前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[内存泄漏检测与修复在Python中 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
MySQL
...。 以下是一个简单的Python脚本,用于统计MySQL当前使用的文件描述符数量: python import psutil import subprocess def get_mysql_open_files(): 获取所有MySQL进程ID mysql_pids = [] result = subprocess.run(['pgrep', 'mysqld'], capture_output=True, text=True) for line in result.stdout.splitlines(): mysql_pids.append(int(line)) total_open_files = 0 for pid in mysql_pids: try: proc = psutil.Process(pid) open_files = len(proc.open_files()) print(f"Process {pid} has opened {open_files} files.") total_open_files += open_files except Exception as e: print(f"Error checking process {pid}: {e}") print(f"Total open files by MySQL processes: {total_open_files}") if __name__ == "__main__": get_mysql_open_files() 运行这个脚本后,我发现某些特定的查询会导致文件描述符迅速增加。经过分析,这些问题主要出现在涉及大文件读写的场景中。所以呢,我觉得咱们开发的小伙伴们得好好捯饬捯饬这些查询语句啦!比如说,能不能少建那些没用的临时表啊?再比如,能不能换个更快的存储引擎啥的?反正就是得让这个程序跑得更顺畅些,别老是卡在那里干瞪眼不是? --- 4. 总结与反思 从问题中学到的东西 回顾这次经历,我深刻体会到,处理数据库问题时,不能仅凭直觉行事,而是要结合实际数据和技术手段,逐步排查问题的根本原因。同时,我也认识到,预防胜于治疗。如果能在日常运维中提前做好监控和预警,就可以避免很多突发状况。 最后,我想分享一点个人感悟:技术之路永无止境,每一次遇到难题都是一次成长的机会。说实话,有时候真的会觉得头大,甚至怀疑自己是不是走错了路。但我觉得啊,这就好比在黑暗里找钥匙,你得不停地摸索、试错才行。只要别轻易放弃,一直在学、一直在练,总有一天你会发现,“!原来它在这儿呢!”就跟我在处理这个MySQL报错的时候似的,最后不光把问题搞定了,还顺带学了不少实用的招儿呢! 如果你也遇到了类似的情况,不妨试试上面提到的方法,也许能帮到你!
2025-04-17 16:17:44
109
山涧溪流_
转载文章
...) str1 = ‘python‘ key_input(str1) mouse_click(1000,280) 自己增加部分部分:调用单独按键的语句: if __name__ == ‘__main__‘: win32api.keybd_event(0x12, 0, 0, 0) win32api.keybd_event(0x41, 0, 0, 0) time.sleep(1) win32api.keybd_event(0x12, 0, win32con.KEYEVENTF_KEYUP, 0) win32api.keybd_event(0x41, 0, win32con.KEYEVENTF_KEYUP, 0) 原文:https://www.cnblogs.com/lili414/p/9004108.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_32899685/article/details/112870402。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-07 19:00:58
54
转载
转载文章
...相加源代码 统一共享内存 (Unified Shared Memory USM) USM语法 数据依赖 wait() depends_on in_order queue property 练习1:事件依赖 练习2:事件依赖 UMS实验 oneAPI编程模型 oneAPI编程模型提供了一个全面、统一的开发人员工具组合,可用于各种硬件设备,其中包括跨多个工作负载领域的一系列性能库。这些库包括面向各目标架构而定制化代码的函数,因此相同的函数调用可为各种支持的架构提供优化的性能。DPC++基于行业标准和开放规范,旨在鼓励生态系统的协作和创新。 多架构编程面临的挑战 在以数据为中心的环境中,专用工作负载的数量不断增长。专用负载通常因为没有通用的编程语言或API而需要使用不同的语言和库进行编程,这就需要维护各自独立的代码库。 由于跨平台的工具支持不一致,因此开发人员必须学习和使用一整套不同的工具。单独投入精力给每种硬件平台开发软件。 oneAPI则可以利用一种统一的编程模型以及支持并行性的库,支持包括CPU、GPU、FPGA等硬件等同于原生高级语言的开发性能,并且可以与现有的HPC编程模型交互。 SYCL SYCL支持C++数据并行编程,SYCL和OpenCL一样都是由Khronos Group管理的,SYCL是建立在OpenCL之上的跨平台抽象层,支持用C++用单源语言方式编写用于异构处理器的与设备无关的代码。 DPC++ DPC++(Data Parallel C++)是一种单源语言,可以将主机代码和异构加速器内核写在同一个文件当中,在主机中调用DPC++程序,计算由加速器执行。DPC++代码简洁且效率高,并且是开源的。现有的CUDA应用、Fortran应用、OpenCL应用都可以用不同方式很方便地迁移到DPC++当中。 下图显示了原来使用不同架构的HPC开发人员的一些推荐的转换方法。 编译和运行DPC++程序 编译和运行DPC++程序主要包括三步: 初始化环境变量 编译DPC++源代码 运行程序 例如本地运行,在本地系统上安装英特尔基础工具套件,使用以下命令编译和运行DPC++程序。 source /opt/intel/inteloneapi/setvars.shdpcpp simple.cpp -o simple./simple 编程实例 实现矢量加法 以下实例描述了使用DPC++实现矢量加法的过程和源代码。 queue类 queue类用来提交给SYCL执行的命令组,是将作业提交到运算设备的一种机制,多个queue可以映射到同一个设备。 