前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[键值对操作优化]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Kylin
...hm参数,我成功地优化了Cube构建过程。 properties 设置Cube构建策略为INMEM kylin.cube.algorithm=INMEM 4. Kylin部署与监控 最后,我们来谈谈Kylin的部署与监控。Kylin提供了多种部署方式,包括单节点部署、集群部署等。对于初学者来说,单节点部署可能更易于理解和操作。但是,随着数据量的增长,单节点部署很快就会达到瓶颈。这时,就需要考虑集群部署方案。 在部署过程中,我遇到的一个主要问题是服务之间的依赖关系。Kylin依赖于Hadoop和HBase,如果这些服务没有正确配置,Kylin将无法启动。要搞定这个问题,就得细细排查每个服务的状况,确保它们都乖乖地在运转着。 bash 检查Hadoop服务状态 sudo systemctl status hadoop-hdfs-namenode 部署完成后,监控Kylin的运行状态变得非常重要。Kylin提供了Web界面和日志文件两种方式来进行监控。你可以直接在网页上看到Kylin的各种数据指标,就像看仪表盘一样。至于Kylin的操作记录嘛,就都记在日志文件里头了。我经常使用日志文件来排查问题,因为它能提供更多的上下文信息。 bash 查看Kylin日志文件 tail -f /opt/kylin/logs/kylin.log 结语 通过这次分享,我希望能让大家对Kylin的配置与部署有一个更全面的理解。尽管在过程中会碰到各种难题,但只要咱们保持耐心,不断学习和探索,肯定能找到解决的办法。Kylin 的厉害之处就在于它超级灵活,还能随意扩展,这正是我们在大数据分析里头求之不得的呢。希望你们在使用Kylin的过程中也能感受到这份乐趣! --- 希望这篇技术文章对你有所帮助!如果你有任何疑问或需要进一步的帮助,请随时联系我。
2024-12-31 16:02:29
29
诗和远方
Shell
...多时候是悄无声息地被操作系统内核一手包办了。不过呢,有些特殊情况下,如果咱们编程时不注意养成好习惯,或者让Shell脚本去处理那种耗时特别长的任务,就可能把系统资源紧紧拽在手里不肯放,这就跟内存泄漏带来的效果差不多,会让系统觉得“我怎么老觉得内存不够用啊”。本文将深入探讨这一现象,并通过实例代码进行剖析。 2. Shell脚本与内存管理 首先,澄清一点:严格意义上,Shell脚本本身并不直接分配和释放内存,其变量、数组等存储结构的生命周期一般仅限于执行过程,退出脚本后这些内容理论上会被自动回收。不过呢,Shell这个家伙是个解释型的语言,每当你给变量赋个新值,它就屁颠屁颠地创建出一个新的字符串对象。假如你在脚本里头频繁地生成临时变量,又没把握好度,特别是在那些要跑很久的脚本中,可就要小心了。这么搞下去,系统内存可能就像被小偷一点点顺走一样,慢慢就被榨干喽! 3. 示例一 无限循环导致的内存累积 bash !/bin/bash 这是一个看似无害的无限循环 while true do 每次循环都创建一个局部变量并赋值 local test="This is a large string that keeps growing the memory footprint." done 上述脚本中,虽然local关键字使得变量仅在当前作用域有效,但在每一次循环迭代中,系统仍会为新创建的字符串分配内存空间。若该脚本持续运行,将不断积累内存消耗,类似于内存泄漏的现象。 4. 示例二 未关闭的文件描述符与内存泄漏 在Shell脚本中,打开文件而不关闭也会间接引发内存问题,尽管这更多是因为资源泄露而非纯粹的内存泄漏。 bash !/bin/bash 打开多个文件但不关闭 for i in {1..1000}; do exec 3<> /path/to/large_file.txt done 此处并未执行"exec 3>&-"关闭文件描述符 每个未关闭的文件描述符都会占用一定内存资源,尤其是当文件较大时,缓冲区的占用将更加显著。因此,确保在使用完文件后正确关闭它们至关重要。 5. 如何检测和避免Shell脚本中的“内存泄漏” - 监控内存使用:编写脚本定期检查系统内存使用情况,如利用free -m命令获取内存使用量,并结合阈值判断是否异常增长。 - 优化代码逻辑:尽量减少不必要的变量创建和重复计算,尤其在循环结构中。 - 资源清理:确保打开的文件、网络连接等资源在使用完毕后及时关闭。 - 压力测试与调试:对长期运行或复杂逻辑的Shell脚本进行负载测试,观察系统资源消耗情况,如有异常增长,应进一步排查原因。 6. 结语 Shell脚本中的“内存泄漏”问题虽不像C/C++这类手动管理内存的语言那么常见,但也值得每一位脚本开发者警惕。只有理解了问题的本质,才能在实践中防微杜渐,写出既高效又稳健的Shell脚本。下次你写脚本的时候,不妨多花点心思琢磨一下,怎么才能更巧妙地管理和释放那些隐藏在代码背后的宝贵资源。毕竟,真正牛掰的程序员不仅要会妙手生花地创造,更要懂得像呵护自家花园一样,精心打理他们所依赖着的每一份“土壤”。 --- 以上只是一个初步的框架和示例,实际撰写时可针对每个部分展开详细讨论,增加更多的代码示例以及实战技巧,以满足不少于1000字的要求。同时呢,咱得保持大白话交流,时不时丢出自己的独特想法和一些引发思考的小问题,这样更能帮助读者更好地get到重点,也能让他们更乐意参与进来,像朋友聊天一样。
2023-01-25 16:29:39
71
月影清风
转载文章
