前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Spring-00整合Mybatis示例...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Ruby
...时又省力! 示例代码: ruby module PaymentProcessor def process_payment(amount) puts "Processing payment of ${amount}" end end class Order include PaymentProcessor def initialize(total_amount) @total_amount = total_amount end def checkout process_payment(@total_amount) end end order = Order.new(100) order.checkout 在这个例子中,我们创建了一个名为PaymentProcessor的模块,其中包含一个process_payment方法。然后我们将这个模块包含到Order类中,使得Order类可以调用process_payment方法。这种模块化的设计让我们的代码更加简洁和易于理解。 2. 封装的概念及其在Ruby中的应用 接下来,我们谈谈封装。封装嘛,在面向对象编程里算个挺关键的概念。简单说就是把对象的“私密信息”藏起来,不让外面随便乱动,但可以通过专门设计的一些方法去操作它。就像给你的宝贝东西加了个小锁,别人不能直接打开看或者乱翻,不过你可以用钥匙去管理它。 为什么要进行封装呢?因为封装可以帮助我们保护数据不被外部随意修改,从而减少错误的发生。比如,在我们电商网站上,要是把用户的信用卡信息直接亮出来,那这些重要信息分分钟可能就被拿去乱用啦!通过封装,我们可以确保这些信息只能在安全的环境中被处理。 在Ruby中,我们可以通过定义私有方法和属性来实现封装。让我们来看一个具体的例子。 示例代码: ruby class User attr_reader :name def initialize(name, password) @name = name @password = password end private def password @password end def change_password(new_password) @password = new_password end end user = User.new("Alice", "secret123") puts user.name user.password 这行代码会报错,因为password是私有的 user.change_password("new_secret") 在这个例子中,我们定义了一个User类,其中包含了name和password两个属性。通过attr_reader,我们可以公开访问name属性,但是password属性是私有的,外部无法直接访问。我们需要通过change_password这样的方法来更改密码,这种方式更安全。 3. 模块化设计的实际应用案例 现在,让我们来看看模块化设计在实际项目中的应用。好啦,咱们就拿做个博客系统来说吧!想想看,这个博客要是弄好了,得能让好多人一起用,每个人都能注册账号、登进来写东西。写完的文章呢,其他小伙伴能看到,还能在底下留言评论啥的,就跟咱们平时在社交平台上互动一样热闹!我们可以将这些功能分别放在不同的模块中,以便于管理和维护。 首先,我们可以创建一个Authentication模块来处理用户的登录和登出操作。 示例代码: ruby module Authentication def login(username, password) 登录逻辑 end def logout 登出逻辑 end end class User include Authentication def initialize(username, password) @username = username @password = password end def authenticate(password) password == @password end end user = User.new("admin", "admin123") user.login("admin", "admin123") if user.authenticate("admin123") 在这个例子中,我们将Authentication模块包含到User类中,这样User类就可以使用login和logout方法了。通过这种方式,我们实现了功能的分离,使得代码结构更加清晰。 4. 总结与展望 通过这篇文章,我们探讨了Ruby中的模块化设计与封装的重要性,并通过实际的代码示例展示了如何在项目中应用这些概念。用模块化的方式来写代码,就像搭积木一样,既能让程序变得更靠谱,又能省下很多开发和后期维护的力气,简直是一举两得的好事! 未来,随着软件开发的不断发展,我相信模块化设计和封装的理念将会变得更加重要。嘿,咱们做开发的啊,就得不停地学、不停地练,把这些好习惯给用起来。为啥呢?就为了写出那种既好看又顺手的代码,谁不喜欢看着清爽、跑得飞快的程序呢? 希望这篇文章对你有所帮助!如果你有任何疑问或想法,欢迎随时交流。记住,编程不仅仅是技术的积累,更是一种艺术的创造。让我们一起享受编程的乐趣吧!
2025-03-23 16:13:26
38
繁华落尽
Beego
... Beego集成测试示例 Beego通过中间件机制使得集成测试变得相对容易。我们完全可以在控制器这一层面上,动手编写集成测试。就拿检查路由、处理请求、保存数据这些操作来说,都是我们可以验证的对象。比如,想象一下你正在玩一个游戏,你要确保从起点到终点的每一个步骤(就好比路由和请求处理)都能顺畅进行,而且玩家的所有进度都能被稳妥地记录下来(这就类似数据持久化的过程)。这样,咱们就能在实际运行中对整个系统做全面健康检查啦!创建一个controller_test.go文件并添加如下内容: go package controllers import ( "net/http" "testing" "github.com/astaxie/beego" "github.com/stretchr/testify/assert" ) type MockUserService struct{} func (m MockUserService) GetUser(id int64) (User, error) { return &User{ID: id, Name: fmt.Sprintf("User %d", id)}, nil } func TestUserController_GetByID(t testing.T) { userService := &MockUserService{} ctrl := NewUserController(userService) beego.SetController(&ctrl) request, _ := http.NewRequest("GET", "/users/1", nil) response := new(http.Response) defer response.Body.Close() _ctrl := beego.NewControllerWithRequest(request) _ctrl.ServeHTTP(response, nil) if response.StatusCode != http.StatusOK { t.Fatalf("Expected status code 200 but got %d", response.StatusCode) } userData, err := getUserFromResponse(response) assert.NoError(t, err) assert.NotNil(t, userData) assert.Equal(t, "User 1", userData.Name) } func getUserFromResponse(r http.Response) (User, error) { var user User err := json.Unmarshal(r.Body, &user) return &user, err } 五、结论 通过以上讲解,相信你已经掌握了如何在Beego项目中编写单元测试和集成测试,它们各自对代码质量保障和功能协作的有效性不容忽视。在实际做项目的时候,咱们得瞅准不同的应用场景,灵活选用最对口的测试方案。并且,持续打磨、改进测试覆盖面,这样一来,你的代码质量就能妥妥地更上一个台阶,杠杠的!祝你在Beego开发之旅中,既能写出高质量的代码,又能保证万无一失的功能交付!
2024-02-09 10:43:01
460
落叶归根-t
转载文章