Parallel kernel Parallel kernel允许代码并行执行,对于一个不具有相关性的循环数据操作,可以用Parallel kernel并行实现 在C++代码中的循环实现 for(int i=0; i < 1024; i++){a[i] = b[i] + c[i];}); 在Parallel kernel中的并行实现 h.parallel_for(range<1>(1024), [=](id<1> i){A[i] = B[i] + C[i];}); 通用的并行编程模板 h.parallel_for(range<1>(1024), [=](id<1> i){// CODE THAT RUNS ON DEVICE }); range用来生成一个迭代序列,1为步长,在循环体中,i表示索引。 Host Accessor Host Accessor是使用主机缓冲区访问目标的访问器,它使访问的数据可以在主机上使用。通过构建Host Accessor可以将数据同步回主机,除此之外还可以通过销毁缓冲区将数据同步回主机。 buf是存储数据的缓冲区。 host_accessor b(buf,read_only); 除此之外还可以将buf设置为局部变量,当系统超出buf生存期,buf被销毁,数据也将转移到主机中。 矢量相加源代码 根据上面的知识,这里展示了利用DPC++实现矢量相加的代码。 //第一行在jupyter中指明了该cpp文件的保存位置%%writefile lab/vector_add.cppinclude <CL/sycl.hpp>using namespace sycl;int main() {const int N = 256;// 初始化两个队列并打印std::vector<int> vector1(N, 10);std::cout<<"\nInput Vector1: "; for (int i = 0; i < N; i++) std::cout << vector1[i] << " ";std::vector<int> vector2(N, 20);std::cout<<"\nInput Vector2: "; for (int i = 0; i < N; i++) std::cout << vector2[i] << " ";// 创建缓存区buffer vector1_buffer(vector1);buffer vector2_buffer(vector2);// 提交矢量相加任务queue q;q.submit([&](handler &h) {// 为缓存区创建访问器accessor vector1_accessor (vector1_buffer,h);accessor vector2_accessor (vector2_buffer,h);h.parallel_for(range<1>(N), [=](id<1> index) {vector1_accessor[index] += vector2_accessor[index];});});// 创建主机访问器将设备中数据拷贝到主机当中host_accessor h_a(vector1_buffer,read_only);std::cout<<"\nOutput Values: ";for (int i = 0; i < N; i++) std::cout<< vector1[i] << " ";std::cout<<"\n";return 0;} 运行结果 统一共享内存 (Unified Shared Memory USM) 统一共享内存是一种基于指针的方法,是将CPU内存和GPU内存进行统一的虚拟化方法,对于C++来说,指针操作内存是很常规的方式,USM也可以最大限度的减少C++移植到DPC++的代价。 下图显示了非USM(左)和USM(右)的程序员开发视角。 类型 函数调用 说明 在主机上可访问 在设备上可访问 设备 malloc_device 在设备上分配(显式) 否 是 主机 malloc_host 在主机上分配(隐式) 是 是 共享 malloc_shared 分配可以在主机和设备之间迁移(隐式) 是 是 USM语法 初始化: int data = malloc_shared<int>(N, q); int data = static_cast<int >(malloc_shared(N sizeof(int), q)); 释放 free(data,q); 使用共享内存之后,程序将自动在主机和运算设备之间隐式移动数据。 数据依赖 使用USM时,要注意数据之间的依赖关系以及事件之间的依赖关系,如果两个线程同时修改同一个内存区,将产生不可预测的结果。 我们可以使用不同的选项管理数据依赖关系: 内核任务中的 wait() 使用 depends_on 方法 使用 in_queue 队列属性 wait() q.submit([&](handler &h) {h.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });}).wait(); // <--- wait() will make sure that task is complete before continuingq.submit([&](handler &h) {h.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });}); depends_on auto e = q.submit([&](handler &h) { // <--- e is event for kernel taskh.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });});q.submit([&](handler &h) {h.depends_on(e); // <--- waits until event e is completeh.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });}); in_order queue property queue q(property_list{property::queue::in_order()}); // <--- this will make sure all the task with q are executed sequentially 练习1:事件依赖 以下代码使用 USM,并有三个提交到设备的内核。每个内核修改相同的数据阵列。