前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[findOneAndUpdate命令与悲...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Kylin
...谜题的面纱,从理论到实践,全方位解析Kylin与MySQL联接优化的关键点。 二、理论基础 理解Kylin与MySQL的联接机制 在深入讨论优化策略之前,我们首先需要理解两者之间的基本联接机制。Kylin是一个基于Hadoop的列式存储OLAP引擎,它通过预先计算并存储聚合数据来加速查询速度。而MySQL作为一个广泛使用的SQL数据库管理系统,提供了丰富的查询语言和存储能力。嘿,兄弟!你听过数据联接这事儿吗?它通常在咱们把数据从一个地方搬进另一个地方或者在查询数据的时候出现。就像拼图一样,对了,就是那种需要精准匹配才能完美组合起来的拼图。用对了联接策略,那操作效率简直能嗖的一下上去,比火箭还快呢!所以啊,小伙伴们,别小瞧了这个小小的联接步骤,它可是咱们大数据处理里的秘密武器! 三、策略一 优化联接条件 实践示例: sql -- 原始查询语句 SELECT FROM kylin_table JOIN mysql_table ON kylin_table.id = mysql_table.id; -- 优化后的查询语句 SELECT FROM kylin_table JOIN mysql_table ON kylin_table.id = mysql_table.id AND kylin_table.date >= '2023-01-01' AND kylin_table.date <= '2023-12-31'; 通过在联接条件中加入过滤条件(如时间范围),可以减少MySQL服务器需要处理的数据量,从而提高联接效率。 四、策略二 利用索引优化 实践示例: 在MySQL表上为联接字段创建索引,可以大大加速查询速度。同时,在Kylin中,确保相关维度的列已经进行了适当的索引,可以进一步提升性能。 sql -- MySQL创建索引 CREATE INDEX idx_kylin_table_id ON kylin_table(id); -- Kylin配置维度索引 id long true 通过这样的配置,不仅MySQL的查询速度得到提升,Kylin的聚合计算也更加高效。 五、策略三 批量导入与增量更新 实践示例: 对于大型数据集,考虑使用批量导入策略,而不是频繁的增量更新。哎呀,你瞧,咱们用批量导入这招,就像是给MySQL服务器做了一次减压操,让它不那么忙碌,喘口气。同时,借助Kylin的离线大法,我们就能让那些实时查询快如闪电,不拖泥带水。这样一来,不管是数据处理还是查询速度,都大大提升了,用户满意度也蹭蹭往上涨呢! bash 批量导入脚本示例 $ hadoop fs -put data.csv /input/ $ bin/hive -e "LOAD DATA INPATH '/input/data.csv' INTO TABLE kylin_table;" 六、策略四 优化联接模式 选择合适的联接模式(如内联接、外联接等)对于性能优化至关重要。哎呀,你得知道,在咱们实际干活的时候,选对了数据联接的方式,就像找到了开锁的金钥匙,能省下不少力气,避免那些没必要的数据大扫荡。比如说,你要是搞个报表啥的,用对了联接方法,数据就乖乖听话,找起来快又准,省得咱们一个个文件翻,一个个字段找,那得多费劲啊!所以,挑对工具,效率就是王道! 实践示例: 假设我们需要查询所有在特定时间段内的订单信息,并且关联了用户的基本信息。这里,我们可以使用内联接: sql SELECT FROM orders o INNER JOIN users u ON o.user_id = u.user_id WHERE o.order_date BETWEEN '2023-01-01' AND '2023-12-31'; 七、总结与展望 通过上述策略的实施,我们能够显著提升Kylin与MySQL联接操作的性能。哎呀,你知道优化数据库操作这事儿,可真是个门道多得很!比如说,调整联接条件啊,用上索引来提速啊,批量导入数据也是一大妙招,还有就是选对联接方式,这些小技巧都能让咱们的操作变得顺畅无比,响应速度嗖嗖的快起来。就像开车走高速,不堵车不绕弯,直奔目的地,那感觉,爽歪歪!哎呀,随着咱手里的数据越来越多,就像超市里的货物堆积如山,技术这玩意儿也跟咱们的手机更新换代一样快。所以啊,要想让咱们的系统运行得又快又好,就得不断调整和改进策略。就像是给汽车定期加油、保养,让它跑得既省油又稳定。这事儿,可得用心琢磨,不能偷懒!未来,随着更多高级特性如分布式计算、机器学习集成等的引入,Kylin与MySQL的联接优化将拥有更广阔的应用空间,助力数据分析迈向更高层次。
2024-09-20 16:04:27
105
百转千回
Kotlin
...语法、强大的类型安全机制以及对Java语言的兼容性,赢得了无数开发者的心。哎呀,兄弟,你这语言用得确实牛批,但就像开车一样,再溜的车也难免会碰上坑坑洼洼。在这堆问题里头,有一种特别让人头疼的家伙,叫 IllegalArgumentException。这家伙就像是突然冒出来的路障,让你措手不及,一不小心就踩中了,结果就是程序卡壳,半天解不开。这不就是我们在编程路上的“小麻烦”嘛!今天,我们就来一起探索一下这个“非法参数异常”背后的故事。 第一章:何为 IllegalArgumentException 在Kotlin中,当我们尝试调用一个方法时,如果传入的参数不符合该方法的要求或者类型不匹配,就会抛出 IllegalArgumentException。这事儿就像你去参加一个超级认真的补习班,老师布置了一道题目让你做,结果你交上去的答案全错了,那肯定得被老师好好点名批评一番了。 第二章:深入剖析 IllegalArgumentException 假设我们有一个简单的函数 calculateAge,它接受一个人的出生年份作为参数,并计算出当前年龄: kotlin fun calculateAge(birthYear: Int): Int { val currentYear = 2023 return currentYear - birthYear } 如果我们不小心传入了一个非整数类型的参数,比如一个字符串,Kotlin会立即察觉到这一点,并优雅地抛出 IllegalArgumentException: kotlin fun test() { val age = calculateAge("2000") println("Your age is $age.") } // 运行结果:编译错误,因为calculateAge接受的是Int类型参数,而"2000"是String类型。 第三章:如何避免 IllegalArgumentException 避免 IllegalArgumentException 的关键在于确保所有传入函数的参数都符合预期的类型和格式。我们可以利用Kotlin的静态类型系统来帮助我们进行这一工作: - 类型检查:确保所有输入的参数都是正确的类型。例如,可以使用 assert 函数在运行时验证类型: kotlin fun safeCalculateAge(birthYear: Any): Int { assert(birthYear is Int) { "Expected an Integer for birthYear" } val currentYear = 2023 return currentYear - birthYear.toInt() } // 使用示例: val age = safeCalculateAge(2000) println("Your age is $age.") - 函数参数验证:在定义函数时就加入类型检查逻辑: kotlin fun calculateAgeWithValidation(birthYear: Int): Int { if (birthYear < 0 || birthYear > 2023) { throw IllegalArgumentException("Birth year must be within the range of 0 to 2023.") } val currentYear = 2023 return currentYear - birthYear } 第四章:实战演练:创建一个更复杂的示例 假设我们要构建一个简单的日历应用,其中包含一个用于计算天数的函数。为了增加复杂性,我们添加了对月份和年份的验证: kotlin data class Date(val day: Int, val month: Int, val year: Int) fun calculateDaysSinceBirthday(dateOfBirth: Date): Int { val currentYear = Calendar.getInstance().get(Calendar.YEAR) val currentMonth = Calendar.getInstance().get(Calendar.MONTH) + 1 // 注意月份是从0开始的 val currentDay = Calendar.getInstance().get(Calendar.DAY_OF_MONTH) val birthday = dateOfBirth.day to dateOfBirth.month to dateOfBirth.year val birthDate = Date(birthday) val daysSinceBirthday = (currentYear - birthDate.year) 365 + (currentMonth - birthDate.month) 30 + (currentDay - birthDate.day) return daysSinceBirthday } fun main() { val birthDate = Date(day = 1, month = 1, year = 2000) val days = calculateDaysSinceBirthday(birthDate) println("Days since your birthday: $days") } 在上面的代码中,我们通过 Calendar 类获取当前日期,并与生日日期进行比较,计算出天数差值。