前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[折叠效果]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Go Gin
... 来当存储小能手,那效果简直不要太好!它就像个神奇的魔法箱,能飞快地帮我们处理各种数据,让系统运行得又顺溜又高效,简直是高并发环境里的大救星呢! 七、结论 通过集成 gin-contrib/ratelimit,我们不仅能够有效地管理 API 访问频率,还能够在保障系统稳定运行的同时,为用户提供更好的服务体验。嘿,兄弟!业务这玩意儿,那可是风云变幻,快如闪电。就像你开车,路况不一,得随时调整方向,对吧?API安全性和可用性这事儿,就跟你的车一样重要。所以,咱们得像老司机一样,灵活应对各种情况,时不时地调整和优化限流策略。这样,不管是高峰还是低谷,都能稳稳地掌控全局,让你的业务顺畅无阻,安全又高效。别忘了,这可是保护咱们业务不受攻击,保证用户体验的关键!希望本文能够帮助你更好地理解和应用 gin-contrib/ratelimit,在构建强大、安全的 API 时提供有力的支持。
2024-08-24 16:02:03
109
山涧溪流
转载文章
...路径那里只是能看到的效果点击了一下,但是不会变成输入框状态,但是把鼠标移上去会变成输入的状态 这样是可输入的状态 然后win32gui.SendMessage(hwnd_filepath, win32con.WM_SETTEXT, None, 'C:\Users\Administrator\Desktop')这样地址就输入不进去,原因不明 视图数操作的方法没有找到 2.取消按钮的点击无效(已解决) 保存按钮 取消按钮 保存和取消的类名都是“Button”,所以通过保存按钮查找到下一个Button就是取消 hwnd_cancle = win32gui.FindWindowEx(hwnd,hwnd_save,"Button",None) print "------hwnd_cancle---",hwnd_cancle 取消句柄获取到了,通过下面的方法打印出来的父句柄和保存按钮是一样的都是另存为这个弹出框 print win32gui.GetParent(hwnd_cancle) 下面两行代码也获取到了取消的类名和标题打印出来的是‘Button’和‘取消’ print win32gui.GetClassName(hwnd_cancle) print win32gui.GetWindowText(hwnd_cancle).decode('gbk').encode('utf-8') 以下两行代码点击取消按钮的时候,弹出框不关闭,然后发现点击的是保存按钮,原因不明 win32gui.PostMessage(hwnd_cancle, win32con.WM_KEYDOWN, win32con.VK_RETURN, 0) win32gui.PostMessage(hwnd_cancle, win32con.WM_KEYUP, win32con.VK_RETURN, 0) 以上是完成的两点和处理失败的两点,做出来是个半成品,win32gui这方面的知识对我来说有点难,在python中安装的pywin32自带了一个API,里面的描述方法很简单,不够详细,很多看不太懂,以后还需要再花时间慢慢研究 -------------------------------------------------------------------------------------------- 问题1的解决方法: 修改成指定路径 win_1 = win32gui.FindWindowEx(hwnd, None,"WorkerW",None) win_2 = win32gui.FindWindowEx(win_1, None,"ReBarWindow32",None) win_3 = win32gui.FindWindowEx(win_2, None,"Address Band Root",None) win_4 = win32gui.FindWindowEx(win_3, None,"msctls_progress32",None) left, top, right, bottom = win32gui.GetWindowRect(win_4) win32api.SetCursorPos([left,top]) win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP | win32con.MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0) 将路径复制到剪切板 win32clipboard.OpenClipboard() win32clipboard.EmptyClipboard() win32clipboard.SetClipboardText(filePath) win32clipboard.CloseClipboard() 按下ctrl+v win32api.keybd_event(0x11, 0, 0, 0) win32api.keybd_event(0x56, 0, 0, 0) win32api.keybd_event(0x56, 0, win32con.KEYEVENTF_KEYUP, 0) win32api.keybd_event(0x11, 0, win32con.KEYEVENTF_KEYUP, 0) 按回车进入该路径 win32api.keybd_event(0x0D,0,0,0) 问题2取消按钮点击的问题已经解决: 点击取消按钮,用鼠标点击点击取消按钮,上面使用键盘按键不行,原因不明 hwnd_cancel = win32gui.FindWindowEx(hwnd,hwnd_save,"Button",None) left, top, right, bottom = win32gui.GetWindowRect(hwnd_cancel)该方法接收值必须为4个 win32api.SetCursorPos([left+35,top+13]) win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP | win32con.MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0) win32gui.GetWindowRect方法描述:Returns the rectangle for a window in screen coordinates。