前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[访问控制 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Superset
...et服务,打开浏览器访问Superset的URL。登录后,你会看到主界面,这里我们径直前往“Sources”(或翻译为“数据源”)菜单,点击进入。瞧瞧这个界面,现在展示的是当前咱有的所有数据源列表,不过现在它还空荡荡的呢,因为我们还没把任何新朋友拽进来填充它呀。 3. 创建新数据源 以MySQL为例 3.1 开始创建 点击右上角的“+”按钮,选择“Database”开始创建新的数据源。这时候,Superset会要求填写一系列关于这个数据源的信息。 3.2 填写数据源信息 - Database Name:给你的数据源起个易记的名字,比如“我的MySQL数据库”。 - SqlAlchemy URI:这是连接数据库的关键信息,格式如下: python mysql://username:password@host:port/database 例如: python mysql://myuser:mypassword@localhost:3306/mydatabase 请根据实际情况替换上述示例中的用户名、密码、主机地址、端口号以及数据库名。 - Metadata Database:通常保持默认值即可,除非你在进行特殊配置。 完成上述步骤后,点击"Save"按钮保存配置。 3.3 测试连接 保存后,Superset会尝试用你提供的信息连接到数据库。如果一切顺利,恭喜你!你的“书架”已经被成功地添加到了Superset的“图书馆”中。如果遇到问题,别担心,仔细检查你的连接字符串是否正确无误。 4. 探索与使用新数据源 一旦数据源创建成功,你就可以在Superset中通过SQL Lab查询数据,并基于此创建丰富的仪表板和图表了。这就像是图书管理员已经摸清了你的书架,随时都能从里面抽出你想看的书,就像你家私人图书馆一样,随读者心意查阅。 总结一下,在Superset中创建新的数据源是一项基础但关键的任务。嘿,你知道吗?Superset的界面设计得超直观,配置选项详尽到家,这使得我们能够轻轻松松将各类数据库与它无缝对接。这样一来,管理和展示数据就变得既高效又轻松啦,就像在公园里遛狗一样简单愉快!不论你是初涉数据世界的探索者,还是经验丰富的数据专家,Superset都能帮助你更好地驾驭手中的数据资源。下次当你准备引入一个新的数据库时,不妨试试按照上述步骤,亲自体验一把数据源创建的乐趣吧!
2023-06-10 10:49:30
76
寂静森林
转载文章
...完成、单元测试、版本控制等操作。 Python常用工具: 1、Python Tutor Python Tutor 是由 Philip Guo 开发的一个免费教育工具,可帮助学生攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。通过这个工具,教师或学生可以直接在 Web 浏览器中编写 Python 代码,并逐步可视化地运行程序。如果你不知道代码在内存中是如何运行的,不妨把它拷贝到Tutor里可视化执行一遍加深理解。 2、IPython IPython 是一个 for Humans 的 Python 交互式 shell,用了它之后你就不想再用自带的 Python shell ,IPython 支持变量自动补全,自动缩进,支持 bash shell 命令,内置了许多实用功能和函数,同时它也是科学计算和交互可视化的最佳平台。 3、Jupyter Notebook Jupyter Notebook 就像一个草稿本,能将文本注释、数学方程、代码和可视化内容全部组合到一个易于共享的文档中,以 Web 页面的方式展示。它是数据分析、机器学习的必备工具。回复 “jupyter” 给你看一个基于 jupyter 写的 Python 教程。 4、Anaconda Python 虽好,可总是会遇到各种包管理和 Python 版本问题,特别是 Windows 平台很多包无法正常安装,为了解决这些问题,Anoconda 出现了,Anoconda 包含了一个包管理工具和一个Python管理环境,同时附带了一大批常用数据科学包,也是数据分析的标配。 5、Skulpt Skulpt 是一个用 Javascript 实现的在线 Python 执行环境,它可以让你轻松在浏览器中运行 Python 代码。使用 skulpt 结合 CodeMirror 编辑器即可实现一个基本的在线Python编辑和运行环境。 以上主要介绍Python Tutor、IPython、Jupyter Notebook、Anaconda、Skulpt常见的五种工具。 Python经验分享 学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助! Python学习路线 这里把Python常用的技术点做了整理,有各个领域的知识点汇总,可以按照上面的知识点找对应的学习资源。 学习软件 Python常用的开发软件,会给大家节省很多时间。 学习视频 编程学习一定要多多看视频,书籍和视频结合起来学习才能事半功倍。 100道练习题 实战案例 光学理论是没用的,学习编程切忌纸上谈兵,一定要动手实操,将自己学到的知识运用到实际当中。 最后祝大家天天进步!! 上面这份完整版的Python全套学习资料已经上传至CSDN官方,朋友如果需要可以直接微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_67991858/article/details/128340577。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-14 09:38:26
44
转载
.net
