前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[列式数据库 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...数设备是用于生成随机数据的特殊文件接口。在Linux和Unix系统中,最常见的随机数设备为/dev/random和/dev/urandom。其中,/dev/random提供基于环境噪声(如键盘敲击、鼠标移动等)产生的高质量随机数,但由于其依赖于熵池中的可用熵,因此在熵耗尽时可能会阻塞或变慢;而/dev/urandom同样基于熵池,但在熵不足时会利用特定算法预测并填充随机数,从而确保始终能快速生成随机数,但安全性理论上略低于/dev/random。 Tomcat , Apache Tomcat是一个开源的Servlet容器,它实现了Java Servlet和JavaServer Pages (JSP)规范,并提供了运行Java Web应用程序的标准环境。在本文语境中,Tomcat是部署在阿里云CentOS7服务器上的Web应用服务器,负责处理HTTP请求并将动态内容转换为客户端可读的HTML页面。 java.security文件 , java.security文件是Java运行环境中一个关键的安全配置文件,它定义了JVM如何实现各种安全特性,包括但不限于加密服务提供者列表、访问策略、证书管理器设置以及随机数生成器源等。在本文所描述的问题场景中,通过修改该文件中的securerandom.source属性值,将JDK默认使用的随机数生成源由/dev/random更改为/dev/urandom,以解决Tomcat启动速度慢的问题。这意味着Java虚拟机在需要生成随机数时,将不再等待/dev/random提供的高熵随机数,转而使用/dev/urandom提供的更快捷但相对较低熵的随机数源。
2023-12-19 21:20:44
98
转载
Python
...模型是指已经在大规模数据集上进行了训练并取得良好性能的机器学习或深度学习模型。在本文的Python代码示例中,所使用的汽车级联分类器( cars.xml )就是一个预训练模型,意味着该模型已经学习了大量不同角度、大小、光照条件下的车辆样本数据,并能据此识别新图像中的车辆。使用预训练模型的好处在于可以大大减少从零开始训练所需的时间和计算资源,同时提高模型在目标检测任务上的准确性。在实际应用中,开发者可以直接调用这样的预训练模型,针对具体应用场景进行微调或者直接使用。
2023-12-14 13:35:31
42
键盘勇士
Python
...被广泛用于机器学习和数据分析中。其中梯度下降算法也是机器学习中的一个关键算法,用来搜寻函数值的极小值。 下面我们将学习如何使用Python执行梯度下降算法。我们将使用一个简单的线性回归模型作为例子,来介绍如何使用梯度下降算法来搜寻最小化损失函数值的变量。 import numpy as np def gradient_descent(X, y, theta, alpha, num_iters): m = y.size J_history = np.zeros(num_iters) for i in range(num_iters): h = X.dot(theta) theta = theta - alpha (1/m) (X.T.dot(h-y)) J_history[i] = compute_cost(X, y, theta) return(theta, J_history) def compute_cost(X, y, theta): m = y.size h = X.dot(theta) J = 1/(2m) np.sum(np.square(h-y)) return(J) 上述代码执行了一个梯度下降函数值,其中X为特征矩阵,y为目标变量,theta为当前变量的初始值,alpha为学习率,num_iters为迭代次数。函数值中使用了一个计算损失函数值的函数值compute_cost,这个函数值执行了简单的线性回归的成本函数值的计算。 在实际应用中,我们需要先对数据进行标准化处理,以便使数据在相同的比例下进行。我们还需要使用交叉验证来选取适当的超变量,以防止模型过拟合或欠拟合。此外,我们还可以将其与其他优化算法(如牛顿法)进行比较,以获得更高的效能。 总之,梯度下降算法是机器学习中的一个关键算法,Python也提供了丰富的工具和库来执行梯度下降算法。通过学习和使用Python,我们可以更好地了解和应用这些算法,从而获得更好的结果。
2023-09-27 14:38:40
303
电脑达人
转载文章
...的出台,对移动应用的数据安全和隐私保护提出了更高的要求。逆向工程工具如jadx在协助开发者自查代码、防止信息泄露方面扮演着重要角色。例如,开发者可以利用此类工具深入检查自家应用的签名算法、数据加密以及权限管理机制,以符合最新的合规标准。 同时,在黑帽大会(Black Hat)等信息安全研讨会上,专家们就反编译技术在攻防两端的应用展开了深入探讨,其中不乏关于如何有效对抗逆向工程攻击的实践案例和技术分享。这些前沿研究为jadx等反编译工具的使用者提供了更全面的战略视角,帮助他们在实际工作中更好地应对各类安全挑战。 综上所述,无论是从行业动态、法规解读还是专业技术层面,深入关注和研究反编译技术及其在安全领域的应用,都将有助于提升广大开发人员及安全研究人员对移动应用安全性的理解和保障能力,使得像jadx这样的工具在实战中发挥出更大的价值。
2023-01-20 16:12:18
466
转载
JSON
