前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[扩展表空间]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...划、新工作机会的成长空间以及当前公司内部的发展潜力。《哈佛商业评论》最近的一篇文章就深入探讨了“离职与挽留的艺术”,强调个人与组织之间的动态匹配关系,提倡建立开放、诚实且富有建设性的离职对话机制。 此外,根据LinkedIn发布的年度职场趋势报告,全球范围内,越来越多的企业开始注重企业文化建设和员工关怀,以期降低离职率,特别是在软件开发这类高流动率行业中,公司正不断探索更加人性化、激励导向的管理模式,从而有效应对人才竞争激烈的市场环境。 综上所述,在职场抉择的关键时刻,无论是企业通过各种手段挽留人才,还是员工权衡利弊后做出去留决定,都应关注到行业发展趋势、个人成长需求以及组织变革的深层次动因。在这个过程中,企业和员工双方共同塑造着职场生态的未来走向。
2023-04-02 14:22:56
134
转载
Spark
转载文章
...并确保用户不违反命名空间的ResourceQuota对象中列举的任何约束(定义名称空间级别的配额,如pod数量) 4.PodSecurityPolicy 此准入控制器用于创建和修改pod,并根据请求的安全上下文和可用的Pod安全策略确定是否应该允许它。 4.如何开启准入控制器 在kubernetes环境中,你可以使用kube-apiserver命令结合enable-admission-plugins的flag,后面需要跟上以逗号分割的准入控制器清单,如下所示: kube-apiserver --enable-admission-plugins=NamespaceLifecycle,LimitRanger … 5.如何关闭准入控制器 同理,你可以使用flag:disable-admission-plugins,来关闭不想要的准入控制器,如下所示: kube-apiserver --disable-admission-plugins=PodNodeSelector,AlwaysDeny … 6.实战:控制器的使用 1.LimitRanger 1)首先,编辑limitrange-demo.yaml文件,我们定义了一个cpu的准入控制器。 其中定义了默认值、最小值和最大值等。 apiVersion: v1kind: LimitRangemetadata:name: cpu-limit-rangenamespace: mynsspec:limits:- default: 默认上限cpu: 1000mdefaultRequest:cpu: 1000mmin:cpu: 500mmax:cpu: 2000mmaxLimitRequestRatio: 定义最大值是最小值的几倍,当前为4倍cpu: 4type: Container 2)apply -f之后,我们可以通过get命令来查看LimitRange的配置详情 [root@centos-1 dingqishi] kubectl get LimitRange cpu-limit-range -n mynsNAME CREATED ATcpu-limit-range 2021-10-10T07:38:29Z[root@centos-1 dingqishi] kubectl describe LimitRange cpu-limit-range -n mynsName: cpu-limit-rangeNamespace: mynsType Resource Min Max Default Request Default Limit Max Limit/Request Ratio---- -------- --- --- --------------- ------------- -----------------------Container cpu 500m 2 1 1 4 2.ResourceQuota 1)同理,编辑配置文件resoucequota-demo.yaml,并apply; 其中,我们定义了myns名称空间下的资源配额。 apiVersion: v1kind: ResourceQuotametadata:name: quota-examplenamespace: mynsspec:hard:pods: "5"requests.cpu: "1"requests.memory: 1Gilimits.cpu: "2"limits.memory: 2Gicount/deployments.apps: "2"count/deployments.extensions: "2"persistentvolumeclaims: "2" 2)此时,也可以查看到ResourceQuota的相关配置,是否生效 [root@centos-1 dingqishi] kubectl get ResourceQuota -n mynsNAME CREATED ATquota-example 