...据集学到一个模型对新示例进行分类的过程。下图所示为一个流程图的决策树,长方形代表判断模块(decision block),椭圆形代表终止模块(terminating block),表示已经得出结论,可以终止运行。从判断模块引出的左右箭头称作分支(branch),可以达到另一个判断模块或终止模块。 决策过程是基于树结构来进行决策的。如下图,首先检查邮件域名地址,如果地址为myEmployer.com,则将其分类为“无聊时需要阅读的邮件”。否则,则检查邮件内容里是否包含单词“曲棍球”,如果包含则归类为“需要及时处理的朋友邮件”,如果不包含则归类到“无需阅读的垃圾邮件” 流程图形式的决策树 显然,决策过程的最终结论对应了我们所希望的判定结果,例如"需要阅读"或"不需要阅读”。 决策过程中提出的每个判定问题都是对某个属性的"测试",如邮件地址域名为?是否包含“曲棍球”? 每个测试的结果或是导出最终结论,或是导出进一步的判定问题,其考虑范围是在上次决策结果的限定范围之内,例如若邮件地址域名不是myEmployer.com之后再判断是否包含“曲棍球”。 一般的,决策树包含一个根节点、若干个内部节点和若干个叶节点。根节点包含样本全集;叶节点对应于决策结果,例如“无聊时需要阅读的邮件”。其他每个结点则对应于一个属性测试;每个节点包含的样本集合根据属性测试的结果被划分到子结点中。 决策树学习基本算法 显然,决策树的生成是一个递归过程.在决策树基本算法中,有三种情形会导致递归返回: (1)当前结点包含的样本全属于同一类别,无需划分; (2)当前属性集为空,或是所有样本在所有属性上取值相同,无法划分; (3)当前结点包含的样本集合为空,不能划分。 2、划分选择 决策树算法的关键是如何选择最优划分属性。一般而言,随着划分过程不断进行,我们希望决策树的分支结点所包含的样本尽可能属于同一类别,即结点的"纯度" (purity)越来越高。 (1)信息增益 信息熵 "信息熵" (information entropy)是度量样本集合纯度最常用的一种指标,定义为信息的期望。假定当前样本集合 D 中第 k 类样本所占的比例为 ,则 D 的信息熵定义为: H(D)的值越小,则D的纯度越高。信息增益 一般而言,信息增益越大,则意味着使周属性 来进行划分所获得的"纯度提升"越大。因此,我们可用信息增益来进行决策树的划分属性选择,信息增益越大,属性划分越好。 以西瓜书中表 4.1 中的西瓜数据集 2.0 为例,该数据集包含17个训练样例,用以学习一棵能预测设剖开的是不是好瓜的决策树.显然,。 在决策树学习开始时,根结点包含 D 中的所有样例,其中正例占 ,反例占 信息熵计算为: 我们要计算出当前属性集合{色泽,根蒂,敲声,纹理,脐部,触感}中每个属性的信息增益。以属性"色泽"为例,它有 3 个可能的取值: {青绿,乌黑,浅自}。若使用该属性对 D 进行划分,则可得到 3 个子集,分别记为:D1 (色泽=青绿), D2 (色泽2=乌黑), D3 (色泽=浅白)。 子集 D1 包含编号为 {1,4,6,10,13,17} 的 6 个样例,其中正例占 p1=3/6 ,反例占p2=3/6; D2 包含编号为 {2,3,7,8, 9,15} 的 6 个样例,其中正例占 p1=4/6 ,反例占p2=2/6; D3 包含编号为 {5,11,12,14,16} 的 5 个样例,其中正例占 p1=1/5 ,反例占p2=4/5; 根据信息熵公式可以计算出用“色泽”划分之后所获得的3个分支点的信息熵为: 根据信息增益公式计算出属性“色泽”的信息增益为(Ent表示信息熵): 类似的,可以计算出其他属性的信息增益: 显然,属性"纹理"的信息增益最大,于是它被选为划分属性。图 4.3 给出了基于"纹理"对根结点进行划分的结果,各分支结点所包含的样例子集显示在结点中。 然后,决策树学习算法将对每个分支结点做进一步划分。以图 4.3 中第一个分支结点( "纹理=清晰" )为例,该结点包含的样例集合 D 1 中有编号为 {1, 2, 3, 4, 5, 6, 8, 10, 15} 的 9 个样例,可用属性集合为{色泽,根蒂,敲声,脐部 ,触感}。基于 D1计算出各属性的信息增益: "根蒂"、 "脐部"、 "触感" 3 个属性均取得了最大的信息增益,可任选其中之一作为划分属性.类似的,对每个分支结点进行上述操作,最终得到的决策树如圈 4.4 所示。 3、剪枝处理 剪枝 (pruning)是决策树学习算法对付"过拟合"的主要手段。决策树剪枝的基本策略有"预剪枝" (prepruning)和"后剪枝 "(post" pruning) [Quinlan, 1993]。 预剪枝是指在决策树生成过程中,对每个结点在划分前先进行估计,若当前结点的划分不能带来决策树泛化性能提升,则停止划 分并将当前结点标记为叶结点; 后剪枝则是先从训练集生成一棵完整的决策树,然后自底向上地对非叶结点进行考察,若将该结点对应的子树替换为叶结点能带来决策树泛化性能提升,则将该子树替换为叶结点。 往期回顾 ● 带你详细了解机器视觉竞赛—ILSVRC竞赛 ● 到底什么是“机器学习”?机器学习有哪些基本概念?(简单易懂) ● 带你自学Python系列(一):变量和简单数据类型(附思维导图) ● 带你自学Python系列(二):Python列表总结-思维导图 ● 2018年度最强的30个机器学习项目! ● 斯坦福李飞飞高徒Johnson博士论文: 组成式计算机视觉智能(附195页PDF) ● 一文详解计算机视觉的广泛应用:网络压缩、视觉问答、可视化、风格迁移 本篇文章为转载内容。原文链接:https://blog.csdn.net/Sophia_11/article/details/113355312。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-27 21:53:08
285
转载
Dubbo
...其原理,还将通过代码示例展示如何在实际项目中应用这一特性。 1. Dubbo异步调用的原理 在传统的RPC调用中,客户端向服务器发送请求后,必须等待服务器响应才能继续执行后续操作。哎呀,你知道的,在那些超级繁忙的大系统里,咱们用的那种等待着一个任务完成后才开始另一个任务的方式,很容易就成了系统的卡点,让整个系统跑不动或者跑得慢。就像是在一条繁忙的街道上,大家都在排队等着过马路,结果就堵得水泄不通了。Dubbo通过引入异步调用机制,极大地提升了系统的响应能力和吞吐量。 Dubbo的异步调用主要通过Future接口来实现。当客户端发起异步调用时,它会生成一个Future对象,并在服务器端返回结果后,通过这个对象获取结果。这种方式允许客户端在调用完成之前进行其他操作,从而充分利用了系统资源。 2. 实现异步调用的步骤 假设我们有一个简单的服务接口 HelloService,其中包含一个异步调用的方法 sayHelloAsync。 java public interface HelloService { CompletableFuture sayHelloAsync(String name); } @Service @Reference(async = true) public class HelloServiceImpl implements HelloService { @Override public CompletableFuture sayHelloAsync(String name) { return CompletableFuture.supplyAsync(() -> "Hello, " + name); } } 在这段代码中,HelloService 接口定义了一个异步方法 sayHelloAsync,它返回一个 CompletableFuture 类型的结果。哎呀,兄弟!你瞧,咱们的HelloServiceImpl就像个小机灵鬼,它可聪明了,不仅实现了接口,还在sayHelloAsync方法里玩起了高科技,用CompletableFuture.supplyAsync这招儿,给咱们来了个异步大戏。这招儿一出,嘿,整个程序都活了起来,后台悄悄忙活,不耽误事儿,等干完活儿,那结果直接就送到咱们手里,方便极了! 3. 客户端调用异步方法 在客户端,我们可以通过调用 Future 对象的 thenAccept 方法来处理异步调用的结果,或者使用 whenComplete 方法来处理结果和异常。 java @Autowired private HelloService helloService; public void callHelloAsync() { CompletableFuture future = helloService.sayHelloAsync("World"); future.thenAccept(result -> { System.out.println("Received response: " + result); }); } 这里,我们首先通过注入 HelloService 实例来调用 sayHelloAsync 方法,然后使用 thenAccept 方法来处理异步调用的结果。这使得我们在调用方法时就可以进行其他操作,而无需等待结果返回。 4. 性能优化与实战经验 在实际应用中,利用Dubbo的异步调用可以显著提升系统的性能。例如,在电商系统中,商品搜索、订单处理等高并发场景下,通过异步调用可以避免因阻塞等待导致的系统响应延迟,提高整体系统的响应速度和处理能力。 同时,合理的异步调用策略也需要注意以下几点: - 错误处理:确保在处理异步调用时正确处理可能发生的异常,避免潜在的错误传播。 - 超时控制:为异步调用设置合理的超时时间,避免长时间等待单个请求影响整个系统的性能。 - 资源管理:合理管理线程池大小和任务队列长度,避免资源过度消耗或任务积压。 结语 通过本文的介绍,我们不仅了解了Dubbo异步调用的基本原理和实现方式,还通过具体的代码示例展示了如何在实际项目中应用这一特性。哎呀,你知道吗?当咱们玩儿的分布式系统越来越复杂,就像拼积木一样,一块儿比一块儿大,这时候就需要一个超级厉害的工具来帮我们搭房子了。这个工具就是Dubbo,它就像是个万能遥控器,能让我们在不同的小房间(服务)之间畅通无阻地交流,特别适合咱们现在搭建高楼大厦(分布式应用)的时候用。没有它,咱们可得费老鼻子劲儿了!兄弟,掌握Dubbo的异步调用这招,简直是让你的程序跑得飞快,就像坐上了火箭!而且,这招还能让咱们在设计程序时有更多的花样,就像是厨师有各种调料一样,能应付各种复杂的菜谱,无论是大鱼大肉还是小清新,都能轻松搞定。这样,你的系统就既能快又能灵活,简直就是程序员界的武林高手嘛!