应该返回该句柄控件的四个顶点坐标吧 win32api.SetCursorPos方法描述:The SetCursorPos function moves the cursor to the specified screen coordinates.将光标移动到指定的屏幕坐标。 ----------------------------------------------------------------------------------------------- 查找另存为弹出框下的所有子句柄: hwndChildList = [] win32gui.EnumChildWindows(hwnd, lambda hwnd1, param: param.append(hwnd1), hwndChildList) for a in hwndChildList: print win32gui.GetParent(a) print win32gui.GetClassName(a) print win32gui.GetWindowText(a).decode('gbk').encode('utf-8') print "-----hwnd_save------",a 另外,经同事推荐ViewWizard工具比spy++更轻便快捷,查看父句柄也比之更方便 按键控制查询:http://www.mamicode.com/info-detail-1319197.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39814378/article/details/110329291。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-17 22:46:11
253
转载
Etcd
...据,以达到负载均衡的效果。例如,可以使用哈希算法对键进行计算,得到一个索引,然后将该键值对放置在相应的Etcd实例上。 示例代码: go import "github.com/coreos/etcd/clientv3" // 假设我们有5个Etcd实例,每个实例可以处理的数据范围是[1, 5) // 我们需要创建一个键值对,并将其放置在对应的Etcd实例上。 // 这里我们使用哈希函数来决定键应该放置在哪一个实例上。 func placeKeyInEtcd(key string, value string) error { hash := fnv.New32a() _, err := hash.Write([]byte(key)) if err != nil { return err } hashVal := hash.Sum32() // 根据哈希值计算出应该放置在哪个Etcd实例上。 // 这里我们简化处理,实际上可能需要更复杂的逻辑来保证负载均衡。 instanceIndex := hashVal % 5 // 创建Etcd客户端连接。 client, err := clientv3.New(clientv3.Config{ Endpoints: []string{"localhost:2379"}, DialTimeout: 5 time.Second, }) if err != nil { return err } // 将键值对放置在指定的Etcd实例上。 resp, err := client.Put(context.Background(), fmt.Sprintf("key%d", instanceIndex), value) if err != nil { return err } if !resp.Succeeded { return errors.New("failed to put key in Etcd") } return nil } 2. 数据同步与一致性 数据在不同实例上的复制需要通过Etcd的Raft协议来保证一致性。哎呀,你知道吗?Etcd这个家伙可是个厉害角色,它自带复制和同步的超级技能,能让数据在多个地方跑来跑去,保证信息的安全。不过啊,要是你把它放在人多手杂的地方,比如在高峰时段用它处理事务,那就有可能出现数据丢了或者大家手里的信息对不上号的情况。就像是一群小朋友分糖果,如果动作太快,没准就会有人拿到重复的或者根本没拿到呢!所以,得小心使用,别让它在关键时刻掉链子。兄弟,别忘了,咱们得定期给数据做做检查点,就像给车加油一样,不加油咋行?然后,还得时不时地来个快照备份,就像是给宝贝存个小金库,万一哪天遇到啥意外,比如硬盘突然罢工了,咱也能迅速把数据捞回来,不至于手忙脚乱,对吧?这样子,数据安全就稳如泰山了! 3. 负载均衡与故障转移 通过设置合理的副本数量,可以实现负载均衡。当某个实例出现故障时,Etcd能够自动将请求路由到其他实例,保证服务的连续性。这需要在应用程序层面实现智能的负载均衡策略,如轮询、权重分配等。 四、总结与思考 在Etcd中实现数据的多实例部署是一项复杂但关键的任务,它不仅考验了开发者对Etcd内部机制的理解,还涉及到了分布式系统中常见的问题,如一致性、容错性和性能优化。通过合理的设计和实现,我们可以构建出既高效又可靠的分布式系统。哎呀,未来的日子里,技术这东西就像那小兔子一样,嗖嗖地往前跑。Etcd这个家伙,功能啊性能啊,就跟吃了长生不老药似的,一个劲儿地往上窜。这下好了,咱们这些码农兄弟,干活儿的时候能省不少力气,还能开动脑筋想出更多好玩儿的新点子!简直不要太爽啊!
2024-09-23 16:16:19
186
时光倒流
Etcd
...和评估清理策略的执行效果,然后根据实际情况灵活调整,这可是保证咱们系统健健康康、高效运作的不二法门!就像咱们打游戏时,随时观察自己的状态和环境变化,及时调整战术一样,这样才能稳坐钓鱼台,轻松应对各种挑战嘛! --- 通过本文的探讨,我们不仅深入理解了Etcd集群日志清理策略的重要性和可能遇到的挑战,还学习了如何通过实际的代码示例来解决策略冲突,从而为构建更稳定、高效的分布式系统提供了实践指导。
2024-07-30 16:28:05
455
飞鸟与鱼
RocketMQ
...达到最佳的数据持久化效果。哎呀,兄弟!技术这东西,得不停琢磨,多实践,别老是原地踏步。咱们得时不时调整一下系统这架机器的零件,让它跑得既快又稳当。这样,咱们的应用服务才不会卡壳,用户们用起来也舒心。这可是保证业务顺畅运行的关键!