...都希望可以将JSON数据从客户端发送到服务器端,并且从服务器端返回响应的数据。这就是Ashx的一个强大功能。 2. 什么是Ashx Ashx是ASP.NET中的一个组件,它可以用于处理HTTP请求。通过Ashx,我们可以创建自己的HTTP处理程序,实现定制的业务逻辑。 3. JSON是什么? JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,它基于JavaScript的一个子集。它易于人阅读和编写,同时也易于机器解析和生成。 4. 如何使用Ashx处理JSON数据? 首先,我们需要定义一个Ashx方法来处理我们的请求。这个方法呐,它得接收一个叫“request”的小家伙作为参数,其实呢,这玩意儿就是一个HttpApplicationRequest对象,里头装着这次请求的所有详细信息,一丁点儿也没落下。 csharp public void HandleHttpRequest(HttpContext context) { // 获取请求的内容 string requestContent = context.Request.InputStream.ReadToEnd(); // 将请求内容转换为JSON对象 dynamic jsonObject = JsonConvert.DeserializeObject(requestContent); // 在这里处理你的JSON数据... // 返回响应 context.Response.Write("处理成功"); } 在这个方法中,我们首先获取了请求的内容,然后使用JsonConvert.DeserializeObject方法将其转换为一个动态类型的JSON对象。这样,我们就可以方便地访问和操作JSON数据了。 5. 总结 Ashx是一个强大的工具,可以帮助我们在ASP.NET中处理各种HTTP请求。尤其是当我们碰上要处理JSON数据这事儿,用Ashx可是能帮咱们省不少力,让事情变得轻松简单多了。当你把请求的内容成功转换成JSON格式后,就等于把它变成一个我们熟悉的.NET对象,这样一来,处理JSON数据就跟玩普通.NET对象一样简单轻松,毫无压力啦! 6. 深入探讨 然而,这只是一个基础的例子。实际上,我们可以使用Ashx做更多的事情。比如说,咱们可以在动手解析JSON数据之前,先给请求做个“体检”确认其靠谱性;又或者,在我们成功搞定数据之后,再添点额外的“小料”,让它更加饱满丰富。 此外,我们也需要注意安全问题。虽然“JsonConvert.DeserializeObject”这个小家伙能够自动挡下不少常见的JSON攻击招式,但我们仍然得瞪大眼睛,确保喂给它的数据确实是货真价实、没毛病的。 总的来说,Ashx是一个非常有用的工具,但我们也需要谨慎使用,以防止可能的安全问题。
2023-06-29 14:38:59
550
灵动之光-t
VUE
...用v-bind将实时数据关联到样式属性上,例如: <template> <div :style="{ backgroundColor: color }"> <p v-for="(item, index) in items" :key="index">{ { item } }</p> </div> </template> <script> export default { data() { return { items: ['apple', 'banana', 'orange'], color: 'red' } } } </script> 在上面的代码中,我们运用v-bind将color关联到div的background-color属性上。此外,我们还用v-for循环展现了一个p元素,展示了data中的item数组。 总之,Vue和CSS可以很好地协同工作,以增强你的应用程序的视觉呈现和交互性。对于前端开发人员来说,重要的是了解如何运用Vue和CSS来创建具有相似界面和体验的模块,以提高代码的可重用性和可扩展性。
2023-09-02 10:50:23
49
编程狂人
Scala
...可以把各种不同类型的数据一股脑儿塞进同一个容器里头。 - 它们增强了泛型编程的能力。咱们能够利用 Existential Types 这个利器,妥妥地应对各种不确定性的问题,特别是在处理那些涉及不同类型对象交互操作的场景时,那可真是帮了大忙了! - 它们可以提高程序的性能。要是我们清楚数据将来是要拿去做某个特定操作的,那么采用 Existential Types 就能大大减轻类型检查的负担,让工作变得更轻松。 如何使用Existential Types 让我们来看几个使用Existential Types的例子。 1. 泛型方法 我们可以使用Existential Types来编写泛型方法,这些方法可以接受任何类型的数据,并对其进行某种操作。 scala def applyOnAny[A](x: A)(f: A => String): String = s"The result of applying $f on $x is ${f(x)}" println(applyOnAny("Hello")(_ + "!")) // 输出: The result of applying _ + ! on Hello is Hello! 在这个例子中,我们的函数 applyOnAny 接受两个参数:一个是未知类型 A 的值 x ,另一个是一个将 A 转换为字符串的函数 f 。然后,它调用 f 并返回结果。 2. 包装器类 我们可以使用Existential Types来创建包装器类,这些类可以将任意类型的值封装到一个新的类型中。 scala class Box[T](val value: T) { override def toString: String = s"Box($value)" } val stringBox = new Box[String]("Hello") val intBox = new Box[Int](5) println(stringBox.toString) // 输出: Box(Hello) println(intBox.toString) // 输出: Box(5) 在这个例子中,我们的 Box 类可以封装任何类型的数据。当我们创建新的 Box 对象时,我们传递了我们要包装的值以及它的类型。 3. 模式匹配 我们可以使用Existential Types来进行模式匹配,这使得我们可以处理各种不同的类型。 scala def test(s: Any): Unit = s match { case Some(x) => println(x) case None => println("None") } test(Some(5)) // 输出: 5 test(None) // 输出: None 在这个例子中,我们的函数 test 接受一个 Any 值作为参数,并尝试将其转换为 Some[_] 或 None 对象。如果可以成功转换,则打印出对应的值。 总的来说,Existential Types 是 Scala 中非常强大和有用的特性。通过使用它们,我们可以更好地处理不确定性,并编写更灵活和高效的代码。