嘿,兄弟!咱们就拿一年有365天,一个月有30天来打个比方,这可是咱们简化了一下,方便大家理解。实际上啊,生活里头可没这么简单,得分清闰年和普通年是怎么回事,这样日子才过得有模有样呢! 结语:面对挑战,拥抱学习 每一次遇到 IllegalArgumentException 都是一次学习的机会。它们提醒我们,即使在看似完美的代码中,也可能隐藏着一些小错误。通过仔细检查和验证我们的参数,我们可以编写出更加健壮、可维护的代码。哎呀,你瞧这Kotlin,它可真是个能手呢!它那一大堆好用的工具和特性,就像是魔法一样,帮我们解决了好多麻烦事儿。比如说,静态类型这一招,就像是一道坚固的防线,能提前发现那些可能出错的地方。还有函数注解,就像是给代码贴上了标签,让我们一眼就能看出这是干啥的。而模式匹配嘛,简直就是解谜神器,轻轻松松就能解开那些复杂的逻辑难题。这些玩意儿合在一起,就形成了一个强大的武器库,帮我们防患于未然,解决问题更是不在话下。你说是不是,这Kotlin,简直就是程序员的好伙伴!让我们带着好奇心和探索精神,继续在编程的海洋中航行吧! --- 在这篇文章中,我们不仅探讨了 IllegalArgumentException 的由来和解决方法,还通过一系列的代码示例展示了如何在实践中应用这些知识。嘿,兄弟!读完这篇文章后,希望你对Kotlin里的异常处理方式有了一番全新的领悟。别担心,这不像是AI在跟你说话,就像跟老朋友聊天一样轻松。你得尝试将这些小技巧应用到你的实际项目中,让代码不仅好看,而且超级稳定,就像是给你的程序穿上了一件坚固的盔甲。这样,无论遇到什么问题,它都能稳如泰山。所以,拿起你的键盘,动手实践吧!记住,编程是一场持续的学习之旅,每一次遇到困难都是成长的机会。加油!
2024-09-18 16:04:27
113
追梦人
Apache Solr
... 这里通过CURL命令创建了一个快照。 2. 数据重建 在故障节点恢复后,需要重建其索引数据。Solr提供了/admin/cores?action=REBUILD接口来帮助完成这一任务。 第四部分:性能优化与容错策略 1. 负载均衡 通过合理分配索引和查询负载,可以提高系统的整体性能。使用Solr的路由策略,如query.routing,可以动态地将请求分发到不同的节点。 代码示例: xml : AND json round-robin 2. 失败重试与超时设置 在处理分布式事务时,合理的失败重试策略和超时设置至关重要。这有助于系统在面对网络延迟或短暂的节点故障时保持稳定。 结语 处理Apache Solr的分布式故障需要综合考虑监控、警报、故障检测与隔离、数据恢复与重建、性能优化以及容错策略等多个方面。哎呀,小伙伴们!要是我们按照这些招数来操作,就能让Solr集群变得超级棒,既稳定又高效,保证咱们的搜索服务能一直在线,质量杠杠的,让你用起来爽歪歪!这招真的挺实用的,值得试试看!嘿,兄弟!听好了,预防胜于治疗这句老话,在分布式系统的管理上同样适用。咱们得时刻睁大眼睛,盯着系统的一举一动,就像看护自家宝贝一样。定期给它做做小保养,检查检查,确保一切正常运转。这样,咱们就能避免大问题找上门来,让系统稳定运行,不给任何故障有机可乘的机会。
2024-08-08 16:20:18
138
风中飘零
Hadoop
...,建立透明的数据流转机制,增强用户对数据使用的信任度,也是维护企业声誉与合规性的重要环节。 结语 HBase与NoSQL数据库的集成在现代数据管理中扮演着不可或缺的角色。面对数据量的增长、技术的迭代以及合规性要求的提升,这一集成模式需要不断适应变化,探索更高效、安全的数据处理与分析方法。未来,随着大数据、人工智能等技术的进一步发展,数据集成的边界将进一步拓宽,为各行各业提供更加智能、个性化的数据解决方案。 在这个不断演进的过程中,企业应持续关注技术创新与最佳实践,构建灵活、安全的数据生态体系,以应对未来的挑战与机遇。
2024-08-10 15:45:14
36
柳暗花明又一村
SpringBoot
...。通过负载均衡、缓存机制和异步处理机制,可以显著提升服务响应速度和处理能力。此外,利用微服务架构原则,将文件上传服务与其他服务解耦,实现服务的独立部署和水平扩展,能够有效应对突发的高流量场景。 用户体验提升 在注重功能实现的同时,提升用户体验同样不可忽视。提供直观的文件上传界面、实时进度反馈、以及友好的错误提示,都能大大增强用户的满意度。通过集成云存储服务(如Amazon S3、Google Cloud Storage),不仅可以减轻服务器压力,还能够提供更稳定、更快的上传和下载服务。 法规遵从性 随着全球数据保护法规的日益严格,确保文件上传服务符合相关法律法规要求成为企业必须面对的挑战。例如,GDPR(欧盟通用数据保护条例)、HIPAA(美国健康保险流通与责任法案)等法规对企业数据处理和保护有明确要求。在设计和实施文件上传功能时,应充分考虑这些法规的影响,确保数据的收集、存储、处理和传输均符合法律规范。 结论 综上所述,实现高效、安全的文件上传功能需要综合考虑安全性、性能、用户体验和法规遵从性等多个维度。在Spring Boot框架下,通过采用现代安全措施、优化服务性能、提升用户体验并遵循相关法规,企业可以构建出既强大又合规的文件上传系统,满足当前及未来业务发展的需求。随着技术的不断进步和行业标准的更新,持续关注最新实践和趋势,将有助于保持系统的先进性和竞争力。
2024-09-12 16:01:18
86
寂静森林
HBase
...e 上面这条命令会开启自动负载均衡功能。当然,你也可以手动执行balancer命令强制进行一次平衡操作。 3.2 GC时间过长怎么办? GC时间过长往往意味着内存不足。这时候你需要检查HBase的堆内存设置,并适当增加Xmx参数值。 示例代码: xml hbase.regionserver.heapsize 8g 将heapsize调大一些,看看是否能缓解GC压力。 --- 4. 第三步 实战演练——真实案例分享 为了让大家更直观地感受到性能优化的过程,我来分享一个真实的案例。有一天,我们团队收到用户的吐槽:“你们这个查询也太慢了吧?等得我花都谢了!”我们赶紧查看了一下情况,结果发现是RegionServer上某个Region在搞事情,一直在上演“你进我也进”的读写冲突大戏,把自己整成了个“拖油瓶”。 解决方案: 1. 首先,定位问题区域。通过以下命令查看哪些Region正在发生大量读写: sql scan 'hbase:metrics' 2. 然后,调整Compaction策略。如果发现Compaction过于频繁,可以尝试降低触发条件: xml hbase.hregion.majorcompaction 86400000 最终,经过一系列调整后,查询速度果然得到了显著提升。这种成就感真的让人欲罢不能! --- 5. 结语 保持好奇心,不断学习进步 检查HBase集群的性能并不是一件枯燥无味的事情,相反,它充满了挑战性和乐趣。每次解决一个问题,都感觉是在玩拼图游戏,最后把所有碎片拼在一起的时候,那成就感真的太爽了,简直没法用语言形容! 最后,我想说的是,无论你是刚入门的新手还是经验丰富的老手,都不要停止学习的步伐。HBase的技术栈非常庞大,每一次深入研究都会让你受益匪浅。所以,让我们一起努力吧!💪 希望这篇文章对你有所帮助,如果你还有任何疑问,欢迎随时来找我交流哦~
2025-04-14 16:00:01
63
落叶归根
Dubbo
...运行。你可以通过以下命令查看服务端的状态: bash netstat -tuln | grep 20880 如果看不到监听的端口,那肯定是服务端没启动成功。 然后,检查服务注册中心是否正常工作。Dubbo支持多种注册中心,比如Zookeeper、Nacos等。如果你用的是Zookeeper,可以试试进入Zookeeper的客户端,看看服务是否已经注册: bash zkCli.sh -server 127.0.0.1:2181 ls /dubbo/com.example.UserService 如果这里看不到服务,那就说明服务注册中心可能有问题。 最后,别忘了检查客户端的配置。客户端的配置文件通常是dubbo-consumer.xml,里面需要填写服务提供者的地址。例如: xml 如果地址写错了,当然就会报错了。 --- 四、代码示例与实际案例分析 下面我给大家举几个具体的例子,让大家更直观地了解Dubbo的报错排查过程。 示例1:服务启动失败 假设你在本地启动服务端时,发现服务一直无法启动,报错如下: Failed to bind URL: dubbo://192.168.1.100:20880/com.example.UserService?anyhost=true&application=demo-provider&dubbo=2.7.8&interface=com.example.UserService&methods=sayHello&pid=12345&side=provider×tamp=123456789 经过检查,你会发现是因为服务端的application.name配置错了。修改后,重新启动服务端,问题就解决了。 示例2:服务找不到 假设你在客户端调用服务时,发现服务找不到,报错如下: No provider available for the service com.example.UserService on the consumer 192.168.1.100 use dubbo version 2.7.8 经过排查,你发现服务注册中心的地址配置错了。正确的配置应该是: xml 示例3:网络不通 假设你在生产环境中,发现客户端和服务端之间的网络不通,报错如下: ConnectException: Connection refused 这时候,你需要检查防火墙设置,确保服务端的端口是开放的。同时,也要检查客户端的网络配置,确保能够访问服务端。 --- 五、总结与感悟 总的来说,Dubbo的报错信息确实有时候让人摸不着头脑,但它并不是不可战胜的。只要你细心排查,结合具体的环境和配置,总能找到问题的根源。 在这个过程中,我学到的东西太多了。比如说啊,别啥都相信默认设置,每一步最好自己动手试一遍,心里才踏实。再比如说,碰到问题的时候,先别忙着去找同事求助,自己多琢磨琢磨,说不定就能找到解决办法了呢!毕竟,编程的乐趣就在于不断解决问题的过程嘛! 最后,我想说的是,Dubbo虽然复杂,但它真的很棒。希望大家都能掌握它,让它成为我们技术生涯中的一把利器!