2021-10-10T08:23:54Z[root@centos-1 dingqishi] kubectl describe ResourceQuota quota-example -n mynsName: quota-exampleNamespace: mynsResource Used Hard-------- ---- ----count/deployments.apps 0 2count/deployments.extensions 0 2limits.cpu 0 2limits.memory 0 2Gipersistentvolumeclaims 0 2pods 0 5requests.cpu 0 1requests.memory 0 1Gi 大家可以将生效后的控制器,结合相关pod自行测试资源配额的申请、限制和使用的情况 本篇文章为转载内容。原文链接:https://blog.csdn.net/flq18210105507/article/details/120845744。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-25 10:44:03
336
转载
SpringCloud
...建,并能够独立部署和扩展。在本文中,SpringCloud框架被用于实现微服务架构,帮助开发者处理服务注册发现、负载均衡、熔断限流等一系列分布式系统问题。 服务中心(如Eureka或Nacos) , 服务中心是微服务体系结构中的核心组件之一,负责管理所有服务实例的注册与发现。在文中提到的Eureka和Nacos就是两个流行的服务注册与发现组件。Eureka由Netflix开源,提供服务注册和服务发现的功能;Nacos则是阿里巴巴开源的一款更全面的动态服务发现、配置管理和服务管理平台。服务提供者启动后会将自己的信息注册到服务中心,而消费者则通过查询服务中心来获取并调用所需的服务。 服务网格(如Istio、Linkerd) , 服务网格是一种专门针对服务间通信的基础设施层,它抽象出一个控制平面用于集中化管理和监控服务间的流量,以及数据平面负责实际的服务间数据传输。在面对服务提供者与消费者匹配异常等问题时,服务网格技术提供了更为精细化的服务治理方案。例如,Istio是一个完全开源的服务网格,可透明地分层部署到现有的分布式应用中,对网络流量进行控制、遥测和安全性策略实施;而Linkerd也是一种轻量级的服务网格,旨在简化和保护云原生应用的服务间通信。 负载均衡(@LoadBalanced注解) , 负载均衡是一种计算机网络技术,用于在多个计算资源之间分配工作负载,以优化资源使用、最大化吞吐量、最小化响应时间并避免过载。在SpringCloud中,@LoadBalanced注解用于启用HTTP客户端(如RestTemplate)的负载均衡功能,使得服务消费者可以根据服务中心提供的服务实例列表进行智能选择,从而实现请求的均衡分布和故障转移。如果忘记添加该注解,可能会导致服务提供者无法正常注册到服务中心,或者消费者无法正确地从多个服务实例中选取目标进行调用。
2023-02-03 17:24:44
128
春暖花开
RabbitMQ
...高了系统的可维护性和扩展性。 - 扩展性:RabbitMQ的集群模式允许在高并发场景下轻松扩展。 - 错误处理:消息持久化和重试机制有助于处理暂时性的网络问题。 - 安全性:通过SSL/TLS可以确保消息传输的安全性。 6. 结论 RabbitMQ的强大之处在于它能跨越多种协议,提供了一种通用的消息传递平台。你知道吗,咱们可以像变魔术那样,把HTTP和gRPC这两个家伙灵活搭配起来,这样就能构建出一个超级灵动、随时能扩展的分布式系统,就跟你搭积木一样,想怎么拼就怎么拼,特别给力!当然啦,实际情况是会根据咱们项目的需求和手头现有的技术工具箱灵活调整具体实现方式,不过无论咋整,RabbitMQ都像是个超级靠谱的邮差,让各个服务之间的交流变得贼顺畅。
2024-02-23 11:44:00
92
笑傲江湖-t
Apache Atlas
...据实际业务需求定义和扩展不同的实体类型,并通过实体之间的关联关系构建出丰富的元数据图谱。 访问控制列表(ACL) , 访问控制列表是一种安全机制,用于指定哪些用户或角色有权访问特定的系统资源或执行特定的操作。在Apache Atlas中,ACL用于管理用户的权限,确保只有具备足够权限的用户才能成功地执行诸如创建实体之类的操作。通过调整和配置ACL,管理员可以精细地控制各个用户或角色在Atlas平台上的操作权限,从而保障系统的安全性和数据的完整性。
2023-06-25 23:23:07
561
彩虹之上
MemCache