2024-10-02 15:46:59
573
蝶舞花间
转载文章
...一些事情,但是两个的效果是否一样呢?没有区别,对在程序上面什么区别,结果也基本上没有什么区别。但是我今天的文章中是认为这个是有区别的。你现在要把10000箱东西搬上1楼,现在有两种方案,第一种是 每次搬10箱,搬1000次,第二种是 每次搬1000箱,搬10次。所以这里看出来就是有区别的了,这个我们就要看什么成本高,比如一次搬10箱 成本为X,每增加一箱会增加小x的成本,但是上一次楼的成本是Y,那么两种方案会得到如下成本公式。 第一种:成本=X+1000Y 第二种:成本=X+990x+10Y 最后通过计算是能选出来个成本最低的方案来执行的。 回到工作分解结构上来的。比如3个功能要分解,每个功能有3部分,1.接收数据,2.处理数据,3.写入数据库,当然三个功能是不同的内容,只是大体结构相同。我目前见得最多的是这样分,直接按3个功能分成3个任务,一种是一个功能的一部分分成一个任务,也就是分下来有6个任务。 这里我有点微微的吐嘲一下分成6个任务的坏处。我们先说一下好处。 1.3个人每个人拿3个小任务,任务显得小,对他们压力小一些。 2.每个人处理自己的3个任务类似,可能处理整速度快,而且分配时按善长哪一块分配哪一块的方式,较为合理。 下面说一下坏处,我认为还是弊大于利,下面列一些坏处(因为目前公司就是很多这样分配的任务) 1.3部分功能,3个文档,如果分给3个人来做,那么每个人都要求很精确的理解文档的意思,然后找出自己要做的部分来处理。 2.3个人看3个文档,假设每个文档由一个设计人员设计,那么这3个设计人员都要与3个开发人员产生沟通(所以沟通成本约为第一种方安的3倍,可能小于3倍) 3.开发人员在这种做多个相似(我们假设相似,其实这些问题因该由一个好的架构设计来处理)的编码情况下容易厌倦,产生复制修改代码的情况。 4.还有一部分成本前面3点都没有说到,也是沟通的成本,也就是一个功能里面的三个部分的衔接问题,也就是每个功能模块多了2个开发人员的沟通,也就是多出6个单位沟通成本。 先就说这么几点吧。但是我觉得已经很致命了,公司经常出现重复的沟通,就是上面所说的一个设计人员要同多个开发说明一件事情,而且不是在一起说,是开发在参与到开发过程中时,反馈回去,然后只有同这个开发沟通,可能与每个开发沟通的内容有一部分不是重复的,但是他们的设计内容都是一个模块当中的。而且公司经常出来开发与开发的衔接部分的沟通,有分歧时也会叫设计人员参与进来。所以这样分配的最大的成本就是沟通上面的成本,或者是变更方面的成本最大,比如一个功能模块有要变动,那么可能要通知3个开发人员。要是第一种方案可能就通知一个开发人员就行了。这里也不是说其他的人员不通知,我这里的意思是通知的力度是不一样的,如果是一个责任矩阵(Responsibility Matrix)来看的话,可能这种一点的方案会3个开发人员A,一个组长R,其它人员I。如果是上面一种方案那么可能是1个开发人员A,一个组长R,其它人员I.这里我也就是想说明他们的力度是不一样的。当然成本肯定也不一样。 插入:(我打算在以后的文章中加入插入系列,主要用于解释一些我认为比较有趣,或者有用,或者对我对大家来说可能陌生,但是有印像,本人也是通过查询总结出来的一些东西,多数为一些名词解释) 插入: 责任矩阵 责任矩阵是以表格形式表示完成工作分解结构中工作细目的个人责任方法。这是在项目管理中一个十分重要的工具,因为他强调每一项工作细目由谁负责,并表明每个人的角色在整个项目中的地位。制定责任色(RACI)(R=Responsible,A=Accountable,C=Consulted,I=Informed)。 插入后面继续说,刚才已经吐槽了一下一种方案的坏处,所以我认为对于分解还是逃不过模块,一个人做不下来的大模块,分解成小模块,每个模块主要就是IPO,输入什么,做什么事,出输什么,模块接口要设计好,这样一个一个的装配上就是一个大的系统,而不是把一个模块的类似部分或者说一个独立的功能模块再来分开。最小的模块我们就是函数,或者现在面向对象可以说类,但是细化下来的思想面向过程还是有用处的。这里我就强调一点,现代的设计中多用接口这个东西吧,你慢慢会发现他有很大的用处的。 总结:从昨天下午开始写这个,今天才完成中间有断开,所以可能思路不太清析,但是主要说的一点就是工作分解结构里面的一小部分内容,说了说两种分解方式的优劣。建议大家以接口设计,功能模块,类等去处理分解任务。 转载于:https://www.cnblogs.com/gw2010/p/3781447.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34253126/article/details/94304775。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-29 21:22:45
111
转载
Impala
...接影响到并行度和缓存效果,进而影响查询性能。 - CPU:CPU的计算能力决定了查询执行的速度,尤其是在多线程环境下。合理的CPU分配可以显著提升查询速度。 - 网络:数据存储和计算之间的网络延迟也会影响查询性能,尤其是在分布式环境中。优化网络配置可以减少数据传输时间。 2. 实例代码 配置与优化 接下来,我们通过一段简单的代码实例,展示如何通过配置和优化来提升Impala的查询性能。 示例代码:查询性能调优配置 python 假设我们正在使用Cloudera Manager进行配置管理 调整Impala节点的内存配置 cloudera_manager.set_impala_config('memory', { 'query_mem_limit': '2GB', 根据实际需求调整查询内存限制 'coordinator_memory_limit': '16GB', 协调器的最大内存限制 'executor_memory_limit': '16GB' 执行器的最大内存限制 }) 调整CPU配额 cloudera_manager.set_impala_config('cpu', { 'max_threads_per_node': 8, 每个节点允许的最大线程数 'max_threads_per_core': 2 每个核心允许的最大线程数 }) 开启并行查询功能 cloudera_manager.set_impala_config('parallelism', { 'default_parallelism': 'auto' 自动选择最佳并行度 }) 运行查询前,确保表数据更新已同步到Impala cloudera_manager.refresh_table('your_table_name') cloudera_manager.compute_stats('your_table_name') print("配置已更新,查询性能调优已完成。") 这段代码展示了如何通过Cloudera Manager调整Impala节点的内存限制、CPU配额以及开启自动并行查询功能。