...着Linux在服务器操作系统市场的份额持续增长,对安全性和权限控制的需求也日益增强。例如,在2023年初,红帽企业版Linux发布了新的安全更新,重点强化了用户身份验证机制和权限管理功能,通过改进的PAM模块和SELinux策略增强了对/etc/passwd和/etc/shadow文件访问的安全性。 此外,针对特权升级和多用户环境下的操作权限控制,sudo命令的功能优化和配置指南一直是系统管理员关注的热点。《Unix & Linux System Administration Handbook》(第七版)提供了详细的sudoers文件配置解读和实战案例分析,帮助读者更准确地掌握如何限制和授权特定用户执行具有root权限的命令。 另外,对于深度学习Linux权限管理的用户来说,Linux内核社区最近讨论的关于扩展ACL(Access Control Lists)的未来发展方向也颇具时效性和参考价值。有开发者提出将引入更精细的权限粒度控制以应对复杂的企业级应用场景,这不仅要求我们了解现有的基本权限设置和特殊权限,更要紧跟技术前沿,洞悉潜在的变化趋势。 总之,无论是在日常运维中加强用户与用户组管理,还是面对不断发展的Linux权限体系进行深入研究,都需要结合最新技术和行业动态,不断提升自身的理论素养与实践能力。
2023-01-10 22:43:08
548
转载
转载文章
...它允许用户通过简单的操作界面管理和维护网站内容,同时具有高度可定制化的特点,能够根据用户需求灵活扩展功能模块。 模块组合(Module Combination) , 在织梦DedeCMS中,模块组合指的是系统内各功能组件之间的自由搭配与整合能力。例如,新闻模块、产品模块、下载模块等可以根据网站的实际需要进行选择性安装和使用,使得网站内容结构丰富多样,满足不同类型的网站建设需求。 模板引擎(Template Engine) , 模板引擎是织梦DedeCMS中的一个重要技术组成部分,它提供了一种分离网站界面设计与程序逻辑的方法。通过模板引擎,网站设计师可以专注于HTML/CSS等前端样式的设计,而无需深入理解复杂的后台编程语言。用户只需简单编辑模板文件,就可以实现对网站界面布局、风格的快速调整与更换,大大降低了网站界面设计和更新的技术门槛。 动态静态页面部署(Dynamic and Static Page Deployment) , 动态静态页面部署是指织梦DedeCMS既能支持动态内容生成,又能将动态网页转化为静态HTML文件并部署到服务器上。动态页面能实时反映数据库中的信息变化,方便内容更新;而静态页面则有利于提高访问速度,减轻服务器压力,并有利于搜索引擎优化。织梦DedeCMS的这一特性使其能够在保证网站交互性和实时性的同时,优化网站性能和SEO效果。 PHP环境(PHP Environment) , PHP环境是指运行PHP应用程序所必需的一套软件配置,包括Web服务器(如Apache、Nginx或IIS)、PHP解释器以及MySQL数据库等组件。在织梦DedeCMS中,为了确保系统的正常运行和全部功能的可用性,必须设置好兼容且稳定的PHP环境,启用特定的系统函数和扩展库,如allow_url_fopen、GD扩展库及MySQL扩展库等。
2023-09-24 09:08:23
279
转载
Hive
...的困扰,如果你在实际操作中还有其他疑问,别忘了社区和网络资源是解决问题的好帮手。祝你在Hadoop和Hive的探索之旅中一帆风顺!
2024-04-04 10:40:57
769
百转千回
转载文章
...,随着内存管理和性能优化在软件开发领域的重要性日益凸显,许多开源项目开始重新审视并采用柔性数组以提高内存使用效率。 例如,在Linux内核的最新开发版本中,开发者们就针对特定的数据结构利用了柔性数组来减少内存开销,并提升数据处理速度。通过将动态大小的数据块直接附加到结构体末尾,不仅简化了内存管理逻辑,而且减少了因多次内存分配带来的性能损耗和内存碎片问题。 同时,数据库管理系统如MongoDB和PostgreSQL的部分实现也采用了类似的思想,虽然它们并未直接使用C99的柔性数组成员,但在设计变长字段存储时借鉴了这种思路,实现了更高效的空间利用率。 此外,学术界对于柔性数组的研究也在持续深入。有研究论文探讨了柔性数组在嵌入式系统、网络协议栈等场景下的优劣表现,分析了不同应用场景下柔性数组与传统指针方式在内存安全、性能以及代码可读性等方面的对比。 综上所述,柔性数组作为C99引入的重要特性,其设计理念对当今软件工程有着深远的影响,尤其在内存管理精细化、系统性能优化等方面提供了新的解决方案。关注和学习柔性数组的原理与应用,有助于开发者在实际工作中更好地应对各种复杂场景,编写出更为高效且易于维护的代码。
2023-01-21 13:56:11
502
转载
Javascript
...vg因其出色的SVG操作能力,成为了许多开发者在创建复杂图形和动画时的首选库。然而,在实际应用中,如何无缝集成这两者依然是不少开发者面临的挑战。 近期,社区中出现了一些新的工具和技术,可以帮助开发者更加高效地解决这些问题。例如,Vue 3的Composition API不仅简化了组件逻辑的组织方式,还提升了代码的可读性和维护性。通过结合Vue 3和Vite,开发者可以构建出更加轻量级和高性能的应用。同时,Snap.svg也在持续迭代中,最新版本引入了更多的API和优化,使得SVG操作更加灵活和强大。 此外,GitHub上也出现了许多优秀的开源项目,它们提供了丰富的示例和最佳实践,帮助开发者更好地理解和应用这些新技术。例如,一个名为“Vite-Snap-Demo”的项目,展示了如何在Vite项目中高效地集成Snap.svg,提供了从基础到高级的各种示例代码,非常适合初学者和进阶用户参考学习。 值得一提的是,随着Web标准的不断完善,越来越多的现代浏览器开始支持WebAssembly(Wasm)技术,这为Web应用带来了更高的性能潜力。在未来,我们可以期待看到更多利用Wasm进行图形渲染和动画处理的创新项目,从而进一步提升Web应用的用户体验。 总之,随着前端技术的不断发展,像Vite和Snap.svg这样的工具将会继续进化和完善,为开发者提供更多便利。同时,开源社区的支持和贡献也将成为推动这一进程的重要力量。希望开发者们能够紧跟技术趋势,不断探索和实践,创造出更加精彩和高效的Web应用。
2024-11-28 15:42:34
104
清风徐来_
Sqoop