...提供了一键部署、自动扩展和故障切换等功能,还在底层增强了跨区域的数据复制和一致性保证机制,极大地降低了用户在处理分布式缓存管理与同步时的技术复杂性。 同时,随着开源技术的发展,新型分布式缓存系统如Redis Cluster凭借其原生支持的分布式特性,以及对数据分片和主从同步的优秀设计,正逐渐成为高并发场景下的另一种主流选择。对于寻求更高数据一致性和容错性的团队而言,Redis Cluster提供了更完善的一站式解决方案。 此外,学术界也在持续研究分布式缓存的一致性算法和策略,例如“CRDTs(Conflict-free Replicated Data Types)”无冲突复制数据类型,能够在分布式环境下提供最终一致性保障,为未来缓存技术的发展开辟了新的可能。 因此,在实际项目中,除了掌握MemCache的传统部署和管理方式,关注和学习业界前沿技术和理论成果,适时引入更为先进的分布式缓存架构和服务,将有助于我们更好地应对日益复杂的业务需求和挑战。
2023-11-14 17:08:32
69
凌波微步
Cassandra
...dra因其出色的横向扩展能力和高可用性,被广泛应用于互联网、金融、医疗等多个行业。随着5G、物联网等新技术的发展,未来将产生更加海量的数据,而Cassandra凭借其强大的数据处理能力,有望成为更多企业构建实时数据监控系统的首选方案。
2025-02-27 15:51:14
67
凌波微步
Redis
...并发、高性能且具备可扩展性的微服务架构时,Redis以其独特的内存存储、高速读写和丰富的数据结构特性,成为我们解决复杂问题、优化系统性能的重要工具。这篇文儿,咱们就来唠唠Redis怎么摇身一变,成为一个超高效的数据字典储存法宝,并且在微服务设计这个大舞台上,它又是如何扮演着不可或缺的关键角色的。 2. Redis 不只是缓存 (1)Redis作为数据字典 想象一下,在日常开发过程中,我们经常需要维护一个全局共享的“数据字典”,它可能是各种静态配置信息,如权限列表、地区编码映射等。这些数据虽然不常变更,但查询频繁。利用Redis的哈希(Hash)数据结构,我们可以轻松实现这样的数据字典: python import redis r = redis.Redis(host='localhost', port=6379, db=0) 存储用户权限字典 r.hset('user:permissions', 'user1', '{"read": true, "write": false}') r.hset('user:permissions', 'user2', '{"read": true, "write": true}') 查询用户权限 user_permissions = r.hget('user:permissions', 'user1') print(user_permissions) 这段代码展示了如何使用Redis Hash存储并查询用户的权限字典,其读取速度远超传统数据库,极大地提高了系统的响应速度。 (2)Redis在微服务设计中的角色 在微服务架构中,各个服务之间往往需要进行数据共享或状态同步。Redis凭借其分布式锁、发布/订阅以及有序集合等功能,能够有效地协调多个微服务之间的交互,确保数据一致性: java import org.springframework.data.redis.core.StringRedisTemplate; import org.springframework.data.redis.core.script.DefaultRedisScript; // 使用Redis实现分布式锁 StringRedisTemplate template = new StringRedisTemplate(); String lockKey = "serviceLock"; Boolean lockAcquired = template.opsForValue().setIfAbsent(lockKey, "locked", 30, TimeUnit.SECONDS); if (lockAcquired) { try { // 执行核心业务逻辑... } finally { template.delete(lockKey); } } // 使用Redis Pub/Sub 实现服务间通信 template.convertAndSend("microservice-channel", "Service A sent a message"); 上述Java示例展现了Redis如何帮助微服务获取分布式锁以处理临界资源,以及通过发布/订阅模式实现实时消息通知,从而提升微服务间的协同效率。 3. Redis在微服务设计咨询中的思考与探索 当我们考虑将Redis融入微服务设计时,有几个关键点值得深入讨论: - 数据一致性与持久化:尽管Redis提供了RDB和AOF两种持久化方式,但在实际场景中,我们仍需根据业务需求权衡性能与数据安全,适时引入其他持久化手段。 - 服务解耦与扩展性:借助Redis Cluster支持的分片功能,可以轻松应对海量数据及高并发场景,同时有效实现微服务间的松耦合。 - 实时性与性能优化:对于实时性要求高的场景,例如排行榜更新、会话管理等,Redis的排序集合(Sorted Set)、流(Stream)等数据结构能显著提升系统性能。 - 监控与运维挑战:在大规模部署Redis时,要充分关注内存使用、网络延迟等问题,合理利用Redis提供的监控工具和指标,为微服务稳定运行提供有力保障。 综上所述,Redis凭借其强大的数据结构和高效的读写能力,不仅能够作为高性能的数据字典,更能在微服务设计中扮演重要角色。然而,这其实也意味着我们的设计思路得“更上一层楼”了。说白了,就是得在实际操作中不断摸索、改进,把Redis那些牛掰的优势,充分榨干、发挥到极致,才能搞定微服务架构下的各种复杂场景需求,让它们乖乖听话。