通过这样的配置,我们可以针对特定的查询场景和数据集进行优化,提高查询性能。 3. 性能监控与诊断 为了确保硬件配置达到最佳状态,持续的性能监控和诊断至关重要。利用Impala自带的诊断工具,如Explain Plan和Profile,可以帮助我们深入了解查询执行的详细信息,包括但不限于执行计划、CPU和内存使用情况、I/O操作等。 Examine Plan 示例 bash 使用Explain Plan分析查询执行计划 impala-shell> EXPLAIN SELECT FROM your_table WHERE column = 'value'; 输出的结果将展示查询的执行计划,帮助识别瓶颈所在,为后续的优化提供依据。 4. 结语 Impala的查询性能与硬件配置息息相关,合理的配置不仅能提升查询效率,还能优化资源利用,降低运行成本。通过本文的探讨和示例代码的展示,希望能够激发读者对Impala性能优化的兴趣,并鼓励大家在实践中不断探索和尝试,以实现大数据分析的最佳效能。嘿,兄弟!你得明白,真正的硬仗可不只在找答案,而是在于找到那个对特定工作环境最合适的平衡点。这事儿啊,一半靠的是技巧,另一半还得靠点智慧。就像调鸡尾酒一样,你得知道加多少冰,放什么酒,才能调出那个完美的味道。所以,别急着去死记硬背那些公式和规则,多琢磨琢磨,多试试错,慢慢你会发现,找到那个平衡点,其实挺像在创作一首诗,又像是在解一道谜题。
2024-08-19 16:08:50
71
晚秋落叶
Lua
...实现游戏的各个功能和效果。 行业名词 , 游戏引擎。 解释 , 游戏引擎是一种用于创建和运行视频游戏的软件平台,它提供了游戏开发所需的基本工具和技术,如渲染图形、物理模拟、动画控制、音频处理、网络连接等。游戏引擎通常包括核心引擎组件和一系列插件或工具集,允许开发者根据自己的需求定制和扩展游戏功能。LÖVE框架就是一个基于Lua的游戏开发引擎的例子,它为开发者提供了高效、灵活的环境来开发各种类型的游戏。 行业名词 , 跨平台应用。 解释 , 跨平台应用指的是能在多种操作系统或设备上运行的应用程序。在游戏开发领域,实现跨平台应用意味着开发者可以使用一种编程语言或一套开发工具集,创建一次开发出能在不同平台(如Windows、Mac、Linux、iOS、Android等)运行的游戏或应用。这样不仅减少了开发成本和时间,也扩大了游戏的受众群体,使得游戏可以在更广泛的设备上获得传播。
2024-09-19 16:01:49
91
秋水共长天一色
转载文章
...这对于产品优化、广告效果评估等方面具有重要价值。 近期,随着互联网广告行业对数据透明度要求的提高,精准的曝光量统计愈发受到重视。例如,Facebook、Google等巨头正不断强化其广告服务中的曝光衡量标准,并采用先进的机器学习技术来更准确地识别和计算广告的真实曝光情况,以解决业内长期存在的“可见性”问题。 此外,国内互联网企业如阿里巴巴、京东等电商平台也在积极探索和完善自家平台内的商品曝光统计体系。今年早些时候,淘宝APP升级了其底层数据追踪系统,引入更精细的商品曝光判断逻辑,不仅考虑了item在屏幕内的可视区域大小,还结合用户停留时长等因素进行综合评估,力求真实反映商品的实际触达效果。 深入理解并实践本文所述的方法,开发者不仅可以应用于商品曝光统计场景,还可将其拓展至更多需要监控用户界面交互的场合,比如新闻Feed流、视频列表等,从而为业务决策提供有力的数据支持。同时,在隐私保护日益严格的今天,确保在合规的前提下进行数据收集与分析也成为所有从业者不容忽视的重要课题。
2023-07-29 13:55:00
322
转载
SpringBoot
Dubbo
...是,Dubbo的使用效果依赖于具体的环境配置,如果出现错误,通常需要根据实际情况进行排查。 服务注册中心 , Dubbo用来存储服务提供者信息的组件,负责管理服务的注册与发现。常见的服务注册中心包括Zookeeper和Nacos。当服务提供者启动时,它会向注册中心注册自己的信息;而当服务消费者需要调用某个服务时,则会从注册中心获取服务提供者的地址列表。如果服务注册中心出现问题,比如配置错误或服务未能正确注册,那么消费者将无法找到对应的服务,进而导致调用失败。 No provider available , 这是一个典型的Dubbo错误提示,表示消费者无法找到可用的服务提供者。这种情况可能由多种因素引起,比如服务提供者未正确注册到注册中心、注册中心本身存在问题(如网络中断或配置错误),或是消费者端的地址列表为空。解决此类问题的关键在于检查服务端的状态、服务注册中心的工作情况以及客户端配置是否准确。
2025-03-20 16:29:46
63
雪落无痕
Kibana
... 数据保留策略的实际效果 为了让大家更直观地理解数据保留策略的效果,我特意准备了一个小案例。假设你是一名电商公司的运维工程师,每天都会收到大量的订单日志,格式如下: json { "order_id": "123456789", "status": "success", "timestamp": "2023-09-01T10:00:00Z" } 现在,你想对这些日志进行生命周期管理,具体要求如下: - 最近3个月的数据需要保留。 - 超过3个月的数据自动归档到冷存储。 - 超过1年的数据完全删除。 实现方案: 1. 创建索引模式,命名为orders-。 2. 定义生命周期策略 javascript PUT _ilm/policy/orders_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "10gb", "max_age": "3m" } } }, "warm": { "actions": { "freeze": {} } }, "delete": { "min_age": "1y", "actions": { "delete": {} } } } } } 3. 将策略绑定到索引 bash POST /orders-/_settings { "index.lifecycle.name": "orders_policy", "index.lifecycle.rollover_alias": "orders" } 运行以上代码后,你会发现: - 每隔3个月,新的订单日志会被滚动到一个新的索引中。 - 超过3个月的旧数据会被冻结,存入冷存储。 - 超过1年的数据会被彻底删除,释放存储空间。 --- 5. 总结与展望 通过今天的分享,相信大家对如何在Kibana中设置数据保留策略有了更深的理解。虽然设置过程看似繁琐,但实际上只需要几步就能搞定。而且啊,要是咱们好好用数据保留这招,不仅能让系统跑得更快、更顺畅,还能帮咱们把那些藏在数据里的宝贝疙瘩给挖出来,多好呀! 最后,我想说的是,技术学习是一个不断探索的过程。如果你在实践中遇到问题,不妨多查阅官方文档或者向社区求助。毕竟,我们每个人都是技术路上的探索者,一起努力才能走得更远! 好了,今天的分享就到这里啦!如果你觉得这篇文章有用,记得点赞支持哦~咱们下次再见!