2023-01-22 23:32:50
96
青山绿水-t
ActiveMQ
...共同完成复杂的计算或数据处理任务。在讨论ActiveMQ及其消息选择器功能时,分布式系统是其应用场景的基础背景,因为消息中间件在解决分布式系统中各组件间通信问题时发挥着关键作用,能够确保系统的可靠性和扩展性。
2023-03-11 13:19:06
929
山涧溪流-t
HTML
...过网络实时传输音视频数据的服务方式,使得用户无需完全下载整个文件即可在线观看或收听。在讨论视频内容保护时,流媒体服务通过只提供连续的数据流而并非完整的文件下载,能够降低非法下载的风险。同时,结合权限验证等后端控制策略,流媒体服务能更好地实现对视频内容访问权限的精细化管理,提升内容安全性。
2023-03-07 18:40:31
490
半夏微凉_
AngularJS
...AngularJS:数据模型变化后视图未更新的问题探讨与解决方案 引言 在我们日常的前端开发工作中,AngularJS作为一款强大的MVVM(Model-View-ViewModel)框架,以其高效的双向数据绑定特性深受开发者喜爱。嘿,你知道吗,在实际操作的时候,咱们经常会遇到一个挺烦人又常见的小插曲:明明数据模型已经偷偷变了脸,可那个视图却还是老样子,没有及时更新,你说气不气人?这种现象可能会引发用户体验下降,甚至导致逻辑错误。本文将通过实例分析问题原因,并提供相应的解决策略。 问题再现(1) 首先,让我们用一段简单的AngularJS代码来模拟这个问题: javascript var app = angular.module('myApp', []); app.controller('myCtrl', function($scope) { $scope.message = 'Hello, World!'; setTimeout(function() { $scope.message = 'Data Changed!'; // 数据模型已更改 }, 2000); }); html { {message} } 尽管我们在控制器中改变了$scope.message的值,但是页面上的消息并没有在2秒后自动变为“Data Changed!”。这正是我们要讨论的问题。 原理解析(2) AngularJS的数据绑定基于脏检查机制,只有在特定的digest循环中才会检测并更新视图。在刚才举的例子里面,setTimeout函数搞的那个异步操作,它压根就没在AngularJS那个digest循环的视线范围内,所以Angular根本不知道数据已经偷偷变了脸。这就导致了视图没及时更新,还保持着老样子呢。 解决方案(3) 面对这样的情况,我们可以采取以下两种方法: 方法一:使用 $apply javascript app.controller('myCtrl', function($scope) { $scope.message = 'Hello, World!'; setTimeout(function() { $scope.$apply(function() { $scope.message = 'Data Changed!'; }); }, 2000); }); 这里我们调用了$scope.$apply()方法,它会启动一个新的digest循环,强制AngularJS去检查所有$scope变量的变化,从而使得视图得以更新。 方法二:使用 $timeout javascript app.controller('myCtrl', ['$scope', '$timeout', function($scope, $timeout) { $scope.message = 'Hello, World!'; $timeout(function() { $scope.message = 'Data Changed!'; }, 2000); }]); AngularJS内置的$timeout服务本身就封装了对$apply的调用,所以在异步回调中使用$timeout可以确保数据变更能被正确地检测和处理。 深入思考与探讨(4) 虽然以上方法可以解决问题,但在实际项目中,过度依赖或滥用$apply可能会带来性能问题,因为它会导致额外的digest循环。因此,对于频繁的数据变更,建议尽量采用AngularJS提供的内置服务如$timeout、$http等,它们会在完成任务时自动触发digest循环。 总结来说,理解和掌握AngularJS的数据绑定原理以及其背后的 digest 循环机制是解决这类问题的关键。同时呢,这也给我们提了个醒,在敲代码的时候,千万不能忽视异步操作对数据绑定带来的影响。就像是做菜时要注意调味料的搭配一样,只有这样,我们的应用程序才能拥有丝滑流畅的响应速度和让用户爱不释手的体验感。
2023-05-13 23:52:26
407
清风徐来
转载文章
