前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[预编译语句缓存清理机制与实践方法 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Hive
...复,或重新执行DDL语句以重建表结构和分区信息。 sql -- 重新创建分区(假设已知分区详情) ALTER TABLE my_table ADD PARTITION (dt='2022-01-01') LOCATION '/path/to/backup/data'; (2)HDFS数据恢复 对于HDFS层的数据损坏,可利用Hadoop自带的hdfs fsck命令检测并修复损坏的文件块。 bash hdfs fsck /path/to/hive/table -blocks -locations -files -delete 此外,如果存在完整的数据备份,也可直接替换损坏的数据文件。 (3)并发控制优化 对于因并发写入引发的数据损坏,应在设计阶段就充分考虑并发控制策略,例如使用Hive的Transactional Tables(ACID特性),确保数据的一致性和完整性。 sql -- 开启Hive ACID支持 SET hive.support.concurrency=true; SET hive.txn.manager=org.apache.hadoop.hive.ql.lockmgr.DbTxnManager; 5. 结语 面对Hive表数据损坏的挑战,我们需要具备敏锐的问题洞察力和快速的应急响应能力。同时,别忘了在日常运维中做好预防工作,这就像给你的数据湖定期打个“小强针”,比如按时备份数据、设立警戒线进行监控告警、灵活配置并发策略等等,这样一来,咱们的数据湖就能健健康康,稳稳当当地运行啦。说实在的,对任何一个大数据平台来讲,数据安全和完整性可是咱们绝对不能马虎、时刻得捏在手心里的“命根子”啊!
2023-09-09 20:58:28
642
月影清风
Kibana
...Kibana集成最佳实践》中,作者详细阐述了如何有效诊断和解决Elasticsearch与Kibana间常见的连接问题,并分享了一些高级配置技巧,如通过合理的JVM调优提升服务性能,以及利用监控插件实时分析资源占用情况以预防潜在故障。 此外,在处理“服务器内部错误”这类非明确错误提示时,日志分析的重要性不容忽视。业界推崇使用ELK(Elasticsearch、Logstash、Kibana)日志分析平台进行统一的日志收集与分析,以便快速定位问题所在。例如,一篇发表在Medium的技术博客中,作者亲身经历了一次由内存溢出引发的Kibana启动失败案例,通过细致的日志排查最终找到了问题根源,并借此机会普及了如何借助Elasticsearch的索引模板功能优化Kibana日志管理的方法。 总之,紧跟技术社区的最新动态,密切关注官方文档更新,结合实战经验与案例学习,将有助于我们更高效地应对诸如Kibana无法启动等复杂问题,确保Elastic Stack生态系统的稳定运行。
2023-11-01 23:24:34
340
百转千回
Kylin
...磨、摸石头过河、动手实践,不仅硬生生攻克了技术上的难关,更是让Kylin在各种复杂环境下的强大适应力和灵活应变能力展露无遗。 总结起来,配置Kylin支持跨集群查询的关键在于正确设置数据源连接,并在模型设计阶段合理引用这些远程数据源。每一次操作都像是人类智慧的一次小小爆发,每查询成功的背后,都是我们对Kylin功能那股子钻研劲儿和精心打磨的成果。在这整个过程中,我们实实在在地感受到了Kylin这款大数据处理神器的厉害之处,它带来的便捷性和无限可能性,真是让我们大开眼界,赞不绝口啊!
2023-01-26 10:59:48
84
月下独酌
转载文章
...值,可通过click方法传参($event.target),相当于jquery的this 更多参考:https://www.cnblogs.com/sxz2008/p/6379427.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/samscat/article/details/103328461。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-12 14:36:16
73
转载
Maven
...种快速创建项目模板的机制,无论是内置的模板还是自定义模板,都能极大地简化项目创建流程。只要我们把这个工具玩得溜溜的,再灵活巧妙地运用起来,就能在Java开发这条路上走得更顺溜,轻松应对各种挑战,简直如有神助。所以,不妨现在就动手试试吧,感受一下Maven archetype带来的便利与高效!