...的证书链。 - 严格控制证书验证:尽管上述示例展示了如何临时绕过证书验证,但在生产环境中必须确保所有证书都经过严格的验证。 - 细致排查问题:针对具体的错误提示和日志信息,结合代码示例进行针对性调试和修复。 总的来说,在.NET中处理SSL/TLS连接错误,不仅需要我们对协议有深入的理解,还需要根据实际情况灵活应对并采取正确的策略。当碰上这类问题,咱一块儿拿出耐心和细心,就像个侦探破案那样,一步步慢慢揭开谜团,最终,放心吧,肯定能找到解决问题的那个“钥匙线索”。
2023-05-23 20:56:21
441
烟雨江南
转载文章
...适应移动优先和无障碍访问的趋势,新一代的lightbox插件普遍注重提升用户体验,比如优化加载速度、提供更自然的过渡动画以及确保对键盘导航和屏幕阅读器的良好支持。 总的来说,在充分利用prettyPhoto打造个性化相册和多媒体展示的同时,关注业界前沿技术和相关工具的发展,有助于我们在实际项目中更好地实现创新和优化,为用户提供更为出色、便捷的浏览体验。
2024-01-14 22:09:23
280
转载
HBase
...数据量和每秒上万次的访问压力时,怎样才能让HBase这个大块头更聪明地使用I/O和CPU资源,从而跑得更快、更强,无疑变成了一项既关键又颇具挑战性的任务。本文将通过实例剖析与实战演示的方式,引导你一步步探寻优化策略。 1. HBase I/O优化策略 1.1 数据块大小调整 HBase中的Region是其基本的数据存储单元,Region内部又由多个HFile组成,而每个HFile又被划分为多个数据块(Block Size)。默认情况下,HBase的数据块大小为64KB。如果数据块太小,就像是把东西分割成太多的小包装,这样一来,每次找东西的时候,就像翻箱倒柜地找小物件,不仅麻烦还增加了I/O操作的次数,就像频繁地开开关关抽屉一样。反过来,如果数据块太大,就好比你一次性拎一大包东西,虽然省去了来回拿的功夫,但可能会导致内存这个“仓库”空间利用得不够充分,有点儿大材小用的感觉。根据实际业务需求及硬件配置,适当调整数据块大小至关重要: java Configuration conf = HBaseConfiguration.create(); conf.setInt("hbase.hregion.blocksize", 128 1024); // 将数据块大小设置为128KB 1.2 利用Bloom Filter降低读取开销 Bloom Filter是一种空间效率极高的概率型数据结构,用于判断某个元素是否在一个集合中。在HBase中,启用Bloom Filter可以显著减少无效的磁盘I/O。以下是如何在表级别启用Bloom Filter的示例: java HTableDescriptor tableDesc = new HTableDescriptor(TableName.valueOf("myTable")); tableDesc.addFamily(new HColumnDescriptor("cf").set BloomFilterType(BloomType.ROW)); admin.createTable(tableDesc); 2. HBase CPU优化策略 2.1 合理设置MemStore和BlockCache MemStore和BlockCache是HBase优化CPU使用的重要手段。MemStore用来缓存未写入磁盘的新写入数据,BlockCache则缓存最近访问过的数据块。合理分配两者内存占比有助于提高系统性能: java conf.setFloat("hbase.regionserver.global.memstore.size", 0.4f); // MemStore占用40%的堆内存 conf.setFloat("hfile.block.cache.size", 0.6f); // BlockCache占用60%的堆内存 2.2 精细化Region划分与预分区 Region数量和大小直接影响到HBase的并行处理能力和CPU资源分配。通过对表进行预分区或适时分裂Region,可以避免热点问题,均衡负载,从而提高CPU使用效率: java byte[][] splits = new byte[][] {Bytes.toBytes("A"), Bytes.toBytes("M"), Bytes.toBytes("Z")}; admin.createTable(tableDesc, splits); // 预先对表进行3个区域的划分 3. 探讨与思考 优化HBase的I/O和CPU使用率是一个持续的过程,需要结合业务特性和实际运行状况进行细致分析和调优。明白了这个策略之后,咱们就得学着在实际操作中不断尝试和探索。就像调参数时,千万得瞪大眼睛盯着系统的响应速度、处理能力还有资源使用效率这些指标的变化,这些可都是我们判断优化效果好坏的重要参考依据。 总之,针对HBase的I/O和CPU优化不仅关乎技术层面的深入理解和灵活运用,更在于对整个系统运行状态的敏锐洞察和精准调控。每一次实践都是对我们对技术认知的深化,也是我们在大数据领域探索过程中不可或缺的一部分。
2023-08-05 10:12:37
508
月下独酌
Etcd
本文针对etcd分布式键值存储系统启动失败的问题,详细阐述了通过查看和分析日志进行错误定位的方法。当etcd节点启动受阻时,可能源于硬件资源不足、软件环境不匹配或配置文件错误等问题。用户应重点检查日志中的错误消息、日志级别以及调试信息,如错误类型、时间戳及潜在原因等。文中举例说明如何从日志中识别因初始集群配置文件已存在而导致的启动故障,并提供了实际解决步骤。通过熟练掌握对etcd启动日志的阅读与解析技巧,能够有效地诊断并解决各种启动问题,确保在大规模分布式系统中的稳定运行。
2023-10-11 17:16:49
573
冬日暖阳-t
转载文章