2025-03-20 16:29:46
66
雪落无痕
Spark
... 五、调试策略与最佳实践 1. 使用日志级别 调整日志级别(如INFO、DEBUG)可以帮助开发者在日志中获取更多详细信息。 2. 定期检查日志 通过自动化工具定期检查日志文件,可以及时发现潜在问题。 3. 利用Spark UI Spark自带的Web UI提供了详细的作业监控界面,直观显示任务状态和性能指标。 4. 错误重试机制 合理配置Spark任务的重试策略,避免因一次失败而影响整体进程。 5. 性能监控工具 集成性能监控工具(如Prometheus、Grafana)有助于实时监控系统性能,预防内存泄漏等严重问题。 六、总结与展望 日志记录是Spark应用程序开发和维护过程中的关键环节。哎呀,你知道吗?程序员们在遇到bug(小错误)的时候,那可是得使出浑身解数了!他们可不是对着电脑屏幕发呆,而是会仔细地分析问题,就像侦探破案一样。找到问题的源头后,他们就开始了他们的“调试大作战”,就像是医生给病人开药一样精准。通过这些努力,他们能优化代码,让程序跑得更顺畅,就像给汽车加了润滑剂,不仅跑得快,还稳当当的。这样,我们的应用就能更加可靠,用户用起来也更舒心啦!哎呀,你懂的,随着咱们每天产生的数据就像自来水一样哗哗流,那处理这些数据的大数据工具就得越来越厉害才行。特别是那些记录我们操作痕迹的日志管理系统,不仅要快得跟闪电一样,操作起来还得像玩手机游戏一样简单,最好还能自己动脑筋分析出点啥有价值的信息来。这样,未来日志记录这事儿就不仅仅是记录,还能帮我们找到问题、优化流程,简直就是一大神器嘛!所以,你看,这发展方向就是越来越智能、好用、高效,让科技真正服务于人,而不是让人被科技牵着鼻子走。 --- 通过本文的探讨,我们不仅学习了如何理解和利用Spark的日志信息来诊断问题,还了解了一些实用的调试技巧和最佳实践。希望这些内容能帮助你更有效地管理你的Spark应用程序,确保其在复杂的数据处理场景下稳定运行。
2024-09-07 16:03:18
141
秋水共长天一色
转载文章
...doop fs 具体命令或者hdfs dfs 具体命名 命令大全 Usage: hadoop fs [generic options][-appendToFile <localsrc> ... <dst>] 追加[-cat [-ignoreCrc] <src> ...] 查看[-checksum <src> ...][-chgrp [-R] GROUP PATH...] 改组[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...] 改权限[-chown [-R] [OWNER][:[GROUP]] PATH...] 改所有者[-copyFromLocal [-f] [-p] [-l] [-d] [-t <thread count>] <localsrc> ... <dst>] 上传[-copyToLocal [-f] [-p] [-ignoreCrc] [-crc] <src> ... <localdst>] 下载[-count [-q] [-h] [-v] [-t [<storage type>]] [-u] [-x] [-e] <path> ...][-cp [-f] [-p | -p[topax]] [-d] <src> ... <dst>] 复制[-createSnapshot <snapshotDir> [<snapshotName>]][-deleteSnapshot <snapshotDir> <snapshotName>][-df [-h] [<path> ...]][-du [-s] [-h] [-v] [-x] <path> ...] 统计磁盘文件大小[-expunge][-find <path> ... <expression> ...][-get [-f] [-p] [-ignoreCrc] [-crc] <src> ... <localdst>] 下载[-getfacl [-R] <path>][-getfattr [-R] {-n name | -d} [-e en] <path>][-getmerge [-nl] [-skip-empty-file] <src> <localdst>][-head <file>][-help [cmd ...]][-ls [-C] [-d] [-h] [-q] [-R] [-t] [-S] [-r] [-u] [-e] [<path> ...]] 查看列表[-mkdir [-p] <path> ...] 创建[-moveFromLocal <localsrc> ... <dst>] 剪切到hdfs[-moveToLocal <src> <localdst>] 剪切到本地[-mv <src> ... <dst>] 移动[-put [-f] [-p] [-l] [-d] <localsrc> ... <dst>] 上传[-renameSnapshot <snapshotDir> <oldName> <newName>][-rm [-f] [-r|-R] [-skipTrash] [-safely] <src> ...] 删除[-rmdir [--ignore-fail-on-non-empty] <dir> ...][-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set <acl_spec> <path>]][-setfattr {-n name [-v value] | -x name} <path>][-setrep [-R] [-w] <rep> <path> ...] 设置副本数[-stat [format] <path> ...][-tail [-f] <file>][-test -[defsz] <path>][-text [-ignoreCrc] <src> ...][-touch [-a] [-m] [-t TIMESTAMP ] [-c] <path> ...][-touchz <path> ...][-truncate [-w] <length> <path> ...][-usage [cmd ...]]Generic options supported are:-conf <configuration file> specify an application configuration file-D <property=value> define a value for a given property-fs <file:///|hdfs://namenode:port> specify default filesystem URL to use, overrides 'fs.defaultFS' property from configurations.-jt <local|resourcemanager:port> specify a ResourceManager-files <file1,...> specify a comma-separated list of files to be copied to the map reduce cluster-libjars <jar1,...> specify a comma-separated list of jar files to be included in the classpath-archives <archive1,...> specify a comma-separated list of archives to be unarchived on the compute machinesThe general command line syntax is:command [genericOptions] [commandOptions] 查看详细命令 hadoop fs -help 命令(如cat) 更改hdfs的权限 vi core-site.xml <property><name>hadoop.http.staticuser.user</name><value>root</value></property> HDFS客户端API操作 Windows环境配置 将Windows依赖放到文件夹, 配置环境变量,添加HADOOP_HOME ,编辑Path添加%HADOOP_HOME%/bin 拷贝hadoop.dll和winutils.exe到C:\Windows\System32 创建java项目 配置 编辑pom.xml <dependencies><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version></dependency><dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-slf4j-impl</artifactId><version>2.12.0</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.1.3</version></dependency></dependencies> 在src/main/resources中建立log4j2.xml 打印日志到控制台 <?xml version="1.0" encoding="UTF-8"?