2024-03-20 10:55:20
109
断桥残雪
Sqoop
...qoop的版本号以及编译时间和编译者信息,帮助我们了解Sqoop的具体情况。 2.2 通过Java类路径查看版本 此外,如果你已经配置了Sqoop环境变量,并且希望在不执行sqoop命令的情况下查看版本,可以通过Java命令调用Sqoop的相关类来实现: shell $ java org.apache.sqoop.Sqoop -version 运行此命令同样可以显示Sqoop的版本信息,原理是加载并初始化Sqoop主类,然后触发Sqoop内部对版本信息的输出。 3. 探讨 为何需要频繁检查版本信息? 在实际项目开发和运维过程中,不同版本的Sqoop可能存在差异化的功能和已知问题。例如,某个特定的Sqoop版本可能只支持特定版本的Hadoop或数据库驱动。当我们在进行数据迁移这个活儿时,如果遇到了点儿小状况,首先去瞅瞅 Sqoop 的版本号是个挺管用的小窍门。为啥呢?因为这能帮我们迅速锁定问题是不是版本之间的不兼容在搞鬼。同时呢,别忘了及时给Sqoop更新换代,这样一来,咱们就能更好地享受新版本带来的各种性能提升和功能增强的好处,让 Sqoop 更给力地为我们服务。 4. 结语 通过以上两种方法,我们不仅能够方便快捷地获取Sqoop的版本信息,更能理解为何这一看似简单的操作对于日常的大数据处理工作如此关键。无论是你刚踏入大数据这片广阔天地的小白,还是已经在数据江湖摸爬滚打多年的老司机,都得养成一个日常小习惯,那就是时刻留意并亲自确认你手头工具的版本信息,可别忽视了这个细节。毕竟,在这个日新月异的技术世界里,紧跟潮流,方能游刃有余。 下次当你准备开展一项新的数据迁移任务时,别忘了先打个招呼:“嗨,Sqoop,你现在是什么版本呢?”这样,你在驾驭它的道路上,就会多一份从容与自信。
2023-06-29 20:15:34
64
星河万里
ZooKeeper
...灵活得像猫一样的监听机制,这就使得它在分布式任务调度的世界里,混得那是风生水起,被广泛应用得不要不要的。 想象一下,你正在运营一个由众多服务器组成的集群,需要在这片“丛林”中合理安排和调度各种任务。这时,ZooKeeper就如同一位智慧的向导,指引着我们如何构建一套稳定且高效的分布式任务调度系统。 2. ZooKeeper的核心功能与原理 (1)数据一致性:ZooKeeper使用ZAB协议(ZooKeeper Atomic Broadcast)保证了数据的一致性,这意味着所有客户端看到的数据视图都是最新的,并且是全局一致的。 (2)临时节点与监听器:ZooKeeper支持创建临时节点,当创建节点的客户端会话断开时,该节点会自动删除。同时呢,ZooKeeper这个小家伙还支持客户端给任何一个节点挂上Watcher监听器,这样一来,一旦这个节点状态有啥风吹草动,嘿,ZooKeeper可就立马通知所有对这个节点保持关注的客户端们了。 这些特性使得ZooKeeper成为分布式任务调度的理想选择,任务可以以临时节点的形式存在,而任务调度器通过监听节点变化来实时获取并分配任务。 3. 使用ZooKeeper实现分布式任务调度 3.1 创建任务队列 首先,我们可以利用ZooKeeper创建一个持久化或临时的ZNode作为任务队列。例如: java ZooKeeper zk = new ZooKeeper("zk_server:port", sessionTimeout, this); String taskQueuePath = "/task_queue"; zk.create(taskQueuePath, "".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT); 3.2 添加任务 当有新的任务需要调度时,将其转化为JSON格式或其他可序列化的形式,然后作为子节点添加到任务队列中,创建为临时有序节点: java String taskId = "task_001"; byte[] taskData = serializeTask(new TaskInfo(...)); // 序列化任务信息 String taskPath = taskQueuePath + "/" + taskId; zk.create(taskPath, taskData, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL); 3.3 监听任务节点变化 任务调度器在启动时,会在任务队列节点上设置一个Watcher监听器,当有新任务加入或者已有任务完成(节点被删除)时,都能收到通知: java zk.exists(taskQueuePath, new Watcher() { @Override public void process(WatchedEvent event) { if (event.getType() == EventType.NodeChildrenChanged) { List tasks = zk.getChildren(taskQueuePath, true); // 获取当前待处理的任务列表 // 根据任务优先级、顺序等策略,从tasks中选取一个任务进行调度 } } }); 3.4 分配与执行任务 根据监听到的任务列表,任务调度器会选择合适的任务分配给空闲的工作节点。