三个队列之间没有数据依赖关系 为每个队列提交添加 wait() 在第二个和第三个内核任务中实施 depends_on() 方法 使用 in_order 队列属性,而非常规队列: queue q{property::queue::in_order()}; %%writefile lab/usm_data.cppinclude <CL/sycl.hpp>using namespace sycl;static const int N = 256;int main() {queue q{property::queue::in_order()};//用队列限制执行顺序std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";int data = static_cast<int >(malloc_shared(N sizeof(int), q));for (int i = 0; i < N; i++) data[i] = 10;q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 5; });q.wait();//wait阻塞进程for (int i = 0; i < N; i++) std::cout << data[i] << " ";std::cout << "\n";free(data, q);return 0;} 执行结果 练习2:事件依赖 以下代码使用 USM,并有三个提交到设备的内核。前两个内核修改了两个不同的内存对象,第三个内核对前两个内核具有依赖性。三个队列之间没有数据依赖关系 %%writefile lab/usm_data2.cppinclude <CL/sycl.hpp>using namespace sycl;static const int N = 1024;int main() {queue q;std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";//设备选择int data1 = malloc_shared<int>(N, q);int data2 = malloc_shared<int>(N, q);for (int i = 0; i < N; i++) {data1[i] = 10;data2[i] = 10;}auto e1 = q.parallel_for(range<1>(N), [=](id<1> i) { data1[i] += 2; });auto e2 = q.parallel_for(range<1>(N), [=](id<1> i) { data2[i] += 3; });//e1,e2指向两个事件内核q.parallel_for(range<1>(N),{e1,e2}, [=](id<1> i) { data1[i] += data2[i]; }).wait();//depend on e1,e2for (int i = 0; i < N; i++) std::cout << data1[i] << " ";std::cout << "\n";free(data1, q);free(data2, q);return 0;} 运行结果 UMS实验 在主机中初始化两个vector,初始数据为25和49,在设备中初始化两个vector,将主机中的数据拷贝到设备当中,在设备当中并行计算原始数据的根号值,然后将data1_device和data2_device的数值相加,最后将数据拷贝回主机当中,检验最后相加的和是否是12,程序结束前将内存释放。 %%writefile lab/usm_lab.cppinclude <CL/sycl.hpp>include <cmath>using namespace sycl;static const int N = 1024;int main() {queue q;std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";//intialize 2 arrays on hostint data1 = static_cast<int >(malloc(N sizeof(int)));int data2 = static_cast<int >(malloc(N sizeof(int)));for (int i = 0; i < N; i++) {data1[i] = 25;data2[i] = 49;}// STEP 1 : Create USM device allocation for data1 and data2int data1_device = static_cast<int >(malloc_device(N sizeof(int),q));int data2_device = static_cast<int >(malloc_device(N sizeof(int),q));// STEP 2 : Copy data1 and data2 to USM device allocationq.memcpy(data1_device, data1, sizeof(int) N).wait();q.memcpy(data2_device, data2, sizeof(int) N).wait();// STEP 3 : Write kernel code to update data1 on device with sqrt of valueauto e1 = q.parallel_for(range<1>(N), [=](id<1> i) { data1_device[i] = std::sqrt(25); });auto e2 = q.parallel_for(range<1>(N), [=](id<1> i) { data2_device[i] = std::sqrt(49); });// STEP 5 : Write kernel code to add data2 on device to data1q.parallel_for(range<1>(N),{e1,e2}, [=](id<1> i) { data1_device[i] += data2_device[i]; }).wait();// STEP 6 : Copy data1 on device to hostq.memcpy(data1, data1_device, sizeof(int) N).wait();q.memcpy(data2, data2_device, sizeof(int) N).wait();// verify resultsint fail = 0;for (int i = 0; i < N; i++) if(data1[i] != 12) {fail = 1; break;}if(fail == 1) std::cout << " FAIL"; else std::cout << " PASS";std::cout << "\n";// STEP 7 : Free USM device allocationsfree(data1_device, q);free(data1);free(data2_device, q);free(data2);// STEP 8 : Add event based kernel dependency for the Steps 2 - 6return 0;} 运行结果 本篇文章为转载内容。原文链接:https://blog.csdn.net/MCKZX/article/details/127630566。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-22 10:28:50