...导入导出。在实际动手操作的时候,我们常常会碰上一个让人觉得有点反直觉的情况:就是那个Sqoop作业啊,你要是把它的并发程度调得过高,反而会让整体运行速度慢下来,就像车子轮胎气太足,开起来反而颠簸不稳一样。这篇文章咱们要一探究竟,把这个现象背后的秘密给挖出来,还会借助一些实际的代码案例,让大家能摸清楚它内在的门道和规律。 2. 并发度对Sqoop性能的影响 Sqoop作业的并发度,即一次导入或导出操作同时启动的任务数量,理论上讲,增加并发度可以提高任务执行速度,缩短总体运行时间。但事实并非总是如此。过高的并发度可能导致以下几个问题: - 网络带宽瓶颈:当并发抽取大量数据时,网络带宽可能会成为制约因素。你知道吗,就像在马路上开车,每辆 Sqoop 任务都好比一辆占用网络资源的小车。当高峰期来临时,所有这些小车同时挤上一条有限的“网络高速公路”,大家争先恐后地往前冲,结果就造成了大堵车,这样一来,数据传输的速度自然就被拖慢了。 - 源数据库压力过大:高并发读取会使得源数据库面临巨大的I/O和CPU压力,可能导致数据库响应变慢,甚至影响其他业务系统的正常运行。 - HDFS写入冲突:导入到HDFS时,若目标目录下的文件过多且并发写入,HDFS NameNode的压力也会增大,尤其是小文件过多的情况下,NameNode元数据管理负担加重,可能造成集群性能下降。 3. 代码示例与分析 下面以一段实际的Sqoop导入命令为例,演示如何设置并发度以及可能出现的问题: bash sqoop import \ --connect jdbc:mysql://dbserver:3306/mydatabase \ --username myuser --password mypassword \ --table mytable \ --target-dir /user/hadoop/sqoop_imports/mytable \ --m 10 这里设置并发度为10 假设上述命令导入的数据量极大,而数据库服务器和Hadoop集群都无法有效应对10个并发任务的压力,那么性能将会受到影响。正确的做法呢,就是得瞅准实际情况,比如数据库的响应速度啊、网络环境是否顺畅、HDFS存储的情况咋样这些因素,然后灵活调整并发度,找到最合适的那个“甜蜜点”。 4. 性能调优策略 面对Sqoop并发度设置过高导致性能下降的情况,我们可以采取以下策略进行优化: - 合理评估并设置并发度:基于数据库和Hadoop集群的实际硬件配置和当前负载情况,逐步调整并发度,观察性能变化,找到最佳并发度阈值。 - 分批次导入/导出:对于超大规模数据迁移,可考虑采用分批次的方式,每次只迁移部分数据,减小单次任务的并发度。 - 使用中间缓存层:如果条件允许,可以在数据库和Hadoop集群间引入数据缓冲区(如Redis、Kafka等),缓解两者之间的直接交互压力。 5. 结论与思考 在Sqoop作业并发度的设置上,我们不能盲目追求“越多越好”,而是需要根据具体场景综合权衡。其实说白了,Sqoop性能优化这事可不简单,它牵扯到很多方面的东东。咱得在实际操作中不断摸爬滚打、尝试探索,既得把工具本身的运行原理整明白,又得瞅准整个系统架构和各个组件之间的默契配合,才能让这玩意儿的效能噌噌噌往上涨。只有这样,才能真正发挥出Sqoop应有的效能,实现高效稳定的数据迁移。
2023-06-03 23:04:14
155
半夏微凉
Impala
...还会附赠一些超实用的优化小窍门,包你看了以后豁然开朗! 什么是Impala? Impala是由Cloudera公司开发的一种开源分布式SQL查询引擎。它的目标是既能展现出媲美商业数据库的强大性能,又能紧紧握住开放源代码带来的灵活与可扩展性优势。就像是想要一个既有大牌实力,又具备DIY自由度的“数据库神器”一样。Impala可以运行在Hadoop集群上,利用MapReduce进行数据分析和查询操作。 Impala的查询性能特点 Impala的设计目标是在大规模数据集上提供高性能的查询。为了达到这个目标,Impala采用了许多独特的技术和优化策略。以下是其中的一些特点: 基于内存的计算:Impala的所有计算都在内存中完成,这大大提高了查询速度。跟那些老式批处理系统可不一样,Impala能在几秒钟内就把查询给搞定了,哪还需要等个几分钟甚至更久的时间! 多线程执行:Impala采用多线程执行查询,可以充分利用多核CPU的优势。每个线程都会独立地处理一部分数据,然后将结果合并在一起。 列式存储:Impala使用列式存储方式,可以显著减少I/O操作,提高查询性能。在列式存储中,每行数据都是一个列块,而不是一个完整的记录。这就意味着,当你在查询时只挑了部分列,Impala这个小机灵鬼就会聪明地只去读取那些被你点名的列所在的区块,压根儿不用浪费时间去翻看整条记录。 高速缓存:Impala有一个内置的查询缓存机制,可以将经常使用的查询结果缓存起来,减少不必要的计算。此外,Impala还可以利用Hadoop的内存管理机制,将结果缓存在HDFS上。 这些特点使Impala能够在大数据环境中提供卓越的查询性能。其实吧,实际情况是这样的,性能到底怎么样,得看多个因素的脸色。就好比硬件配置啦,查询的复杂程度啦,还有数据分布什么的,这些家伙都对最终的表现有着举足轻重的影响呢! 如何优化Impala查询性能? 虽然Impala已经非常强大,但是仍然有一些方法可以进一步提高其查询性能。以下是一些常见的优化技巧: 合理设计查询语句:首先,你需要确保你的查询语句是最优的。这通常就是说,咱得尽量避开那个费时费力的全表扫一遍的大动作,学会巧妙地利用索引这个神器,还有啊,JOIN操作也得玩得溜,用得恰到好处才行。如果你不确定如何编写最优的查询语句,可以尝试使用Impala自带的优化器。 调整资源设置:Impala的性能受到许多资源因素的影响,如内存、CPU、磁盘等。你可以通过调整这些参数来优化查询性能。比如说,你完全可以尝试给Impala喂饱更多的内存,或者把更重的计算任务分配给那些运算速度飞快的核心CPU,就像让短跑健将去跑更重要的赛段一样。 使用分区:分区是一种有效的方法,可以将大型表分割成较小的部分,从而提高查询性能。你知道吗,通过给数据分区这么一个操作,你就能把它们分散存到多个不同的硬件设备上。这样一来,当你需要查找信息的时候,效率嗖嗖地提升,就像在图书馆分门别类放书一样,找起来又快又准! 