2023-08-02 11:23:15
217
昨夜星辰昨夜风_
ActiveMQ
...veMQ的集成极大地扩展了消息驱动系统的可能性,赋予开发者以更高层次的抽象去设计和实现复杂的集成场景。这种联手合作的方式,就像两个超级英雄组队,让整个系统变得身手更加矫健、灵活多变,而且还能够随需应变地扩展升级。这样一来,咱们每天的开发工作简直像是坐上了火箭,效率嗖嗖往上升,维护成本也像滑梯一样唰唰降低,真是省时省力又省心呐!当我们面对大规模、多组件的分布式系统时,不妨尝试借助于Camel和ActiveMQ的力量,让消息传递变得更简单、更强大。
2023-05-29 14:05:13
552
灵动之光
HessianRPC
...提供了更好的性能和可扩展性。在连接池优化中,gRPC可能成为替代选项,尤其在大型分布式系统中。
2024-03-31 10:36:28
503
寂静森林
Impala
...围绕Impala进行扩展开发的工具和服务,比如通过Apache Kudu实现动态更新的实时分析场景,以及结合Apache Kylin构建预计算加速查询响应时间的混合架构方案。 不仅如此,随着云原生技术的普及,Impala也开始与Kubernetes等容器编排平台深度融合,以满足更多复杂多变的业务需求。未来,Impala将继续以其高性能和易用性在大规模数据分析领域发挥关键作用,并在技术创新的驱动下不断拓展应用场景,赋能各行各业的数据驱动决策与智能化转型。
2023-07-04 23:40:26
520
月下独酌
Spark
... 是Spark的一个扩展模块,专门用于处理实时数据流。它支持多种数据源,包括Kafka、Flume、TCP sockets等。下面是一个使用Spark Streaming从Kafka接收数据的例子: scala // 创建SparkStreamingContext val ssc = new StreamingContext(spark.sparkContext, Seconds(5)) // 创建Kafka流 val kafkaStream = KafkaUtils.createDirectStream[String, String]( ssc, PreferConsistent, Subscribe[String, String](topicsSet, kafkaParams) ) // 处理接收到的数据 kafkaStream.foreachRDD { rdd => val df = spark.read.json(rdd.map(_.value())) // 进一步处理数据... } // 开始处理流数据 ssc.start() ssc.awaitTermination() 4.2 利用DataFrame API简化数据处理 Spark的DataFrame API提供了一种结构化的方式来处理数据,使得我们可以更容易地编写复杂的查询。下面是一个使用DataFrame API处理数据的例子: scala // 假设我们已经有了一个DataFrame df import spark.implicits._ // 添加一个新的列 val enrichedDF = df.withColumn("timestamp", current_timestamp()) // 保存处理后的数据 enrichedDF.write.mode("append").json("hdfs://path/to/enriched_data") 4.3 弹性分布式数据集(RDD)的优势 Spark的核心概念之一就是RDD。RDD是一种不可变的、分区的数据集合,支持并行操作。这对于处理物联网设备产生的数据特别有用。下面是一个使用RDD的例子: scala // 创建一个简单的RDD val dataRDD = spark.sparkContext.parallelize(Seq(1, 2, 3, 4, 5)) // 对RDD进行映射操作 val mappedRDD = dataRDD.map(x => x 2) // 收集结果 val result = mappedRDD.collect() println(result.mkString(", ")) 4.4 容错机制 Spark的容错机制是其一大亮点。它通过RDD的血统信息(即RDD的操作历史)来重新计算丢失的数据。这就让Spark在处理像物联网设备这样的网络环境不稳定的情况时特别给力。 5. 结论 通过上述讨论,我们可以看到Spark确实是一个强大的工具,可以帮助我们有效地处理物联网设备产生的海量数据。虽说在实际操作中可能会碰到些难题,但只要我们好好设计和优化一下,Spark绝对能搞定这个活儿。希望这篇文章对你有所帮助,也欢迎你在实践中继续探索和分享你的经验!