><Configuration status="WARN"><Appenders><Console name="Console" target="SYSTEM_OUT"><PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} - %msg%n"/></Console></Appenders><Loggers><Root level="error"><AppenderRef ref="Console"/></Root></Loggers></Configuration> 编写代码 在/src/main/java/cn.zcx.hdfs创建TestHDFS类 public class TestHDFS {// 创建全局变量private FileSystem fs;private Configuration conf;private URI uri;private String user;// 从本地上传文件@Testpublic void testUpload() throws IOException {fs.copyFromLocalFile(false,true,new Path("F:\\Download\\使用前说明.txt"),new Path("/testhdfs"));}/ @Before 方法在@Test方法执行之前执行 /@Beforepublic void init() throws IOException, InterruptedException {uri = URI.create("hdfs://master:8020");conf = new Configuration();user = "root";fs = FileSystem.get(uri,conf,user);}/ @After方法在@Test方法结束后执行 /@Afterpublic void close() throws IOException {fs.close();}@Testpublic void testHDFS() throws IOException, InterruptedException {//1. 创建文件系统对象/URI uri = URI.create("hdfs://master:8020");Configuration conf = new Configuration();String user = "root";FileSystem fs = FileSystem.get(uri,conf,user);System.out.println("fs: " + fs);/// 2. 创建一个目录boolean b = fs.mkdirs(new Path("/testhdfs"));System.out.println(b);// 3. 关闭fs.close();} } 参数优先级 xxx-default.xml < xxx-site.xml < IDEA中resource中创建xxx-site.xml < 在代码中通过更改Configuration 参数 文件下载 @Testpublic void testDownload() throws IOException {fs.copyToLocalFile(false,new Path("/testhdfs/使用前说明.txt"),new Path("F:\\Download\\"),true);} 文件更改移动 //改名or移动(路径改变就可以)@Testpublic void testRename() throws IOException {boolean b = fs.rename(new Path("/testhdfs/使用前说明.txt"),new Path("/testhdfs/zcx.txt"));System.out.println(b);} 查看文件详细信息 // 查看文件详情@Testpublic void testListFiles() throws IOException {RemoteIterator<LocatedFileStatus> listFiles = fs.listFiles(new Path("/"), true);//迭代操作while (listFiles.hasNext()){LocatedFileStatus fileStatus = listFiles.next();//获取文件详情System.out.println("文件路径:"+fileStatus.getPath());System.out.println("文件权限:"+fileStatus.getPermission());System.out.println("文件主人:"+fileStatus.getOwner());System.out.println("文件组:"+fileStatus.getGroup());System.out.println("文件大小:"+fileStatus.getLen());System.out.println("文件副本数:"+fileStatus.getReplication());System.out.println("文件块位置:"+ Arrays.toString(fileStatus.getBlockLocations()));System.out.println("===============================");} } 文件删除 第二参数,true递归删除 //文件删除@Testpublic void testDelete() throws IOException {boolean b = fs.delete(new Path("/testhdfs/"), true);System.out.println(b);} NN与2NN工作原理 本篇文章为转载内容。原文链接:https://blog.csdn.net/Python1One/article/details/108546050。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-05 22:55:20
276
转载
转载文章
...中,且通过轻量级通信机制相互协作。在文章中,架构师可能会设计微服务架构来实现系统的高扩展性和灵活性。 持续集成/持续部署(CI/CD) , 一种软件开发实践,通过自动化的构建和测试流程,确保代码修改后能够迅速、频繁地构建、测试和部署,从而加快软件迭代速度和减少错误。技术经理可能会关注团队如何采用CI/CD工具提高开发效率。
2024-05-10 13:13:48
755
转载
MySQL
...,我执行了一个简单的命令来检查当前系统的文件描述符限制: bash ulimit -n 结果显示默认值为1024。这意味着每个进程最多只能同时打开1024个文件。说实话,咱们的MySQL实例现在正忙着应付一大堆同时连进来的需求,还得折腾临时表呢。这么一看,那个限制就跟挠痒痒似的——太不够用了! 接下来,我查看了MySQL的配置文件my.cnf,发现确实没有显式设置文件描述符的上限。于是,我修改了配置文件,将open_files_limit参数调整为更大的值: ini [mysqld] open_files_limit=65535 然后重启了MySQL服务,再次检查日志,果然,错误消失了! --- 3. 实践中的代码调试与优化 当然,仅仅解决问题还不够,我还想进一步优化整个系统的性能。于是,我编写了一些脚本来监控MySQL的运行状态,特别是文件描述符的使用情况。 以下是一个简单的Python脚本,用于统计MySQL当前使用的文件描述符数量: python import psutil import subprocess def get_mysql_open_files(): 获取所有MySQL进程ID mysql_pids = [] result = subprocess.run(['pgrep', 'mysqld'], capture_output=True, text=True) for line in result.stdout.splitlines(): mysql_pids.append(int(line)) total_open_files = 0 for pid in mysql_pids: try: proc = psutil.Process(pid) open_files = len(proc.open_files()) print(f"Process {pid} has opened {open_files} files.") total_open_files += open_files except Exception as e: print(f"Error checking process {pid}: {e}") print(f"Total open files by MySQL processes: {total_open_files}") if __name__ == "__main__": get_mysql_open_files() 运行这个脚本后,我发现某些特定的查询会导致文件描述符迅速增加。经过分析,这些问题主要出现在涉及大文件读写的场景中。所以呢,我觉得咱们开发的小伙伴们得好好捯饬捯饬这些查询语句啦!比如说,能不能少建那些没用的临时表啊?再比如,能不能换个更快的存储引擎啥的?反正就是得让这个程序跑得更顺畅些,别老是卡在那里干瞪眼不是? --- 4. 总结与反思 从问题中学到的东西 回顾这次经历,我深刻体会到,处理数据库问题时,不能仅凭直觉行事,而是要结合实际数据和技术手段,逐步排查问题的根本原因。同时,我也认识到,预防胜于治疗。如果能在日常运维中提前做好监控和预警,就可以避免很多突发状况。 最后,我想分享一点个人感悟:技术之路永无止境,每一次遇到难题都是一次成长的机会。说实话,有时候真的会觉得头大,甚至怀疑自己是不是走错了路。但我觉得啊,这就好比在黑暗里找钥匙,你得不停地摸索、试错才行。只要别轻易放弃,一直在学、一直在练,总有一天你会发现,“!原来它在这儿呢!”就跟我在处理这个MySQL报错的时候似的,最后不光把问题搞定了,还顺带学了不少实用的招儿呢! 如果你也遇到了类似的情况,不妨试试上面提到的方法,也许能帮到你!