2024-08-03 16:26:04
341
春暖花开
JSON
...下面是一些简单的代码示例,展示如何在JavaScript中生成和解析带有换行符的JSON数据。 示例1:生成JSON字符串 javascript const data = { poem: "静夜思\n床前明月光,\n疑是地上霜。\n举头望明月,\n低头思故乡。", email: "亲爱的李四:\n\n很高兴收到您的来信。以下是我的回复:\n\n第一段内容...\n第二段内容..." }; // 将对象转换为JSON字符串 const jsonString = JSON.stringify(data); console.log(jsonString); 运行这段代码后,你会看到类似这样的输出: json {"poem":"静夜思\\n床前明月光,\\n疑是地上霜。\\n举头望明月,\\n低头思故乡。","email":"亲爱的李四:\\n\\n很高兴收到您的来信。以下是我的回复:\\n\\n第一段内容...\\n第二段内容..."} 可以看到,在生成的JSON字符串中,所有的\n都被转义成了\\n。 示例2:解析JSON字符串 javascript const jsonString = '{"poem":"静夜思\\n床前明月光,\\n疑是地上霜。\\n举头望明月,\\n低头思故乡。","email":"亲爱的李四:\\n\\n很高兴收到您的来信。以下是我的回复:\\n\\n第一段内容...\\n第二段内容..."}'; // 将JSON字符串解析回对象 const parsedData = JSON.parse(jsonString); console.log(parsedData.poem); console.log(parsedData.email); 运行这段代码后,你会看到如下输出: 静夜思 床前明月光, 疑是地上霜。 举头望明月, 低头思故乡。 亲爱的李四: 很高兴收到您的来信。以下是我的回复: 第一段内容... 第二段内容... 瞧!我们的换行符终于生效啦! --- 七、总结与反思 好了,今天的分享就到这里啦!通过这篇文章,我们不仅了解了如何在JSON中处理多次换行的内容,还学习了一些实用的小技巧。虽然JSON看似简单,但它背后隐藏着很多有趣的细节。希望这些知识能帮助你在未来的编程旅程中更加游刃有余。 最后,我想说的是,编程不仅仅是冷冰冰的技术活儿,它也是一种艺术形式。每一次解决问题的过程,都充满了挑战和乐趣。所以,不管遇到什么困难,都别轻易放弃,试着去思考、去尝试,说不定下一个突破就在前方等着你呢! 祝大家 coding愉快! 😊
2025-04-02 15:38:06
54
时光倒流_
ElasticSearch
...icsearch高效整合分布式数据资源,已成为许多企业亟需解决的问题。专家建议,企业在部署Elasticsearch时应优先考虑采用云原生架构,这样不仅能大幅降低运维成本,还能显著提高系统的容灾能力。 总而言之,无论是技术层面还是管理层面,Elasticsearch的应用都需要我们保持高度的警觉和敏锐的洞察力。正如古语所说:“千里之堤,溃于蚁穴。”只有注重每一个细节,才能真正发挥这项技术的巨大潜力。未来,随着更多创新解决方案的涌现,相信Elasticsearch将在推动数字经济发展的过程中扮演越来越重要的角色。
2025-04-20 16:05:02
64
春暖花开
HBase
...能表现的重点要素~ 示例代码(创建表并插入数据): java Configuration config = HBaseConfiguration.create(); config.set("hbase.zookeeper.quorum", "zk_host:2181"); HTable table = new HTable(config, "test_table"); Put put = new Put(Bytes.toBytes("row_key")); put.add(Bytes.toBytes("cf"), Bytes.toBytes("cq"), Bytes.toBytes("value")); table.put(put); 3. HBase性能测试方法 (1)基准测试 使用Apache BenchMark工具(如YCSB,Yahoo! Cloud Serving Benchmark),可以模拟不同场景下的读写压力,以此评估HBase的基础性能。比如说,我们可以尝试调整各种不同的参数来考验HBase,就好比设置不同数量的同时在线用户,改变他们的操作行为(比如读取或者写入数据),甚至调整数据量的大小。然后,咱们就可以通过观察HBase在这些极限条件下的表现,看看它是否能够坚挺如初,表现出色。 (2)监控分析 利用HBase自带的监控接口或第三方工具(如Grafana+Prometheus)实时收集并分析集群的各项指标,如RegionServer负载均衡状况、内存使用率、磁盘I/O、RPC延迟等,以发现可能存在的性能瓶颈。 4. HBase性能调优策略 (1)配置优化 - 网络参数:调整hbase.client.write.buffer大小以适应网络带宽和延迟。 - 内存分配:合理分配BlockCache和MemStore的空间,以平衡读写性能。 - Region大小:根据数据访问模式动态调整Region大小,防止热点问题。 (2)架构优化 - 增加RegionServer节点,提高并发处理能力。 - 采用预分裂策略避免Region快速膨胀导致的性能下降。 (3)数据模型优化 - 合理设计RowKey,实现热点分散,提升查询效率。 - 根据查询需求选择合适的列族压缩算法,降低存储空间占用。 5. 实践案例与思考过程 在一次实践中,我们发现某业务场景下HBase读取速度明显下滑。经过YCSB压测后,定位到RegionServer的BlockCache已满,导致频繁的磁盘IO。于是我们决定给BlockCache扩容,让它变得更大些,同时呢,为了让热点现象不再那么频繁出现,我们对RowKey的结构进行了大刀阔斧的改造。这一系列操作下来,最终咱们成功让系统的性能蹭蹭地往上提升啦!在这个过程中,我们可是实实在在地感受到了,摸清业务特性、一针见血找准问题所在,还有灵活运用各种调优手段的重要性,这简直就像是打游戏升级一样,缺一不可啊! 6. 结语 性能测试与调优是HBase运维中的必修课,它需要我们既具备扎实的技术理论知识,又要有敏锐的洞察力和丰富的实践经验。经过对HBase从头到脚、一丝不苟的性能大考验,再瞅瞅咱的真实业务场景,咱们能针对性地使出一些绝招进行调优。这样一来,HBase就能更溜地服务于我们的业务需求,在大数据的世界里火力全开,展现它那无比强大的能量。
2023-03-14 18:33:25
581
半夏微凉
转载文章
...程,用户可以跟随代码示例一步步掌握线性代数在机器学习中的具体应用,紧跟技术发展的前沿趋势。 总的来说,随着机器学习领域的不断发展和创新,线性代数的重要性日益凸显,而上述延伸阅读内容恰好反映了这一领域最新的研究成果、教育资源以及社区动态,为致力于提升自身技能的机器学习爱好者和专业人士提供了有力的学习支持。
2023-11-14 09:21:43
327
转载
转载文章
...135846,141002,138945,140853,141677,138878,137978,141200,140173,131246,132552,137743,138165,107315,138883,140259,141754,140201,138585,141650,138253,140114,136196,140325,140579,133847,140793,140066,134046,131423,137703,110085,127969,140957,141581,140593,140865,139886,138426,138941,141190,140596&net=&os=&sp=null&rm_brand=0&callback=jsonp1&wd{aim}&sugmode=2&lid=12389568409845924354&sugid=1990018821100998871&preqy=java&_=1580993331416'headers = {'User-Agent': Faker().user_agent(),'Host': 'm.baidu.com','Referer': 'https://m.baidu.com/ssid=4348023d/s?word={aim}&ts=3254538&t_kt=0&ie=utf-8&rsv_iqid=2845402975&rsv_t=daabpEKSG2wGueEO%252FnXSVz2dj3oGTk5cF1suYK9xduVIBAnyA5yo&sa=ib&rsv_pq=2845402975&rsv_sug4=5130&tj=1&inputT=2405&sugid=1990018821100998871&ss=100'}res = requests.get(url, headers=headers) 由于获取到的数据不是标准的json数据要进行字符串的删减result = json.loads(res.text.replace('jsonp1', '').strip('()')) 保存到txt文件with open(f'百度下拉词.txt', mode='a', encoding='utf-8') as file:for key in result['g']:file.write(key + '\n')def main():"""进行整合,并捕捉错误"""name = input('请输入文件的名字:')start_time = time.time()try:letter = get_aim(name).split('\n') 利用线程池加快爬取速度with concurrent.futures.ThreadPoolExecutor(max_workers=100) as executor:for l in letter:executor.submit(get_data, l)except:print('请检查文件名是否存在或者文件名是否错误!!')else: 提示用户完成并打印运行时间时间print('' 30 + f'<{name}> 百度相关词 已完成' + '' 30)finally:print(time.time() - start_time)if __name__ == '__main__':main() 在此 要感谢我的晨哥!!!哈哈 本篇文章为转载内容。原文链接:https://blog.csdn.net/Result_Sea/article/details/104201970。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-21 12:59:26
491
转载
Cassandra
... 五、案例研究与代码示例 假设我们正在管理一个Cassandra集群,并遇到了“CommitLogTooManySnapshotsInProgressException”。 步骤1:配置调整 yaml 在cassandra.yaml中增加快照并发创建数 snapshots.concurrent_compactions: 10 步骤2:监控配置 yaml 配置Prometheus监控,用于实时监控集群状态 prometheus: enabled: true bind_address: '0.0.0.0' port: 9100 步骤3:实施监控与警报 在Prometheus中添加Cassandra监控指标,设置警报规则,当快照操作异常或磁盘使用率过高时触发警报。 yaml Prometheus监控规则 rules: - alert: HighSnapshotConcurrency expr: cassandra_snapshot_concurrency > 5 for: 1m labels: severity: critical annotations: description: "The snapshot concurrency is high, which might lead to the CommitLogTooManySnapshotsInProgressException." runbook_url: "https://your-runbook-url.com" - alert: DiskUsageHigh expr: cassandra_disk_usage_percentage > 80 for: 1m labels: severity: warning annotations: description: "Disk usage is high, potentially causing performance degradation and failure of snapshot operations." runbook_url: "https://your-runbook-url.com" 六、总结与反思 面对“CommitLogTooManySnapshotsInProgressException”,关键在于综合考虑业务需求、系统资源和配置策略。通过合理的配置调整、有效的监控与警报机制,可以有效地预防和解决此类问题,确保Cassandra集群稳定高效地运行。哎呀,每次碰到这些难题然后搞定它们,就像是在给咱们的系统管理与优化上加了个经验值似的,每次都能让我们在分布式数据库这块领域里走得更远,不断尝试新的东西,不断创新!就像打游戏升级一样,每一次挑战都让咱们变得更强大!