...图,加上业务图层实现数据层面的整合,还有开发人员将google earth和ags发布的二维地图的地理坐标联动起来,下载安装google earth plugin之后,可以同时浏览某一地理位置的google earth三维地图和ags二维地图,当业务的侧重点在于地理展示和客户端体验时,不能不说Google树立了一个典范,从ags抽取地理核心服务,从Google Earth/Map或是其他服务提取基础地图和应用展示,两者结合实现某种需求。 虽然从ags9.2-9.3的功能改进,可以看出ESRI在过去以GIS核心服务为重心的基础上,开始增强客户端的应用开发(ADF模板程序、javascript api),但是它并没有停止服务层面的不断改进,各种新增的各种server服务以及REST API就是最好的体现。思想到位了,还需要实际检验,估计不少bug等着我们挖掘,后面会向大家介绍一些比较流行的server基本开发模式。 相关链接: Javascript API Samples ArcGIS Server Resource Center 转载于:https://www.cnblogs.com/flyingis/archive/2008/07/09/1239585.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30429201/article/details/98226373。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-22 09:33:23
117
转载
Apache Solr
...he Solr进行大数据处理时,我们经常会遇到内存占用过高的问题。这不仅影响了系统的性能,也大大增加了运维成本。为了解决这个问题,本文将详细介绍如何通过Solr的JVM调优来降低内存占用。 二、什么是JVM调优? JVM调优是指通过对JVM运行环境的设置和调整,优化Java应用程序的运行效率和性能的过程。主要包括以下几个方面: 1. 设置合理的堆内存大小 ; 2. 调整垃圾收集器的参数 ; 3. 调整线程池的参数 ; 4. 配置JVM的其他参数 。 三、为什么要进行JVM调优? 由于Java程序运行时需要大量的内存资源,如果内存管理不当,就会导致内存溢出或者性能下降等问题。所以呢,对JVM进行调优这个操作,就能让Java程序跑得更溜更快,这样一来,甭管业务需求有多高,都能妥妥地满足。 四、如何通过Solr的JVM调优降低内存占用? 1. 设置合理的堆内存大小 堆内存是Java程序运行时所需的主要内存资源,也是最容易导致内存占用过高的部分。在Solr中,可以通过修改solr.in.sh文件中的-Xms和-Xmx参数来设置初始和最大堆内存的大小。 例如,我们可以将这两个参数的值分别设置为4g和8g,这样就可以为Solr提供足够的内存资源。 bash solr.in.sh export JAVA_HOME=/path/to/java export SOLR_HOME=/path/to/solr export CLASSPATH=$SOLR_HOME/bin/bootstrap.jar:$SOLR_HOME/bin/solr.jar export CATALINA_OPTS="-server -Xms4g -Xmx8g" 2. 调整垃圾收集器的参数 垃圾收集器是负责回收Java程序中不再使用的内存的部分。在Solr中,可以通过修改solr.in.sh文件中的-XX:+UseConcMarkSweepGC参数来启用并发标记清除算法,这种算法可以在不影响程序运行的情况下,高效地回收无用内存。 bash solr.in.sh export JAVA_HOME=/path/to/java export SOLR_HOME=/path/to/solr export CLASSPATH=$SOLR_HOME/bin/bootstrap.jar:$SOLR_HOME/bin/solr.jar export CATALINA_OPTS="-server -XX:+UseConcMarkSweepGC" 3. 调整线程池的参数 线程池是Java程序中用于管理和调度线程的工具。在使用Solr的时候,如果你想要提升垃圾回收的效率,有个小窍门可以试试。你只需打开solr.in.sh这个配置文件,找到其中关于-XX:ParallelGCThreads的参数,然后对它进行修改,就可以调整并行垃圾收集线程的数量了。这样一来,Solr就能调动更多的“小工”同时进行垃圾清理工作,从而让你的系统运行更加流畅、高效。 bash solr.in.sh export JAVA_HOME=/path/to/java export SOLR_HOME=/path/to/solr export CLASSPATH=$SOLR_HOME/bin/bootstrap.jar:$SOLR_HOME/bin/solr.jar export CATALINA_OPTS="-server -XX:+UseConcMarkSweepGC -XX:ParallelGCThreads=4" 4. 配置JVM的其他参数 除了上述参数外,还可以通过其他一些JVM参数来进一步优化Solr的性能。比如说,我们可以调整一个叫-XX:MaxTenuringThreshold的参数,这个参数就像个开关一样,能控制对象从年轻代晋升到老年代的“毕业标准”。这样一来,就能有效降低垃圾回收的频率,让程序运行更加流畅。 bash solr.in.sh export JAVA_HOME=/path/to/java export SOLR_HOME=/path/to/solr export CLASSPATH=$SOLR_HOME/bin/bootstrap.jar:$SOLR_HOME/bin/solr.jar export CATALINA_OPTS="-server -XX:+UseConcMarkSweepGC -XX:ParallelGCThreads=4 -XX:MaxTenuringThreshold=8" 五、结论 通过以上的JVM调优技巧,我们可以有效地降低Solr的内存占用,从而提高其运行效率和性能。不过要注意,不同的使用场景可能需要咱们采取不同的优化招数。所以,在实际操作时,我们得像变戏法一样,根据实际情况灵活调整策略,才能把事情做得更漂亮。
2023-01-02 12:22:14
470
飞鸟与鱼-t
ElasticSearch