缓存查询结果:Impala有一个内置的查询缓存机制,可以将经常使用的查询结果缓存起来,减少不必要的计算。此外,Impala还可以利用Hadoop的内存管理机制,将结果缓存在HDFS上。 以上只是优化Impala查询性能的一小部分方法。实际上,还有很多其他的技术和工具可以帮助你提高查询性能。关键在于,你得像了解自家后院一样熟悉你的数据和工作负载,这样才能做出最棒、最合适的决策。 总结 Impala是一种强大的查询工具,能够在大数据环境中提供卓越的查询性能。如果你想让你的Impala查询速度嗖嗖提升,这里有几个小妙招可以试试:首先,设计查询时要够精明合理,别让它成为拖慢速度的小尾巴;其次,灵活调整资源分配,确保每一份计算力都用在刀刃上;最后,巧妙运用分区功能,让数据查找和处理变得更加高效。这样一来,你的Impala就能跑得飞快啦!最后,千万记住这事儿啊,你得像了解自家的后花园一样深入了解你的数据和工作负载,这样才能够做出最棒、最合适的决策,一点儿都不含糊。
2023-03-25 22:18:41
487
凌波微步-t
Cassandra
...架构以及对大数据读写操作的高度优化,使其成为存储和查询时间序列数据的理想平台。不过,有效地利用Cassandra的前提是精心设计数据模型。本文将带你手把手地深入挖掘,如何为时间序列数据量身打造Cassandra的表结构设计。咱会借助实例代码和亲身实战经验,像揭开宝藏地图那样揭示其中的设计秘诀,让你明明白白、实实在在地掌握这门技艺。 1. 理解时间序列数据特点 时间序列数据是指按时间顺序记录的一系列数据点,每个数据点通常与一个特定的时间戳相关联。这类数据在咱们日常生活中可不少见,比如物联网(IoT)、监控系统、金融交易还有日志分析这些领域,都离不开它。它的特点就是会随着时间的推移,像滚雪球一样越积越多。而在查询的时候,人们最关心的通常就是最近产生的那些新鲜热辣的数据,或者根据特定时间段进行汇总统计的信息。 2. 设计原则 (1)分区键选择 在Cassandra中,分区键对于高效查询至关重要。当你在处理时间序列数据时,一个很接地气的做法就是拿时间来做分区的一部分。比如说,你可以把年、月、日、小时这些信息拼接起来,弄成一个复合型的分区键。这样一来,同一时间段的数据就会乖乖地呆在同一个分区里,这样咱们就能轻松高效地一次性读取到这一整段时期的数据了,明白吧? cql CREATE TABLE sensor_data ( sensor_id uuid, event_time timestamp, data text, PRIMARY KEY ((sensor_id, date_of(event_time)), event_time) ) WITH CLUSTERING ORDER BY (event_time DESC); 这里date_of(event_time)是对事件时间进行提取日期部分的操作,形成复合分区键,便于按天或更粗粒度进行分区。 (2)排序列簇与查询路径 使用CLUSTERING ORDER BY定义排序列簇,按照时间戳降序排列,确保最新数据能快速获取。 (3)限制行大小与集合使用 尽管Cassandra支持集合类型,但对于时间序列数据,应避免在一个集合内存放大量数据,以免读取性能受到影响。由于集合不会分页,如果需要存储连续的时序数据点,最好让每一行只包含单个数据点。 (4)宽行与稀疏索引 采用“宽行”策略,即每行代表一段时间窗口内的多个数据点属性,而不是每条数据一个行。这有助于减少跨分区查询,提高查询效率。同时呢,对于那些跟时间没关系的筛选条件,我们可以琢磨着用一下稀疏索引。不过得注意啦,这里有个“度”的把握,就是索引虽然能让查询速度嗖嗖提升,但同时也会让写入数据时的开销变大。所以嘞,咱们得在这两者之间找个最佳平衡点。 3. 示例设计 物联网传感器数据存储 假设我们有一个物联网项目,需要存储来自不同传感器的实时测量值: cql CREATE TABLE sensor_readings ( sensor_id uuid, reading_time timestamp, temperature float, humidity int, pressure double, PRIMARY KEY ((sensor_id, reading_time)) ) WITH CLUSTERING ORDER BY (reading_time DESC); 这个表结构中,sensor_id和reading_time共同组成复合分区键,每个传感器在某一时刻的温度、湿度和压力读数都存放在一行里。 4. 总结与思考 设计Cassandra时间序列数据表的关键在于理解数据访问模式并结合Cassandra的特性和局限性。选对分区键这招儿,就像给海量数据找个宽敞的储藏室,让它们能分散开来存放和快速找到;而把列簇整得井井有条,那就相当于帮我们轻松摸到最新鲜的数据,一抓一个准儿。再配上精心设计的宽行结构,加上恰到好处的索引策略,甭管查询需求怎么变花样,都能妥妥地满足你。 当然,具体实践时还需要根据业务的具体情况进行调整和优化,例如预测未来的数据增长规模、评估查询性能瓶颈以及是否需要进一步的数据压缩等措施。总的来说,用Cassandra搭建时间序列数据模型不是个一劳永逸的事儿,它更像是一个持久的观察、深度思考和反复调整优化的过程。只有这样,我们才能真正把Cassandra处理海量时序数据的洪荒之力给释放出来。
2023-12-04 23:59:13
770
百转千回
Kibana
... 思考与实践 在实际操作中,数据切片并不仅仅是简单的过滤和查询,它还涉及到如何有效地组织和呈现数据。这就得咱们不停地试各种招儿,比如说用聚合函数搞更复杂的统计分析,或者搬出机器学习算法来预测未来的走向。每一次尝试都可能带来新的发现,让数据背后的故事更加生动有趣。 4. 结语 数据切片是数据分析中不可或缺的一部分,它帮助我们在海量数据中寻找有价值的信息。Kibana这家伙可真不赖,简直就是个数据分析神器,有了它,我们实现目标简直易如反掌!希望本文能为你提供一些灵感和思路,让你在数据分析的路上越走越远! --- 以上就是本次关于如何在Kibana中实现数据切片的技术分享,希望能对你有所帮助。如果你有任何疑问或想了解更多内容,请随时留言讨论!