...应内容。 18.准入控制器 Admission Controller准入控制器作为把手kubernetes系统安全的最后一道关卡,对已知且有权限用户的操作合规性验证是缺一不可的! 1.什么是准入控制器? 准入控制器(Admission Controller)位于API Server中,在对象被持久化之前,准入控制器拦截对API Server的请求,一般用来做身份验证和授权。 其中包含两个特殊的控制器钩子: MutatingAdmissionWebhook和ValidatingAdmissionWebhook 1.变更(Mutating)准入控制 工作逻辑为修改请求的对象 2.验证(Validating)准入控制 工作逻辑为验证请求的对象 以上两类控制器可以分而治之,也能合作运行 2.为什么我们需要它? 就像我在上一章节提到的那样,准入控制器的引入可以很好的帮助我们运维人员,站在一个集群管理者的角度,去“限定”和规划集群资源的合理利用策略和期望状态。 同时,很多kubernetes的高级功能,也是基于准入控制器之上进行建设的。 3.常用的准入控制器 1.AlwaysPullImages 总是拉取远端镜像; 好处:可以避免本地系统处于非安全状态时,被别人恶意篡改了本地的容器镜像 2.LimitRanger 此准入控制器将确保所有资源请求不会超过namespace级别的LimitRange(定义Pod级别的资源限额,如cpu、mem) 3.ResourceQuota 此准入控制器负责集群的计算资源配额,并确保用户不违反命名空间的ResourceQuota对象中列举的任何约束(定义名称空间级别的配额,如pod数量) 4.PodSecurityPolicy 此准入控制器用于创建和修改pod,并根据请求的安全上下文和可用的Pod安全策略确定是否应该允许它。 4.如何开启准入控制器 在kubernetes环境中,你可以使用kube-apiserver命令结合enable-admission-plugins的flag,后面需要跟上以逗号分割的准入控制器清单,如下所示: kube-apiserver --enable-admission-plugins=NamespaceLifecycle,LimitRanger … 5.如何关闭准入控制器 同理,你可以使用flag:disable-admission-plugins,来关闭不想要的准入控制器,如下所示: kube-apiserver --disable-admission-plugins=PodNodeSelector,AlwaysDeny … 6.实战:控制器的使用 1.LimitRanger 1)首先,编辑limitrange-demo.yaml文件,我们定义了一个cpu的准入控制器。 其中定义了默认值、最小值和最大值等。 apiVersion: v1kind: LimitRangemetadata:name: cpu-limit-rangenamespace: mynsspec:limits:- default: 默认上限cpu: 1000mdefaultRequest:cpu: 1000mmin:cpu: 500mmax:cpu: 2000mmaxLimitRequestRatio: 定义最大值是最小值的几倍,当前为4倍cpu: 4type: Container 2)apply -f之后,我们可以通过get命令来查看LimitRange的配置详情 [root@centos-1 dingqishi] kubectl get LimitRange cpu-limit-range -n mynsNAME CREATED ATcpu-limit-range 2021-10-10T07:38:29Z[root@centos-1 dingqishi] kubectl describe LimitRange cpu-limit-range -n mynsName: cpu-limit-rangeNamespace: mynsType Resource Min Max Default Request Default Limit Max Limit/Request Ratio---- -------- --- --- --------------- ------------- -----------------------Container cpu 500m 2 1 1 4 2.ResourceQuota 1)同理,编辑配置文件resoucequota-demo.yaml,并apply; 其中,我们定义了myns名称空间下的资源配额。 apiVersion: v1kind: ResourceQuotametadata:name: quota-examplenamespace: mynsspec:hard:pods: "5"requests.cpu: "1"requests.memory: 1Gilimits.cpu: "2"limits.memory: 2Gicount/deployments.apps: "2"count/deployments.extensions: "2"persistentvolumeclaims: "2" 2)此时,也可以查看到ResourceQuota的相关配置,是否生效 [root@centos-1 dingqishi] kubectl get ResourceQuota -n mynsNAME CREATED ATquota-example 2021-10-10T08:23:54Z[root@centos-1 dingqishi] kubectl describe ResourceQuota quota-example -n mynsName: quota-exampleNamespace: mynsResource Used Hard-------- ---- ----count/deployments.apps 0 2count/deployments.extensions 0 2limits.cpu 0 2limits.memory 0 2Gipersistentvolumeclaims 0 2pods 0 5requests.cpu 0 1requests.memory 0 1Gi 大家可以将生效后的控制器,结合相关pod自行测试资源配额的申请、限制和使用的情况 本篇文章为转载内容。原文链接:https://blog.csdn.net/flq18210105507/article/details/120845744。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-25 10:44:03