321
转载
ElasticSearch
...单机的配置,cpu+内存,内存越高越好,elasticsearch比较吃内存!),它一定会给你很好的性能反应。试想,公司里的app打印线上日志的行数其实可比一般业务系统产生的订单数量要大很多很多,elasticsearch都可以常在日志的实时分析,所以如果你要做通用场景,而且机器资源不是问题,这是完全行得通的。 3.2.2 易用性和可玩性 此外,在使用elasticsearch的时候,会有很多的可玩性。这里不引经据典,呈现很多elasticsearch官方文章的列举优秀特性(当然,确实很优秀!)。 这里举几个例子: (1)中文分词:第一章提到的其它引擎几乎很难实现,elasticsearch对分词器的支持是原生的,因为elasticsearch天生就为全文索引而生,elasticsearch的汉语名字就是“弹性搜索”。这家伙可是专门搞搜索的! 有的朋友可能不了解分词器,比如你的一个字段里存储“今天我要吃冰激凌”,在分词器的加持下,es最终会存储为“今天|我|要|吃|冰激凌”,并且使用倒排索引的形式进行存储。当你搜索“冰激凌”的时候,可以很快的反馈回来。 关于elasticsearch的原理,这里不展开说明,分词器和倒排索引是elasticsearch的最基本的概念。如果有不了解的朋友,可以自行百度一下。而且这两个概念,与elasticsearch其实不挂钩,是搜索中的通用概念。 关于倒排索引,其核心表现如下图: 如果你要用mysql、mongo实现中文分词,这......其实挺麻烦的,可能在后面的版本支持中会实现的很好,但在当前的流行版本中,它们对中文分词是不够友好的。 mysql5.7之后支持外挂第三方分词器,支持中文分词。而在数据量较大的情况下,mysql的多机器部署几乎很难实现,elasticsearch可以很容易的水平扩展。 mongo支持西方语言的分词,但不支持中文、日语、汉语等东方语言,你需要在自己的逻辑代码中实现分词器。 ngram分词,你看看效果:依旧是“今天我要吃冰激凌”,ngram二元分词后即将得到结果“今天、天我、我要、要吃、吃冰、冰激、激凌”。这....,那你搜索冰激凌就搜不出来!咋办呢,当然可以使用三元分词。但是更好的解决方案还是中文分词器,但它们原生并不支持的。 (2)自定义排名场景:比如你的搜索“冰激凌”,结果中返回了有10条,这10条应该有你想对它指定的顺序。最简单的就是用默认的得分,但是如果你想人为干预这个得分怎么办? elasticsearch支持function_score功能(可以不用,这个是增强功能),es会在计算最终得分之前回调这个你指定的function_score回调函数,传入原始得分、行的原始数据,你可以在里面做计算,比如查询其它参考表、或查看是否是广告位,以得到新的score返回给用户。 function_scrore的功能不展开描述,是一个在自定义得分场景下十分有用又简单易用的功能!下面是一个使用示例,不仅如此,它是支持自定义函数的,自由度非常高。 (3)文本高亮:你用mysql或mongo也可以实现,比如用户搜索“冰激凌”,你只需要在逻辑代码中对“冰激凌”替换为“<span class='highlight-term'>冰激凌</span>”,然后前端做样式即可。但如果用户搜索了“好吃的冰激凌”咋办呢?还有就是英文大小写的场景,用户搜索"MAIN",那结果及时匹配到了“main”(小写的),这个单词是否应该高亮呢?也许这时候你会用业务代码实现toLowerCase下基于位置下标的匹配。 挺麻烦的吧,elasticsearch,自动可以返回高亮字段!并且可以自由指定高亮的html前后标签。 (4)实在太多了....这家伙天生为索引而生,而且版本还在不断地迭代。不差机器的话,用用吧! 4. 退而求其次 4.1 普通数据库 尽管elasticsearch在搜索场景下,是非常好用的利器!但是它比较消耗机器资源,如果你的数据规模并不大,而且想快速实现功能。你可以使用mysql或mongo来代替,完全没有问题。 技术是为了解决特定业务场景下的问题,结合当前手头的资源,适合自己的才是最好的。也许你搞了一个单机器的elasticsearch,单机器内存只有2G,它的表现并不会比mysql、mongo来的好。 当然,如果你为了使用上边提到的一些优秀的独有的特性,那elasticsearch一定还是最佳选择! 对于mysql(关系型数据库)和mongo(文档数据库)的区别这里不展开描述了,但对于搜索而言,两种都合适。有时候选型也不用很纠结,其实都是差不太多的东西,适合自己的、自己熟悉的、运维起来顺手的,就是最好的。 4.2 普通数据库实现中文分词搜索的原理 尽管mysql在5.7以后支持外挂第三方分词器,mongo在截止目前的版本中也不支持中文分词(你可能会看到一些文章中说可以指定language为chinese,但其实会报错的)。 其实当你选择普通数据库,你就不得不在逻辑代码中自己实现一套索引分词+搜索分词逻辑。 索引分词+搜索分词?为什么分开写,如果你有用过elasticsearch或solr,你会知道,在指定字段的时候,需要指定index分词器和search分词器。 下面以mongo为例做简要说明。 4.2.1 index分词器 意思是当数据“索引”截断如何分词。首先,这里必须要承认,数据之后存储了,才能被查询。在搜索中,这句话可以换成是“数据只有被索引了,才能被搜索”。 这时候请求打过来了,要索引一条数据,其中某字段是“今天我要吃冰激凌”,分词后得到“今天|我|要|吃|冰激凌”,这个就可以入库了。 如果你使用elasticsearch或solr,这个过程是自动的。如果你使用不支持外观分词器的常规数据库,这个过程你就要手动了,并把分词后的结果用空格分开(最好使用空格,因为西方语言的分词规则就是按空格拆分,以及逗号句号),存入数据库的一个待搜索的字段上。 效果如下图: 本站的其它博文中有介绍IKAnalyzer:https://www.52itw.com/java/6268.html 4.2.2 search分词器 当用户的查询请求打过来,用户输入了“好吃的冰激凌”,分词后得到“好吃|冰激凌”(“的”作为停用词stopwords,被自动忽略了,IKAnalyzer可以指定停用词表)。 