在我们平常做数据分析的时候,经常会遇到这么个情况:面对海量数据,我们需要像探照灯一样,迅速锁定并挖出我们需要的信息,这就是大家常说的“钻取”操作,也就是drilldown。而在这个过程中,URL模板就起到了关键的作用。本文将以ElasticSearch为例,详细介绍如何在Kibana中设置和使用URL模板。 一、什么是URL模板? URL模板是Kibana提供的一种方便用户定制搜索请求的方式。它可以通过字符串替换语法来指定查询参数,从而实现自定义的搜索请求。例如,我们可以在URL中加入某个字段值作为参数,然后通过URL模板将其替换为实际的值,从而得到我们想要的搜索结果。 二、如何在Kibana中设置URL模板? 在Kibana中设置URL模板非常简单,只需要按照以下步骤即可: 1. 在左侧菜单栏中选择要使用的索引,然后点击右上角的“高级选项”。 2. 在弹出的窗口中,点击“搜索模式”,然后选择“URL模板”。 3. 在打开的新窗口中,输入你要设置的URL模板。例如,你可以设置一个包含日期字段的模板,如下所示: /api/v1/app/kibana/management/dashboard/_data?index=_all&type=logs&page={page}&size={size}&sort=date desc&filter=%7B%22range%22%3A%7B%22date%22%3A%7B%22gte%22%3A%22{from_date}%22,%22lte%22%3A%22{to_date}%22%7D%7D%7D&query=%7B%22bool%22%3A%7B%22must%22%3A%5B%7B%22match_all%22%3A%7B%7D%7D%5D%7D 在这个模板中,“{from_date}”和“{to_date}”分别是日期范围的开始时间和结束时间。 4. 设置完模板后,点击“保存”。 现在,当你在Kibana中使用这个索引并开启搜索时,你可以看到一个新的按钮:“钻取”。点击这个按钮,就会打开一个新的搜索页面,并且会自动填充你刚才设置的URL模板。 三、如何使用URL模板进行搜索? 使用URL模板进行搜索也非常简单,只需要按照以下步骤即可: 1. 在左侧菜单栏中选择要使用的索引,然后点击右上角的“高级选项”。 2. 在弹出的窗口中,点击“搜索模式”,然后选择“URL模板”。 3. 在打开的新窗口中,输入你要搜索的关键词或其他条件,然后点击“搜索”按钮。 4. 如果你的搜索结果太多,可以使用上面设置的URL模板来进行进一步的过滤和排序。只需要在浏览器的地址栏中输入对应的URL,然后按回车键即可。 四、总结 总的来说,URL模板是Kibana提供的一种非常强大的工具,可以帮助我们在大量数据中快速找到我们需要的信息。你知道吗?如果我们巧妙地运用和设置URL模板,就能像魔法般让工作效率蹭蹭上涨,数据分析也会变得轻松又快乐,仿佛在玩乐中就把工作给干完了!希望这篇文章能对你有所帮助,如果你还有其他疑问,欢迎随时向我提问!
2023-08-09 23:59:55
495
雪域高原-t
.net
...tionary。这种数据结构就像是开发者们的心头好,就因为它那嗖嗖的查找速度忒让人满意。不过呢,它偶尔也会闹个小脾气,抛出一个常见的“KeyNotFoundException”异常,让开发者们不得不多加留意。本文将围绕这个主题,通过实例代码和详细解析,帮助你深入理解这一问题,并提供有效的应对策略。 1. KeyNotFoundException 简介 当我们尝试从字典中获取一个不存在的键对应的值时,.NET 运行时会抛出 System.Collections.Generic.KeyNotFoundException。这个异常其实就像是在跟咱们扯着嗓子喊:“嘿,老兄,我在这旮旯翻了个底朝天也没找见你要的那个键,八成是根本就没存在过这玩意儿。”” csharp Dictionary myDictionary = new Dictionary { {"apple", 1}, {"banana", 2} }; int value; try { // 尝试获取不存在的 key "orange" value = myDictionary["orange"]; } catch (KeyNotFoundException e) { Console.WriteLine($"Oops! 我们遇到了一个问题:{e.Message}"); } 在这个例子中,尝试访问键为 "orange" 的值会导致 KeyNotFoundException 异常。这是因为在初始化的字典里并未包含 "orange" 这个键。 2. 避免 KeyNotFoundException:TryGetValue 方法 为了避免因未知键引发异常,我们可以采用字典提供的 TryGetValue 方法来安全地检查键是否存在: csharp if (myDictionary.TryGetValue("orange", out int orangeValue)) { Console.WriteLine($"找到了 'orange' 对应的值:{orangeValue}"); } else { Console.WriteLine("'orange' 在字典中不存在!"); } 此方法不仅能够避免异常的发生,还允许我们在找不到键的情况下优雅处理程序流程。 3. 使用 ContainsKey 方法进行预检查 另一种预防 KeyNotFoundException 的方式是先使用 ContainsKey 方法检查键是否存在: csharp if (myDictionary.ContainsKey("orange")) { Console.WriteLine($"找到并返回 'orange' 对应的值:{myDictionary["orange"]}"); } else { Console.WriteLine("'orange' 在字典中未找到,无法获取其对应值"); } 尽管这种方式也能有效防止异常,但它需要两次对字典进行操作,相对效率较低。相比之下,TryGetValue 是更好的选择。 4. 