337
转载
SpringCloud
...册、配置管理以及流量控制等功能,有助于进一步解决类似的服务匹配问题,并提升系统的稳定性和容错能力。 与此同时,随着云原生理念的普及和发展,Istio、Linkerd等服务网格技术也为企业提供了更为精细化的服务治理方案。它们能够实现服务间通信的自动化、可视化管理,通过统一的控制平面进行流量路由、熔断限流等操作,从而有效防止因服务版本更新或实例状态异常导致的服务调用失败。 此外,对于服务消费者的依赖管理和版本控制,业界推崇的持续集成/持续部署(CI/CD)实践也给出了答案。通过GitOps等现代DevOps方法论,确保消费者应用在拉取服务提供者新版本时,能够自动化的完成依赖更新与验证,减少人工介入带来的错误风险。 综上所述,面对服务提供者与消费者匹配异常这类问题,除了掌握基础原理与排查手段外,关注并引入先进的微服务治理工具和技术实践,将更有利于构建健壮、高效的分布式系统。
2023-02-03 17:24:44
129
春暖花开
RabbitMQ
...bernetes资源控制器,当检测到RabbitMQ所在Pod的磁盘使用率接近预设阈值时,会触发自动扩容机制,动态分配新的存储资源给RabbitMQ Pod。这一方案不仅有效解决了因磁盘空间不足引发的服务中断问题,还提升了运维效率,确保了分布式系统的高可用性。 另外,考虑到数据安全与合规要求,一些企业也开始重视对RabbitMQ消息队列中的敏感信息进行定期清理与备份。例如,结合开源工具如rabbitmq-consistent-hash-exchange和rabbitmq-message-deduplication,可以实现数据的有效去重和过期清理;同时,采用阿里云等提供的云存储服务进行定时增量备份,既保证了数据的安全存档,也减轻了本地磁盘的压力。 此外,随着微服务架构的普及,RabbitMQ作为核心的消息中间件组件,其性能优化与运维管理越来越受到业界关注。近期一篇发表在InfoQ的技术文章《深入剖析RabbitMQ性能调优策略》中,作者详细解读了如何从内存、网络、磁盘I/O等多个维度优化RabbitMQ,从而提升整体系统性能,降低故障发生概率。 综上所述,面对RabbitMQ服务器磁盘空间不足等现实问题,无论是采取自动化运维手段进行资源扩展,还是引入更先进的数据管理和备份策略,都是我们在构建和维护高可靠、高性能分布式系统过程中不可或缺的一环。持续跟进最新的技术发展与最佳实践,将有助于我们在实际工作中更好地应对挑战,保障业务的平稳运行。
2024-03-17 10:39:10
171
繁华落尽-t
MemCache
...,它会先把那些经常被访问的热点数据暂时存到内存里头。这样一来,数据库的压力瞬间就减轻了不少,系统的反应速度也是蹭蹭地往上飙,效果拔群!然而,就像任何一把锋利的工具一样,如果使用方法不对头,就可能惹出些麻烦来。这当中一个常见的问题就是所谓的“缓存雪崩”。 2. 缓存雪崩的概念解析 --- 缓存雪崩是指缓存系统在同一时刻大面积失效或者无法提供服务,导致所有请求直接涌向后端数据库,进而引发数据库压力激增甚至崩溃的情况。这种情况如同雪崩一般,瞬间释放出巨大的破坏力。 3. 缓存雪崩的风险源分析 --- - 缓存集中过期:例如,如果大量缓存在同一时间点过期,那么这些原本可以通过缓存快速响应的请求,会瞬时全部转向数据库查询。 - 缓存集群故障:当整个MemCache集群出现故障或重启时,所有缓存数据丢失,也会触发缓存雪崩。 - 网络异常:网络抖动或分区可能导致客户端无法访问到MemCache服务器,从而引发雪崩效应。 4. MemCache应对缓存雪崩的策略与实战代码示例 --- (1)设置合理的过期时间分散策略 为避免大量缓存在同一时间点过期,可以采用随机化过期时间的方法,例如: python import random def set_cache(key, value, expire_time): 基础过期时间 base_expire = 60 60 1小时 随机增加一个范围内的过期时间 delta_expire = random.randint(0, 60 5) 在0-5分钟内随机 total_expire = base_expire + delta_expire memcache_client.set(key, value, time=total_expire) (2)引入二级缓存或本地缓存备份 在MemCache之外,还可以设置如Redis等二级缓存,或者在应用本地进行临时缓存,以防止MemCache集群整体失效时完全依赖数据库。 (3)限流降级与熔断机制 当检测到缓存雪崩可能发生时(如缓存大量未命中),可以启动限流策略,限制对数据库的访问频次,并返回降级内容(如默认值、错误页面等)。下面是一个简单的限流实现示例: python from ratelimiter import RateLimiter limiter = RateLimiter(max_calls=100, period=60) 每分钟最多100次数据库查询 def get_data_from_db(key): if not limiter.hit(): raise Exception("Too many requests, fallback to default value.") 实际执行数据库查询操作... data = db.query_data(key) return data 同时,结合熔断器模式,如Hystrix,可以在短时间内大量失败后自动进入短路状态,不再尝试访问数据库。 (4)缓存预热与更新策略 在MemCache重启或大规模缓存失效后,可预先加载部分热点数据,即缓存预热。另外,我们可以采用异步更新或者懒加载的方式来耍个小聪明,处理缓存更新的问题。这样一来,就不会因为网络偶尔闹情绪、卡个壳什么的,引发可怕的雪崩效应了。 总结起来,面对MemCache中的缓存雪崩风险,我们需要理解其根源,运用多维度的防御策略,并结合实际业务场景灵活调整,才能确保我们的系统具备更高的可用性和韧性。在这个过程里,我们不断摸爬滚打,亲身实践、深刻反思,然后再一步步优化提升。这正是技术引人入胜之处,同样也是每一位开发者在成长道路上必经的重要挑战和修炼课题。