2025-04-17 16:17:44
109
山涧溪流_
Logstash
...,国内也有不少企业在实践中摸索出了更为高效的解决方案。以阿里巴巴集团为例,其自主研发的日志服务平台SLS(Log Service)特别针对时间戳处理进行了深度优化。该平台内置了多种时间戳解析算法,并支持用户自定义规则,极大地提升了日志处理的灵活性和准确性。此外,腾讯云也推出了类似的工具,通过引入机器学习技术,能够自动识别日志中的时间戳模式,大幅降低了人工干预的成本。 从更深层面来看,时间戳问题的背后反映了现代企业对实时数据分析需求的增长。随着物联网设备的普及以及边缘计算的兴起,未来日志数据的规模和复杂度将进一步增加。因此,如何构建更加智能、稳定的时间戳处理机制将成为技术领域的重要课题。在此背景下,开源社区的作用愈发凸显。GitHub上活跃的开发者们不断贡献新的插件和补丁,为Logstash等工具注入更多创新元素。例如,最近有人提交了一个名为“DynamicTimestamp”的插件,它可以根据上下文动态调整时间戳格式,为用户提供了一种全新的视角。 值得注意的是,时间戳问题不仅仅局限于技术层面,它还涉及到组织架构和流程设计。一些领先的企业已经开始尝试将日志管理系统与业务流程紧密结合,通过建立跨部门协作机制,确保数据采集、存储和分析的一致性。这种做法不仅提高了工作效率,也为企业的长期发展奠定了坚实的基础。总之,时间戳问题虽看似琐碎,但它却是衡量一家公司技术实力的关键指标之一。在未来,随着技术的进步和社会需求的变化,这一领域的研究必将迎来更加广阔的空间。
2025-05-13 15:58:22
25
林中小径
Apache Solr
...部服务,可以引入缓存机制。对于频繁访问且数据变化不大的元数据,可以在本地缓存一段时间。当外部服务不可用时,可以回退使用缓存数据,直到服务恢复。 python class ExternalMetadataCache: def __init__(self, ttl=600): self.cache = {} self.ttl = ttl def get(self, doc_id): if doc_id not in self.cache or (self.cache[doc_id]['timestamp'] + self.ttl) < time.time(): self.cache[doc_id] = {'data': fetch_external_metadata(doc_id), 'timestamp': time.time()} return self.cache[doc_id]['data'] metadata_cache = ExternalMetadataCache() def fetch_external_metadata_safe(doc_id): return metadata_cache.get(doc_id) 2. 重试机制 在请求外部服务时添加重试逻辑,当第一次请求失败后,可以设置一定的时间间隔后再次尝试,直到成功或达到最大重试次数。 python def fetch_external_metadata_retriable(doc_id, max_retries=3, retry_delay=5): for i in range(max_retries): try: return fetch_external_metadata(doc_id) except Exception as e: print(f"Attempt {i+1} failed with error: {e}. Retrying in {retry_delay} seconds...") time.sleep(retry_delay) raise Exception("Max retries reached.") 四、结论与展望 通过上述策略,我们可以在一定程度上减轻外部服务依赖对Solr性能的影响。然而,重要的是要持续监控系统的运行状况,并根据实际情况调整优化措施。嘿,你听说了吗?科技这玩意儿啊,那可是越来越牛了!你看,现在就有人在琢磨怎么对付那些让人上瘾的东西。将来啊,说不定能搞出个既高效又结实的办法,帮咱们摆脱这个烦恼。想想都挺激动的,对吧?哎呀,兄弟!构建一个稳定又跑得快的搜索系统,那可得好好琢磨琢磨外部服务这事儿。你知道的,这些服务就像是你家里的电器,得选对了,用好了,整个家才能舒舒服服的。所以啊,咱们得先搞清楚这些服务都是干啥的,它们之间怎么配合,还有万一出了点小状况,咱们能不能快速应对。这样,咱们的搜索系统才能稳如泰山,嗖嗖地飞快,用户一搜就满意,那才叫真本事呢! --- 请注意,以上代码示例是基于Python和相关库编写的,实际应用时需要根据具体环境和技术栈进行相应的调整。
2024-09-21 16:30:17
39
风轻云淡
MemCache
...事务、订阅/发布消息机制等,进一步增强其在复杂业务场景下的适用性。 结语:持续优化与技术创新 随着云原生技术的不断发展,对分布式缓存的需求也在不断演变。Memcached作为一款成熟且灵活的缓存工具,其在云原生环境中的应用与优化,是一个持续探索和创新的过程。通过结合最新的云原生技术栈,如无服务器计算、事件驱动架构等,可以进一步挖掘Memcached的潜力,为其在现代云原生应用中的角色注入新的活力。在这个过程中,不断积累实践经验,推动技术的迭代与创新,是实现系统高效、稳定运行的关键所在。 通过深入分析云原生环境下的分布式缓存需求,以及Memcached在此场景下的应用实践,我们可以看到,技术的融合与创新是推动系统性能优化、应对复杂业务挑战的重要驱动力。随着技术的不断进步和应用场景的不断丰富,Memcached在云原生架构中的角色将会变得更加重要,为构建高性能、高可用的云原生应用提供坚实的基础。
2024-09-02 15:38:39
39
人生如戏
转载文章
...hon描述符这一核心机制后,进一步探究其在实际开发中的应用和最新进展显得尤为重要。近期,Python社区围绕着描述符的应用与优化展开了许多讨论和实践。 例如,在Django框架的2.2版本中,开发者更加广泛地运用描述符来实现模型字段的动态行为,如django.db.models.fields.files.FieldFile就是利用描述符实现文件字段的上传、下载及删除等功能。此外,针对数据验证和业务逻辑封装,一些高级ORM库也引入了自定义描述符设计模式,以提供更为灵活且安全的数据访问控制。 另一方面,Python 3.9引入了新的__set_name__方法,该方法适用于描述符对象,以便在描述符被绑定到类属性时通知其宿主类和名称,为描述符提供了更多的上下文信息,增强了其在复杂场景下的适用性和可读性。 同时,随着Python异步编程的发展,一些库也开始尝试将描述符应用于异步环境,比如通过实现异步描述符来控制异步属性的获取和设置,确保在处理并发请求时能够遵循正确的执行顺序,从而提高程序性能和稳定性。 综上所述,描述符作为Python面向对象编程的核心技术之一,其应用正不断拓展深化,并随着Python语言的演进保持着极高的时效性和实用性。对于开发者而言,掌握并合理运用描述符机制不仅能提升代码质量,还能有效应对各种复杂的业务场景需求。
2023-05-07 19:03:49
94
转载
Mongo
...的MapReduce实践 为了让你更好地理解MapReduce在MongoDB中的应用,下面我将通过一个具体的例子来展示如何使用MapReduce处理数据。 示例代码: 假设我们有一个名为sales的集合,其中包含销售记录,每条记录包含product_id和amount两个字段。我们的目标是计算每个产品的总销售额。 javascript // 首先,我们定义Map函数 db.sales.mapReduce( function() { // 输出键为产品ID,值为销售金额 emit(this.product_id, this.amount); }, function(key, values) { // 将所有销售金额相加得到总销售额 var total = 0; for (var i = 0; i < values.length; i++) { total += values[i]; } return total; }, { "out": { "inline": 1, "pipeline": [ {"$group": {"_id": "$_id", "total_sales": {$sum: "$value"} }} ] } } ); 这段代码首先通过map()函数将每个销售记录映射到键为product_id和值为amount的键值对。哎呀,这事儿啊,就像是这样:首先,你得有个列表,这个列表里头放着一堆商品,每一项商品下面还有一堆数字,那是各个商品的销售价格。