2025-01-06 16:12:37
72
灵动之光
Mahout
...向量形式,以节省存储空间并提高计算效率。在Mahout中,用户对物品的喜好程度就是通过这样的稀疏向量来表达的。 皮尔逊相关系数 , 皮尔逊相关系数是一种衡量两个变量间线性相关程度的统计指标,在推荐系统的用户相似度计算中,它被用来评估两个用户在对不同物品的评分上的相似性。具体计算时,它通过比较两个用户各自对所有共同评分物品的评分差值与其平均分的标准差之比,得到一个介于-1到1之间的值,其中1表示完全正相关(即评分趋势完全一致),-1表示完全负相关(评分趋势完全相反),0则表示无关联。在Mahout中,PearsonCorrelationSimilarity类实现了基于皮尔逊相关系数的用户相似度计算方法。
2023-02-13 08:05:07
87
百转千回
Mongo
...B作为一款高性能、易扩展的NoSQL数据库,深受开发者喜爱。然而,在面对很多用户同时往数据库里写入数据,就像高峰期的大卖场收银台前挤满人抢着结账那样,我们可能会遇到一个令人头疼的难题——这叫做“写竞争条件”,就像是大家伙儿都争着往同一个记账本上记录交易信息,一不留神就会手忙脚乱,甚至出现混乱的情况。这就像一场球赛,大家伙儿一块儿上场乱踢,却没有个裁判来主持公正。想象一下,好几个用户同时对一份数据动手脚,那这份数据很可能就乱套了,变得前后矛盾、乱七八糟的。这样一来,不仅会让应用运行起来卡壳不顺畅,还会让用户体验大打折扣,感觉像是在泥潭里找路走,让人头疼得很呐!今天,我们就来深入讨论这个问题,并通过实例代码展示如何在MongoDB中妥善处理这种状况。 2. 写竞争条件 何为数据不一致性? 假设我们有一个用户账户表,两个用户几乎同时尝试给同一个账户充值。在没有恰当并发控制的情况下,可能出现的情况是: javascript // 用户A尝试充值10元 db.users.updateOne( { _id: 'user1' }, { $inc: { balance: 10 } } ); // 同一时刻,用户B尝试充值20元 db.users.updateOne( { _id: 'user1' }, { $inc: { balance: 20 } } ); 如果这两个操作恰好在数据库层面交错执行,理论上用户的余额应增加30元,但实际上可能只增加了20元或10元,这就产生了数据不一致性。 3. MongoDB的并发控制机制 乐观锁与悲观锁 乐观锁(Optimistic Locking): MongoDB并没有内置的乐观锁机制,但我们可以利用文档版本戳(_v字段)模拟实现。每次更新前先读取文档的版本,更新时设置$currentDate以确保版本已更新,如果版本不符则更新失败。 javascript var user = db.users.find({ _id: 'user1' }).next(); var currentVersion = user._v; db.users.updateOne( { _id: 'user1', _v: currentVersion }, [ { $inc: { balance: 10 } }, { $currentDate: { _v: true } } ], { upsert: false, multi: false } ); 悲观锁(Pessimistic Locking): MongoDB提供了findAndModify命令(现已被findOneAndUpdate替代),它可以原子性地查找并更新文档,相当于对文档进行了锁定,防止并发写入冲突。 javascript db.users.findOneAndUpdate( { _id: 'user1' }, { $inc: { balance: 10 } }, { upsert: false, returnOriginal: false } ); 4. 集群环境下的并发控制 WiredTiger存储引擎 在MongoDB集群环境下,WiredTiger存储引擎实现了行级锁,对于并发写入有着很好的支持。每当你进行写操作的时候,系统都会把它安排到特定的小区域——我们叫它“数据段”。想象一下,这些数据段就像一个个小隔间,同一隔间里的写操作会排好队,一个接一个地有序进行,而不是一拥而上。这样一来,就不用担心几个写操作同时进行会让数据变得乱七八糟、不一致了,就像大家排队领饭,就不会出现你夹的菜跑到我碗里,我夹的肉又飞到他碗里的混乱情况啦。 5. 