工作节点接收到任务后,开始执行任务,并在完成后删除对应的ZooKeeper节点。 这样,通过ZooKeeper的协助,我们成功实现了分布式任务调度系统的构建。每个步骤都超级灵活、充满活力,能像变形金刚那样,随着集群的大小变化或者任务需求的起起伏伏,始终保持超高的适应能力和稳定性,妥妥地hold住全场。 4. 总结与探讨 ZooKeeper以其强大的协调能力,让我们得以轻松应对复杂的分布式任务调度场景。不过在实际动手操作的时候,咱们还得多琢磨琢磨怎么对付错误、咋整并发控制这些事儿,这样才能让调度的效率和效果噌噌往上涨,达到更理想的优化状态。另外,面对不同的业务应用场景,我们可能需要量身定制任务分配的策略。这就意味着,首先咱们得把ZooKeeper摸透、吃熟,然后结合实际业务的具体逻辑,进行一番深度的琢磨和探究,这样才能玩转起来!就像冒险家在一片神秘莫测的丛林里找寻出路,我们也是手握ZooKeeper这个强大的指南针,在分布式任务调度这片“丛林”中不断尝试、摸爬滚打,努力让我们的解决方案更加完善、无懈可击。
2023-04-06 14:06:25
54
星辰大海
Tomcat
...上改变了原有的类加载机制,使得类加载的灵活性和性能得到了提升,同时也可能给开发者带来新的挑战。 在Spring Boot 3.0中,类加载器采用了更精细的控制,特别是对于模块化的支持,使得每个模块有自己的类加载器,这在处理大型项目和依赖管理时具有显著优势。然而,这也意味着开发者需要对类加载器行为有更深的理解,以避免潜在的空指针异常或其他兼容性问题。 针对这种情况,开发者应学习如何在新版本中正确配置模块间依赖,确保类加载的正确性。同时,理解Spring Boot的ModulePath和LayeredClassLoader机制,以及如何使用spring.factories文件来引导类加载,是解决潜在问题的关键。 此外,及时查阅官方文档和社区资源,参与讨论和分享经验,是跟上Spring Boot变化的重要途径。通过实践和学习,开发者不仅能适应新的类加载机制,还能提升项目的稳定性和性能。 总之,随着Spring Boot的升级,类加载器领域的知识也需要与时俱进。开发者应关注技术更新,及时调整自己的开发策略,以便更好地利用新特性,同时避免潜在的陷阱。
2024-04-09 11:00:45
270
心灵驿站
CSS
...决问题啦!这里有几种方法可以帮助你去掉或者自定义光标竖线,每种方法都有其优缺点,大家可以结合自己的需求选择适合的方式。 方法一:直接移除 outline 最简单粗暴的方法就是直接通过 CSS 将 outline 设置为 none。这个方法能直接去掉那些烦人的竖线,不过得小心点!因为用完之后,当你切换焦点的时候,可能就分不清到底哪个东西是被选中的了。所以啊,不到万不得已,还是别轻易尝试啦! css input:focus { outline: none; } 优点:操作简单,立刻生效。 缺点:失去焦点时可能会影响用户的体验。 方法二:自定义 outline 样式 与其完全移除 outline,不如换个方式让它变得更和谐。你可以调整那个竖线的“轮廓”——比如它的颜色、粗细,还有样子,让它跟你的整体设计更搭,看起来不那么突兀。 css input:focus { outline: 2px solid FFD700; / 黄色外框 / outline-offset: 4px; / 外框距离内容的距离 / } 优点:既保留了焦点提示功能,又能让竖线看起来更美观。 缺点:需要额外的时间去调整样式。 方法三:用 box-shadow 替代 outline 如果你不想用传统的 outline,可以尝试用 box-shadow 来模拟焦点效果。这样弄出来的效果特别自然,而且跟那种传统的“轮廓线”比起来,完全不会显得死板或突兀,看着就舒服多了! css input:focus { box-shadow: 0 0 5px rgba(0, 0, 255, 0.5); / 蓝色阴影 / border: none; / 移除原有边框 / } 优点:灵活性高,可以根据需求定制阴影效果。 缺点:需要更多的测试来确保兼容性。 --- 4. 实战演练 结合实际案例看看效果 为了让大家更好地理解这些方法的实际效果,我准备了一些简单的代码示例,大家可以复制到本地试一试。 示例一:完全移除 outline html Remove Outline 示例二:自定义 outline 样式 html Custom Outline 示例三:用 box-shadow 模拟焦点 html Box Shadow Example --- 5. 总结与反思 做设计还是做用户体验? 写到这里,我觉得有必要停下来聊一聊设计和用户体验之间的平衡。很多时候,我们追求极致的视觉效果,却忽略了用户的实际感受。虽然去掉光标竖线可以让界面更整洁,但也可能让用户感到困惑。 所以,在决定是否去掉竖线之前,不妨问问自己:这样做真的对用户更好吗?如果答案是肯定的,那就大胆去做吧!但如果不确定,不妨先测试一下,看看用户的反馈如何。 总之,技术永远是为了服务于人,而不是让人迁就技术。希望今天的分享能给大家带来一些启发,同时也希望大家能在实践中不断探索和成长! 好了,今天的分享就到这里啦!如果你还有什么疑问或者想法,欢迎在评论区留言交流哦~咱们下次再见!