2025-04-30 16:26:33
16
风轻云淡
转载文章
...不同样式的边界、3D效果等。 <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>W3Cschool(w3cschool.cn)</title> </head><body><form><fieldset><legend>个人信息:</legend>姓名: <input type="text"><br>邮箱: <input type="text"><br>生日: <input type="text"></fieldset></form></body></html> 24、HTML <embed> 标签 <embed> 标签用来定义在页面中嵌入的内容,比如插件。比如,在下面的实例中我们嵌入了一个 flash 动画: <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>W3Cschool(w3cschool.cn)</title> </head><body><embed src="/statics/demosource/helloworld.swf" tppabs="http://W3Cschool.com/tags/helloworld.swf"></body></html> 25、HTML <font> 标签 - HTML5 不支持 <font> 标签的使用示例如下所示,该标签已经过时,因此我们不建议您使用该标签。 <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>W3Cschool(w3cschool.cn)</title> </head><body><p><font size="3" color="red">这是一些文本!</font></p><p><font size="2" color="blue">这是一些文本!</font></p><p><font face="verdana" color="green">这是一些文本!</font></p></body></html> 26、HTML <label> 标签 <label> 标签是一种常见的表单控件,触发对应表单控件功能,让用户在使用表单的时候能够有更好的体验。参考下述的实例: <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>W3Cschool(w3cschool.cn)</title> </head><body><p>点击其中一个文本标签选中选项:</p><form action="/statics/demosource/demo-form.php"><label for="male">Male</label><input type="radio" name="sex" id="male" value="male"><br><label for="female">Female</label><input type="radio" name="sex" id="female" value="female"><br><br><input type="submit" value="提交"></form></body></html> 记录一些重要标签! 本篇文章为转载内容。原文链接:https://blog.csdn.net/chehec2010/article/details/85060460。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-11 23:43:21
296
转载
ElasticSearch
...gram分词,你看看效果:依旧是“今天我要吃冰激凌”,ngram二元分词后即将得到结果“今天、天我、我要、要吃、吃冰、冰激、激凌”。这....,那你搜索冰激凌就搜不出来!咋办呢,当然可以使用三元分词。但是更好的解决方案还是中文分词器,但它们原生并不支持的。 (2)自定义排名场景:比如你的搜索“冰激凌”,结果中返回了有10条,这10条应该有你想对它指定的顺序。最简单的就是用默认的得分,但是如果你想人为干预这个得分怎么办? elasticsearch支持function_score功能(可以不用,这个是增强功能),es会在计算最终得分之前回调这个你指定的function_score回调函数,传入原始得分、行的原始数据,你可以在里面做计算,比如查询其它参考表、或查看是否是广告位,以得到新的score返回给用户。 function_scrore的功能不展开描述,是一个在自定义得分场景下十分有用又简单易用的功能!下面是一个使用示例,不仅如此,它是支持自定义函数的,自由度非常高。 (3)文本高亮:你用mysql或mongo也可以实现,比如用户搜索“冰激凌”,你只需要在逻辑代码中对“冰激凌”替换为“<span class='highlight-term'>冰激凌</span>”,然后前端做样式即可。但如果用户搜索了“好吃的冰激凌”咋办呢?还有就是英文大小写的场景,用户搜索"MAIN",那结果及时匹配到了“main”(小写的),这个单词是否应该高亮呢?也许这时候你会用业务代码实现toLowerCase下基于位置下标的匹配。 挺麻烦的吧,elasticsearch,自动可以返回高亮字段!并且可以自由指定高亮的html前后标签。 (4)实在太多了....这家伙天生为索引而生,而且版本还在不断地迭代。不差机器的话,用用吧! 4. 退而求其次 4.1 普通数据库 尽管elasticsearch在搜索场景下,是非常好用的利器!但是它比较消耗机器资源,如果你的数据规模并不大,而且想快速实现功能。你可以使用mysql或mongo来代替,完全没有问题。 技术是为了解决特定业务场景下的问题,结合当前手头的资源,适合自己的才是最好的。也许你搞了一个单机器的elasticsearch,单机器内存只有2G,它的表现并不会比mysql、mongo来的好。 当然,如果你为了使用上边提到的一些优秀的独有的特性,那elasticsearch一定还是最佳选择! 