总结与思考 处理MongoDB中的并发写入问题,需要根据具体的应用场景选择合适的并发控制策略。无论是利用版本戳模拟乐观锁,还是借助于findAndModify实现悲观锁,抑或是依赖于WiredTiger存储引擎的行级锁,我们的目标始终是为了保证数据的一致性和完整性,提升用户体验。 对于开发者而言,理解并掌握这些策略并非一日之功,而是要在实践中不断摸索和优化。你知道吗,就像做一顿色香味俱全的大餐那样,构建一个稳定靠谱的分布式系统也得讲究门道。首先得精挑细选“食材”,也就是各种组件和技术;然后,就跟掌握火候一样,得精准地调控系统的各个环节。只有这样,才能确保每位“尝鲜者”都能吃得心满意足,开开心心地离开。
2023-06-24 13:49:52
71
人生如戏
NodeJS
...,极大地提升了系统的扩展性和维护性。 另一篇来自《Node.js官方博客》的最新更新提到,Node.js v16.x版本对process API进行了多项改进和优化,其中包括增强了process.hrtime()方法以提供更精确的高分辨率时间测量,这对性能敏感型应用和微秒级计时需求至关重要。 此外,Stack Overflow上的热门问答中,一位资深开发者分享了如何通过process.nextTick()与Promise配合,解决Node.js中的异步回调地狱问题,这一实践有助于我们更好地理解process对象在Node.js异步编程模型中的核心地位。 与此同时,一本名为《Mastering Node.js Process Management》的新书出版,作者深入剖析了process对象的各个属性和方法,辅以丰富的实战案例,旨在帮助开发者全面掌握Node.js进程管理的技巧,从而提升应用的稳定性和性能表现。 综上所述,持续关注和深入学习关于Node.js process全局对象的相关知识和技术动态,无疑将有力推动我们在Node.js开发领域的专业成长与项目实施的成功率。
2024-03-22 10:37:33
434
人生如戏
PHP
...,共同构建高性能、可扩展的分布式系统。 综上所述,在实际项目开发中,了解并结合PHP和Node.js的最新发展动态,将有助于开发者更加灵活高效地利用两种技术的优势,应对不断变化的市场需求和技术挑战。而持续关注相关的技术社区、博客文章及行业报告,也是提升Web开发技能,紧跟时代步伐的重要途径。
2024-01-21 08:08:12
62
昨夜星辰昨夜风_t
Consul
...动的客户端库能极大地扩展 Consul 的兼容性,但不同语言版本库的功能完整度和更新时效性可能存在差异。因此,开发者在选择具体语言的客户端库时,需密切关注官方发布动态,并结合项目需求和技术栈特点,做出最适合自己的决策。同时,随着云原生技术的发展和Kubernetes等容器编排系统的广泛应用,Consul也在积极探索与这些平台的深度集成,未来有望提供更多针对云环境的服务治理解决方案,值得广大开发者关注与期待。
2023-08-15 16:36:21
442
月影清风-t
转载文章
...何利用Kotlin的扩展函数简化数组操作代码。而在机器学习或大数据处理领域,利用Kotlin的Numpy-like库koma可以实现类似Python Numpy对多维数组的强大支持,这对于科学计算和数据分析尤为重要。 总之,掌握Kotlin数组的各种特性并适时关注其最新进展,能够帮助开发者在日常编码工作中更加游刃有余,提高应用程序的运行效率和代码可读性。
2023-03-31 12:34:25
66
转载
HessianRPC
...框架是构建高性能、高扩展性服务的关键一环。HessianRPC,这可真是个轻巧灵活的RPC框架小能手。它巧妙地借助了Hessian协议的大招,玩转序列化和反序列化的游戏,让Java和其他各种编程语言能够无缝对接、高效沟通,就像一个随叫随到、传递消息的小信使一样。然而,在实际操作时,我们可能时不时会遇到个头疼的问题——“HessianURLException:在捣鼓或者构建URL时出了岔子。”嘿,老铁们,这次咱要聊的这个主题可有点意思了。这篇东西呢,就是专门针对这种“诡异现象”,打算手把手地带大家伙儿通过一些实实在在的代码实例,抽丝剥茧地探寻这异常背后的秘密原因,并且一起琢磨琢磨怎么才能把它给妥妥地解决掉。 2. HessianRPC基础与工作原理 HessianRPC的核心在于对HTTP协议的运用以及Hessian二进制序列化机制。开发者只需要这么干,先定义一个接口,然后在这接口上,客户端和服务端两边各自整上实现,这样一来,远程方法调用就轻松搞定了。