然后,咱们用一个叫 reduce() 的魔法棒来处理这些数据。这个魔法棒能帮咱们把每一样商品的销售价格加起来,就像数钱一样,算出每个商品总共卖了多少钱。这样一来,我们就能知道每种商品的总收入啦!哎呀,你懂的,我们用out这个参数把结果塞进了一个临时小盒子里面。然后,我们用$group这个魔法棒,把数据一通分类整理,看看哪些地方数据多,哪些地方数据少,这样就给咱们的数据做了一次大扫除,整整齐齐的。 3. 性能优化与注意事项 在使用MapReduce时,有几个关键点需要注意,以确保最佳性能: - 数据分区:合理的数据分区可以显著提高MapReduce的效率。通常,我们会根据数据的分布情况选择合适的分区策略。 - 内存管理:MapReduce操作可能会消耗大量内存,特别是在处理大型数据集时。合理设置maxTimeMS选项,限制任务运行时间,避免内存溢出。 - 错误处理:在实际应用中,处理潜在的错误和异常情况非常重要。例如,使用try-catch块捕获并处理可能出现的异常。 4. 进阶技巧与高级应用 对于那些追求更高效率和更复杂数据处理场景的开发者来说,以下是一些进阶技巧: - 使用索引:在Map阶段,如果数据集中有大量的重复键值对,使用索引可以在键的查找过程中节省大量时间。 - 异步执行:对于高并发的应用场景,可以考虑将MapReduce操作异步化,利用MongoDB的复制集和分片集群特性,实现真正的分布式处理。 结语 MapReduce在MongoDB中的应用,为我们提供了一种高效处理大数据集的强大工具。哎呀,看完这篇文章后,你可不光是知道了啥是MapReduce,啥时候用,还能动手在自己的项目里把MapReduce用得溜溜的!就像是掌握了新魔法一样,你学会了怎么给这玩意儿加点料,让它在你的项目里发挥出最大效用,让工作效率蹭蹭往上涨!是不是感觉整个人都精神多了?这不就是咱们追求的效果嘛!嘿,兄弟!听好了,掌握新技能最有效的办法就是动手去做,尤其是像MapReduce这种技术。别光看书上理论,找一个你正在做的项目,大胆地将MapReduce实践起来。你会发现,通过实战,你的经验会大大增加,对这个技术的理解也会更加深入透彻。所以,行动起来吧,让自己的项目成为你学习路上的伙伴,你肯定能从中学到不少东西!让我们继续在数据处理的旅程中探索更多可能性!
2024-08-13 15:48:45
149
柳暗花明又一村
Kafka
...可靠性保证:从理论到实践 1. 什么是Kafka?为什么它这么火? 说到Kafka,你可能已经听说过它的名字无数次了。它是分布式流处理平台的代名词,一个开源的消息队列系统。Kafka这东西啊,最早是LinkedIn那边捣鼓出来的,后来觉得挺好,就把它送给了Apache基金会。没想到吧,就这么一送,它现在在大数据圈子里混得那叫一个风生水起,已经成了整个生态里头离不开的重要角色啦! 作为一个开发者,我对Kafka的第一印象是它超级可靠。无论是高吞吐量、低延迟还是容错能力,Kafka都表现得非常出色。大家有没有想过啊,“可靠”这个词到底是怎么来的?为啥说某个东西“靠谱”,我们就觉得它值得信赖呢?今天咱们就来聊聊这个事儿——比如说,你发出去的消息,咋就能保证它不会石沉大海、人间蒸发了呢?这可不是开玩笑的事儿,尤其是在大数据的世界里,丢一个消息可能就意味着丢了一笔订单或者错过了一次重要沟通。所以啊,今天我们就要揭开谜底,跟大家唠唠Kafka是怎么做到让消息“稳如老狗”的! 2. Kafka可靠性背后的秘密武器 Kafka的可靠性主要依赖于以下几个核心概念: 2.1 持久化与日志结构 Kafka将所有数据存储在日志文件中,并通过持久化机制确保数据不会因为服务器宕机而丢失。简单来说,就是把消息写入磁盘而不是内存。 java Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("acks", "all"); props.put("retries", 0); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); Producer producer = new KafkaProducer<>(props); producer.send(new ProducerRecord<>("my-topic", "my-key", "my-value")); producer.close(); 这段代码展示了如何发送一条消息到Kafka主题。其中acks="all"参数表示生产者会等待所有副本确认收到消息后才认为发送成功。 2.2 分区与副本机制 Kafka通过分区(Partition)来分摊负载,同时通过副本(Replica)机制来提高可用性和容错性。每个分区可以有多个副本,其中一个为主副本,其余为从副本。 java AdminClient adminClient = AdminClient.create(props); ListTopicsOptions options = new ListTopicsOptions(); options.listInternal(true); Set topics = adminClient.listTopics(options).names().get(); System.out.println("Topics: " + topics); 这段代码用于列出Kafka集群中的所有主题及其副本信息。通过这种方式,你可以检查每个主题的副本分布情况。 3. 生产者端的可靠性保障 作为生产者,我们需要确保发送出去的消息能够安全到达Kafka集群。这涉及到一些关键配置: - acks:控制生产者的确认级别。设置为"all"时,意味着必须等待所有副本确认。 - retries:指定重试次数。如果网络抖动导致消息未送达,Kafka会自动重试。 - linger.ms:控制批量发送的时间间隔。默认值为0毫秒,即立即发送。 java Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("acks", "all"); props.put("retries", 3); props.put("linger.ms", 5); props.put("batch.size", 16384); Producer producer = new KafkaProducer<>(props); for (int i = 0; i < 100; i++) { producer.send(new ProducerRecord<>("my-topic", Integer.toString(i), Integer.toString(i))); } producer.close(); 在这个例子中,我们设置了retries=3和linger.ms=5,这意味着即使遇到短暂的网络问题,Kafka也会尝试最多三次重试,并且会在5毫秒内累积多条消息一起发送。 4. 消费者端的可靠性保障 消费者端同样需要关注可靠性问题。Kafka 有两种消费模式,一个叫 earliest,一个叫 latest。简单来说,earliest 就是从头开始补作业,把之前没看过的消息全都读一遍;而 latest 则是直接从最新的消息开始看,相当于跳过之前的存档,直接进入直播频道。 java Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("group.id", "test-group"); props.put("enable.auto.commit", "true"); props.put("auto.commit.interval.ms", "1000"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); KafkaConsumer consumer = new KafkaConsumer<>(props); consumer.subscribe(Arrays.asList("my-topic")); while (true) { ConsumerRecords records = consumer.poll(Duration.ofMillis(100)); for (ConsumerRecord record : records) { System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value()); } } 这段代码展示了如何订阅一个主题并持续拉取消息。注意这里启用了自动提交功能,这样就不需要手动管理偏移量了。 5. 总结与反思 通过今天的讨论,我相信大家对Kafka的消息可靠性有了更深的理解。Kafka能从一堆消息队列系统里脱颖而出,靠的就是它在设计的时候就脑补了各种“灾难片”场景,比如数据爆炸、服务器宕机啥的,然后还给配齐了神器,专门对付这些麻烦事儿。 然而,正如任何技术一样,Kafka也不是万能的。在实际应用中,我们还需要结合具体的业务需求来调整配置参数。比如说啊,在那种超级忙、好多请求同时涌过来的场景下,就得调整一下每次处理的任务量,别一下子搞太多,慢慢来可能更稳。但要是你干的事特别讲究速度,晚一秒钟都不行的那种,那就得想办法把发东西的时间间隔调短点,越快越好! 总之,Kafka的强大之处在于它允许我们灵活地调整策略以适应不同的工作负载。希望这篇文章能帮助你在实践中更好地利用Kafka的优势!如果你有任何疑问或想法,欢迎随时交流哦~