对于mysql(关系型数据库)和mongo(文档数据库)的区别这里不展开描述了,但对于搜索而言,两种都合适。有时候选型也不用很纠结,其实都是差不太多的东西,适合自己的、自己熟悉的、运维起来顺手的,就是最好的。 4.2 普通数据库实现中文分词搜索的原理 尽管mysql在5.7以后支持外挂第三方分词器,mongo在截止目前的版本中也不支持中文分词(你可能会看到一些文章中说可以指定language为chinese,但其实会报错的)。 其实当你选择普通数据库,你就不得不在逻辑代码中自己实现一套索引分词+搜索分词逻辑。 索引分词+搜索分词?为什么分开写,如果你有用过elasticsearch或solr,你会知道,在指定字段的时候,需要指定index分词器和search分词器。 下面以mongo为例做简要说明。 4.2.1 index分词器 意思是当数据“索引”截断如何分词。首先,这里必须要承认,数据之后存储了,才能被查询。在搜索中,这句话可以换成是“数据只有被索引了,才能被搜索”。 这时候请求打过来了,要索引一条数据,其中某字段是“今天我要吃冰激凌”,分词后得到“今天|我|要|吃|冰激凌”,这个就可以入库了。 如果你使用elasticsearch或solr,这个过程是自动的。如果你使用不支持外观分词器的常规数据库,这个过程你就要手动了,并把分词后的结果用空格分开(最好使用空格,因为西方语言的分词规则就是按空格拆分,以及逗号句号),存入数据库的一个待搜索的字段上。 效果如下图: 本站的其它博文中有介绍IKAnalyzer:https://www.52itw.com/java/6268.html 4.2.2 search分词器 当用户的查询请求打过来,用户输入了“好吃的冰激凌”,分词后得到“好吃|冰激凌”(“的”作为停用词stopwords,被自动忽略了,IKAnalyzer可以指定停用词表)。 于是这时候就回去上图的数据库表里面搜索“好吃 冰激凌”(与index分词器结果统一,还是用空格分隔)。 当然,对于mongo而言,你需要事先开启全文索引db.xxx.ensureIndex({content: "text"}),xxx是集合名,content是字段名,text是全文索引的标识。 mongo搜索的时候用这个语法:db.xxx.find( { $text: { $search: "好吃 冰激凌" } },{ score: { $meta: "textScore" } }).sort( { score: { $meta: "textScore" } } ) 4.2.3 索引库和存储库分开 为了减少单表的大小,为了让普通的列表查询、普通筛选可以跑的更快,你可以对原有的数据原封不动的做一张表。 然后对于搜索场景,再单独对需要被搜索的字段单独拎一张表出来! 然后二者之间做增量信号同步或定时差额同步,可能会有延迟,这个就看你能容忍多长时间(悄悄告诉你,elasticsearch也需要指定这个refresh时间,一般是1s到几秒、甚至分钟级。当然,二者的这个时间对饮的底层目的是不一样的)。 这样,搜索的时候先查询搜索库,拿到一个指针id的列表,然后拿到指针id的列表区存储里把数据一次性捞出来。当然,也是支持分页的,你查询搜索库其实也是普通的数据库查询嘛,支持分页参数的。 4.3 存储库和索引库的延伸阅读 很多有名的开源软件也是使用的存储库与索引库分离的技术方案,如apache atlas: apache atlas对于大数据领域的数据资产元数据管理、数据血缘上可谓是专家,也涉及资产搜索的特性,它的实现思路就是:从搜索库中做搜索、拿到key、再去存储库中做查询。 搜索库:上图右下角,可以看到使用的是elasticsearch、solr或lucene,多个选一个 存储库:上图左下角,可以看到使用的是Cassandra、HBase或BerkeleyDB,多个选一个 虽然apache atlas在只有搜索库或只有存储库的时候也可以很好的工作,但只针对于数据量并不大的场景。 搜索库,擅长搜索!存储库,擅长海量存储!搜索库多样化搜索,然后去存储库做点查。 当你的数据达到海量的时候,es+hbase也是一种很好的解决方案,不在这里展开说明了。
2024-01-27 17:49:04
537
admin-tim
转载文章
...学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 👉实战案例👈 光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。 👉100道Python练习题👈 检查学习结果。 👉面试刷题👈 资料领取 上述这份完整版的Python全套学习资料已经上传CSDN官方,朋友们如果需要可以微信扫描下方CSDN官方认证二维码输入“领取资料” 即可领取 好文推荐 了解python的前景:https://blog.csdn.net/weixin_49891576/article/details/127187029 了解python的兼职:https://blog.csdn.net/weixin_49891576/article/details/127125308 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_49891576/article/details/130861900。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-04 23:38:21
105
转载
Mongo
...?这不就是咱们追求的效果嘛!嘿,兄弟!听好了,掌握新技能最有效的办法就是动手去做,尤其是像MapReduce这种技术。别光看书上理论,找一个你正在做的项目,大胆地将MapReduce实践起来。你会发现,通过实战,你的经验会大大增加,对这个技术的理解也会更加深入透彻。所以,行动起来吧,让自己的项目成为你学习路上的伙伴,你肯定能从中学到不少东西!让我们继续在数据处理的旅程中探索更多可能性!