就像是你在家画好一张购物清单,然后分别让家人和超市那边按照清单准备东西,最后就能完成“远程”的物资调配啦。例如: java // 定义服务接口 public interface HelloService { String sayHello(String name); } // 服务端实现 @Service("helloService") public class HelloServiceImpl implements HelloService { @Override public String sayHello(String name) { return "Hello, " + name; } } // 客户端调用示例 HessianProxyFactory factory = new HessianProxyFactory(); HelloService service = (HelloService) factory.create(HelloService.class, "http://localhost:8080/hello"); String greeting = service.sayHello("World"); 3. HessianURLException详解 当我们在使用HessianRPC进行远程调用时,如果出现"HessianURLException: 创建或处理URL时发生错误。"异常,这通常意味着在创建或解析目标服务的URL地址时出现了问题。比如URL格式不正确、网络不可达或者其他相关的I/O异常。 java try { // 错误的URL格式导致HessianURLException HelloService wrongService = (HelloService) factory.create(HelloService.class, "localhost:8080/hello"); } catch (MalformedURLException e) { System.out.println("HessianURLException: 创建或处理URL时发生错误。"); // 抛出异常 } 在这个例子中,由于我们没有提供完整的URL(缺少协议部分"http://"),所以HessianRPC无法正确解析并创建到服务端的连接,从而抛出了HessianURLException。 4. 解决方案与预防措施 面对HessianURLException,我们需要从以下几个方面着手解决问题: 4.1 检查URL格式 确保提供的URL是完整且有效的,包括协议(如"http://"或"https://")、主机名、端口号及资源路径等必要组成部分。 java // 正确的URL格式 HelloService correctService = (HelloService) factory.create(HelloService.class, "http://localhost:8080/hello"); 4.2 确保网络可达性 检查客户端和服务端之间的网络连接是否畅通无阻。如果服务端未启动或者防火墙阻止了连接请求,也可能引发此异常。 4.3 异常捕获与处理 在代码中合理地处理此类异常,给用户提供明确的错误信息提示。 java try { HelloService service = (HelloService) factory.create(HelloService.class, "http://localhost:8080/hello"); } catch (HessianConnectionException | MalformedURLException e) { System.err.println("无法连接到远程服务,请检查URL和网络状况:" + e.getMessage()); } 5. 总结 在我们的编程旅程中,理解并妥善处理像"HessianURLException: 创建或处理URL时发生错误"这样的异常,有助于提升系统的稳定性和健壮性。对于HessianRPC来说,每一个细节都可能影响到远程调用的成功与否。所以呢,真要解决这类问题,归根结底就俩大法宝:一个是牢牢掌握的基础知识,那叫一个扎实;另一个就是严谨到家的编码习惯了,这两样可真是缺一不可的关键所在啊!伙计们,让我们一起瞪大眼睛,鼓起勇气,把HessianRPC变成我们手里的神兵利器,让它在开发分布式应用时,帮我们飞速提升效率,让开发过程更轻松、更给力!