2024-10-28 15:42:51
43
飞鸟与鱼
MemCache
...,还能学到一些在实际操作中怎么应对的小妙招。嘿,记得啊,碰到技术难题别慌,多琢磨琢磨,多动手试试,肯定能搞定的!如果你还有什么疑问或者想了解更多细节,欢迎随时留言讨论哦! 希望这篇文章能帮助到你,咱们下次见!
2024-11-22 15:40:26
60
岁月静好
Linux
...应用。在用Linux操作系统的时候,MongoDB的日常维护工作可是个重点活儿,尤其是设计和执行备份策略这块儿,那可真是至关重要的一步棋。本文将带领大家深入探讨如何在Linux环境中,以一种高效且安全的方式对MongoDB进行备份。 1. 备份的重要性与基本原理 (情感化表达)想象一下,你精心维护的MongoDB数据库突然遭遇意外,数据丢失或损坏,那种感觉就像失去了一本珍贵的日记,令人痛心疾首。因此,定期备份是我们防止这种“悲剧”发生的最佳保险措施。MongoDB做备份这件事儿,主要靠两种方法:一是直接复制数据库文件这招,二是动用一些专门的工具去创建快照。这样一来,就可以把数据在某一时刻的样子给完好无损地保存下来啦。 2. MongoDB备份方法概述 2.1 数据库文件备份 (代码示例) bash 首先找到MongoDB的数据存储路径,通常位于/var/lib/mongodb/ (根据实际安装配置可能有所不同) sudo cp -R /var/lib/mongodb/ /path/to/backup/ 通过Linux命令行直接复制MongoDB的数据文件目录到备份位置,这是一种最基础的物理备份方式。不过要注意,在咱们进行备份的时候,务必要保证数据库没在进行任何写入操作。要不然的话,可能会让备份出来的文件出现不一致的情况,那就麻烦啦。 2.2 mongodump工具备份 (代码示例) bash mongodump --host localhost --port 27017 --db your_database_name --out /path/to/backup/ mongodump是MongoDB官方提供的用于逻辑备份的工具,它会将数据库的内容导出为JSON格式的bson文件,这样可以方便地在其他MongoDB实例上导入恢复。在上述命令中,我们指定了目标数据库地址、端口以及备份输出目录。 2.3 使用MongoDB Atlas自动备份服务(可选) 对于使用MongoDB云服务Atlas的用户,其内置了自动备份功能,只需在控制台设置好备份策略,系统就会按照设定的时间周期自动完成数据库的备份,无需手动干预。 3. 实战 结合cron定时任务实现自动化备份 (思考过程)为了保证备份的及时性与连续性,我们可以借助Linux的cron定时任务服务,每天、每周或每月定期执行备份任务。 (代码示例) bash 编辑crontab任务列表 crontab -e 添加以下定时任务,每天凌晨1点执行mongodump备份 0 1 mongodump --host localhost --port 27017 --db your_database_name --out /path/to/backup/$(date +\%Y-\%m-\%d) 保存并退出编辑器 以上示例中,我们设置了每日凌晨1点执行mongodump备份,并将备份文件保存在按日期命名的子目录下,便于后期管理和恢复。 4. 结语 备份策略的优化与完善 尽管我们已经掌握了MongoDB在Linux下的备份方法,但这只是万里长征的第一步。在实际操作时,咱们还要琢磨一下怎么把备份文件给压缩、加密了,再送到远程的地方存好,甚至要考虑只备份有变动的部分(增量备份)。而且,最好能整出一套全面的灾备方案,以备不时之需。总的来说,咱们对待数据库备份这事儿,就得像呵护自家压箱底的宝贝一样倍加小心。你想啊,数据这玩意儿的价值,那可是无价之宝,而备份呢,就是我们保护这个宝贝不丢的关键法宝,可得看重喽! (探讨性话术)亲爱的读者,你是否已开始构思自己项目的MongoDB备份方案?不妨分享你的见解和实践经验,让我们共同探讨如何更好地保护那些宝贵的数据资源。
2023-06-14 17:58:12
452
寂静森林_
Sqoop
...尤为重要。所以在实际操作的时候,我们大都会选择用SSL/TLS加密这玩意儿,来给咱们的数据安全上把结实的锁。 二、什么是SSL/TLS? SSL(Secure Sockets Layer)和TLS(Transport Layer Security)是两种安全协议,它们提供了一种安全的方式来在网络上传输数据。这两种协议都建立在公钥加密技术的基础之上,就像咱们平时用的密钥锁一样,只不过这里的“钥匙”更智能些。它们会借用数字证书这玩意儿来给发送信息的一方验明正身,确保消息是从一个真实可信的身份发出的,而不是什么冒牌货。这样可以防止中间人攻击,确保数据的完整性和私密性。 三、如何配置Sqoop以使用SSL/TLS加密? 要配置Sqoop以使用SSL/TLS加密,我们需要按照以下步骤进行操作: 步骤1:创建并生成SSL证书 首先,我们需要创建一个自签名的SSL证书。这可以通过使用OpenSSL命令行工具来完成。以下是一个简单的示例: openssl req -x509 -newkey rsa:2048 -keyout key.pem -out cert.pem -days 3650 -nodes 这个命令将会创建一个名为key.pem的私钥文件和一个名为cert.pem的公钥证书文件。证书的有效期为3650天。 步骤2:修改Sqoop配置文件 接下来,我们需要修改Sqoop的配置文件以使用我们的SSL证书。Sqoop的配置文件通常是/etc/sqoop/conf/sqoop-env.sh。在这个文件中,我们需要添加以下行: export JVM_OPTS="-Djavax.net.ssl.keyStore=/path/to/key.pem -Djavax.net.ssl.trustStore=/path/to/cert.pem" 这行代码将会告诉Java环境使用我们刚刚创建的key.pem文件作为私钥存储位置,以及使用cert.pem文件作为信任存储位置。 步骤3:重启Sqoop服务 最后,我们需要重启Sqoop服务以使新的配置生效。以下是一些常见的操作系统上启动和停止Sqoop服务的方法: Ubuntu/Linux: sudo service sqoop start sudo service sqoop stop CentOS/RHEL: sudo systemctl start sqoop.service sudo systemctl stop sqoop.service 四、总结 在本文中,我们介绍了如何配置Sqoop以使用SSL/TLS加密。你知道吗,就像给自家的保险箱装上密码锁一样,我们可以通过动手制作一个自签名的SSL证书,然后把它塞进Sqoop的配置文件里头。这样一来,就能像防护盾一样,把咱们的数据安全牢牢地守在中间人攻击的外面,让数据的安全性和隐私性蹭蹭地往上涨!虽然一开始可能会觉得有点烧脑,但仔细想想数据的价值,我们确实应该下点功夫,花些时间把这个事情搞定。毕竟,为了保护那些重要的数据,这点小麻烦又算得了什么呢? 当然,这只是基础的配置,如果我们需要更高级的保护,例如双重认证,我们还需要进行更多的设置。不管怎样,咱可得把数据安全当回事儿,要知道,数据可是咱们的宝贝疙瘩,价值连城的东西之一啊!