解决 KeyNotFoundException:确保键存在或添加默认值 在某些情况下,如果字典中没有找到键,我们可能希望为其添加一个默认值。.NET 提供了 GetOrAdd 方法实现这一需求: csharp // 如果 "cherry" 不存在,则添加一个默认值 0 int cherryValue = myDictionary.GetOrAdd("cherry", defaultValue: 0); Console.WriteLine($"'cherry' 对应的值(若不存在则添加):{cherryValue}"); 此外,针对多线程环境下的并发安全性,可以考虑使用 ConcurrentDictionary 类型,并利用其提供的 GetOrAdd 方法。 总结 KeyNotFoundException 在 .NET 开发中是一个常见且重要的异常,理解它的含义以及如何妥善处理显得尤为重要。在编写程序时,如果我们灵活运用诸如 TryGetValue、ContainsKey 和 GetOrAdd 这些小妙招,就能让代码变得更结实、更溜,进而打造出更高性能的应用程序。就像是给咱们的代码注入了强健的基因和迅捷的翅膀,让它跑得更快更稳。当遇到突发状况或者异常情况时,咱们不妨换个角度,尝试用更接地气、更有人情味的方式来琢磨、理解和处理问题。这样一来,我们的代码就能更好地模拟并符合现实生活中的逻辑规律,进而助力我们开发出更加卓越、高质量的软件产品。
2023-04-04 20:01:34
524
心灵驿站
RocketMQ
...正常运行,还可能导致数据丢失。所以呢,你瞧,在设计分布式系统的时候,有一个挺关键的问题咱们得好好琢磨琢磨,那就是怎么才能聪明又高效地把堆积如山的消息给处理好,确保整个系统的稳定性和可靠性杠杠的。 二、RocketMQ简介 RocketMQ是由阿里巴巴开源的一款基于Java的高性能、高可用、可扩展的分布式消息中间件。它能够灵活支持各种消息传输模式,比如发布/订阅模式、点对点模式等,而且人家还自带了不少酷炫的高级功能。比如说,事务处理啊,保证消息按顺序发送啥的,让你用起来既顺手又安心。 三、RocketMQ消息积压原因分析 1. 网络延迟 在网络不稳定的情况下,消息可能因为延迟而不能及时到达接收方。 2. 服务器故障 如果服务器突然崩溃或者负载过高,那么消息就可能会堆积在服务器上,无法进行处理。 3. 消息消费速度慢 如果消息的消费速度远低于生产速度,那么就会导致消息积压。 4. 消费者异常 如果消费者程序出现异常,例如程序挂起或者重启,那么未被消费的消息就会堆积起来。 四、RocketMQ消息积压解决方案 1. 异步处理 对于一些不重要的消息,可以采用异步处理的方式,将消息放入一个队列中,然后在后台线程中慢慢处理这些消息。 2. 提升消费速度 通过优化消费者的程序逻辑,提升消息的消费速度,减少消息的积压。 3. 设置最大消息积压量 可以通过设置RocketMQ的配置参数,限制消息的最大积压量,当达到这个量时,RocketMQ就会拒绝新的消息。 4. 使用死信队列 对于那些无论如何都无法被消费的消息,可以将其放入死信队列中,由人工来处理这些消息。 五、代码示例 以下是一个使用RocketMQ处理消息积压的例子: java // 创建Producer实例 DefaultMQProducer producer = new DefaultMQProducer("MyProducer"); // 设置Producer相关的属性 producer.setNamesrvAddr("localhost:9876"); producer.start(); // 创建Message实例 Message msg = new Message("topic", "tag", ("Hello RocketMQ").getBytes()); // 发送消息 SendResult sendResult = producer.send(msg); 在这个例子中,我们首先创建了一个Producer实例,然后设置了其相关的属性,最后发送了一条消息。 六、结论 消息积压是分布式系统中常见的问题,但通过合理的策略和工具,我们可以有效地解决这个问题。RocketMQ这款超强的消息中间件,就像一个超级信使,浑身都是本领,各种功能一应俱全,还能根据你的需求灵活调整配置。它就像是我们消息生产和消费的贴心管家,确保整个系统的稳定性和可靠性杠杠的,让我们的工作省心又高效。
2023-03-14 15:04:18
160
春暖花开-t
Python
...。同时,各国政府也对数据安全和隐私保护出台更严格的规定,如欧盟的《通用数据保护条例》(GDPR),要求企业必须确保用户的个人信息得到妥善处理和保护。 此外,职场人士在日常使用中,除了借助浏览器的隐私模式,还应学会正确配置设备的安全设置、定期清理上网记录、谨慎授权各类应用获取个人信息等。值得注意的是,虽然隐私模式能有效防止部分追踪,但在公司内网环境下,可能仍需遵守相关的信息安全政策,过度依赖隐私模式可能会引起不必要的误会,甚至触犯公司的相关规定。 因此,在数字化时代,我们需要全面理解和掌握各种隐私保护策略和技术手段,同时也要倡导建立透明公正的企业文化,尊重和保护员工的网络隐私权,实现工作效率与个人隐私权益的平衡发展。
2024-01-02 22:27:35
110
飞鸟与鱼_t
Java
...。 2. 在比较基本数据类型时,==操作符也用于比较两个值是否相等。 3. 在比较字符串时,虽然字符串是引用类型,但是我们通常使用==操作符来比较两个字符串的内容是否相等。 三、equals和==的区别 1. 首先,equals方法用于比较两个对象的值是否相等,而==操作符则用于比较两个对象的引用是否相同。 2. 其次,equals方法可以被重写,我们可以根据需要来定义何时两个对象应该被认为是相等的。而==操作符不能被重写,它只能比较两个对象的引用是否相同。 3. 再者,对于一些内置类,如String,Integer等,它们都已经重写了equals方法,所以在比较这些类的对象时,我们更倾向于使用equals方法,而不是==操作符。 四、举例说明 1. 