜索等其他算法,甚至自定义迭代器以满足特定需求,这也是深入学习和实践中不可或缺的一部分。
2023-03-18 12:14:48
303
梦幻星空_t
Apache Solr
...搜索服务稳定性与性能优化的需求愈发突出。近期,Apache Solr 8.x版本针对服务器响应异常等问题进行了多项改进和优化,例如增强了对分布式索引查询错误的反馈机制,使得用户能够更准确地定位问题源头。 此外,在实际运维过程中,结合使用监控工具如Zabbix、Prometheus等实时监测网络状况、服务器资源利用率以及Solr集群状态,也能有效预防此类问题的发生。同时,社区论坛如Stack Overflow上的讨论和案例分享,为企业用户提供了丰富的实战经验参考。 值得注意的是,随着云原生技术的发展,Solr on Kubernetes的部署模式逐渐普及,这种模式下,容器化和微服务化的特性可能会引入新的“Unexpected response from server”场景,比如Pod重启、网络插件配置不当时可能导致的问题。因此,熟悉Kubernetes平台的运维知识,并将其与Solr的管理相结合,成为现代IT团队解决此类问题的新课题。 综上所述,面对“Unexpected response from server”的挑战,我们不仅需要深入了解Apache Solr本身,还需紧跟技术发展潮流,结合先进的运维理念与工具,才能确保搜索引擎服务始终高效稳定运行。
2023-03-03 09:22:15
350
半夏微凉-t
Oracle
...选择以适应不同的业务场景。然而,随着云技术的发展与普及,数据库的日志管理和恢复策略也在不断进化。 近日,Oracle发布了最新版本的数据库管理系统,对日志结构进行了优化,并引入了新的智能日志管理功能。该功能可根据系统的实时负载自动调整日志记录级别,有效平衡了性能与安全性需求。例如,在系统负载较低时,保持详细的Logging模式以保证数据可恢复性;而在高并发写入场景下,系统能够动态切换至更为高效的日志记录方式,减轻I/O压力,提高整体性能。 此外,针对大型分布式系统和实时数据分析的需求,Oracle还推出了基于区块链技术的增强型审计日志方案,通过分布式的账本存储机制,确保了日志记录的不可篡改性和高度透明性,这对于金融、医疗等对数据安全及合规性要求极高的行业具有重要意义。 深入理解并合理运用这些日志管理的新技术和策略,将有助于企业在保障数据安全的同时,最大限度地提升数据库性能和运维效率,紧跟时代发展的步伐。同时,这也提醒我们关注数据库日志记录技术的持续演进,以及其对未来企业IT架构与运营模式可能产生的深远影响。
2023-10-22 22:38:41
276
人生如戏-t
Mongo
...更新功能进行了进一步优化。例如,新增了“Bulk Write Operations”功能,它允许开发者一次性执行多个写入操作,并能更好地处理错误与回滚,使得大规模数据处理更为高效且安全。 另外,针对大数据场景下的内存限制问题,MongoDB引入了更灵活的分片技术(Sharding),通过水平分割数据来分散存储压力,从而支持TB甚至PB级别的数据存储及高效查询。同时,MongoDB还提供了Change Streams功能,实时监控数据库变更事件,使得批量更新策略能够根据实时业务需求做出动态调整。 值得注意的是,在进行批量操作时,尤其是批量更新,应遵循严谨的数据管理原则,结合具体的业务逻辑,利用好索引优化和条件筛选以确保数据更新的准确性。此外,随着MongoDB Atlas云服务的成熟,用户可以通过其自动化的规模伸缩和优化工具,更加便捷地管理和优化包括批量操作在内的各类数据库任务,进一步释放NoSQL数据库的潜力。 综上所述,深入理解和掌握MongoDB的批量插入与更新机制,并结合最新技术和最佳实践,有助于我们在应对大规模、高并发数据处理挑战时游刃有余,实现系统性能和可靠性的双重提升。
2023-09-16 14:14:15