2023-12-27 23:36:59
89
蝶舞花间
MemCache
...以有效避免因为跨节点访问而产生的网络开销,懂我意思吧? 3. 同步更新问题及其解决思路 MemCache本身不具备数据同步功能,因此在分布式环境下进行数据更新时,需要通过应用层逻辑来保障一致性。常见的一种做法是“先更新数据库,再清除相关缓存”。 python 假设我们有一个更新用户信息的方法 def update_user_info(user_id, new_info): 先更新数据库 db.update_user(user_id, new_info) 清除MemCache中相关的缓存数据 memcached_client.delete(f'user_{user_id}') 另一种策略是引入消息队列,例如使用Redis Pub/Sub或者RabbitMQ等中间件,当数据库发生变更时,发布一条消息通知所有MemCache节点删除对应的缓存项。 4. MemCache节点的维护与监控 为了保证MemCache集群的稳定运行,我们需要定期对各个节点进行健康检查和性能监控,及时发现并处理可能出现的内存溢出、节点失效等问题。可以通过编写运维脚本定期检查,或者接入诸如Prometheus+Grafana这样的监控工具进行可视化管理。 bash 示例:简单的shell脚本检查MemCache节点状态 for node in $(cat memcache_nodes.txt); do echo "Checking ${node}..." telnet $node 11211 <<< stats | grep -q 'STAT bytes 0' if [ $? -eq 0 ]; then echo "${node} is down or not responding." else echo "${node} is up and running." fi done 总的来说,要在分布式环境中有效管理和维护多个MemCache节点,并实现数据的分布式存储与同步更新,不仅需要合理设计数据分布策略,还需要在应用层面对数据一致性进行把控,同时配合完善的节点监控和运维体系,才能确保整个缓存系统的高效稳定运行。在整个探险历程中,咱们得时刻动脑筋、动手尝试、灵活应变、优化咱的计划,这绝对是一个挑战多多、趣味盎然的过程,让人乐在其中。
2023-11-14 17:08:32
70
凌波微步
HessianRPC
...中的角色,通过统一的控制平面,实现全局的连接池优化和流量治理。 另外,Apache Netty等开源框架也在不断更新,引入了更多的高级功能,如异步I/O和多路复用,这进一步提升了连接池的性能。同时,对连接池优化的实时监控和自动调整算法的研究也在机器学习和数据科学的驱动下取得突破,比如使用AI预测模型来动态调整连接池大小。 总的来说,HessianRPC的连接池优化不再是孤立的技术问题,而是与整个系统架构、云服务和新兴技术紧密结合。开发者和架构师需要密切关注这些最新动态,以便在实际项目中做出最佳决策,实现更高效的分布式系统。
2024-03-31 10:36:28
504
寂静森林
ActiveMQ
...灵活的消息路由与策略控制。而Serverless框架如AWS Lambda或阿里云函数计算与消息服务(如Amazon SQS)的结合,则进一步简化了无服务器架构下的消息处理逻辑,提升了系统的可伸缩性和响应速度。 对于希望深入研究ActiveMQ与Camel集成的开发者,建议阅读官方文档以获取最新功能介绍和技术细节,同时关注相关社区论坛和技术博客,了解实际项目中的最佳实践和应用案例。随着云技术和容器化趋势的发展,持续学习和掌握如何将这些消息中间件和集成工具应用于新的环境和场景,将是提升开发效能、构建现代化分布式系统的关键所在。
2023-05-29 14:05:13
554
灵动之光
Impala
...入到Impala可以访问的数据存储系统,例如HDFS或Hive表。以下是一个简单的Hive DDL创建日志表的例子: sql CREATE TABLE IF NOT EXISTS logs ( log_id BIGINT, timestamp TIMESTAMP, user_id STRING, event_type STRING, event_data STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE; 然后,通过Hive或Hadoop工具将日志文件加载至该表: bash hive -e "LOAD DATA INPATH '/path/to/logs' INTO TABLE logs;" 3.2 Impala SQL查询实例 有了结构化的日志数据后,我们便可以在Impala中执行复杂的SQL查询来进行深入分析。