2023-10-06 10:27:40
185
追梦人-t
转载文章
...统中的基本目录及文件操作命令后,用户可以更深入地探索其在实际运维和开发环境中的应用。近期,随着DevOps理念的普及和云计算技术的发展,对Linux系统管理能力的要求也在不断提高。例如,通过结合shell脚本自动化批量处理文件,或利用inotifywait工具监控文件变化实时触发相应操作,这些都大大提升了工作效率。 在信息安全领域,《Linux Journal》最近的一篇文章指出,熟练运用find、grep等命令进行日志分析与安全审计至关重要。同时,du命令结合ncdu这样的可视化工具,不仅能够帮助管理员直观了解磁盘使用情况,还能及时发现潜在的大文件问题,避免存储资源浪费。 此外,对于分布式文件系统如Hadoop HDFS或GlusterFS的管理,虽然底层原理与本地文件系统有所不同,但依然离不开ls、mkdir、cp、rm等基础命令的灵活运用。因此,在进一步学习中,读者可以关注如何将这些基础命令应用于大型集群环境,以及如何通过高级配置实现跨节点的文件操作。 在最新的Linux内核版本中,针对文件系统的优化和新特性也值得关注,例如Btrfs和ZFS等现代文件系统的引入,为用户提供更为强大且灵活的文件管理功能。综上所述,持续关注Linux操作系统的新发展动态,结合实战案例深入理解并灵活运用各项命令,是提高Linux系统管理能力的关键所在。
2023-06-16 19:29:49
512
转载
SpringBoot
...本对数据持久层进行了优化升级,其中对Spring Data MongoDB的支持更加完善,引入了新的功能特性,例如改进的分页查询支持、更灵活的索引管理等,这无疑为开发者提供了更高效便捷的操作体验。 此外,MongoDB Inc.在2021年发布的MongoDB 5.0版本中,加入了Temporal集合(时间序列数据)和Server-side Field Level Encryption(服务器端字段级加密)等功能,这些新特性使得MongoDB在处理实时数据流、保障敏感信息安全性等方面表现出更强的竞争力。对于正在使用SpringBoot集成MongoDB的开发者来说,关注并适时应用这些新特性,可以有效提升系统的性能与安全性。 同时,社区中关于SpringBoot+MongoDB的实战教程和经验分享层出不穷,比如有专家结合微服务架构模式,探讨如何利用Spring Cloud Data Flow构建基于MongoDB的数据管道,实现数据的实时处理与分析。因此,持续跟踪行业动态、参与社区讨论,结合实际业务需求探索SpringBoot与MongoDB的深度整合方案,是每一个追求技术创新的开发者应当关注的方向。
2023-04-09 13:34:32
78
岁月如歌-t
Superset
...set的界面设计如何优化用户体验? Superset,作为一款由Airbnb开源的数据可视化与BI工具,以其强大的数据探索和展示能力受到广大用户的青睐。嘿,你知道吗?一款真正牛掰的数据分析工具,光有硬核的数据处理本领还不够,界面设计这块儿更是直接影响到用户使用感受的重头戏啊!本文将从四个方面探讨Superset的界面设计如何通过优化来提升用户体验。 1. 界面布局直观清晰 (1) 导航栏设计:Superset的顶部导航栏提供了用户操作的主要入口,如仪表盘、图表、SQL实验室等核心功能区域。这种设计简单易懂,就像搭积木一样模块化,让用户能够像探照灯一样迅速找到自己需要的功能,再也不用在层层叠叠的菜单迷宫里晕头转向了。这样一来,大伙儿使用起来就能更加得心应手,效率自然蹭蹭往上涨! python 这里以伪代码表示导航栏逻辑 if user_selected == 'Dashboard': navigate_to_dashboard() elif user_selected == 'Charts': navigate_to_charts() else: navigate_to_sql_lab() (2) 工作区划分:Superset的界面右侧主要为工作区,左侧为资源列表或者查询编辑器,符合大多数用户从左到右,自上而下的阅读习惯。这种分栏式设计,就像是给用户在同一个窗口里搭了个高效操作台,让他们能够一站式完成数据查询、分析和可视化所有步骤,这样一来,不仅让用户感觉操作一气呵成,流畅得飞起,还大大提升了整体使用体验,仿佛像是给界面抹上了润滑剂,用起来更加顺手、舒心。 2. 可定制化的仪表盘 Superset允许用户自由创建和配置个性化仪表盘,每个组件(如各种图表)都可以拖拽调整大小和位置,如同拼图一样灵活构建数据故事。以下是一个创建新仪表盘的例子: python 伪代码示例,实际操作是通过UI完成 create_new_dashboard('My Custom Dashboard') add_chart_to_dashboard(chart_id='sales_trend', position={'x': 0, 'y': 0, 'width': 12, 'height': 6}) 通过这种方式,用户可以根据自己的需求和喜好对仪表盘进行深度定制,使数据更加贴近业务场景,提高了数据理解和决策效率。 3. 强大的交互元素 (1) 动态过滤器:Superset支持全局过滤器,用户在一个地方设定筛选条件后,整个仪表盘上的所有关联图表都会实时响应变化。例如: javascript // 伪代码,仅表达逻辑 apply_global_filter(field='date', operator='>', value='2022-01-01') (2) 联动交互:点击图表中的某一数据点,关联图表会自动聚焦于该点所代表的数据范围,这种联动效果能有效引导用户深入挖掘数据细节,增强数据探索的趣味性和有效性。 4. 易用性与可访问性 Superset在色彩搭配、字体选择、图标设计等方面注重易读性和一致性,降低用户认知负担。同时呢,我们也有考虑到无障碍设计这一点,就比如说,为了让视力不同的用户都能舒舒服服地使用,我们会提供足够丰富的对比度设置选项,让大家可以根据自身需求来调整,真正做到贴心实用。 总结来说,Superset通过直观清晰的界面布局、高度自由的定制化设计、丰富的交互元素以及关注易用性和可访问性的细节处理,成功地优化了用户体验,使其成为一款既专业又友好的数据分析工具。在此过程中,我们不断思考和探索如何更好地平衡功能与形式,让冰冷的数据在人性化的设计中焕发出生动的活力。