2024-09-27 16:14:44
125
蝶舞花间
Beego
...化了权限管理。 - 示例代码: go type Role struct { ID int64 Name string } type User struct { ID int64 Username string Roles []Role // 用户可以拥有多个角色 } func (u User) HasPermission(permission string) bool { for _, role := range u.Roles { if role.Name == permission { return true } } return false } 2. JWT(JSON Web Token)认证 - JWT允许你在不依赖于服务器端会话的情况下验证用户身份,非常适合微服务架构。 - 示例代码: go package main import ( "github.com/astaxie/beego" "github.com/dgrijalva/jwt-go" "net/http" "time" ) var jwtSecret = []byte("your_secret_key") type Claims struct { Username string json:"username" jwt.StandardClaims } func loginHandler(c beego.Context) { username := c.Input().Get("username") password := c.Input().Get("password") // 这里应该有验证用户名和密码的逻辑 token := jwt.NewWithClaims(jwt.SigningMethodHS256, Claims{ Username: username, StandardClaims: jwt.StandardClaims{ ExpiresAt: time.Now().Add(time.Hour 72).Unix(), }, }) tokenString, err := token.SignedString(jwtSecret) if err != nil { c.Ctx.ResponseWriter.WriteHeader(http.StatusInternalServerError) return } c.Data[http.StatusOK] = []byte(tokenString) } func authMiddleware() beego.ControllerFunc { return func(c beego.Controller) { tokenString := c.Ctx.Request.Header.Get("Authorization") token, err := jwt.ParseWithClaims(tokenString, &Claims{}, func(token jwt.Token) (interface{}, error) { return jwtSecret, nil }) if claims, ok := token.Claims.(Claims); ok && token.Valid { // 将用户信息存储在session或者全局变量中 c.SetSession("user", claims.Username) c.Next() } else { c.Ctx.ResponseWriter.WriteHeader(http.StatusUnauthorized) } } } 3. 中间件与拦截器 - 利用Beego的中间件机制,我们可以为特定路由添加权限检查逻辑,从而避免重复编写相同的权限校验代码。 - 示例代码: go func AuthRequiredMiddleware() beego.ControllerFunc { return func(c beego.Controller) { if !c.GetSession("user").(string) { c.Redirect("/login", 302) return } c.Next() } } func init() { beego.InsertFilter("/admin/", beego.BeforeRouter, AuthRequiredMiddleware) } 四、实际应用案例分析 让我们来看一个具体的例子,假设我们正在开发一款在线教育平台,需要对不同类型的用户(学生、教师、管理员)提供不同的访问权限。例如,只有管理员才能删除课程,而学生只能查看课程内容。 1. 定义用户类型 - 我们可以通过枚举类型来表示不同的用户角色。 - 示例代码: go type UserRole int const ( Student UserRole = iota Teacher Admin ) 2. 实现权限验证逻辑 - 在每个需要权限验证的操作之前,我们都需要先判断当前登录用户是否具有相应的权限。 - 示例代码: go func deleteCourse(c beego.Controller) { if userRole := c.GetSession("role"); userRole != Admin { c.Ctx.ResponseWriter.WriteHeader(http.StatusForbidden) return } // 执行删除操作... } 五、总结与展望 通过上述讨论,我们已经了解了如何在Beego框架下实现基本的用户权限管理系统。当然,实际应用中还需要考虑更多细节,比如异常处理、日志记录等。另外,随着业务越做越大,你可能得考虑引入一些更复杂的权限管理系统了,比如可以根据不同情况灵活调整的权限分配,或者可以精细到每个小细节的权限控制。这样能让你的系统管理起来更灵活,也更安全。 最后,我想说的是,无论采用哪种方法,最重要的是始终保持对安全性的高度警惕,并不断学习最新的安全知识和技术。希望这篇文章能对你有所帮助! --- 希望这样的风格和内容符合您的期待,如果有任何具体需求或想要进一步探讨的部分,请随时告诉我!
2024-10-31 16:13:08
167
初心未变
Cassandra
...被踢走。 示例代码: java // 设置Key Cache大小为100MB,并启用TTL功能 Cluster cluster = Cluster.builder() .addContactPoint("127.0.0.1") .withQueryOptions(new QueryOptions().setConsistencyLevel(ConsistencyLevel.ONE)) .withPoolingOptions(new PoolingOptions().setMaxSimultaneousRequestsPerConnectionLocal(128)) .withCodecRegistry(DefaultCodecRegistry.DEFAULT) .withConfigLoader(new ConfigLoader() { @Override public Config loadConfig() { return ConfigFactory.parseString( "cassandra.key_cache_size_in_mb: 100\n" + "cassandra.key_cache_save_period: 14400\n" + "cassandra.key_cache_tti_seconds: 3600" ); } }) .build(); 在这个例子中,我们设置了Key Cache的大小为100MB,并启用了TTL功能,TTL时间为3600秒(即1小时)。这就相当于说,哪怕某个东西刚被人用过没多久,但只要超过了1个小时,就会被系统踢走,不管三七二十一,直接清掉! --- 3. Row Cache 缓存整行数据 接下来聊聊Row Cache。Row Cache就像是个专门存整行数据的小金库,特别适合那种经常被人翻出来看,但几乎没人动它的东西。相比Key Cache,Row Cache的命中率更高,但占用的内存也更多。 3.1 缓存清洗策略:手动控制 Row Cache的清洗策略相对简单,主要依赖于手动配置。你可以通过调整row_cache_size_in_mb参数来控制Row Cache的大小。如果Row Cache满了,Cassandra会根据LRU算法淘汰最老的缓存项。 思考过程: 说实话,Row Cache的使用场景比较有限。Row Cache虽然能加快访问速度,但它特别“占地儿”,把内存占得满满当当的。更麻烦的是,它还爱“喜新厌旧”——一旦被踢出去,下次再想用的时候就得老老实实重新把数据装回来,挺折腾的。这不仅增加了延迟,还可能导致系统抖动。所以,在实际项目中,我建议谨慎使用Row Cache。 示例代码: yaml 配置Row Cache大小为50MB cassandra.row_cache_size_in_mb: 50 这段配置非常直观,直接设置了Row Cache的大小为50MB。要是你的电脑内存还挺空闲的,而且有些数据你经常要用到的话,那就可以试试打开 Row Cache 这个功能,这样能让你查东西的时候更快一点! --- 4. 缓存清洗的挑战与优化 最后,我想谈谈缓存清洗面临的挑战以及一些优化思路。 4.1 挑战:缓存一致性与性能平衡 缓存清洗的一个重要挑战是如何保持一致性。例如,当某个数据被更新时,缓存中的旧版本应该及时失效。然而,频繁的缓存失效会导致性能下降。所以啊,咱们得找那么个折中的办法,既能保证缓存里的数据跟实际的是一模一样的,又不用老是去清理它,省得麻烦。 我的理解: 其实,这个问题的本质是权衡。咱得好好琢磨这缓存的事儿啊!一方面呢,可不能让它变成脏数据的老窝,不然麻烦就大了;另一方面嘛,又希望能把缓存稳住,别老是频繁地刷新清洗,太折腾了。我觉得,可以通过动态调整TTL值来解决这个问题。比如说,那些经常要更新的数据,咱们就给它设个短一点的TTL(就是“生存时间”啦),这样过段时间就自动清理掉,省得占地方。但要是那些很少更新的数据呢,就可以设个长点的TTL,让它在那儿多待会儿,不用频繁操心。 4.2 优化:监控与调参 另一个重要的优化方向是监控和调参。Cassandra自带一堆超实用的监控数据,像缓存命中率这种关键指标,还有缓存命中的具体时间啥的,都能一清二楚地给你展示出来!通过这些指标,我们可以实时了解缓存的状态,并据此调整参数。 实际经验: 记得有一次,我们的Key Cache命中率突然下降,经过排查发现是因为缓存大小设置得太小了。嘿,咱们就实话实说吧!之前Key Cache的容量才50MB,小得可怜,后来一狠心把它调大到200MB,结果怎么样?效果立竿见影啊,命中率直接飙升了20%以上,简直像是给系统开挂了一样!所以,定期监控和动态调整参数是非常必要的。 --- 5. 结语 好了,到这里,关于Cassandra的缓存清洗策略就聊完了。总的来说,缓存清洗是个复杂但有趣的话题。它考验着我们的技术水平,也锻炼着我们的耐心和细心。 希望大家在实际工作中,能够根据自己的业务特点,合理选择缓存策略。记住,没有一成不变的最佳实践,只有最适合你的解决方案。 好了,今天就到这里吧!如果你还有其他问题,欢迎随时来找我讨论。咱们下次再见啦!👋