146
心灵驿站-t
Flink
...link社区也在不断优化和完善各类State Backend的性能表现和功能特性。 近期,Flink 1.13版本对RocksDB State Backend进行了重大升级,引入了异步快照机制以提升checkpoint效率,同时优化了内存使用,减少GC压力,使得RocksDB在处理大规模、高并发状态存储时更加游刃有余。另一方面,FsStateBackend也持续得到增强,通过支持S3、HDFS等云存储服务,更好地满足分布式环境下的持久化需求和容灾备份策略。 此外,为了适应云原生时代的挑战,Flink社区正在积极探索和开发新型State Backend,例如基于增量检查点的Heap-based State Backend,以及针对Kubernetes环境优化的、利用持久卷存储状态的StatefulSet集成方案等。 因此,在实际生产环境中,用户应密切关注Flink社区的最新进展,并结合自身业务场景的具体特点(如数据量大小、状态访问模式、资源限制、运维要求等),进行细致的性能测试和对比分析,从而选出最契合业务需求的State Backend实现方案。
2023-07-04 20:53:04
508
海阔天空-t
Java
...反映并实现复杂的业务场景,确保系统的健壮性和一致性。 同时,关于数据流和对象交互的设计理念也在持续演进。响应式编程(Reactive Programming)利用流处理机制,使得对象间的数据流动更为动态和灵活,从而适应高并发、实时响应的应用需求。RxJava等Java库为开发者提供了在Java环境中实现响应式编程的强大支持,其背后的原理和实践便是对依赖和关联关系深刻理解和创新运用的体现。 总的来说,深入理解和掌握Java中对象的依赖关系和关联关系,并结合当前业界前沿的架构设计理念和技术趋势,对于构建高质量、高效率的软件系统至关重要。开发者应不断关注相关领域的最新研究进展和技术动态,以便于优化代码结构,提升系统性能和稳定性。
2023-05-30 09:47:08
319
电脑达人
RocketMQ
...Q持续进行技术创新与优化,推出了适应云环境的RocketMQ on Kubernetes解决方案,实现了服务的弹性伸缩与自动运维,进一步提升了其在大规模分布式系统中的应用效能。 同时,随着5G、物联网时代的来临,海量数据处理和实时性需求不断提升,对消息队列的性能和稳定性提出了更高的要求。RocketMQ团队紧跟时代步伐,不断强化其在延迟投递、定时投递以及任务调度等方面的功能特性,确保能够有效支撑各类复杂业务场景。此外,通过深度集成阿里云的大数据和AI服务,RocketMQ还助力企业实现数据价值的深度挖掘与实时智能决策。 为进一步推广微服务架构和消息中间件的最佳实践,RocketMQ社区定期举办线上线下的技术分享活动,为广大开发者提供学习交流的平台。未来,RocketMQ将持续深耕消息中间件领域,携手广大开发者共同探索更高效、稳定、易用的消息处理方案,赋能企业数字化转型,驱动行业创新与发展。
2023-11-28 14:39:43
112
初心未变-t
Nginx
...妨将视线转向网络性能优化和服务器配置的最新实践与研究。近期,随着云计算和大数据应用的飞速发展,网络环境的复杂性与服务器负载压力显著增加,这对网络连接稳定性和响应速度提出了更高要求。 例如,2022年的一项技术报告中,研究者们探讨了在大规模分布式系统环境下,如何通过深度调优Nginx及其他网络服务组件,以适应高并发、低延迟的需求。他们不仅关注到了proxy_connect_timeout等关键参数的设置,还提出了一套动态调整策略,可以根据实时网络状况进行智能适配,从而有效减少超时丢包现象。 同时,在网络架构层面,边缘计算和5G技术的发展为改善网络环境提供了新的解决方案。通过在更接近用户的边缘节点部署服务,可以大幅度降低网络延迟并缓解拥塞问题,从而避免tcping测试过程中可能出现的超时丢包情况。 此外,心跳包机制的实际运用也在不断丰富和完善。在某些前沿应用场景中,如物联网(IoT)设备通信,已经采用更为先进的双向心跳检测机制,并结合TCP keepalive特性,实现了对长连接状态的高效维护,进一步提升了服务可靠性。 综上所述,无论是从服务器配置的精细化管理,还是从网络基础设施的升级换代,都为我们应对tcping Nginx端口超时丢包等问题提供了有力武器。紧跟行业发展趋势和技术研究成果,将有助于我们在实际工作中更好地诊断并解决这类网络通讯难题。