例如,我们可以找出过去一周内活跃用户的数量: sql SELECT COUNT(DISTINCT user_id) FROM logs WHERE timestamp >= UNIX_TIMESTAMP(CURRENT_DATE) - 7246060; 或者,我们可以统计各类事件发生的频率: sql SELECT event_type, COUNT() as event_count FROM logs GROUP BY event_type ORDER BY event_count DESC; 这些查询均能在Impala中以极快的速度得到结果,满足了对大规模日志实时分析的需求。 3.3 性能优化探讨 在使用Impala进行日志分析时,性能优化同样重要。比如,对常量字段创建分区表,可以显著提高查询速度: sql CREATE TABLE logs_partitioned ( -- 同样的列定义... ) PARTITIONED BY (year INT, month INT, day INT); 随后按照日期对原始表进行分区数据迁移: sql INSERT OVERWRITE TABLE logs_partitioned PARTITION (year, month, day) SELECT log_id, timestamp, user_id, event_type, event_data, YEAR(timestamp), MONTH(timestamp), DAY(timestamp) FROM logs; 这样,在进行时间范围相关的查询时,Impala只需扫描相应分区的数据,大大提高了查询效率。 4. 结语 总之,Impala凭借其出色的性能和易用性,在大规模日志分析领域展现出了强大的实力。它让我们能够轻松应对PB级别的数据,实现实时、高效的查询分析。当然啦,每个项目都有它独特的小脾气和难关,但只要巧妙地运用Impala的各种神通广大功能,并根据实际情况灵活机动地调整作战方案,保证能稳稳驾驭那滔滔不绝的大规模日志分析大潮。这样一来,企业就能像看自家后院一样清晰洞察业务动态,优化决策也有了如虎添翼的强大力量。在这个过程中,我们就像永不停歇的探险家,不断开动脑筋思考问题,动手实践去尝试,勇敢探索未知领域。这股劲头,就像是咱们在技术道路上前进的永动机,推动着我们持续进步,一步一个脚印地向前走。
2023-07-04 23:40:26
521
月下独酌
HessianRPC
...策略,既实用又能精准控制流量,让我们的系统运行更加稳健。 5. 总结 在面对复杂多变的生产环境时,理解并合理运用HessianRPC的服务调用频率控制至关重要。使用Guava的RateLimiter或者其他的限流神器,我们就能轻松把控服务的每秒请求数(QPS),这样一来,就算流量洪水猛兽般袭来,也能保证咱的服务稳如泰山,不会被冲垮。同时呢,我们也要像鹰一样,始终保持对技术的锐利眼光,瞅准业务的特点和需求,灵活机动地挑选并运用那些最适合的限流策略。这样一来,咱们就能让整个分布式系统的稳定性和健壮性蹭蹭往上涨,就像给系统注入了满满的活力。
2023-12-08 21:23:59
523
追梦人
RabbitMQ
...ascript 访问RabbitMQ的管理界面 http://localhost:15672/ 3. 使用New Relic监控RabbitMQ New Relic是一款功能强大的云监控工具,可以用来监控各种应用程序和服务的性能。我们可以借助New Relic这个小帮手,实时监控RabbitMQ的各种关键表现,比如消息被“吃掉”的速度有多快、消息被“扔”出去的速度如何,甚至还能瞅瞅消息有没有迷路的(也就是丢失率)。这样一来,咱们就能像看比赛直播那样,对这些指标进行即时跟进啦。 ruby 注册New Relic账户并安装New Relic agent sudo curl -L https://download.newrelic.com/binaries/newrelic_agent/linux/x64_64/newrelic RPM | sudo tar xzv sudo mv newrelic RPM/usr/lib/ 配置New Relic的配置文件 cat << EOF > /etc/newrelic/nrsysmond.cfg license_key = YOUR_LICENSE_KEY server_url = https://insights-collector.newrelic.com application_name = rabbitmq daemon_mode = true process_monitor.enabled = true process_monitor.log_process_counts = true EOF 启动New Relic agent sudo systemctl start newrelic-sysmond.service 四、调试网络波动对RabbitMQ性能的影响 除了监控外,我们还需要对网络波动对RabbitMQ性能的影响进行深入的调试。以下是几种常见的调试方法: 1. 使用Wireshark抓取网络流量 Wireshark是一个开源的网络分析工具,可以用来捕获和分析网络中的各种流量。我们能够用Wireshark这个工具,像侦探一样监听网络中的各种消息发送和接收活动,这样一来,就能顺藤摸瓜找出导致网络波动的幕后“元凶”啦。 csharp 下载和安装Wireshark sudo apt-get update sudo apt-get install wireshark 打开Wireshark并开始抓包 wireshark & 2. 使用Docker搭建测试环境 Docker是一种轻量级的容器化平台,可以用来快速构建和部署各种应用程序和服务。我们可以动手用Docker搭建一个模拟网络波动的环境,就像搭积木一样构建出一个专门用来“折腾”RabbitMQ性能的小天地,在这个环境中好好地对RabbitMQ进行一番“体检”。 bash 安装Docker sudo apt-get update sudo apt-get install docker.io 创建一个包含网络波动模拟器的Docker镜像 docker build -t network-flakiness .