于是这时候就回去上图的数据库表里面搜索“好吃 冰激凌”(与index分词器结果统一,还是用空格分隔)。 当然,对于mongo而言,你需要事先开启全文索引db.xxx.ensureIndex({content: "text"}),xxx是集合名,content是字段名,text是全文索引的标识。 mongo搜索的时候用这个语法:db.xxx.find( { $text: { $search: "好吃 冰激凌" } },{ score: { $meta: "textScore" } }).sort( { score: { $meta: "textScore" } } ) 4.2.3 索引库和存储库分开 为了减少单表的大小,为了让普通的列表查询、普通筛选可以跑的更快,你可以对原有的数据原封不动的做一张表。 然后对于搜索场景,再单独对需要被搜索的字段单独拎一张表出来! 然后二者之间做增量信号同步或定时差额同步,可能会有延迟,这个就看你能容忍多长时间(悄悄告诉你,elasticsearch也需要指定这个refresh时间,一般是1s到几秒、甚至分钟级。当然,二者的这个时间对饮的底层目的是不一样的)。 这样,搜索的时候先查询搜索库,拿到一个指针id的列表,然后拿到指针id的列表区存储里把数据一次性捞出来。当然,也是支持分页的,你查询搜索库其实也是普通的数据库查询嘛,支持分页参数的。 4.3 存储库和索引库的延伸阅读 很多有名的开源软件也是使用的存储库与索引库分离的技术方案,如apache atlas: apache atlas对于大数据领域的数据资产元数据管理、数据血缘上可谓是专家,也涉及资产搜索的特性,它的实现思路就是:从搜索库中做搜索、拿到key、再去存储库中做查询。 搜索库:上图右下角,可以看到使用的是elasticsearch、solr或lucene,多个选一个 存储库:上图左下角,可以看到使用的是Cassandra、HBase或BerkeleyDB,多个选一个 虽然apache atlas在只有搜索库或只有存储库的时候也可以很好的工作,但只针对于数据量并不大的场景。 搜索库,擅长搜索!存储库,擅长海量存储!搜索库多样化搜索,然后去存储库做点查。 当你的数据达到海量的时候,es+hbase也是一种很好的解决方案,不在这里展开说明了。
2024-01-27 17:49:04
537
admin-tim
Apache Solr
...确的结果了。我们使用Python和requests库来模拟这个过程: python import requests from solr import SolrClient solr_url = "http://localhost:8983/solr/core1" solr_client = SolrClient(solr_url) def search(query): results = solr_client.search(query) for result in results: 外部API请求 external_data = fetch_external_metadata(result['id']) result['additional_info'] = external_data return results def fetch_external_metadata(doc_id): url = f"https://example.com/api/{doc_id}" response = requests.get(url) if response.status_code == 200: return response.json() else: return None 在这个例子中,fetch_external_metadata函数尝试从外部API获取元数据,如果请求失败或API不可用,那么该结果将被标记为未获取到数据。当外部服务出现延迟或中断时,这将直接影响到Solr的查询效率。 三、优化策略 1. 缓存策略 为了避免频繁请求外部服务,可以引入缓存机制。对于频繁访问且数据变化不大的元数据,可以在本地缓存一段时间。当外部服务不可用时,可以回退使用缓存数据,直到服务恢复。 python class ExternalMetadataCache: def __init__(self, ttl=600): self.cache = {} self.ttl = ttl def get(self, doc_id): if doc_id not in self.cache or (self.cache[doc_id]['timestamp'] + self.ttl) < time.time(): self.cache[doc_id] = {'data': fetch_external_metadata(doc_id), 'timestamp': time.time()} return self.cache[doc_id]['data'] metadata_cache = ExternalMetadataCache() def fetch_external_metadata_safe(doc_id): return metadata_cache.get(doc_id) 2. 重试机制 在请求外部服务时添加重试逻辑,当第一次请求失败后,可以设置一定的时间间隔后再次尝试,直到成功或达到最大重试次数。 python def fetch_external_metadata_retriable(doc_id, max_retries=3, retry_delay=5): for i in range(max_retries): try: return fetch_external_metadata(doc_id) except Exception as e: print(f"Attempt {i+1} failed with error: {e}. Retrying in {retry_delay} seconds...") time.sleep(retry_delay) raise Exception("Max retries reached.") 四、结论与展望 通过上述策略,我们可以在一定程度上减轻外部服务依赖对Solr性能的影响。然而,重要的是要持续监控系统的运行状况,并根据实际情况调整优化措施。嘿,你听说了吗?科技这玩意儿啊,那可是越来越牛了!你看,现在就有人在琢磨怎么对付那些让人上瘾的东西。将来啊,说不定能搞出个既高效又结实的办法,帮咱们摆脱这个烦恼。想想都挺激动的,对吧?哎呀,兄弟!构建一个稳定又跑得快的搜索系统,那可得好好琢磨琢磨外部服务这事儿。你知道的,这些服务就像是你家里的电器,得选对了,用好了,整个家才能舒舒服服的。所以啊,咱们得先搞清楚这些服务都是干啥的,它们之间怎么配合,还有万一出了点小状况,咱们能不能快速应对。这样,咱们的搜索系统才能稳如泰山,嗖嗖地飞快,用户一搜就满意,那才叫真本事呢! --- 请注意,以上代码示例是基于Python和相关库编写的,实际应用时需要根据具体环境和技术栈进行相应的调整。