2023-12-02 12:18:10
192
雪域高原_t
Go-Spring
...用已成常态,尤其在高并发、大数据量的场景下,其对于提升系统性能和用户体验的作用不言而喻。Go-Spring框架中的ehcache配置与使用仅是众多实现方案之一,实际上,随着云原生技术的发展,新型的分布式缓存服务如Redis、Memcached以及云服务商提供的托管缓存服务也逐渐崭露头角。 近期,AWS宣布对其Amazon ElastiCache服务进行升级,提供了更为强大的内存数据库功能,支持自动扩展、多可用区部署以及数据持久化,使开发者能够更加便捷高效地构建高可用、高性能的应用。同时,Google Cloud Platform也推出了Cloud Memorystore,一款全托管的Redis和Memcached服务,旨在简化大规模Web应用和服务的数据缓存管理。 此外,对于缓存策略的设计与优化亦至关重要,比如LRU(最近最少使用)算法、LFU(最不经常使用)算法等淘汰策略的选择及应用场景分析,都是深入研究缓存技术时不可或缺的内容。因此,在实际项目开发中,结合业务特性和资源条件灵活运用并持续优化缓存机制,方能最大程度发挥其效能,为系统的整体性能保驾护航。
2023-12-01 09:24:43
447
半夏微凉-t
ActiveMQ
...业级消息队列产品持续优化的方向。 近期,Apache Kafka社区发布了新版本,其中就包含了对磁盘写入策略的重大改进。Kafka引入了全新的“幂等性生产者”与“事务性生产者”功能,并优化了其底层存储引擎,通过批次处理、日志压缩以及更智能的flush策略,在保证数据一致性的前提下显著提升了磁盘同步性能。 此外,RabbitMQ作为另一个广泛应用的消息中间件,也提供了多种磁盘持久化策略,如使用确认模式(acknowledgement modes)来控制消息何时被确认为已写入磁盘,以适应不同场景下的数据持久化需求。 同时,云原生时代的来临,诸如Amazon SQS、Google Cloud Pub/Sub等云服务提供的消息队列服务,在磁盘同步方面有着独特的优势,它们利用分布式存储和云平台的高可用特性,提供了数据持久化的可靠保障,同时也减轻了用户在运维层面的负担。 综上所述,了解并合理运用各种消息中间件的磁盘同步机制,是构建高并发、高可靠应用的关键环节。不断跟踪相关领域的最新进展和技术动态,有助于我们更好地应对大数据时代带来的挑战,确保信息系统的稳健运行。
2023-12-08 11:06:07
463
清风徐来-t
ZooKeeper
...的同时,提升了性能并优化了API设计,以满足现代云环境对快速响应和大规模集群管理的需求。 深入探究这些技术的实际运用与最新发展,有助于我们更好地理解数据发布订阅模型在分布式系统中的价值,也能启发我们在实际项目中如何选择和优化技术栈,以应对日益复杂且高并发的业务场景。同时,这也鼓励我们不断探索更多可能的技术路径,推动分布式系统理论与实践的进步。
2023-10-24 09:38:57
71
星河万里-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
netstat -tulpn
- 查看网络连接状态、监听端口等信息。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"