2025-04-27 15:35:12
47
风轻云淡_
Apache Solr
...版本,其中对并发控制机制进行了进一步优化和增强,引入了更为精细的事务管理功能,使得Solr在分布式环境下能够更好地支持多文档、跨集合的事务操作,显著提升了数据一致性保障。 与此同时,针对大规模并发场景下的性能瓶颈问题,业界也涌现出了许多创新性的解决方案。例如,一些公司结合云原生技术和容器化部署,通过水平扩展和负载均衡技术有效分散Solr集群中的并发压力,并采用分布式缓存系统来减少重复索引请求,从而降低并发写入冲突发生的概率。 此外,研究者们也在不断深化对数据库并发控制理论的理解,如两阶段提交、多版本并发控制(MVCC)等机制在搜索引擎领域的应用探索。近期一篇发表于《ACM Transactions on Information Systems》的研究论文中,作者就详细阐述了如何将这些成熟的数据库并发控制理论应用于Apache Solr及类似全文检索系统的设计与优化中,为解决此类并发写入冲突问题提供了新的理论指导和技术思路。 总之,在实际应用中,除了充分利用Apache Solr提供的内置并发控制机制外,还需要结合最新的研究成果和技术动态,持续改进和优化我们的系统架构与设计,以适应不断变化的数据处理需求和挑战。
2023-12-03 12:39:15
538
岁月静好
Redis
...Redis的数据同步机制 1. Redis数据同步机制概述 大家好,今天我们要聊聊Redis中的一个非常重要的部分——数据同步机制。作为一个超级喜欢研究数据库技术的人,我经常琢磨在分布式系统里怎么才能让数据又一致又靠谱。Redis可真是个处理大数据和高并发的高手,特别是在数据同步这方面,它的重要性不言而喻。它不仅关乎数据的安全性,还直接影响着系统的可用性和性能。 那么,什么是数据同步机制呢?简单来说,就是当主节点上的数据发生变化时,如何将这些变化同步到其他节点,从而保证所有节点的数据一致性。这听上去好像只是简单地复制一下,但实际上背后藏着不少复杂的机制和技术细节呢。 2. 主从复制 在Redis中,最基础也是最常用的一种数据同步机制就是主从复制(Master-Slave Replication)。你可以这么理解这种机制:就像是有个老大(Master)专门处理写入数据的活儿,而其他的小弟(Slave)们则主要负责读取和备份这些数据。 2.1 基本原理 假设我们有一个主节点和两个从节点,当主节点接收到一条写入命令时,它会将这条命令记录在一个称为“复制积压缓冲区”(Replication Buffer)的特殊内存区域中。然后,主节点会异步地将这个命令发送给所有的从节点。从节点收到命令后,会将其应用到自己的数据库中,以确保数据的一致性。 2.2 代码示例 让我们来看一个简单的代码示例,首先启动一个主节点: bash redis-server --port 6379 接着,启动两个从节点,分别监听不同的端口: bash redis-server --slaveof 127.0.0.1 6379 --port 6380 redis-server --slaveof 127.0.0.1 6379 --port 6381 现在,如果你向主节点写入一条数据,比如: bash redis-cli -p 6379 set key value 这条数据就会被同步到两个从节点上。你可以通过以下命令验证: bash redis-cli -p 6380 get key redis-cli -p 6381 get key 你会发现,两个从节点都正确地收到了这条数据。 3. 哨兵模式 哨兵模式(Sentinel Mode)是Redis提供的另一种高可用解决方案。它的主要功能就是在主节点挂掉后,自动选出一个新老大,并告诉所有的小弟们赶紧换队长。这使得Redis能够更好地应对单点故障问题。 3.1 工作原理 哨兵模式由一组哨兵实例组成,它们负责监控Redis实例的状态。当哨兵发现主节点挂了,就会用Raft算法选出一个新老大,并告诉所有的小弟们赶紧更新配置信息。这个过程是自动完成的,无需人工干预。 3.2 代码示例 要启用哨兵模式,需要先配置哨兵实例。假设你已经安装了Redis,并且主节点运行在localhost:6379上。接下来,你需要创建一个哨兵配置文件sentinels.conf,内容如下: conf sentinel monitor mymaster 127.0.0.1 6379 2 sentinel down-after-milliseconds mymaster 5000 sentinel failover-timeout mymaster 60000 sentinel parallel-syncs mymaster 1 然后启动哨兵实例: bash redis-sentinel sentinels.conf 现在,当你故意关闭主节点时,哨兵会自动选举出一个新的主节点,并通知从节点进行切换。 