2023-10-10 09:49:37
100
青春印记-t
Consul
...例,实现了配置的版本控制和动态更新,有助于提升系统稳定性和运维效率。 Consul Connect , Consul Connect是Consul提供的服务网格解决方案的一部分,它通过在服务间通信中引入身份认证、授权和加密等安全措施,强化了服务间的信任和安全性。Connect允许用户定义服务间通信的策略,并通过Sidecar代理自动实施这些策略,从而简化了构建和运维安全微服务环境的过程。
2023-08-15 16:36:21
442
月影清风-t
转载文章
...,允许开发者更直观地访问和操作多级嵌套数组中的元素。同时,结合Kotlin的高阶函数如map、filter等,可以在不引入额外复杂度的情况下对数组进行复杂的变换操作。 深入研究Kotlin官方文档和社区论坛,你会发现更多有关数组的最佳实践案例,包括如何结合协程进行异步数组操作,以及如何利用Kotlin的扩展函数简化数组操作代码。而在机器学习或大数据处理领域,利用Kotlin的Numpy-like库koma可以实现类似Python Numpy对多维数组的强大支持,这对于科学计算和数据分析尤为重要。 总之,掌握Kotlin数组的各种特性并适时关注其最新进展,能够帮助开发者在日常编码工作中更加游刃有余,提高应用程序的运行效率和代码可读性。
2023-03-31 12:34:25
68
转载
Beego
...这个简单的Beego控制器示例: go package controllers import ( "github.com/astaxie/beego" ) type UserController struct { beego.Controller } // 获取用户列表 func (this UserController) GetUserList() { users := []User{} // 假设User是定义好的结构体 this.Data["json"] = users this.ServeJSON() } 在这个例子中,如果没有任何注释,其他开发者很难理解这个函数的具体作用。因此,添加必要的注释是非常重要的。 3.3 案例三:没有遵循版本控制的最佳实践 最后,我们来看看版本控制的问题。在Beego项目中,我们通常会使用Git来进行版本控制。不过,要是团队里的小伙伴不按套路出牌,比如压根不用分支管理,或者是提交信息简单得让人摸不着头脑,那后续的代码管理和维护可就头大了。举个例子: bash 不正确的提交信息 $ git commit -m "修改了一些东西" 这样的提交信息没有任何具体的内容,对于后续的代码审查和维护都是不利的。正确的做法应该是提供更详细的提交信息,比如: bash $ git commit -m "修复了用户列表接口的bug,增加了错误处理逻辑" 4. 如何改进? 既然我们已经了解了不遵守代码提交规则可能带来的问题,那么接下来我们该如何改进呢? 4.1 制定并遵守统一的编码规范 首先,我们需要制定一套统一的编码规范,并确保所有团队成员都严格遵守。比如说,我们可以定个规矩,所有的字符串都得用双引号包起来,变量的名字呢,就用驼峰那种一高一低的方式起名。这不仅可以提高代码的可读性,还能减少不必要的错误。 4.2 添加必要的注释 其次,我们应该养成良好的注释习惯。在编写代码的同时,应该为重要的逻辑和接口添加详细的注释。这样,即使后续维护人员不是原作者,也能快速理解代码的意图。例如: go // 获取用户列表 // @router /api/users [get] func (this UserController) GetUserList() { users := []User{} // 假设User是定义好的结构体 this.Data["json"] = users this.ServeJSON() } 4.3 遵循版本控制的最佳实践 最后,我们还需要遵循版本控制的最佳实践。比如说,当你用分支管理功能时,提交的信息可得越详细越好,这样以后自己或别人看代码时才会更容易,审查和维护起来也更轻松。例如: bash 正确的提交信息 $ git commit -m "修复了用户列表接口的bug,增加了错误处理逻辑" 5. 结语 总之,代码提交规则的严格遵守对于Beego项目的成功至关重要。虽然开始时可能会觉得有点麻烦,但习惯了之后,你会发现这能大大提升团队的工作效率和代码质量。希望各位开发者能够认真对待这个问题,共同维护一个高质量的代码库。
2024-12-26 15:33:14
93
红尘漫步
Cassandra