2025-04-11 16:10:34
96
幽谷听泉
转载文章
...根据自己的情况定这个命令检查时间间隔,不要太长也不要太短)。 2.资源配置文件resource.cfg 资源文件可以保存用户自定义的宏.资源文件的一个主要用处是用于保存一些敏感的配置信息,如系统口令等不能让CGIs 程序模块获取到的东西 3.CGI配置文件cgi.cfg CGI 配置文件包含了一系列的设置,它们会影响CGIs程序模块.还有一些保存在主配置文件之中,因此CGI 程序会知道你是如何配置的Nagios并且在哪里保存了对象定义.最实际的例子就是,如果你想建立一个只有查看报警权限的用户,或者只有查看其中一些服务 器或者服务状态的权限,通过修改cfi.cfg可以灵活的控制web访问端的权限. 4.主机定义文件 定义你要监控的对象,这里定义的“host_name”被应用到其它的所有配置文件中,这个是我们配置Nagios 必须修改的配置文件. [root@test objects] vim hosts.cfg define host{ host_name Nagios-Server ; 设置主机的名字,该名字会出现在hostgroups.cfg 和services.cfg 中。注意,这个名字可以不是该服务器的主机名。 alias Nagios服务器 ; 别名 address 192.168.81.128 ; 主机的IP 地址 check_command check-host-alive ; 检查使用的命令,需要在命令定义文件定义,默认是定义好的。 check_interval 1 ; 检测的时间间隔 retry_interval 1 ; 检测失败后重试的时间间隔 max_check_attempts 3 ; 最大重试次数 check_period 24x7 ; 检测的时段 process_perf_data 0 retain_nonstatus_information 0 contact_groups sagroup ; 需要通知的联系组 notification_interval 30 ; 通知的时间间隔 notification_period 24x7 ; 通知的时间段 notification_options d,u,r ; 通知的选项 w—报警(warning),u—未知(unkown) c—严重(critical),r—从异常情况恢复正常 } define host{ host_name Nagios-Client alias Nagios客户端 address 192.168.81.129 check_command check-host-alive check_interval 1 retry_interval 1 max_check_attempts 3 check_period 24x7 process_perf_data 0 retain_nonstatus_information 0 contact_groups sagroup notification_interval 30 notification_period 24x7 notification_options d,u,r } 5.主机组定义文件 主机组定义文件,可以方便的将相同功能或者在应用上相同的服务器添加到一个主机组里,在WEB 界面可以通过HOST Group 方便的查看该组主机的状态信息. 将刚才定义的两个主机加入到主机组中,针对生产环境就像把所有的MySQL 服务器加到一个MySQL主机组里,将Oracle 服务器加到一个Oracle 主机组里,方便管理和查看,可以配置多个组. [root@test objects] vim hostgroups.cfg define hostgroup { hostgroup_name Nagios-Example ; 主机组名字 alias Nagios 主机组 ; 主机组别名 members Nagios-Server,Nagios-Client ; 主机组成员,用逗号隔开 } 6.服务定义文件 服务定义文件定义你需要监控的对象的服务,比如本例为检测主机是否存活,在后面会讲到如何监控其它服务,比如服务器负载、内存、磁盘等. [root@test objects] vim services.cfg define service { host_name Nagios-Server ; hosts.cfg 定义的主机名称 service_description check-host-alive ; 服务描述 check_period 24x7 ; 检测的时间段 max_check_attempts 3 ; 最大检测次数 normal_check_interval 3 retry_check_interval 2 contact_groups sagroup ; 发生故障通知的联系人组 notification_interval 10 notification_period 24x7 ; 通知的时间段 notification_options w,u,c,r check_command check-host-alive } define service { host_name Nagios-Client service_description check-host-alive check_period 24x7 max_check_attempts 3 normal_check_interval 3 retry_check_interval 2 contact_groups sagroup notification_interval 10 notification_period 24x7 notification_options w,u,c,r check_command check-host-alive } 7.服务组定义文件 和主机组一样,我们可以按需将相同的服务放入一个服务组,这样有规律的分类,便于我们在WEB端查看. [root@test objects] vim servicegroups.cfg define servicegroup{ servicegroup_name Host-Alive ; 组名 alias Host Alive ; 别名设置 members Nagios-Server,check-host-alive,Nagios-Client,check-host-alive } 8.联系人定义文件 定义发生故障时,需要通知的联系人信息.默认安装完成后,该配置文件已经存在,而且该文件不仅定义了联系人,也定义了联系人组,为了条理化的规划,我们把联系人定义放在contacts.cfg文件里,把联系人组放在contactgroups.cfg文件中. [root@test objects] mv contacts.cfg contacts.cfg.bak [root@test objects] vim contacts.cfg define contact{ contact_name maoxian ; 联系人的名字 alias maoxian ; 别名 service_notification_period 24x7 ; 服务报警的时间段 host_notification_period 24x7 ; 主机报警的时间段 service_notification_options w,u,c,r ; 就是在这四种情况下报警。 host_notification_options d,u,r ;同上。 服务报警发消息的命令,在command.cfg 中定义。 service_notification_commands notify-service-by-email 服务报警发消息的命令,在command.cfg 中定义。 host_notification_commands notify-host-by-email email wangyx088@gmail.com ; 定义邮件地址,也就是接收报警邮件地址。 } 9.联系人组定义文件 联系人组定义文件在实际应用中很有好处,我们可以把报警信息分级别,报联系人分级别存放在联系人组里面.