对于没有重写equals方法的情况,我们可以使用以下代码来进行测试: java public class Test { public static void main(String[] args) { String s1 = new String("Hello"); String s2 = new String("Hello"); System.out.println(s1.equals(s2)); // 输出true System.out.println(s1 == s2); // 输出false } } 在这个例子中,s1和s2虽然存储的是相同的字符串内容,但由于它们是在不同的内存位置创建的,所以它们的引用是不相同的。因此,虽然它们的值相等,但使用==操作符进行比较时却输出了false。 2. 对于已经重写equals方法的情况,我们可以使用以下代码来进行测试: java public class Person { private String name; public Person(String name) { this.name = name; } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null || getClass() != obj.getClass()) return false; Person person = (Person) obj; return Objects.equals(name, person.name); } @Override public int hashCode() { return Objects.hash(name); } } public class Test { public static void main(String[] args) { Person p1 = new Person("Tom"); Person p2 = new Person("Tom"); System.out.println(p1.equals(p2)); // 输出true System.out.println(p1 == p2); // 输出false } } 在这个例子中,我们创建了一个Person类,并重写了equals方法。当你在检查p1和p2这两个家伙是否一样时,嘿,还真巧,它们的数值竟然一模一样。所以呢,那个equals方法也痛痛快快地给了我们一个“yes”,也就是返回了true。不过呢,你瞧,这两个小家伙虽然都是在内存的不同角落被创建出来的,所以它们各自的“门牌号”也就是引用并不相同。这下好了,当我们用那个叫做“==”的比较符去检验它们是不是同一回事的时候,结果就蹦出了个false,表示它们并不是一回事儿。 结语: 总的来说,equals和==都是用来比较两个对象的方法,但是它们的用途和工作方式有所不同。你知道吗,"equals"这个方法就像是个侦探,专门负责检查两个对象的内在价值是否完全对得上,而“==”这个小家伙呢,则是个超级认真的门卫,它只关心两个对象是不是同一个实体,也就是说,它们的地址是不是一样的。同时,咱还得留意这么个事儿,就是像String、Integer这些内建的家伙,它们都悄咪咪地重写了equals方法。所以在比对这类对象的时候,我们更喜欢用equals这个方法,而不是那个“==”操作符,这样会更准确些。
2023-08-26 12:21:44
298
月影清风_t
HessianRPC
...交换格式,让你在处理数据传输时能够轻松愉快地进行交流。它能轻松实现任何Java对象之间的网络聊天,完全不需要额外加载什么库或者工具,就像咱们平时用微信、QQ那样直接沟通交流一样。Hessian使用了二进制编码,并且支持跨平台和跨语言。 二、HessianRPC的应用场景 HessianRPC主要用于需要在不同的系统之间传输数据的场景,例如分布式系统的消息传递、服务调用等。你知道吗,HessianRPC这家伙可厉害了,它采用的是二进制编码这种方式进行传输,这就意味着它的速度嗖嗖的,超级快!就像是数据界的“闪电侠”一样,咻一下就完成任务了。 三、HessianRPC的序列化与反序列化 在使用HessianRPC时,我们需要对对象进行序列化和反序列化操作。序列化,说白了就是把Java对象这个大块头,变成一条可以轻松传输和存储的二进制流。想象一下,就像把一个复杂的乐高模型拆解打包成一个个小零件,方便搬运。而反序列化呢,恰恰相反,就是把这些“二进制流小零件”重新组装还原回原来的Java对象,就像你又用这些零件恢复成了那个完整的乐高模型一样。 四、序列化过程中可能出现的ClassNotFoundException 在使用HessianRPC进行序列化操作时,可能会出现ClassNotFoundException。这是因为我们在序列化对象时,没有包含该对象的所有类信息。当我们尝试从序列化后的二进制流中创建这些对象时,就会抛出ClassNotFoundException。 五、如何处理序列化过程中出现的ClassNotFoundException? 对于这个问题,我们可以采取以下几种策略: 1. 使用完整包路径 在序列化对象时,我们应该使用完整的包路径。这样可以确保所有的类信息都被包含在内,从而避免ClassNotFoundException。 2. 将相关类添加到应用服务器的类加载器中 如果不能修改被序列化的对象的源码,那么我们可以考虑将相关的类添加到应用服务器的类加载器中。这样也可以确保所有的类信息都被包含在内。 3. 在客户端和服务器端都提供相同的类定义 在客户端和服务器端都提供相同的类定义,也是防止ClassNotFoundException的一种方法。 六、代码示例 下面是一些使用HessianRPC的例子,包括一个使用完整包路径的例子,一个将相关类添加到应用服务器的类加载器中的例子,以及一个在客户端和服务器端都提供相同类定义的例子。 七、总结 总的来说,HessianRPC是一种非常实用的远程通信工具。在使用这东西的时候,咱们得留心一个叫ClassNotFoundException的小插曲,它可能会在序列化的过程中冒出来。咱得提前想好对策,妥善处理这个问题。只有这样,我们才能更好地利用HessianRPC,提高我们的开发效率。
2023-04-06 14:52:47
480
半夏微凉-t
RocketMQ