2025-05-11 16:02:40
68
心灵驿站
Redis
...集合,并通过实际代码示例展示它们的使用技巧。 1. 字符串(Strings) Redis的字符串类型是所有数据结构的基础,适用于存储键值对、短文本、数字等数据。使用字符串进行操作时,我们可以利用其简洁的API来增强应用程序的性能。 代码示例: bash 设置一个字符串 redis-cli set mykey "Hello, Redis!" 获取字符串内容 redis-cli get mykey 思考过程: 在实际应用中,字符串经常用于存储配置信息或者简单键值对。通过设置和获取操作,我们可以轻松地管理这些数据。 2. 哈希表(Hashes) 哈希表是一种将键映射到值的结构,非常适合用于存储关联数据,如用户信息、产品详情等。Redis的哈希表允许我们以键-值对的形式存储数据,并且可以通过键访问特定的值。 代码示例: bash 创建一个哈希表并添加键值对 redis-cli hset user:1 name "Alice" age "25" 获取哈希表中的值 redis-cli hget user:1 name redis-cli hget user:1 age 删除哈希表中的键值对 redis-cli hdel user:1 age 思考过程: 哈希表的灵活性使得我们在构建复杂对象时能够更方便地组织和访问数据。比如说,在咱们的用户认证系统里头,要是你想知道某个用户的年纪或者别的啥信息,直接输入用户名,嗖的一下就全搞定了。就像是在跟老朋友聊天,一说出口,他最近的动态、年龄这些事儿,咱心里门儿清。 3. 列表(Lists) 列表是一种双端链表,可以插入和删除元素,适合用于实现队列、栈或者保存事件历史记录。列表的特性使其在处理序列化数据或消息队列时非常有用。 代码示例: bash 向列表尾部添加元素 redis-cli rpush messages "Hello" redis-cli rpush messages "World" 从列表头部弹出元素 redis-cli lpop messages 查看列表中的元素 redis-cli lrange messages 0 -1 移除列表中的指定元素 redis-cli lrem messages "World" 1 思考过程: 列表的动态性质使得它们成为处理实时数据流的理想选择。比如说,在咱们常用的聊天软件里头,新来的消息就像新鲜出炉的面包一样,被放到了面包篮的最底下,而那些老掉牙的消息就给挤到一边去了,这样做的目的就是为了保证咱们聊天界面能一直保持最新鲜、最实时的状态。就像是在超市里,你每次买完东西,最前面的架子上总是最新的商品,那些旧货就被推到后面去一样。 4. 集合(Sets) 集合是无序、不重复的元素集合,适合用于存储唯一项或进行元素计数。Redis的集合操作既高效又安全,是实现去重、投票系统或用户兴趣聚合的理想选择。 代码示例: bash 向集合添加元素 redis-cli sadd users alice bob charlie 检查元素是否在集合中 redis-cli sismember users alice 移除集合中的元素 redis-cli srem users bob 计算集合的大小 redis-cli scard users 思考过程: 集合的唯一性保证了数据的纯净度,同时其高效的操作速度使其成为处理大量用户交互数据的首选。在投票系统中,用户的选择会被自动去重,确保了统计的准确性。 结语 Redis提供的这些数据结构,无论是单独使用还是结合使用,都能极大地提升应用的性能和灵活性。通过上述代码示例和思考过程的展示,我们可以看到,Redis不仅仅是一个简单的键值存储系统,而是内存世界中的一把万能钥匙,帮助我们解决各种复杂问题。哎呀,不管你是想捣鼓个能秒回消息的聊天软件,还是想要打造个能精准推荐的神器,亦或是设计一套复杂到让人头大的分布式计算平台,Redis这货简直就是你的秘密武器啊!它就像个全能的魔法师,能搞定各种棘手的问题,让你在编程的路上顺风顺水,轻松应对各种挑战。在未来的开发旅程中,掌握这些数据结构的使用技巧,将使你能够更加游刃有余地应对各种挑战。
2024-08-20 16:11:43
99
百转千回
转载文章
...D 0.6.3 执行示例程序 实验环境 ubuntu 16.04.5,桥接模式。 版本:ndn-cxx-0.6.3,NFD-0.6.3 原文安装方法: ndn-cxx-0.6.3:http://named-data.net/doc/ndn-cxx/current/INSTALL.html NFD-0.6.3:https://named-data.net/doc/NFD/0.6.3/INSTALL.html 开始 本人搭了很久,脑袋都大了,终于在经历了千辛万苦之后把这个鬼东西给搭出来了。ndn-cxx-0.6.3是基础,NFD要依赖ndn-cxx的库,所以我们先来安装ndn-cxx。 我是直接从网站上下载的两个源代码,所以安装过程中和指导文献有所不同。 安装ubuntu 16.04.5 安装之后,有几个安装过程中需要用到的软件: 打开终端 ctrl+alt+t sudo apt-get updatesudo apt-get install vimsudo apt-get install curl 之后,我们把下载好的ndn-cxx 0.6.3和NFD 0.6.3拷贝到:/usr/local/lib 路径下(不要问为啥,计算机路径这个东西真是恶心人),完成之后我们开始安装ndn-cxx 0.6.3 安装ndn-cxx 0.6.3 打开终端: ctrl+alt+t sudo apt-get install build-essential libsqlite3-dev libboost-all-dev libssl-dev sudo apt-get install doxygen graphviz python-sphinx python-pip 这里指导安装步骤还有sudo pip install sphinxcontrib-doxylink sphinxcontrib-googleanalytics,这个可能是以前的版本需要的依赖的包,但在0.6.3中并不需要,而且装上还会报错(卡在这里好久),因此我们就不装这个。 之后我们进入ndn-cxx 0.6.3的根目录: cd /usr/local/lib/ndn-cxx-0.6.3 接连执行以下命令 sudo ./waf configuresudo ./wafsudo ./waf install 在运行第2个命令的时候,会出现如下结果: 我们这里不用理会(不知道为啥,虽然出了ERROR,但是还是可以运行,可能最后他只是出了个WARNING,而且在过程中,WARNING都是可以忽略的)。等出现如图所示的结果: 我们就可以进行下一步: sudo ldconfig sudo ./waf configure --with-examplessudo ./wafsudo ./waf install 到此,ndn-cxx 0.6.3的环境就装好了。 安装NFD 0.6.3 打开终端,按照以下代码依次输入: sudo apt-get install software-properties-common sudo add-apt-repository ppa:named-data/ppasudo apt-get update sudo apt-get install nfd 原文指导步骤,之后是利用git命令下载ndn-cxx和nfd,因为我们提前下载过了并拷贝进虚拟机,因此,在此忽略该步骤。 sudo apt-get install build-essential pkg-config libboost-all-dev \libsqlite3-dev libssl-dev libpcap-dev sudo apt-get install doxygen graphviz python-sphinx 之后,我们进入nfd 0.6.3根目录: cd /usr/local/lib/nfd-0.6.3 进入root模式,安装一个库(很重要,因为我们不是利用git命令安装,这步必不可少;否则下一步下面会报错中断): sudo sucurl -L https://github.com/zaphoyd/websocketpp/archive/0.7.0.tar.gz > websocket.tar.gztar zxf websocket.tar.gz -C websocketpp/ --strip 1exit 之后,执行以下命令: sudo ./waf configuresudo ./wafsudo ./waf install 同样,过程中出现WARNING不用管。 最后,一定记着执行以下命令: sudo cp /usr/local/etc/ndn/nfd.conf.sample /usr/local/etc/ndn/nfd.conf 这样才能成功开启nfd。 至此,ndn-cxx 0.6.3和nfd 0.6.3全部安装完成。 执行示例程序 打开终端,运行nfd nfd-start(可能需要输入密码) 在ndn-cxx 0.6.3根目录下打开终端,进入examples目录,或者直接在example目录下打开终端(我选择这种方式,因为懒)。 这里,必须先运行producer程序,再运行consumer程序,作为学计算机的,应该不需要解释为啥了吧。 在一个终端下执行producer命令: ./producer 再打开一个终端,执行consumer命令: ./consumer 这时就可以成功看到交互了,但是有点儿问题,consumer会出现warning,如图所示: 这是为啥呢,好像是因为最近的版本,必须为interest报文指定一个默认前缀,为了之后的APP功能设计,详情请看以下链接: http://named-data.net/doc/ndn-cxx/current/doxygen/d1/d81/classndn_1_1Interest.htmla0275843d0eda5134e7fd7e787f972e78 这里我们怎么修改才能让他不显示这个warning呢?按照以下步骤: 进入ndn-cxx 的src目录: cd /usr/local/lib/ndn-cxx-0.6.3/src 修改interest.cpp文件,因为权限设置,我们在root下使用vim命令修改: sudo su(输入密码)vim interest.cpp找到 static bool hasDefaultCanBePrefixWarning = false将false改为true 之后,我们在ndn-cxx 0.6.3目录下再编译运行一下就行了,即: sudo ./waf configure --with-examplessudo ./wafsudo ./waf install 之后再examples目录再执行两个程序,就可以得到结果: 至此环境已经搭好,目前正准备进行后续工作。。。。。 望各位大佬手下留情,转载注明出处,感谢感谢!!!! 本篇文章为转载内容。原文链接:https://blog.csdn.net/silent_time/article/details/84146586。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-30 19:22:59