2024-08-13 15:48:45
148
柳暗花明又一村
转载文章
...hole几个月,看看效果如何。 请注意,有些事情会中断。 可能是一个孩子的iPhone免费游戏,除非可以下载附件,否则它将无法正常工作,可能是您公司的VPN。 您需要登录http://pi.hole/admin (确保在首次安装时保存密码,并且只能在SSH命令行中使用“ pihole -a -p”更改密码),有时将其禁用几分钟以进行测试,然后将某些域列入白名单。 我怀疑几周后我会拨好电话。 翻译自: https://www.hanselman.com/blog/blocking-ads-before-they-enter-your-house-at-the-dns-level-with-pihole-and-a-cheap-raspberry-pi pi-hole 本篇文章为转载内容。原文链接:https://blog.csdn.net/cunfusq0176/article/details/109051003。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-12 20:49:59
61
转载
NodeJS
...你可以直接运行它看看效果: bash node index.js 打开浏览器访问http://127.0.0.1:3000/,你会看到“Hello World”。不错,我们的基础项目已经搭建好了! --- 4. 第一步 编写Dockerfile 接下来我们要做的就是给这个项目添加Docker的支持。为此,我们需要创建一个特殊的文件叫Dockerfile。这个名字是固定的,不能改哦。 进入项目根目录,创建一个空文件名为Dockerfile,然后在里面输入以下内容: dockerfile 使用官方的Node.js镜像作为基础镜像 FROM node:16-alpine 设置工作目录 WORKDIR /app 将当前目录下的所有文件复制到容器中的/app目录 COPY . /app 安装项目依赖 RUN npm install 暴露端口 EXPOSE 3000 启动应用 CMD ["node", "index.js"] 这段代码看起来有点复杂,但其实逻辑很简单: 1. FROM node:16-alpine 告诉Docker从官方的Node.js 16版本的Alpine镜像开始构建。 2. WORKDIR /app 指定容器内的工作目录为/app。 3. COPY . /app 把当前项目的文件拷贝到容器的/app目录下。 4. RUN npm install 在容器内执行npm install命令,安装项目的依赖。 5. EXPOSE 3000 声明应用监听的端口号。 6. CMD ["node", "index.js"]:定义容器启动时默认执行的命令。 保存完Dockerfile后,我们可以试着构建镜像了。 --- 5. 构建并运行Docker镜像 在项目根目录下运行以下命令来构建镜像: bash docker build -t my-node-app . 这里的. 表示当前目录,my-node-app是我们给镜像起的名字。构建完成后,可以用以下命令查看是否成功生成了镜像: bash docker images 输出应该类似这样: REPOSITORY TAG IMAGE ID CREATED SIZE my-node-app latest abcdef123456 2 minutes ago 150MB 接着,我们可以启动容器试试看: bash docker run -d -p 3000:3000 my-node-app 参数解释: - -d:以后台模式运行容器。 - -p 3000:3000:将主机的3000端口映射到容器的3000端口。 - my-node-app:使用的镜像名称。 启动成功后,访问http://localhost:3000/,你会发现依然可以看到“Hello World”!这说明我们的Docker化部署已经初步完成了。 --- 6. 进阶 多阶段构建优化镜像大小 虽然上面的方法可行,但生成的镜像体积有点大(大约150MB左右)。有没有办法让它更小呢?答案是有!这就是Docker的“多阶段构建”。 修改后的Dockerfile如下: dockerfile 第一阶段:构建阶段 FROM node:16-alpine AS builder WORKDIR /app COPY package.json ./ RUN npm install COPY . . RUN npm run build 假设你有一个build脚本 第二阶段:运行阶段 FROM node:16-alpine WORKDIR /app COPY --from=builder /app/dist ./dist 假设build后的文件存放在dist目录下 COPY package.json ./ RUN npm install --production EXPOSE 3000 CMD ["node", "dist/index.js"] 这里的关键在于“--from=builder”,它允许我们在第二个阶段复用第一个阶段的结果。这样就能让开发工具和测试依赖 stays 在它们该待的地方,而不是一股脑全塞进最终的镜像里,这样一来镜像就能瘦成一道闪电啦! --- 7. 总结与展望 写到这里,我相信你已经对如何用Docker部署Node.js应用有了基本的认识。虽然过程中可能会遇到各种问题,但每一次尝试都是成长的机会。记得多查阅官方文档,多动手实践,这样才能真正掌握这项技能。 未来,随着云计算和微服务架构的普及,容器化将成为每个开发者必备的技能之一。所以,别犹豫啦,赶紧去试试呗!要是你有什么不懂的,或者想聊聊自己的经历,就尽管来找我聊天,咱们一起唠唠~咱们一起进步! 最后,祝大家都能早日成为Docker高手!😄
2025-05-03 16:15:16
29
海阔天空
Tornado
...了不少挑战,但最终的效果还是让我感到非常满意。 未来的话,我还想尝试更多有趣的功能组合,比如结合 Redis 缓存提高性能,或者利用 Pub/Sub 实现消息队列机制。如果你也有类似的想法或者遇到什么问题,欢迎随时跟我交流呀! 最后祝大家 coding愉快,记得保护好自己的秘密哦~ 😊