2023-09-02 09:45:15
150
蝶舞花间
Apache Lucene
...或进程同时对索引进行操作的技术。它确保在高并发环境下,数据的一致性和系统的高性能。在Apache Lucene中,索引并发控制主要用于解决多个线程同时修改同一个文档时可能出现的数据不一致和性能瓶颈问题。通过使用合适的并发控制策略,如乐观并发控制或悲观并发控制,可以有效地管理并发访问,提高系统的稳定性和效率。 高并发 , 高并发指的是系统在短时间内处理大量请求的能力。在搜索引擎或大型网站中,高并发是一个常见的挑战,因为用户数量众多且访问频率高。为了应对高并发,需要优化系统架构,如使用分布式系统、缓存机制和负载均衡等技术,以确保系统在高负载下仍能高效稳定地运行。在Apache Lucene中,高并发控制尤为重要,因为它直接影响到搜索结果的实时性和系统的响应速度。 批量操作 , 批量操作是指在计算机程序中一次性处理多个任务或数据项的操作方式。这种方式可以显著减少对系统资源的请求次数,从而提高整体处理效率。在Apache Lucene中,批量操作通常用于索引文档的添加、删除和更新,通过一次操作处理多个文档,而不是逐个处理,可以减少锁定资源的时间,降低死锁风险,并提高并发度和系统吞吐量。此外,批量操作还可以减少I/O操作次数,进一步提升性能。
2024-11-03 16:12:51
116
笑傲江湖
转载文章
...T)展现出了其强大的优化能力。通过巧妙地将问题转化为求解序列卷积的最大值,我们可以借助FFT技术将原本可能需要O(n^2)时间复杂度的运算降低至O(nlogn),从而高效找到最优解。实际上,FFT的应用远不止于此,它在信号处理、图像处理、数据压缩等领域都有着广泛而深入的应用。 近日,在科学计算领域,《自然》杂志报道了一项利用FFT算法优化能源传输网络的研究成果。科研团队成功运用FFT分析了电网中各个节点间的电力波动情况,通过对大量实时数据进行快速卷积计算,精准预测并优化了电能分配策略,极大地提高了能源传输效率和稳定性,这再次验证了FFT在实际工程问题中的强大作用。 此外,深度学习领域的研究者也在探索如何结合FFT与卷积神经网络(CNN),以提升模型训练速度和推理效率。一项发表于《IEEE Transactions on Neural Networks and Learning Systems》的论文中,研究人员创新性地提出了一种基于FFT的卷积操作方法,可以显著减少CNN中的计算量,尤其在处理大规模图像识别任务时效果尤为明显。 总的来说,从日常生活中的情侣手环亮度调整问题到关乎国计民生的能源传输优化,再到前沿的人工智能技术突破,快速傅里叶变换始终以其独特的数学魅力和高效的计算性能发挥着关键作用。随着科学技术的发展,我们有理由相信FFT将在更多领域带来革命性的解决方案。
2023-01-20 17:51:37
525
转载
SpringBoot
...录、角色分配以及特定操作的授权等环节。说到SpringBoot,实现这些功能其实挺简单的,但是要想让它稳定又安全,那可就得花点心思了。 举个例子: 假设我们有一个简单的用户管理系统,其中包含了添加、删除用户的功能。为了保证安全,我们需要限制只有管理员才能执行这些操作。这时,我们就需要用到权限管理了。 java // 使用Spring Security进行简单的权限检查 @Service public class UserService { @PreAuthorize("hasRole('ADMIN')") public void addUser(User user) { // 添加用户的逻辑 } @PreAuthorize("hasRole('ADMIN')") public void deleteUser(Long userId) { // 删除用户的逻辑 } } 在这个例子中,我们利用了Spring Security框架提供的@PreAuthorize注解来限定只有拥有ADMIN角色的用户才能调用addUser和deleteUser方法。这事儿看着挺简单,但就是这种看似不起眼的设定,经常被人忽略,结果权限管理就搞砸了。 2. 权限管理失败的原因分析 权限管理失败可能是由多种原因造成的。最常见的原因包括但不限于: - 配置错误:比如在Spring Security的配置文件中错误地设置了权限规则。 - 逻辑漏洞:例如,在进行权限验证之前,就已经执行了敏感操作。 - 测试不足:在上线前没有充分地测试各种边界条件下的权限情况。 案例分享: 有一次,我在一个项目中负责权限模块的开发。最开始我觉得一切风平浪静,直到有天一个同事告诉我,他居然能删掉其他人的账户,这下可把我吓了一跳。折腾了一番后,我才明白问题出在哪——原来是在执行删除操作之前,我忘了仔细检查用户的权限,就直接动手删东西了。这个错误让我深刻认识到,即使是最基本的安全措施,也必须做到位。 3. 如何避免权限管理失败 既然已经知道了可能导致权限管理失败的因素,那么如何避免呢?这里有几个建议: - 严格遵循最小权限原则:确保每个用户仅能访问他们被明确允许访问的资源。 - 全面的测试:不仅要测试正常情况下的权限验证,还要测试各种异常情况,如非法请求等。 - 持续学习与更新:安全是一个不断变化的领域,新的攻击手段和技术层出不穷,因此保持学习的态度非常重要。 代码示例: 为了进一步加强我们的权限管理,我们可以使用更复杂的权限模型,如RBAC(基于角色的访问控制)。下面是一个使用Spring Security结合RBAC的简单示例: java @Configuration @EnableWebSecurity public class SecurityConfig extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http.authorizeRequests() .antMatchers("/admin/").hasRole("ADMIN") .anyRequest().authenticated() .and() .formLogin().permitAll(); } @Autowired public void configureGlobal(AuthenticationManagerBuilder auth) throws Exception { auth.inMemoryAuthentication() .withUser("user").password("{noop}password").roles("USER") .and() .withUser("admin").password("{noop}password").roles("ADMIN"); } } 在这个配置中,我们定义了两种角色:USER和ADMIN。