例如:当发生一些警告信息的情况下,只发邮件给系统工程师联系人组即可,但是当发生重大问题,比如主机宕机了,可以发给领导联系人组. [root@test objects] vim contactgroups.cfg define contactgroup{ contactgroup_name sagroup ; 组名 alias Nagios Administrators ; 别名 members maoxian ; 联系人组成员 } 10.命令定义文件 commands.cfg 命令定义文件是Nagios中很重要的配置文件,所有在hosts.cfg还是services.cfg使用的命令都必须在命令定义文件中定义才能使用.默认情况下,范例配置文件已经配置好了日常需要使用的命令,所以一般不做修改. 11.时间段定义文件 timeperiods.cfg 我们在检测、通知、报警的时候都需要定义时间段,默认都是使用7x24,这也是默认配置文件里配置好的,如果你需要周六日不做检测,或者在制定的维护时间不做检测,都可以在该时间段定义文件定义好,这样固定维护的时候,就不会为大量的报警邮件或者短信烦恼 [root@test objects] cat timeperiods.cfg |grep -v "^" |grep -v "^$" 可以根据业务需求来更改 12.启动Nagios 1> 修改配置文件所有者 [root@test objects] chown -R nagios:nagios /usr/local/nagios/etc/objects/ 2> 检测配置是否正确 [root@test objects] /usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg 如果配置错误,会给出相应的报错信息,可以根据信息查找,注意,如果配置文件中有不可见字符也可以导致配置错误 3> 重载Nagios [root@test objects] service nagios restart 本文出自 “毛线的linux之路” 博客,请务必保留此出处http://maoxian.blog.51cto.com/4227070/756516 本篇文章为转载内容。原文链接:https://blog.csdn.net/gzh0222/article/details/8549202。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-16 20:48:42
483
转载
转载文章
...码,并且只能在SSH命令行中使用“ pihole -a -p”更改密码),有时将其禁用几分钟以进行测试,然后将某些域列入白名单。 我怀疑几周后我会拨好电话。 翻译自: https://www.hanselman.com/blog/blocking-ads-before-they-enter-your-house-at-the-dns-level-with-pihole-and-a-cheap-raspberry-pi pi-hole 本篇文章为转载内容。原文链接:https://blog.csdn.net/cunfusq0176/article/details/109051003。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-12 20:49:59
61
转载
转载文章
...py Update)机制的研究与应用持续深化。在最新的Linux 5.15版本中,开发者进一步优化了RCU的性能和内存利用率,并针对大规模并发环境下的宽限期处理逻辑进行了改进,显著降低了锁竞争,提升了系统整体响应速度。 在实际应用场景上,Google开源项目BPF(Berkeley Packet Filter)利用RCU机制实现了高效的跟踪和分析工具,使得网络数据包过滤、性能监控等功能能够在不影响主线程性能的前提下实现近乎实时的数据读取与更新。 另外,知名计算机科学家Paul E. McKenney于2022年发表了一篇关于RCU最新进展和技术挑战的深度论文,其中深入剖析了RCU在未来多核处理器架构下的扩展性问题以及可能的解决方案。他强调,在面对日益复杂的硬件环境时,RCU机制需要不断演进以适应更高级别的并发控制需求。 同时,随着云计算和大数据技术的发展,RCU在分布式存储系统中的作用也逐渐凸显。例如,Ceph文件系统通过借鉴RCU思想,设计出适用于自身场景的读写同步算法,有效提高了大规模集群环境下的数据一致性保障能力。 综上所述,RCU作为Linux内核中不可或缺的同步原语,其理论研究和实践应用都在与时俱进,为现代操作系统及分布式系统的高效稳定运行提供了有力支撑。未来,我们有理由期待更多基于RCU机制的创新技术和解决方案涌现,持续推动软件工程领域的发展进步。
2023-09-25 09:31:10
105
转载
转载文章
...为现代应用开发的标准实践。最新的API网关技术如Kong、Envoy等,不仅提供了统一的安全认证、限流熔断等治理能力,还能简化WebService接口的管理和部署。例如,一篇近期的技术文章《使用Kong构建可扩展的微服务API网关》深入探讨了如何利用此类工具优化WebService性能,并确保其在大规模分布式环境中的高可用性。 另外,HTTP/3作为HTTP协议的最新版本,正在逐步被各大主流浏览器及服务器支持。相较于HTTP/1.1和HTTP/2,HTTP/3引入了QUIC协议,提供更快的连接建立速度、多路复用无阻塞传输,有效解决了延迟和丢包问题。阅读关于HTTP/3的最新研究与实践案例,比如《HTTP/3:下一代互联网传输协议的变革与应用》,将有助于我们掌握未来WebService通信的新趋势和技术细节。 此外,对于安全防护方面,随着网络攻击手段的日益复杂化,保障WebService的安全性至关重要。一篇题为《深度解析:如何强化你的WebService安全防护体系》的文章详述了多种常见的安全威胁及应对策略,包括但不限于DDoS防御、SQL注入防范、OAuth2.0授权机制的应用等,这对于提升自建WebService的安全等级具有极高的参考价值。 综上所述,在实际开发和运维过程中,结合最新的技术和最佳实践,不断优化和完善WebService的实现方案,既能提高系统的稳定性和效率,也能确保其在面对各种挑战时具备足够的安全性和适应性。
2023-05-30 18:31:58
90
转载
转载文章
...l、算法、linux命令的环节。 松果出行 松果出行主要业务是构建国内县域城市交通出行网络,目前主要是共享电单车和共享新能源汽车服务。目前业务已经覆盖全国21个省,5000个县。 福利待遇属于行业中等,五险一金、年终奖等,没有补充医疗保险。 招聘岗位很多,以JAVA为主,各种级别都有。也有物联网、传感器硬件相关的岗位。 小桔科技 目前研发团队主要做推荐、搜索系统,注册地在大连。 福利待遇行业中等,五险一金、年终奖,没有补充医疗保险。 招聘岗位包括JAVA、PHP、搜索算法、前端、数仓等。 理想汽车 智能电动车品牌,这两年在行业内名气比较大。 福利待遇行业中等偏上,六险一金、交通补贴等。 招聘岗位很多,以JAVA为主,各种级别都有。另外也招聘PaaS平台研发、搜索、车载语音、大数据等。 参加过理想汽车面试的同学反馈面试体验不太好,面试官没有耐心,给大家一个参考。 狮桥 智慧物流+普惠金融融资租赁业务。 福利待遇中等偏下,五险一金、年终奖,没有补充医疗保险。 招聘岗位主要是JAVA开发。 领创集团 海外金融业务,主要做印度市场。 福利待遇中等偏下,六险一金,年终奖,工作节奏慢。 招聘岗位主要是JAVA,招聘岗位主要是java。 面试过的同学反馈体验比较好,面试官比较nice,有手写代码环节。 总结 今天主要推荐了望京的16家值得加入的互联网公司,事实上,望京区域的互联网公司和其他科技公司至少有几百家,由于个人精力有限,主要梳理了业界比较知名和自己熟悉的公司。相信还有好多非常不错的公司值得加入,欢迎大家跟我交流讨论。 欢迎关注个人公众号,一起学习进步 本篇文章为转载内容。原文链接:https://blog.csdn.net/zjj2006/article/details/121412370。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-11 22:59:19
529
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
curl -I http://example.com
- 获取HTTP头部信息。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"