2024-09-21 16:30:17
39
风轻云淡
转载文章
...啊 这次我来写一下 Python 一个很重要的东西,即 Descriptor (描述符) 初识描述符 老规矩, Talk is cheap,Show me the code. 我们先来看看一段代码classPerson(object): """""" ---------------------------------------------------------------------- def__init__(self, first_name, last_name): """Constructor""" self.first_name = first_name self.last_name = last_name ---------------------------------------------------------------------- @property deffull_name(self): """ Return the full name """ return"%s %s"% (self.first_name, self.last_name) if__name__=="__main__": person = Person("Mike","Driscoll") print(person.full_name) 'Mike Driscoll' print(person.first_name) 'Mike' 这段代大家肯定很熟悉,恩, property 嘛,谁不知道呢,但是 property 的实现机制大家清楚么?什么不清楚?那还学个毛的 Python 啊。。。开个玩笑,我们看下面一段代码classProperty(object): "Emulate PyProperty_Type() in Objects/descrobject.c" def__init__(self, fget=None, fset=None, fdel=None, doc=None): self.fget = fget self.fset = fset self.fdel = fdel ifdocisNoneandfgetisnotNone: doc = fget.__doc__ self.__doc__ = doc def__get__(self, obj, objtype=None): ifobjisNone: returnself ifself.fgetisNone: raiseAttributeError("unreadable attribute") returnself.fget(obj) def__set__(self, obj, value): ifself.fsetisNone: raiseAttributeError("can't set attribute") self.fset(obj, value) def__delete__(self, obj): ifself.fdelisNone: raiseAttributeError("can't delete attribute") self.fdel(obj) defgetter(self, fget): returntype(self)(fget, self.fset, self.fdel, self.__doc__) defsetter(self, fset): returntype(self)(self.fget, fset, self.fdel, self.__doc__) defdeleter(self, fdel): returntype(self)(self.fget, self.fset, fdel, self.__doc__) 看起来是不是很复杂,没事,我们来一步步的看。不过这里我们首先给出一个结论: Descriptors 是一种特殊 的对象,这种对象实现了 __get__ , __set__ , __delete__ 这三个特殊方法。 详解描述符 说说 Property 在上文,我们给出了 Propery 实现代码,现在让我们来详细说说这个classPerson(object): """""" ---------------------------------------------------------------------- def__init__(self, first_name, last_name): """Constructor""" self.first_name = first_name self.last_name = last_name ---------------------------------------------------------------------- @Property deffull_name(self): """ Return the full name """ return"%s %s"% (self.first_name, self.last_name) if__name__=="__main__": person = Person("Mike","Driscoll") print(person.full_name) 'Mike Driscoll' print(person.first_name) 'Mike' 首先,如果你对装饰器不了解的话,你可能要去看看这篇文章,简而言之,在我们正式运行代码之前,我们的解释器就会对我们的代码进行一次扫描,对涉及装饰器的部分进行替换。类装饰器同理。在上文中,这段代码@Property deffull_name(self): """ Return the full name """ return"%s %s"% (self.first_name, self.last_name) 会触发这样一个过程,即 full_name=Property(full_name) 。然后在我们后面所实例化对象之后我们调用 person.full_name 这样一个过程其实等价于 person.full_name.__get__(person) 然后进而触发 __get__() 方法里所写的 return self.fget(obj) 即原本上我们所编写的 def full_name 内的执行代码。 这个时候,同志们可以去思考下 getter() , setter() ,以及 deleter() 的具体运行机制了=。=如果还是有问题,欢迎在评论里进行讨论。 关于描述符 还记得之前我们所提到的一个定义么: Descriptors 是一种特殊的对象,这种对象实现了 __get__ , __set__ , __delete__ 这三个特殊方法 。