嘿,你知道吗?只要网址里有/admin/这串字符的请求,都得得有个ADMIN的大角色才能打开。其他的请求嘛,就简单多了,只要登录了就行。 4. 结语 权限管理的艺术 权限管理不仅是技术上的挑战,更是对开发者细心和耐心的考验。希望看完这篇文章,你不仅能get到一些实用的技术小技巧,还能深刻理解到权限管理这事儿有多重要,毕竟安全无小事嘛!记住,安全永远是第一位的! 好了,这就是今天的分享。如果你有任何想法或疑问,欢迎随时留言交流。希望我的经验对你有所帮助,让我们一起努力,构建更加安全的应用吧!
2024-11-02 15:49:32
62
醉卧沙场
转载文章
... 如果需要预览该刷新操作,可以使用svn mergeinfo命令,如: svn mergeinfo http://svn_server/xxx_repository/trunk --show-revs eligible 或使用svn merge --dry-run选项以获取更为详尽的信息。 分支合并到主干 一旦分支上的开发结束,分支上的代码需要合并到主干。SVN中执行该操作需要在trunk的工作目录下进行。命令如下: cd trunk svn merge --reintegrate http://svn_server/xxx_repository/branches/br_feature001 分支合并到主干中完成后应当删该分支,因为在SVN中该分支已经不能进行刷新也不能合并到主干。 合并版本并将合并后的结果应用到现有的分支上 svn -r 148:149 merge http://svn_server/xxx_repository/trunk 建立tags 产品开发已经基本完成,并且通过很严格的测试,这时候我们就想发布给客户使用,发布我们的1.0版本 svn copy http://svn_server/xxx_repository/trunk http://svn_server/xxx_repository/tags/release-1.0 -m "1.0 released" 删除分支或tags svn rm http://svn_server/xxx_repository/branches/br_feature001 svn rm http://svn_server/xxx_repository/tags/release-1.0 本篇文章为转载内容。原文链接:https://blog.csdn.net/lulitianyu/article/details/79675681。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-26 12:24:26
546
转载
转载文章
...上的值: 实际上,该操作用到了实例方法at_time(各时间序列以及类似的DataFrame对象都有): 还有一个between_time方法,它用于选取两个Time对象之间的值: 正如之前提到的那样,可能刚好就没有任何数据落在某个具体的时间上(比如上午10点)。这时,你可能会希望得到上午10点之前最后出现的那个值: 如果将一组Timestamp传入asof方法,就能得到这些时间点处(或其之前最近)的有效值(非NA)。例如,我们构造一个日期范围(每天上午10点),然后将其传入asof: 拼接多个数据源 在金融或经济领域中,还有几个经常出现的合并两个相关数据集的情况: ·在一个特定的时间点上,从一个数据源切换到另一个数据源。 ·用另一个时间序列对当前时间序列中的缺失值“打补丁”。 ·将数据中的符号(国家、资产代码等)替换为实际数据。 第一种情况:其实就是用pandas.concat将两个TimeSeries或DataFrame对象合并到一起: 其他:假设data1缺失了data2中存在的某个时间序列: combine_first可以引入合并点之前的数据,这样也就扩展了‘d’项的历史: DataFrame也有一个类似的方法update,它可以实现就地更新。如果只想填充空洞,则必须传入overwrite=False才行: 上面所讲的这些技术都可实现将数据中的符号替换为实际数据,但有时利用DataFrame的索引机制直接对列进行设置会更简单一些: 收益指数和累计收益 在金融领域中,收益(return)通常指的是某资产价格的百分比变化。一般计算两个时间点之间的累计百分比回报只需计算价格的百分比变化即可:对于其他那些派发股息的股票,要计算你在某只股票上赚了多少钱就比较复杂了。不过,这里所使用的已调整收盘价已经对拆分和股息做出了调整。不管什么样的情况,通常都会先算出一个收益指数,它是一个表示单位投资(比如1美元)收益的时间序列。 从收益指数中可以得出许多假设。例如,人们可以决定是否进行利润再投资。我们可以利用cumprod计算出一个简单的收益指数: 得到收益指数之后,计算指定时期内的累计收益就很简单了: 当然了,就这个简单的例子而言(没有股息也没有其他需要考虑的调整),上面的结果也能通过重采样聚合(这里聚合为时期)从日百分比变化中计算得出: 如果知道了股息的派发日和支付率,就可以将它们计入到每日总收益中,如下所示: 本篇文章为转载内容。原文链接:https://blog.csdn.net/geerniya/article/details/80534324。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-16 19:15:59
324
转载
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
cat <(command1) <(command2) > output.txt
- 将两个命令的输出合并到一个文件中。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"