322
转载
Golang
...决之道,通过实际代码示例来帮助开发者更好地理解和应对这一问题。 理解“未实现” 在 Golang 中,“未实现”(ErrNotImplemented)通常出现在尝试调用一个尚未定义或不被支持的方法、函数或操作时。哎呀,这事儿可有点复杂了。可能是当初做设计的时候,有个什么关键的决定没做好,或者是功能排了个先后顺序,也可能是后来出了新版本,结果就变成了这样。总之,这里面的原因挺多的,得细细琢磨琢磨才行。例如,尝试在一个接口中未实现的方法: go type MyInterface interface { DoSomething() } func main() { var myObject MyInterface myObject.DoSomething() // 这里会触发 ErrNotImplemented 错误,因为 DoSomething 方法没有被实现 } 实际场景中的应用 在实际开发中,遇到“未实现”的情况并不罕见。想象一下,你正在搭建一个超级酷的系统,这个系统能通过API(一种让不同程序沟通的语言)来和其他各种第三方服务对话。就像是在和一群性格迥异的朋友聊天,有的朋友喜欢分享照片,有的则热衷于音乐推荐。在这个过程中,你需要了解每个朋友的喜好,知道什么时候该问他们问题,什么时候该听他们说话,这样才能让整个交流流畅自然。所以,当开发者在构建这种系统的时候,他们就得学会如何与这些“朋友”打交道,确保信息的顺利传递。想象一下,你有个工具箱里放着一把超级多功能的瑞士军刀,但你只需要个简单的螺丝刀。如果你硬是用那把大刀去拧螺丝,肯定搞不定,还可能把螺丝刀弄坏。同理,如果一个API提供了复杂查询的功能,但你的项目只需要简单地拿数据,直接去用那些复杂查询方法,就可能会遇到“未实现”的问题,就像你拿着个高级的多功能工具去做一件只需要基本工具就能搞定的事一样。所以,选择合适的工具很重要! 如何解决“未实现” 1. 明确需求与功能优先级 在开始编码之前,确保对项目的整体需求有清晰的理解,并优先实现那些对业务至关重要的功能。对于非核心需求,可以考虑在未来版本中添加或作为可选特性。 2. 使用空实现或占位符 在设计接口或类时,为未实现的方法提供一个空实现或占位符,这样可以避免运行时的“未实现”错误,同时为未来的实现提供清晰的接口定义。 3. 错误处理与日志记录 在调用可能引发“未实现”错误的代码块前,添加适当的错误检查和日志记录。这不仅有助于调试,也能在问题发生时为用户提供有意义的反馈。 4. 模块化与解耦 通过将功能拆分为独立的模块或服务,可以降低不同部分之间的依赖关系,从而更容易地处理“未实现”的情况。当某个模块的实现发生变化时,其他模块受到的影响也会减少。 5. 持续集成与自动化测试 通过自动化测试,可以在早期阶段捕获“未实现”的错误,确保代码的稳定性和一致性。同时,持续集成流程可以帮助团队及时发现并修复这类问题。 结语 面对“未实现”的挑战,重要的是保持灵活性和前瞻性。哎呀,搞定这个问题得靠点心思呢!首先,你得搞清楚问题的根本原因,这就像解谜一样,得一步步来。然后,安排功能实现的顺序就挺像编排一场精彩的节目,得有头有尾,不能乱套。最后,别忘了设置有效的错误处理策略,就像是给你的项目上了一份保险,万一出啥状况也能从容应对。这样一来,整个过程就能流畅多了,避免了很多不必要的麻烦。在不断学习和实践中,开发者能够更好地适应变化,提升软件质量和用户体验。嘿,听好了!每次碰到那些没搞定的事情,那可是个大好机会,能让你学东西,还能把事情做得更好呢!就像是在玩游戏,遇到难关了,你就得想办法突破,对吧?这不就是升级打怪嘛!所以,别灰心,每一步小小的失败都是通往更牛逼、更灵活的软件系统的必经之路!
2024-07-26 15:58:24
422
素颜如水
Consul
...calhost:8500" client, err := api.NewClient(config) if err != nil { panic(err) } // 存储键值对 _, _, err = client.KV().Put(&api.KVPair{ Key: "myapp/config/db_url", Value: []byte("postgresql://localhost:5432/mydb"), }, nil) if err != nil { fmt.Printf("Error storing key: %v\n", err) } else { fmt.Println("Key-value stored successfully") } } 3. 版本控制与事务 Consul KV Store支持版本控制,这意味着每次更新键值对时,都会记录一个新的版本。这对于确保数据一致性至关重要。例如,你可以使用KV() API的CheckAndSet方法原子性地更新值,只有当键的当前值与预期一致时才进行更新。 go // 更新键值对并确保值匹配 _, _, err = client.KV().CheckAndSet(&api.KVPair{ Key: "myapp/config/db_url", Value: []byte("postgresql://localhost:5432/mydb-updated"), Version: 1, // 假设我们已经知道当前版本是1 }, nil) 4. 过期时间与自动清理 Consul允许为键设置过期时间,一旦超过这个时间,Consul会自动删除该键值对,无需人工干预。这对于临时存储或缓存数据特别有用。 go // 设置过期时间为1小时的键值对 _, _, err = client.KV().Put(&api.KVPair{ Key: "myapp/temp_data", Value: []byte("temp data"), TTL: time.Hour, }, nil) 5. 集群同步与一致性 Consul的KV Store采用复制和一致性算法,确保所有节点上的数据保持同步。当有新数据需要写入时,Consul会发动一次全体节点参与的协同作战,确保这些新鲜出炉的数据会被所有节点稳稳接收到,这样一来,就不用担心数据会神秘消失或者出现啥不一致的情况啦。 6. 动态配置与服务发现 Consul的KV Store常用于动态配置,如应用的环境变量。同时呢,它还跟服务发现玩得可亲密了。具体来说就是,服务实例会主动把自己的信息挂到KV Store这个公告板上,其他服务一看,嘿,只要找到像service/myapp这样的关键词,就能轻松查到这些服务的配置情况和健康状况啦。 go // 注册服务 service := &api.AgentServiceRegistration{ ID: "myapp", Name: "My App Service", Tags: []string{"web"}, Address: "192.168.1.100:8080", } _, _, err = client.Agent().ServiceRegister(service, nil) 7. 总结与展望 Consul的Key-Value存储是其强大功能的核心,它使得数据管理变得简单且可靠。嘿,你知道吗?KV Store就像个超能小管家,在分布式系统里大显身手。它通过灵活的版本控制机制,像记录家族大事记一样,确保每一次数据变动都有迹可循;再搭配上过期时间管理这一神技能,让数据能在合适的时间自动更新换代,永葆青春;最关键的是,它还提供了一致性保证这个法宝,让所有节点的数据都能保持同步协调,稳如磐石。所以说啊,KV Store实实在在地为分布式系统搭建了一个无比坚实的基础支撑。无论是服务发现还是配置管理,Consul都展现了其灵活和实用的一面。随着企业越来越离不开微服务和云原生架构,Consul这个家伙将在现代DevOps的日常运作中持续扮演它的“大主角”,而且这戏份只会越来越重。 --- 在撰写这篇文章的过程中,我尽力将复杂的概念以易于理解的方式呈现,同时也融入了一些代码示例,以便读者能更直观地感受Consul的工作原理。甭管你是刚刚开始摸Consul的开发者小哥,还是正在绞尽脑汁提升自家系统稳定性的工程师大佬,都能从Consul这儿捞到实实在在的好处。希望本文能帮助你在使用Consul时更好地理解和利用其数据存储能力。
2024-03-04 11:46:36
433
人生如戏-t
转载文章
.... 说实话,我不能100%确定地说这是什么,但我有一个非常强烈的怀疑。 我的代码中包含了太多的命名空间,我相信在编译器等实际运行时会出现一些混乱。 显然,Microsoft.Web.Websockets和SignalR的命名空间都包含WebSocketHandler。 虽然我不知道SignalR的所有细节,但看起来THAT命名空间中的WebSocketHandler并不意味着在SignalR之外使用。 我相信这个类正在被引用,而不是Microsoft.Web.Websockets中的那个,因为它现在起 ... 您应该使用websocket处理程序,而不是请求处理程序,尝试使用此示例 You should use the websocket handler, not the request handler, try with this example 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34862561/article/details/119512220。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-19 12:00:21
53
转载
Go Gin