2023-10-16 10:44:02
531
柳暗花明又一村
Cassandra
...架构、高可用性和线性扩展性赢得了广泛的应用。特别是在处理大量数据录入和更新这事儿上,Cassandra的那个批量操作功能,可真是个宝贝,重要性杠杠的!它允许我们在一次网络往返中执行多个CQL(Cassandra Query Language)语句,从而显著提高数据插入和更新效率,节省网络开销,并保持数据库的一致性。 2. 理解Cassandra Batch操作 (1)什么是Batch? 在Cassandra中,Batch主要用于将多个CQL语句捆绑在一起执行。想象一下,你正在为一个大型电商系统处理订单,需要同时在不同的表中插入或更新多条记录,这时候Batch就派上用场了。使用Batch操作,你就能像一次性打包处理那样,让这些操作要么全盘搞定,要么一个也不动,就像“要干就干到底,不干就拉倒”的那种感觉,确保了操作的完整性。 cql BEGIN BATCH INSERT INTO orders (order_id, customer_id, product) VALUES (1, 'user1', 'productA'); INSERT INTO order_details (order_id, detail_id, quantity) VALUES (1, 1001, 2); APPLY BATCH; (2)Batch操作的注意事项 虽然Batch操作在提高性能方面有显著效果,但并非所有情况都适合使用。Cassandra对Batch大小有限制(默认约16MB),过大的Batch可能导致性能下降甚至错误。另外,你知道吗,Cassandra这个数据库啊,它属于AP型的,所以在批量操作这块儿,就不能给你提供像传统数据库那样的严格的事务保证啦。它更倾向于保证“原子性”,也就是说,一个操作要么全完成,要么全不完成,而不是追求那种所有的数据都得在同一时刻保持完全一致的“一致性”。 3. Cassandra的数据批量加载 (1)SSTableLoader工具 当我们面对海量历史数据迁移或初始化大量预生成数据时,直接通过CQL进行批量插入可能并不高效。此时,Cassandra提供的sstableloader工具可以实现大批量数据的快速导入。这个工具允许我们将预先生成好的SSTable文件直接加载到集群中,极大地提高了数据加载速度。 bash bin/sstableloader -u -p -d /path/to/sstables/ (2)Bulk Insert与COPY命令 对于临时性的大量数据插入,也可以利用CQL的COPY命令从CSV文件中导入数据,或者编写程序进行Bulk Insert。这种方式虽然不如sstableloader高效,但在灵活性上有一定优势。 cql COPY orders FROM '/path/to/orders.csv'; 或者编程实现Bulk Insert: java Session session = cluster.connect("my_keyspace"); PreparedStatement ps = session.prepare("INSERT INTO orders (order_id, customer_id, product) VALUES (?, ?, ?)"); for (Order order : ordersList) { BoundStatement bs = ps.bind(order.getId(), order.getCustomerId(), order.getProduct()); session.execute(bs); } 4. 深入探讨与实践总结 尽管Cassandra的Batch操作和批量加载功能强大,但运用时需要根据实际业务场景灵活调整策略。比如,在网络比较繁忙、负载较高的时候,咱就得避免一股脑地进行大批量的操作。这时候,咱们可以灵活调整批次的大小,就像在平衡木上保持稳定一样,既要保证性能不打折,又要让网络负载不至于过大,两头都得兼顾好。此外,说到批量加载数据这事儿,咱们得根据实际情况,灵活选择最合适的方法。比如说,你琢磨一下是否对实时性有要求啊,数据的格式又是个啥样的,这些都是决定咱采用哪种方法的重要因素。 总之,无论是日常开发还是运维过程中,理解和掌握Cassandra的Batch操作及批量加载技术,不仅能提升系统的整体性能,还能有效应对复杂的大规模数据管理挑战。在实际操作中不断尝试、捣鼓,让Cassandra这个家伙更好地为我们业务需求鞍前马后地服务,这才是技术真正价值的体现啊!
2024-02-14 11:00:42
505
冬日暖阳
转载文章
...的压力,还提供了灵活扩展资源的能力。然而,这也对服务端引擎的兼容性与可迁移性提出了更高要求。因此,关注战神引擎等手游服务端技术在云环境下的最佳实践,及时了解并适应相关技术发展趋势,同样是提升手游服务质量的关键所在。 同时,值得注意的是,网络安全法规日趋严格,服务器安全防护措施的建设亦是手游运营者不可忽视的工作内容。针对各类可能存在的攻击风险,如DDoS攻击、数据泄露等,需要结合服务端技术特点,制定并实施相应的安全策略,以保障玩家信息安全,避免因安全事件影响游戏运营。 综上所述,无论是从基础的服务器配置与维护,还是到前沿的云计算整合、网络安全防御,手游服务端技术的探讨与实践始终处于不断进步与完善的阶段。作为游戏开发者与运营者,紧跟时代步伐,持续深化技术认知,才能更好地应对各种挑战,为玩家提供稳定流畅且安全可靠的游戏环境。
2023-02-27 13:11:20
375
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
head -n 10 file.txt
- 显示文件开头的10行内容。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"