4. 集群模式 最后,我们来看看Redis集群模式(Cluster Mode),这是一种更加复杂但也更强大的数据同步机制。集群模式允许Redis实例分布在多个节点上,每个节点都可以同时处理读写请求。 4.1 集群架构 在集群模式下,Redis实例被划分为多个槽(slots),每个槽可以归属于不同的节点。当你用客户端连到某个节点时,它会通过键名算出应该去哪个槽,然后就把请求直接发到对的节点上。这样做的好处是,即使某个节点宕机,也不会影响整个系统的可用性。 4.2 实现步骤 为了建立一个Redis集群,你需要准备至少六个Redis实例,每个实例监听不同的端口。然后,使用redis-trib.rb工具来创建集群: bash redis-trib.rb create --replicas 1 127.0.0.1:7000 127.0.0.1:7001 127.0.0.1:7002 127.0.0.1:7003 127.0.0.1:7004 127.0.0.1:7005 创建完成后,你可以通过任何节点来访问集群。例如: bash redis-cli -c -h 127.0.0.1 -p 7000 5. 总结 通过以上介绍,我们可以看到Redis提供了多种数据同步机制,每种机制都有其独特的应用场景。不管是基本的主从复制,还是复杂的集群模式,Redis都能搞定数据同步,让人放心。当然啦,每种方法都有它的长处和短处,到底选哪个还得看你自己的具体情况和所处的环境。希望今天的分享能对你有所帮助,也欢迎大家在评论区讨论更多关于Redis的话题!
2025-03-05 15:47:59
28
草原牧歌
ZooKeeper
...式锁呀、队列呀、选举机制什么的,这样一来,甭管你的分布式环境多复杂,都能让这些程序宝宝们高效又稳定地一起愉快玩耍、共同工作啦! (2)在负载均衡场景下,ZooKeeper扮演了至关重要的角色。它能够像个小管家一样,时刻保管并更新集群里每个小节点的状态信息,确保这些数据都是鲜活、热乎的。客户端能够通过ZooKeeper这个小帮手,实时掌握各个节点的最新负载状况。这样一来,它就能像一个聪明的调度员,火眼金睛地做出最佳的服务请求转发方案,确保不同节点之间的活儿分配得均匀,实现工作负载的完美均衡。 2. ZooKeeper节点负载均衡策略详解 (1)数据节点(ZNode)管理 在ZooKeeper中,每个服务节点可以注册为一个ZNode,同时附带该节点的负载信息。例如,我们可以创建一个持久化的ZNode /services/serviceName/nodes/nodeId,并在其数据部分存储节点负载量。 java // 创建ZNode并设置节点负载数据 String path = "/services/serviceName/nodes/nodeId"; byte[] data = String.valueOf(nodeLoad).getBytes(StandardCharsets.UTF_8); zk.create(path, data, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT); (2.)监听器(Watcher) 客户端可以通过在特定ZNode上设置Watcher,实时感知到节点负载信息的变化。一旦某个服务节点的负载发生变化,ZooKeeper会通知所有关注此节点的客户端。 java // 设置监听器,监控节点负载变化 Stat stat = new Stat(); byte[] data = zk.getData("/services/serviceName/nodes/nodeId", new Watcher() { @Override public void process(WatchedEvent event) { // 在这里处理节点负载变化事件 } }, stat); (3)选择最佳服务节点 基于ZooKeeper提供的最新节点负载数据,客户端可以根据预设的负载均衡算法(如轮询、最小连接数、权重分配等)来选择当前最合适的服务节点进行请求转发。 java List children = zk.getChildren("/services/serviceName/nodes", false); children.sort((node1, node2) -> { // 这里根据节点负载数据进行排序,选择最优节点 }); String bestNode = children.get(0); 3. 探讨与思考 运用ZooKeeper实现节点负载均衡的过程中,我们能够感受到它的灵活性与强大性。不过,到了实际用起来的时候,有几个挑战咱们也得留心一下。比如,怎么捣鼓出一个既聪明又给力的负载均衡算法,可不是件轻松事儿;再者,网络延迟这个磨人的小妖精怎么驯服,也够头疼的;还有啊,在大规模集群里头保持稳定运行,这更是个大大的考验。