然后在 Python 官方文档的说明中,为了体现描述符的重要性,有这样一段话:“They are the mechanism behind properties, methods, static methods, class methods, and super(). They are used throughout Python itself to implement the new style classes introduced in version 2.2. ” 简而言之就是 先有描述符后有天,秒天秒地秒空气 。恩,在新式类中,属性,方法调用,静态方法,类方法等都是基于描述符的特定使用。 OK,你可能想问,为什么描述符是这么重要呢?别急,我们接着看 使用描述符 首先请看下一段代码 classA(object):注:在 Python 3.x 版本中,对于 new class 的使用不需要显式的指定从 object 类进行继承,如果在 Python 2.X(x>2)的版本中则需要defa(self): pass if__name__=="__main__": a=A() a.a() 大家都注意到了我们存在着这样一个语句 a.a() ,好的,现在请大家思考下,我们在调用这个方法的时候发生了什么? OK?想出来了么?没有?好的我们继续 首先我们调用一个属性的时候,不管是成员还是方法,我们都会触发这样一个方法用于调用属性 __getattribute__() ,在我们的 __getattribute__() 方法中,如果我们尝试调用的属性实现了我们的描述符协议,那么会产生这样一个调用过程 type(a).__dict__['a'].__get__(b,type(b)) 。好的这里我们又要给出一个结论了:“在这样一个调用过程中,有这样一个优先级顺序,如果我们所尝试调用属性是一个 data descriptors ,那么不管这个属性是否存在我们的实例的 __dict__ 字典中,优先调用我们描述符里的 __get__ 方法,如果我们所尝试调用属性是一个 non data descriptors ,那么我们优先调用我们实例里的 __dict__ 里的存在的属性,如果不存在,则依照相应原则往上查找我们类,父类中的 __dict__ 中所包含的属性,一旦属性存在,则调用 __get__ 方法,如果不存在则调用 __getattr__() 方法”。理解起来有点抽象?没事,我们马上会讲,不过在这里,我们先要解释下 data descriptors 与 non data descriptors ,再来看一个例子。什么是 data descriptors 与 non data descriptors 呢?其实很简单,在描述符中同时实现了 __get__ 与 __set__ 协议的描述符是 data descriptors ,如果只实现了 __get__ 协议的则是 non data descriptors 。好了我们现在来看个例子:importmath classlazyproperty: def__init__(self, func): self.func = func def__get__(self, instance, owner): ifinstanceisNone: returnself else: value = self.func(instance) setattr(instance, self.func.__name__, value) returnvalue classCircle: def__init__(self, radius): self.radius = radius pass @lazyproperty defarea(self): print("Com") returnmath.pi self.radius 2 deftest(self): pass if__name__=='__main__': c=Circle(4) print(c.area) 好的,让我们仔细来看看这段代码,首先类描述符 @lazyproperty 的替换过程,前面已经说了,我们不在重复。接着,在我们第一次调用 c.area 的时候,我们首先查询实例 c 的 __dict__ 中是否存在着 area 描述符,然后发现在 c 中既不存在描述符,也不存在这样一个属性,接着我们向上查询 Circle 中的 __dict__ ,然后查找到名为 area 的属性,同时这是一个 non data descriptors ,由于我们的实例字典内并不存在 area 属性,那么我们便调用类字典中的 area 的 __get__ 方法,并在 __get__ 方法中通过调用 setattr 方法为实例字典注册属性 area 。紧接着,我们在后续调用 c.area 的时候,我们能在实例字典中找到 area 属性的存在,且类字典中的 area 是一个 non data descriptors ,于是我们不会触发代码里所实现的 __get__ 方法,而是直接从实例的字典中直接获取属性值。 描述符的使用 描述符的使用面很广,不过其主要的目的在于让我们的调用过程变得可控。因此我们在一些需要对我们调用过程实行精细控制的时候,使用描述符,比如我们之前提到的这个例子classlazyproperty: def__init__(self, func): self.func = func def__get__(self, instance, owner): ifinstanceisNone: returnself else: value = self.func(instance) setattr(instance, self.func.__name__, value) returnvalue def__set__(self, instance, value=0): pass importmath classCircle: def__init__(self, radius): self.radius = radius pass @lazyproperty defarea(self, value=0): print("Com") ifvalue ==0andself.radius ==0: raiseTypeError("Something went wring") returnmath.pi value 2ifvalue !=0elsemath.pi self.radius 2 deftest(self): pass 利用描述符的特性实现懒加载,再比如,我们可以控制属性赋值的值classProperty(object): "Emulate PyProperty_Type() in Objects/descrobject.c" def__init__(self, fget=None, fset=None, fdel=None, doc=None): self.fget = fget self.fset = fset self.fdel = fdel ifdocisNoneandfgetisnotNone: doc = fget.