...联网时代的来临,海量数据处理和实时性需求不断提升,对消息队列的性能和稳定性提出了更高的要求。RocketMQ团队紧跟时代步伐,不断强化其在延迟投递、定时投递以及任务调度等方面的功能特性,确保能够有效支撑各类复杂业务场景。此外,通过深度集成阿里云的大数据和AI服务,RocketMQ还助力企业实现数据价值的深度挖掘与实时智能决策。 为进一步推广微服务架构和消息中间件的最佳实践,RocketMQ社区定期举办线上线下的技术分享活动,为广大开发者提供学习交流的平台。未来,RocketMQ将持续深耕消息中间件领域,携手广大开发者共同探索更高效、稳定、易用的消息处理方案,赋能企业数字化转型,驱动行业创新与发展。
2023-11-28 14:39:43
113
初心未变-t
Python
一、引言 在数据科学领域,聚类是一种常见的数据分析方法,它将数据集划分为具有相似特性的子集或簇。其实呢,模糊C均值(FCM)算法是一种从模糊集理论里衍生出来的聚类技巧。简单来说,它就像个超级能干的分类小能手,专门用模糊逻辑的方式,帮咱们把复杂的数据巧妙地归到不同的类别里去。本文将详细介绍Python中如何实现FCM算法。 二、什么是FCM? FCM是一种迭代优化算法,其目的是找到使数据点到各个质心的距离最小的聚类中心。在这个过程中,它巧妙地引入了一个叫做“模糊”的概念,这就意味着数据点不再受限于只能归属于一个单一的分类,而是能够灵活地同时属于多个群体。 三、FCM算法的工作原理 1. 初始化 首先需要选择k个质心,然后为每个数据点分配一个初始的模糊隶属度。 2. 计算模糊隶属度 对于每个数据点,计算其与所有质心的距离,并根据距离大小重新调整其模糊隶属度。 3. 更新质心 对每个簇,计算所有成员的加权平均值,得到新的质心。 4. 重复步骤2和3,直到满足收敛条件为止。 四、Python实现FCM算法 以下是一个简单的Python实现FCM算法的例子: python from sklearn.cluster import KMeans import numpy as np 创建样本数据 np.random.seed(0) X = np.random.rand(100, 2) 使用FCM算法进行聚类 model = KMeans(n_clusters=3, init='random', max_iter=500, tol=1e-4, n_init=10, random_state=0).fit(X) 输出结果 print("Cluster labels: ", model.labels_) 在这个例子中,我们使用了sklearn库中的KMeans类来实现FCM算法。当我们调节这个叫做n_clusters的参数时,其实就是在决定我们要划分出多少个小组或者类别出来。就像是在分苹果,我们通过这个参数告诉程序:“嘿,我想要分成n_clusters堆儿”。这样一来,它就会按照我们的要求生成相应数量的簇了。init参数用于指定初始化质心的方式,max_iter和tol参数分别用于控制迭代次数和停止条件。 五、结论 FCM算法是一种简单而有效的聚类方法,它可以处理包含噪声和不完整数据的数据集。在Python的世界里,我们能够超级轻松地借助sklearn这个强大的库,玩转FCM算法,就像拼积木一样简单有趣。当然,实际应用中可能需要对参数进行调整以获得最佳效果。希望这篇文章能帮助你更好地理解和应用FCM算法。
2023-07-03 21:33:00
63
追梦人_t
转载文章
...编写输出json格式数据脚本discovery_process.sh,得到所需自动发现规则的宏值{PROCESS}用来做后面监控项原型的键值。 !/bin/bash设置数组item为需要得到的所有监控项键值数据,变量itemnum为数据的个数item=netstat -ntlp|awk '{print $7}'|sed '1,2d'itemnum=netstat -ntlp|awk '{print $7}'|sed '1,2d'|wc -l输出json格式数据num=0echo "{"\"data\"":["for name in ${item[@]}dolet num=num+1if [ "$num" -eq "$itemnum" ]thenecho "{"\"{PROCESS}\"":"\"${name}\""}"elseecho "{"\"{PROCESS}\"":"\"${name}\""},"fidoneecho "]}" 3.自定义自动发现规则的监控指标 4.在zabbix前端添加自动发现规则 5.设置监控项原型,需要监控的指标 例子中为每个进程的端口号 6.自定义监控项原型所要监控的最终监控项 双"$$"符是zabbix用来引用系统的"$"符号时和这里传递的位置参数"[]"做区分,egrep -w "$1$"是用正则以及精确匹配出以键值参数[]中的第一个参数"$1"结尾的那一行,使每个监控项得到对应自己的那一个值。 例如: 7.重启agent服务然后大功告成 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_55723966/article/details/117706262。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-16 17:10:56
89
转载
Material UI
...交互场景,如动态加载数据和实时更新。 对于正在使用 Material-UI 和 React 构建应用的开发者来说,及时了解这些新特性和最佳实践至关重要。不仅可以提升开发效率,还能显著改善最终用户的体验。建议大家关注 Material-UI 和 React 的官方文档和社区动态,以获取最新的开发指南和技术支持。
2024-12-23 15:32:38
117
蝶舞花间
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
pgrep process_pattern
- 根据进程名模式搜索进程ID。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"