这就意味着我们得不断动手尝试、灵活应变,对策略进行微调和升级,确保把ZooKeeper这个分布式协调服务的大能耐,彻彻底底地发挥出来。 总结来说,ZooKeeper在节点负载均衡策略上的应用,既体现了其作为一个通用分布式协调框架的价值,又展示了其实现复杂分布式任务的能力。利用ZooKeeper那个相当聪明的数据模型和监听功能,咱们完全可以捣鼓出一个既能让业务跑得溜溜的,又能稳如磐石、始终保持高可用性的分布式系统架构。就像是用乐高积木搭建一座既美观又结实的大厦一样,我们借助ZooKeeper这块宝,来创建咱所需要的高性能系统。所以,在我们实实在在做开发的时候,要是能摸透并熟练运用ZooKeeper这家伙的节点负载均衡策略,那可是对提升我们系统的整体表现力有着大大的好处,这一点儿毋庸置疑。
2024-01-21 23:46:49
123
秋水共长天一色
转载文章
...织 model 插件机制,比如 dva-loading 可以自动处理 loading 状态,不用一遍遍地写 showLoading 和 hideLoading 支持 HMR,基于 babel-plugin-dva-hmr 实现 components、routes 和 models 的 HMR 二、umijs 开源地址:https://umijs.org/ 1.umi umi是一个基于路由的框架,支持next.js类似的传统路由和各种高级路由功能,例如路由级按需加载。凭借涵盖从源代码到构建产品的每个生命周期的完整插件系统,umi能够支持各种功能扩展和业务需求。目前,umi在社区和公司内部拥有近50多个插件。 umi是Ant Financial的基本前端框架,直接或间接地为600多个应用程序提供服务,包括Java,节点,移动应用程序,混合应用程序,纯前端资产应用程序,CMS应用程序等。umi为我们的内部用户提供了很好的服务,我们希望它能够很好地为外部用户服务。 2.功能 ? 开箱即用,内置支持反应,反应路由器等。 ?Next.js 喜欢和全功能的路由约定,它也支持配置的路由 ? 完整的插件系统,涵盖从源代码到生产的每个生命周期 ? 高性能,通过插件支持PWA,路由级代码分割等 ? 支持静态导出,适应各种环境,如控制台应用程序,移动应用程序,鸡蛋,支付宝钱包等 ? 快速启动启动,支持使用config 启用dll和hard-source-webpack-plugin ? 与IE9兼容,基于umi-plugin-polyfills ? 支持TypeScript,包括d.ts定义和umi test ? 与深度集成DVA,支持鸭子目录,模型的自动加载,代码分裂等 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_32447301/article/details/93423515。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-06 14:19:32
317
转载
SpringBoot
...弹性和解耦能力的重要实践。随着云原生技术和微服务架构的不断演进,消息中间件的选择与整合将更加注重性能、易用性和成本效益,从而更好地赋能企业数字化转型。
2023-12-08 13:35:20
83
寂静森林_t
Hadoop
...其内存计算与微批处理机制,大大提升了数据处理的速度,并且提供了对SQL、流处理、机器学习等多种计算范式的统一支持。 近日,Databricks公司发布了最新的Spark 3.2版本,进一步优化了性能并增强了对Apache Arrow内存格式的支持,使得数据处理效率再上新台阶。此外,对于需要低延迟响应的场景,Kafka与Spark Streaming的集成使用已成为行业标准,能够实现实时数据流的无缝接入与处理。 与此同时,为了满足不同业务场景下的多元化需求,现代大数据架构设计中常常会结合运用多种工具和技术。例如,在构建企业级大数据平台时,除了Hadoop与Spark外,可能还会引入Flink用于实时计算,Hive或Presto用于SQL查询,以及HBase或Cassandra作为NoSQL存储解决方案,从而构建起一个既包含批处理又能应对实时分析的全方位大数据处理体系。 总之,Hadoop在大数据领域依然扮演着重要角色,但我们也需紧跟时代步伐,关注如Spark、Flink等新兴技术的演进与发展,以便更好地应对不断变化的大数据挑战,挖掘数据背后的价值。
2023-04-18 09:23:00
470
秋水共长天一色
Netty