...{ c.JSON(200, gin.H{"message": "Hello, World!"}) }) r.Run(":8080") } 四、高级功能与自定义 除了基本的速率限制配置外,gin-contrib/ratelimit 还提供了丰富的高级功能,允许开发者根据具体需求进行定制化设置。 - 基于 IP 地址的限制: go limiter := ratelimit.New(ratelimit.Config{ AllowedRequests: 5, Duration: time.Minute, PermitsBy: ratelimit.PermitByIP, }) - 基于 HTTP 请求头的限制: go limiter := ratelimit.New(ratelimit.Config{ AllowedRequests: 5, Duration: time.Minute, PermitsBy: ratelimit.PermitByHeader("X-User-ID"), }) - 基于用户会话的限制: go limiter := ratelimit.New(ratelimit.Config{ AllowedRequests: 5, Duration: time.Minute, PermitsBy: ratelimit.PermitBySessionID, }) 这些高级功能允许你更精细地控制哪些请求会被限制,从而提供更精确的访问控制策略。 五、实践案例 基于 IP 地址的限流 假设我们需要限制某个特定 IP 地址的访问频率: go limiter := ratelimit.New(ratelimit.Config{ AllowedRequests: 10, // 每小时最多10次请求 Duration: time.Hour, PermitsBy: ratelimit.PermitByIP, }) // 在路由上应用限流器 r.Use(limiter) 六、性能考量与优化 在实际部署时,考虑到速率限制的性能影响,合理配置限流参数至关重要。哎呀,你得注意了,设定安全防护的时候,这事儿得拿捏好度才行。要是设得太严,就像在门口挂了个大锁,那些坏人进不来,可合法的访客也被挡在外头了,这就有点儿不地道了。反过来,如果设置的门槛太松,那可就相当于给小偷开了个后门,让各种风险有机可乘。所以啊,找那个平衡点,既不让真正的朋友感到不便,又能守住自家的安全,才是王道!因此,建议结合业务场景和流量预测进行参数调整。 同时,选择合适的存储后端也是性能优化的关键。哎呀,你知道的,在处理那些超级多人同时在线的情况时,咱们用 Redis 来当存储小能手,那效果简直不要太好!它就像个神奇的魔法箱,能飞快地帮我们处理各种数据,让系统运行得又顺溜又高效,简直是高并发环境里的大救星呢! 七、结论 通过集成 gin-contrib/ratelimit,我们不仅能够有效地管理 API 访问频率,还能够在保障系统稳定运行的同时,为用户提供更好的服务体验。嘿,兄弟!业务这玩意儿,那可是风云变幻,快如闪电。就像你开车,路况不一,得随时调整方向,对吧?API安全性和可用性这事儿,就跟你的车一样重要。所以,咱们得像老司机一样,灵活应对各种情况,时不时地调整和优化限流策略。这样,不管是高峰还是低谷,都能稳稳地掌控全局,让你的业务顺畅无阻,安全又高效。别忘了,这可是保护咱们业务不受攻击,保证用户体验的关键!希望本文能够帮助你更好地理解和应用 gin-contrib/ratelimit,在构建强大、安全的 API 时提供有力的支持。
2024-08-24 16:02:03
110
山涧溪流
转载文章
...ch01 -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" elasticsearch:7.6.2 查看内存占用情况docker stats 先感觉stop一下docker stop ba18713ca536 3、es 十分耗内存的解决:增加内存的限制,修改配置文件 -e 环境配置修改 通过 -e 限制内存docker run -d --name elasticsearch02 -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" -e ES_JAVA_OPTS="-Xms64m -Xmx512m" elasticsearch:7.6.2 [root@iZwz9535z41cmgcpkm7i81Z /] curl localhost:9200/{"name" : "14329968b00f","cluster_name" : "docker-cluster","cluster_uuid" : "0iDu-G_KTo-4X8KORDj1XQ","version" : {"number" : "7.6.2","build_flavor" : "default","build_type" : "docker","build_hash" : "ef48eb35cf30adf4db14086e8aabd07ef6fb113f","build_date" : "2020-03-26T06:34:37.794943Z","build_snapshot" : false,"lucene_version" : "8.4.0","minimum_wire_compatibility_version" : "6.8.0","minimum_index_compatibility_version" : "6.0.0-beta1"},"tagline" : "You Know, for Search"} 4、思考:用kibana连接elasticsearch? 思考(kibana连接elasticsearch)网络如何连接过去 ☺ 参考来源: 狂神的B站视频《【狂神说Java】Docker最新超详细版教程通俗易懂》 https://www.bilibili.com/video/BV1og4y1q7M4 如果本文对你有帮助的话记得给一乐点个赞哦,感谢! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45630258/article/details/124785912。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-12 10:54:44
66
转载
Go Gin
...一个组里。 示例1:创建一个简单的 Group go package main import ( "github.com/gin-gonic/gin" "net/http" ) func main() { r := gin.Default() // 创建一个用户组 userGroup := r.Group("/users") { // 用户注册接口 userGroup.POST("/register", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{"message": "User registered successfully"}) }) // 用户登录接口 userGroup.POST("/login", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{"message": "Login successful"}) }) } // 启动服务 r.Run(":8080") } 在这段代码里,我们先用 r.Group("/users") 创建了一个名为 /users 的路由组。然后在这个组里定义了两个接口:/register 和 /login。这样一来,所有与用户相关的接口都集中在一个地方,是不是感觉清爽多了? --- 3. 深入探讨 嵌套分组 当然啦,Group 不仅仅能用来分一级路由,还可以嵌套分组,这就像是在衣柜里再加几个小抽屉一样,分类更细致了。 示例2:嵌套分组 go package main import ( "github.com/gin-gonic/gin" "net/http" ) func main() { r := gin.Default() // 创建一个主路由组 mainGroup := r.Group("/api") { // 子路由组:用户相关 userGroup := mainGroup.Group("/users") { userGroup.GET("/", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{"message": "List all users"}) }) // 获取单个用户信息 userGroup.GET("/:id", func(c gin.Context) { id := c.Param("id") c.JSON(http.StatusOK, gin.H{"message": "User info", "id": id}) }) } // 子路由组:订单相关 orderGroup := mainGroup.Group("/orders") { orderGroup.POST("/", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{"message": "Order created successfully"}) }) orderGroup.GET("/", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{"message": "List all orders"}) }) } } r.Run(":8080") } 在这个例子中,我们首先创建了一个 /api 的主路由组,然后在这个主组下面分别创建了 /users 和 /orders 两个子路由组。这样的结构是不是更有条理了?尤其是当你项目变得复杂时,这种分层结构会让你少走很多弯路。 --- 4. 实战技巧 动态前缀与中间件 除了分组之外,Group 还支持动态前缀和中间件绑定。哈哈,这个功能超实用啊!就像是给一帮小伙伴设了个统一的“群规”,所有成员都自动遵守。不过呢,要是哪天你想让某个小组玩点不一样的,比如换个新名字前缀啥的,也能随时调整,特别方便! 示例3:动态前缀与中间件 go package main import ( "github.com/gin-gonic/gin" "net/http" ) func main() { r := gin.Default() // 设置全局中间件 r.Use(func(c gin.Context) { c.Set("auth", "token") c.Next() }) // 创建一个用户组,并绑定中间件 userGroup := r.Group("/v1/users", func(c gin.Context) { token := c.MustGet("auth").(string) if token != "admin" { c.AbortWithStatus(http.StatusUnauthorized) return } }) // 用户注册接口 userGroup.POST("/register", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{"message": "User registered successfully"}) }) // 用户登录接口 userGroup.POST("/login", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{"message": "Login successful"}) }) r.Run(":8080") } 在这个例子中,我们为 /v1/users 组绑定了一个中间件,只有携带正确令牌的请求才能访问该组下的接口。这种方式特别适合处理权限控制问题,避免了重复编写相同逻辑的麻烦。 --- 5. 总结 拥抱清晰的代码 兄弟们,路由分组真的是一项非常实用的技术。它不仅能让我们的代码更加整洁,还能大大提升开发效率。试想一下,如果你接手一个没有任何分组的项目,面对成千上万行杂乱无章的代码,你会不会崩溃? 所以啊,从今天开始,不管你的项目多大,都要养成使用 Group 的好习惯。不管你是弄个小玩意儿,还是搞那种复杂得让人头大的微服务架构,只要分组分得好,就能省不少劲儿,效率蹭蹭往上涨!记住,代码不仅仅是给机器看的,更是给人看的。清晰的代码,就是对同行最大的尊重! 最后,希望这篇文章能帮到你们。如果你们还有什么疑问或者更好的实践方法,欢迎留言交流哦!一起进步,一起成长!