...过改进内存管理和并发控制策略来提升批量插入性能,即使在大规模数据导入时也能保持更稳定的系统响应速度。同时,新版本增强了轻量级事务(LWT)功能,为用户提供了一种更为精细的事务控制手段,从而在一定程度上弥补了传统Batch操作在严格一致性要求下的不足。 此外,为了满足实时数据分析和流式数据处理的需求,Cassandra与Kafka等消息队列系统的集成方案也日益成熟。例如,开源项目"Cassandra Kafka Connect"使得用户能够直接将Kafka中的数据流无缝批量加载到Cassandra集群,实现数据的实时写入和分析查询。 综上所述,随着Cassandra数据库技术的不断迭代和完善,其在批处理和批量加载方面的实践已更加丰富多元。关注并跟进这些最新发展动态和技术趋势,有助于我们在实际业务场景中更好地利用Cassandra进行大规模、高性能的数据管理与处理。同时,深入研究相关案例和最佳实践,可以为我们提供更具针对性和时效性的解决方案。
2024-02-14 11:00:42
506
冬日暖阳
Scala
...URL构造,诱导用户访问恶意网站,盗取加密货币钱包的私钥。为此,许多加密货币钱包服务商开始引入更高级别的身份验证机制,并加强对URL的过滤和监控,以保护用户的资产安全。 在防范这类新型攻击方面,除了依赖技术手段外,用户自身的安全意识同样重要。专家建议,用户在点击任何链接前,应仔细检查URL的拼写和格式,尽量避免访问来源不明的网站。同时,定期更新操作系统和浏览器,安装最新的安全补丁,也是抵御此类攻击的有效措施之一。对于开发者而言,不仅要关注基础的URL格式校验,还需加强对异常字符和恶意链接的检测能力,确保应用程序在面对复杂攻击时依然能够保持稳定和安全。
2024-12-19 15:45:26
23
素颜如水
转载文章
...始化时添加计时器用于控制自动开关,用户交互后重置计时器 开启时使用一个锥形的检测器检测幽灵是否在范围内,如果在调用Damage对幽灵造成伤害 存在一个Box Collider,当玩家进入时,调用InteractionMI的方法,将InteractionMI保存的静态SwitchableLight引用置为自己,当玩家交互时这个引用不为null,则调用这个引用的SwitchableLight的ChangeLight方法完成开关灯的交互 减速陷阱 当玩家进入时,调用InteractionMI的方法,使其内置的静态_slowDownCount计数加一,并调用玩家的SetSpeedRatio方法使玩家减速 当玩家离开,设置计时器5秒后调用InteractionMI的方法,使其内置的静态_slowDownCount计数减一,当计数为零时才可以调用玩家的SetSpeedRatio方法使玩家回复正常速度 地刺陷阱 初始化时设置计时器,每三秒改变一次状态,当玩家进入,设置计时器每一秒对玩家造成一次伤害,当玩家离开,取消计时器 宝箱 内置public GameObject GWeapon;用于保存要生成的枪的预制体 当玩家第一次与宝箱交互,播放开宝箱动画,设置计时器1.2秒后根据预制体克隆一个武器,并将武器通过Scene的静态方法加入到Scene维护的SceneObject列表中,自身保存新生成的武器的引用 当武器生成后玩家再与宝箱交互则通过InteractionMI的方法将武器父节点设为玩家,玩家获得武器的引用,自身武器引用置为null 武器 内置private Transform _parent = null;用于保存父物体 Drop方法被调用时,若父物体不为空,设置自身刚体属性,设置速度使武器有抛出效果,设置计时器1秒后恢复到没有物理效果的状态,父物体置为空 Fire方法被调用,若能够开火,则生成并初始化一个子弹,生成时将保存的父物体的Transform给子弹,保证子弹能够向角色前方发射,开火后设置开火状态为不能开火,设置计时器0.5秒后恢复开火状态 当父物体信息为空,与其他交互逻辑类似,通过InteractionMI完成武器捡起的交互逻辑 子弹 初始化时设置初速度,启动定时器1秒后若没有销毁则自动销毁,若碰撞到幽灵,对幽灵造成伤害,其他碰撞销毁自己 本篇文章为转载内容。原文链接:https://blog.csdn.net/Zireael2019/article/details/126690910。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-11 12:57:03
770
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
echo "string" | rev
- 反转字符串内容。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"