...优势后,进一步探索和实践将更具时效性和针对性。近期,随着云计算、大数据和微服务等技术的快速发展,对高并发、低延迟网络通信的需求日益增强。例如,在云原生架构中,服务间的通信效率直接影响到整体系统的性能和稳定性,而Netty凭借其异步非阻塞I/O模型、高度优化的设计以及丰富生态,成为了众多分布式系统构建时首选的网络通信库。 此外,Netty 5.0版本的开发工作正在积极进行中,社区开发者们正致力于引入更多的新特性以适应现代网络编程挑战,如对HTTP/3协议的支持、更深度的性能优化以及更加友好的API设计,这些都使得Netty继续保持在网络编程领域的领先地位。 同时,对于希望深入了解Netty内部原理与最佳实践的开发者来说,可以阅读《Netty In Action》一书,书中详细剖析了Netty的工作机制,并提供了大量实战案例供读者参考。通过不断跟踪最新的技术动态,结合经典文献学习,开发者能够更好地运用Netty解决实际项目中的复杂网络问题,提升应用系统的整体效能。
2023-04-12 20:04:43
109
百转千回-t
转载文章
...ue.js与滚动优化实践:迈向现代前端开发的新高度》 在现代前端开发中,Vue.js以其简洁的API和强大的组件化能力逐渐成为主流。然而,随着用户界面复杂度的提升,滚动性能和用户体验的重要性日益凸显。近期,Google推出了一项名为"Intersection Observer API"的新特性,为Vue开发者提供了更智能的滚动管理方式。这一API允许开发者精确地观察元素何时进入或离开视口,从而实现滚动优化,避免不必要的滚动重绘和计算,提高页面性能。 例如,我们可以结合Vue的watch或者v-once指令,以及Intersection Observer API,创建自适应滚动组件,仅当内容实际可见时才渲染或计算。这不仅能减轻服务器压力,还能提升用户的交互体验,特别是在移动设备上,流畅的滚动对于留住用户至关重要。 此外,像LilGiantBug的Better Scroll这样的第三方库,也提供了丰富的滚动优化选项,如防抖、渐进增强等,进一步简化了Vue滚动组件的开发和维护。开发者可以通过引入这些库,快速实现平滑滚动效果,同时保证代码的可维护性和可扩展性。 总之,Vue.js与滚动优化的结合,不仅提升了前端应用的性能,也为开发者提供了更多可能性。随着技术的不断迭代,我们期待看到更多创新的滚动解决方案,推动前端开发向更加高效、人性化的方向发展。
2024-05-06 12:38:02
625
转载
Logstash
...断并合并跨行日志。 实践中,对于那些涉及敏感信息或者需要深度挖掘业务逻辑的日志内容,精细化的多行合并策略更是必不可少。通过对日志结构进行深入理解并合理运用正则表达式,不仅可以确保数据分析结果的准确性和完整性,更能助力企业实现高效运维、故障排查及安全审计。 因此,理解和掌握在Logstash或其他日志处理工具中处理多行日志合并的方法,对于提升整个IT基础设施的数据洞察力具有重要的现实意义。在这个快速迭代的数字化时代,紧跟技术发展趋势,不断更新和完善日志管理实践,无疑将为企业带来更为显著的技术竞争优势。
2023-08-19 08:55:43
250
春暖花开
ActiveMQ
...道路上,近期的研究和实践成果提供了更多有价值的信息。随着云计算与大数据技术的发展,分布式系统的实时性需求日益增强,消息中间件如ActiveMQ在其中的作用更加凸显。 一方面,新的网络硬件技术如5G、SDN(Software Defined Networking)等正在逐步降低底层网络延迟,为包括ActiveMQ在内的所有依赖网络通信的应用程序带来性能提升。例如,某研究团队通过部署基于5G环境的ActiveMQ实例,成功减少了点对点消息传输中的网络瓶颈,显著降低了消息传递延迟。 另一方面,针对软件层面的优化,Apache社区不断更新和完善ActiveMQ的配置选项及功能特性。最新版本的ActiveMQ Artemis支持更高效的内存管理和持久化策略,用户可以根据实际场景进行深度定制以达到最优延迟效果。同时,也有开发团队分享了他们如何通过调整ActiveMQ内部参数,结合消费者并行处理机制,有效提升了系统整体的消息处理速度。 此外,对于特定业务场景下的延迟优化案例分析同样值得关注。例如,在金融交易、物联网(IoT)设备数据同步等领域,有专家详细解读了如何借助ActiveMQ实现低延迟、高可靠的消息传输,并对比了不同消息队列产品在类似场景下的表现,这些深入解读有助于开发者更好地应对实际问题,将理论知识转化为实实在在的性能提升。 综上所述,无论是从技术演进的宏观视角,还是具体到ActiveMQ产品的微观调优,我们都有充足的理由相信,通过紧跟技术潮流与实践经验,可以持续改善ActiveMQ在P2P模式下的消息传递延迟问题,从而满足现代分布式系统对高性能、低延迟的需求。
2023-11-19 09:23:19
435
追梦人
Kubernetes