2025-04-09 15:38:23
43
追梦人
Hive
...速度嗖一下就搞定了,效果也还行,妥妥的性价比之王!而BZIP2则是另一种高级压缩算法,虽然压缩比更高,但速度相对较慢。相比之下,Hive好像更喜欢找那种“全能型选手”,就像Snappy这种,又快又能省资源,简直两全其美! 现在问题来了:既然Hive有自己的偏好,那我们为什么要挑战它的权威呢?答案很简单:现实世界中的需求往往比理想模型复杂得多。比如说啊,有时候我们有一堆小文件,东一个西一个的,看着就头疼,想把它们整整齐齐地打包成一个大文件存起来,这时候用GZIP就很方便啦!但要是你手头的数据量超级大,比如几百万张高清图片那种,而且你还特别在意压缩效果,希望能榨干每一丢丢空间,那BZIP2就更适合你了,它在这方面可是个狠角色! 当然,这一切的前提是我们能够绕过Hive对这些格式的限制。接下来,我们就来看看具体的解决方案。 --- 三、实践篇 如何让Hive接受GZIP和BZIP2? 3.1 GZIP的逆袭之路 让我们从GZIP开始说起。想象一下,你有个文件夹,专门用来存各种日志文件,里面的文件可多啦!不过呢,这些文件都特别小巧,大概就几百KB的样子,像是些小纸条,记录着各种小事。哎呀,要是直接把一堆小文件一股脑儿塞进HDFS里,那可就麻烦了!这么多小文件堆在一起,系统就会变得特别卡,整体性能直线下降,简直像路上突然挤满了慢吞吞的小汽车,堵得不行!要解决这个问题嘛,咱们可以先把文件用GZIP压缩一下,弄个小“压缩包”,然后再把它丢进Hive里头去。 下面是一段示例代码,展示了如何创建一个支持GZIP格式的外部表: sql -- 创建数据库 CREATE DATABASE IF NOT EXISTS log_db; -- 切换到数据库 USE log_db; -- 创建外部表并指定GZIP格式 CREATE EXTERNAL TABLE IF NOT EXISTS logs ( id STRING, timestamp STRING, message STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE -- 注意这里使用TEXTFILE而不是默认的SEQUENCEFILE LOCATION '/path/to/gzipped/files'; 看到这里,你可能会问:“为什么这里要用TEXTFILE而不是SEQUENCEFILE?”这是因为Hive默认不支持直接读取GZIP格式的数据,所以我们需要手动调整存储格式。此外,还需要确保你的Hadoop集群已经启用了GZIP解压功能。 3.2 BZIP2的高阶玩法 接下来轮到BZIP2登场了。相比于GZIP,BZIP2的压缩比更高,但它也有一个明显的缺点:解压速度较慢。因此,BZIP2更适合用于那些访问频率较低的大规模静态数据集。 下面这段代码展示了如何创建一个支持BZIP2格式的分区表: sql -- 创建数据库 CREATE DATABASE IF NOT EXISTS archive_db; -- 切换到数据库 USE archive_db; -- 创建分区表并指定BZIP2格式 CREATE TABLE IF NOT EXISTS archives ( file_name STRING, content STRING ) PARTITIONED BY (year INT, month INT) STORED AS RCFILE -- RCFILE支持BZIP2压缩 TBLPROPERTIES ("orc.compress"="BZIP2"); 需要注意的是,在这种情况下,你需要确保Hive的配置文件中启用了BZIP2支持,并且相关的JAR包已经正确安装。 --- 四、实战经验分享 踩过的坑与学到的东西 在这个过程中,我遇到了不少挫折。比如说吧,有次我正打算把一个GZIP文件塞进Hive里,结果系统直接给我整了个报错,说啥解码器找不着。折腾了半天才发现,哎呀,原来是服务器上那个GZIP工具的老版本太不给劲了,跟最新的Hadoop配不上,闹起了脾气!于是,我赶紧联系运维团队升级了相关依赖,这才顺利解决问题。 还有一个教训是关于文件命名规范的。一开始啊,我老是忘了在压缩完的文件后面加“.gz”或者“.bz2”这种后缀名,搞得 Hive 一脸懵逼,根本分不清文件是啥类型的,直接就报错不认账了。后来我才明白,那些后缀名可不只是个摆设啊,它们其实是给文件贴标签的,告诉你这个文件是啥玩意儿,是图片、音乐,还是什么乱七八糟的东西。 --- 五、总结与展望 总的来说,虽然Hive对GZIP和BZIP2的支持有限,但这并不意味着我们不能利用它们的优势。相反,只要掌握了正确的技巧,我们完全可以在这两者之间找到平衡点,满足不同的业务需求。 最后,我想说的是,作为一名数据工程师,我们不应该被工具的限制束缚住手脚。相反,我们应该敢于尝试新事物,勇于突破常规。毕竟,正是这种探索精神,推动着整个行业不断向前发展! 好了,今天的分享就到这里啦。如果你也有类似的经历或者想法,欢迎随时跟我交流哦~再见啦!
2025-04-19 16:20:43
45
翡翠梦境
转载文章
...的限制,可以达到以下效果: Pod可以在负载高峰时更加充分利用内存。 可以将Pod的内存使用限制在比较合理的范围。 清理 删除命名空间,这会顺便删除命名空间里的Pod。 kubectl delete namespace mem-example 译者:NickSu86 原文链接 本篇文章为转载内容。原文链接:https://blog.csdn.net/Aria_Miazzy/article/details/99694937。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-23 12:14:07
494
转载
NodeJS
...态更新页面上的可视化效果,让用户能够清晰地了解系统的实时运行状况。
2025-05-06 16:24:48
68
清风徐来
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
pgrep -f pattern
- 根据进程的完整命令行字符串查找进程ID。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"