2025-04-10 16:19:55
43
青春印记
Beego
...提供实用的策略和代码示例。 一、认识服务不可用错误 服务不可用错误通常在HTTP响应中表现为503状态码,表示由于服务器当前无法处理请求,请求被暂时拒绝。这可能是由于服务器过载、正在进行维护或者资源不足等原因导致的。 二、Beego框架简介 Beego是一个基于Golang的轻量级Web框架,旨在简化Web应用的开发流程。其简洁的API和强大的功能使其成为快速构建Web应用的理想选择。在处理服务不可用错误时,Beego提供了丰富的工具和机制来帮助开发者进行诊断和修复。 三、识别与诊断服务不可用 在Beego应用中,识别服务不可用错误通常通过HTTP响应的状态码来进行。当应用返回503状态码时,说明服务当前无法处理请求。哎呀,兄弟!想要更清晰地找出问题所在,咱们得好好利用Beego自带的日志系统啊。它能帮咱们记录下一大堆有用的信息,比如啥时候出的错、用户是咋操作的、到底哪一步出了问题。有了这些详细资料,咱们在后面分析问题、找解决方案的时候就方便多了,不是吗? 示例代码: go // 在启动Beego应用时设置日志级别和格式 log.SetLevel(log.DEBUG) log.SetOutput(os.Stdout) func main() { // 初始化并启动Beego应用 app := new(beego.AppConfig) app.Run(":8080") } 在上述代码中,通过log.SetLevel(log.DEBUG)设置日志级别为DEBUG,确保在发生错误时能够获取到足够的信息进行诊断。 四、处理服务不可用错误 当检测到服务不可用错误时,Beego允许开发者通过自定义中间件来响应这些异常情况。通过创建一个中间件函数,可以优雅地处理503错误,并向用户呈现友好的提示信息,例如重试机制、缓存策略或简单的等待页面。 示例代码: go // 定义一个中间件函数处理503错误 func errorMiddleware(c beego.Context) { if c.Ctx.Input.StatusCode() == 503 { c.Data["Status"] = "503 Service Unavailable" c.Data["Message"] = "Sorry, our service is currently unavailable. Please try again later." c.ServeContent("error.html", http.StatusOK) } else { c.Next() } } // 注册中间件 func init() { beego.GlobalControllerInterceptors = append(beego.GlobalControllerInterceptors, new(errorMiddleware)) } 这段代码展示了如何在Beego应用中注册一个全局中间件,用于捕获并处理503状态码。哎呀,你遇到服务挂了的情况了吧?别急,这个中间件挺贴心的,它会给你弹出个温馨的小提示,告诉你:“嘿,稍等一下,我们正忙着处理一些事情呢。”然后,它还会给你展示一个等待页面,上面可能有好看的动画或者有趣的图片,让你在等待的时候也不觉得无聊。这样,你就不会因为服务暂时不可用了而感到烦躁了,体验感大大提升! 五、优化与预防服务不可用 预防服务不可用的关键在于资源管理、负载均衡以及监控系统的建立。Beego虽然本身不直接涉及这些问题,但可以通过集成第三方库或服务来实现。 - 资源管理:合理分配和监控CPU、内存、磁盘空间等资源,避免过度消耗导致服务不可用。 - 负载均衡:利用Nginx、HAProxy等工具对流量进行分发,减轻单点压力。 - 监控系统:使用Prometheus、Grafana等工具实时监控应用性能和资源使用情况,及时发现潜在问题。 六、结论 服务不可用是Web应用中不可避免的一部分,但通过使用Beego框架的特性,结合适当的策略和实践,可以有效地识别、诊断和解决这类问题。嘿,兄弟!想做个靠谱的Web应用吗?那可得注意了,你得时刻盯着点,别让你的应用出岔子。得给资源好好规划规划,别让服务器喘不过气来。还有,万一哪天程序出错了,你得有个应对的机制,别让小问题搞大了。这三样,监控、资源管理和错误处理,可是你稳定可靠的三大法宝!别忘了它们,你的应用才能健健康康地跑起来!
2024-10-10 16:02:03
103
月影清风
Etcd
...的Etcd实例上。 示例代码: go import "github.com/coreos/etcd/clientv3" // 假设我们有5个Etcd实例,每个实例可以处理的数据范围是[1, 5) // 我们需要创建一个键值对,并将其放置在对应的Etcd实例上。 // 这里我们使用哈希函数来决定键应该放置在哪一个实例上。 func placeKeyInEtcd(key string, value string) error { hash := fnv.New32a() _, err := hash.Write([]byte(key)) if err != nil { return err } hashVal := hash.Sum32() // 根据哈希值计算出应该放置在哪个Etcd实例上。 // 这里我们简化处理,实际上可能需要更复杂的逻辑来保证负载均衡。 instanceIndex := hashVal % 5 // 创建Etcd客户端连接。 client, err := clientv3.New(clientv3.Config{ Endpoints: []string{"localhost:2379"}, DialTimeout: 5 time.Second, }) if err != nil { return err } // 将键值对放置在指定的Etcd实例上。 resp, err := client.Put(context.Background(), fmt.Sprintf("key%d", instanceIndex), value) if err != nil { return err } if !resp.Succeeded { return errors.New("failed to put key in Etcd") } return nil } 2. 数据同步与一致性 数据在不同实例上的复制需要通过Etcd的Raft协议来保证一致性。哎呀,你知道吗?Etcd这个家伙可是个厉害角色,它自带复制和同步的超级技能,能让数据在多个地方跑来跑去,保证信息的安全。不过啊,要是你把它放在人多手杂的地方,比如在高峰时段用它处理事务,那就有可能出现数据丢了或者大家手里的信息对不上号的情况。就像是一群小朋友分糖果,如果动作太快,没准就会有人拿到重复的或者根本没拿到呢!所以,得小心使用,别让它在关键时刻掉链子。兄弟,别忘了,咱们得定期给数据做做检查点,就像给车加油一样,不加油咋行?然后,还得时不时地来个快照备份,就像是给宝贝存个小金库,万一哪天遇到啥意外,比如硬盘突然罢工了,咱也能迅速把数据捞回来,不至于手忙脚乱,对吧?这样子,数据安全就稳如泰山了! 3. 负载均衡与故障转移 通过设置合理的副本数量,可以实现负载均衡。当某个实例出现故障时,Etcd能够自动将请求路由到其他实例,保证服务的连续性。这需要在应用程序层面实现智能的负载均衡策略,如轮询、权重分配等。 四、总结与思考 在Etcd中实现数据的多实例部署是一项复杂但关键的任务,它不仅考验了开发者对Etcd内部机制的理解,还涉及到了分布式系统中常见的问题,如一致性、容错性和性能优化。通过合理的设计和实现,我们可以构建出既高效又可靠的分布式系统。哎呀,未来的日子里,技术这东西就像那小兔子一样,嗖嗖地往前跑。Etcd这个家伙,功能啊性能啊,就跟吃了长生不老药似的,一个劲儿地往上窜。这下好了,咱们这些码农兄弟,干活儿的时候能省不少力气,还能开动脑筋想出更多好玩儿的新点子!简直不要太爽啊!
2024-09-23 16:16:19
187
时光倒流
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
chattr -i file
- 取消文件的不可修改状态。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"