...问题啦! 然而,这种方法也有一些不足之处。首先,假如一个Pod里的容器数量猛增,那这货可能会变得贼复杂,管理起来费劲儿,扩展性也会大打折扣。另外,假如一个Pod挂了,那它里面的所有小容器都会跟着“罢工”,这样一来,整个应用程序也就歇菜了。所以呢,为了确保系统的稳如磐石、随时都能用,我们还要琢磨一下,针对一个应用部署多个Pod的情况。 三、多个Pod对应一个应用的优点 将多个Pod用于一个应用也有其优点。首先,它可以提高系统的稳定性和可用性。你知道吗,就像在乐队里,即使有个乐器突然罢工了,其他乐手还能继续演奏,让整场演出顺利进行一样。在我们的应用系统中,哪怕有一个Pod突然崩溃了,其他的Pod也能稳稳地坚守岗位,确保整个应用的正常运作,一点儿不影响服务。其次,它可以更好地支持大规模的横向扩展。你知道吗,就像搭乐高积木一样,我们可以通过叠加更多的Pod来让应用的处理能力蹭蹭往上涨,完全不需要死磕单个Pod的性能极限。最后,它可以帮助我们更好地管理和监控Pod的状态。你知道吗,我们可以通过在不同的Pod里运行各种各样的工具和服务,这样就能更直观、更全面地掌握应用程序的运行状况啦!就像是拼图一样,每个Pod都承载着一块关键信息,把它们拼凑起来,我们就对整个应用程序有了全方位的认识。 然而,这种方法也有一些不足之处。首先,它可能会增加系统的复杂性。因为需要管理更多的Pod,而且需要确保这些Pod之间的协调和同步。此外,如果多个Pod之间的通信出现问题,也会影响整个应用的性能和稳定性。所以呢,为了确保系统的稳定牢靠、随时都能用得溜溜的,我们得在实际操作中不断改进和完善它,就像打磨一块璞玉一样,让它越来越熠熠生辉。 四、结论 总的来说,无论是将一个Pod作为一个应用实例的集合,还是将多个Pod用于一个应用,都有其各自的优点和不足。因此,在使用Kubernetes部署微服务时,我们需要根据实际情况来选择最合适的方法。比如,假如我们的应用程序比较简单,对横向扩展需求不大,那么把一个Pod当作一组应用实例来用,或许是个更棒的选择~换种说法,假如咱需要应对大量请求,而且常常得扩大规模,那么将一个应用分散到多个Pod里头运行或许更能满足咱们的实际需求。这样就更贴近生活场景了,就像是盖楼的时候,如果预计会有很多人入住,我们就得多盖几栋楼来分散容纳,而不是只建一栋超级大楼。甭管你选哪种招儿,咱都得时刻盯紧Pod的状态,时不时给它做个“体检”和保养,这样才能确保整个系统的平稳运行和随时待命。
2023-06-29 11:19:25
135
追梦人_t
Redis
...dis单线程事务处理机制后,我们发现其精简的设计和原子性操作为高并发场景下的数据管理带来了新的解决方案。然而,随着技术的演进和业务需求的变化,如何进一步优化分布式环境中的数据库性能仍然是业界关注的焦点。 近期(时效性),在数据库领域出现了许多与Redis设计理念相呼应的实践案例和技术趋势。例如,NewSQL数据库如Google Spanner、阿里云OceanBase等,它们在保证强一致性的同时,通过改进的并发控制算法和全局时钟等技术手段,实现了在大规模分布式系统中高效处理事务的能力。 同时,对于Redis自身的发展动态,Redis 6.0版本引入了多线程IO处理功能,这在保持Redis核心逻辑单线程的前提下,提升了网络IO密集型任务的处理能力,有效缓解了潜在的性能瓶颈问题。这一改变无疑是对Redis原有设计理念的一次重要补充和完善,使得Redis在保持其独特事务处理方式的同时,也能更好地适应更复杂的应用场景和更高的性能要求。 此外,针对Redis在事务隔离级别上的特点,开发者在实际应用中应结合具体业务场景进行权衡,比如采用适当的分片策略或结合其他外部服务(如消息队列)来实现更强的事务隔离性和系统的扩展性。总之,深入理解和灵活运用包括Redis在内的各类数据库事务处理机制,将有助于我们在设计和优化现代高性能系统时,取得更好的效果和更高的效率。
2023-09-24 23:23:00
330
夜色朦胧_
Superset
...,并优化元数据库管理机制,使得大规模企业级部署更为稳健可靠。 此外,针对现代数据分析工作中实时性要求的提高,Superset也正在积极整合流处理平台,如Kafka、Flink等,以实现对实时数据流的可视化分析。这意味着,在不久的将来,用户可能可以直接在Superset中配置实时数据源,进一步丰富其在业务监控、风险预警等方面的应用场景。 综上所述,掌握Superset数据源管理的基础操作只是第一步,持续关注该领域的技术动态和发展趋势,将有助于我们更好地利用这一强大工具,挖掘数据背后的深层价值,赋能企业决策与创新。
2023-06-10 10:49:30
76
寂静森林
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
ps aux | grep process
- 查找正在运行的特定进程。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"