__doc__ self.__doc__ = doc def__get__(self, obj, objtype=None): ifobjisNone: returnself ifself.fgetisNone: raiseAttributeError("unreadable attribute") returnself.fget(obj) def__set__(self, obj, value=None): ifvalueisNone: raiseTypeError("You cant to set value as None") ifself.fsetisNone: raiseAttributeError("can't set attribute") self.fset(obj, value) def__delete__(self, obj): ifself.fdelisNone: raiseAttributeError("can't delete attribute") self.fdel(obj) defgetter(self, fget): returntype(self)(fget, self.fset, self.fdel, self.__doc__) defsetter(self, fset): returntype(self)(self.fget, fset, self.fdel, self.__doc__) defdeleter(self, fdel): returntype(self)(self.fget, self.fset, fdel, self.__doc__) classtest(): def__init__(self, value): self.value = value @Property defValue(self): returnself.value @Value.setter deftest(self, x): self.value = x 如上面的例子所描述的一样,我们可以判断所传入的值是否有效等等。 以上就是Python 描述符(Descriptor)入门,更多相关文章请关注PHP中文网(www.gxlcms.com)! 本条技术文章来源于互联网,如果无意侵犯您的权益请点击此处反馈版权投诉 本文系统来源:php中文网 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39736934/article/details/112888600。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-07 19:03:49
94
转载
转载文章
...训。 【----帮助Python学习,以下所有学习资料文末免费领!----】 不管你如何理解,这个721法则都告诉我们:我们都要勇敢地去实践。 实践中我们可以出错,可以不满意,可以有失去,但那都是我们的财富。 不去实践,我们永远站在原地,实践了,那就是希望的开始。 下图是我百度所得: 下面是我用matplotlib画的: 我还有另外一种理解:如果你想有所产出,10%靠运气,20%靠自己,更多的是要靠团队。 我将70%赋予了灰色,这是一种冷色调,代表理性、努力和恒心。其它两种颜色为亮色,表示我们赤诚的心和坚定不移的方向。 如果你感兴趣,可以将下面代码复制到IDLE或者Spyder或者Pycharm,轻轻一点,属于你的图就成了。 第一个图from matplotlib import pyplot as plt 调节图形大小,宽,高plt.figure(figsize=(6,9))定义饼状图的标签,标签是列表labels = [ '实践与经验','交流与反馈','培训与学习']每个标签占多大,会自动去算百分比sizes = [70,20,10]colors = ['red','yellowgreen','lightskyblue']colors = ['gray','00FFFF','FF1493']灰、粉、蓝绿将某部分爆炸出来, 使用括号,将第一块分割出来,数值的大小是分割出来的与其他两块的间隙explode = (0.05,0.05,0)patches,l_text,p_text = plt.pie(sizes,explode=explode,labels=labels,colors=colors,labeldistance = 1.1,autopct = '%3.1f%%',shadow = False,startangle = 90,pctdistance = 0.6)labeldistance,文本的位置离远点有多远,1.1指1.1倍半径的位置autopct,圆里面的文本格式,%3.1f%%表示小数有三位,整数有一位的浮点数shadow,饼是否有阴影startangle,起始角度,0,表示从0开始逆时针转,为第一块。一般选择从90度开始比较好看pctdistance,百分比的text离圆心的距离patches, l_texts, p_texts,为了得到饼图的返回值,p_texts饼图内部文本的,l_texts饼图外label的文本改变文本的大小方法是把每一个text遍历。调用set_size方法设置它的属性for t in l_text:t.set_size(25)for t in p_text:t.set_size(20) 设置x,y轴刻度一致,这样饼图才能是圆的plt.axis('equal')plt.legend(loc="upper left",frameon=False,fontsize=20,borderaxespad=-5)plt.title('721法则', y=-0.1,fontsize=30,loc="center")plt.savefig("721法则.png")plt.show() 下图还是我画的,当然,没有上面那个美观。 第二个图import matplotlib.pyplot as pltplt.rcParams['font.family']='SimHei'plt.figure(figsize=(6, 9))labels = '实践与经验','交流与反馈','培训与学习'sizes = [70.0,20.0,10.0]explode = (0.1,0,0)colors = ['gray','00FFFF','FF1493']plt.pie(sizes,explode=explode,labels=labels,colors=colors,labeldistance=1.1,\autopct='%d%%',shadow=True,counterclock=False)plt.legend(loc="upper left",frameon=False,fontsize=18,borderaxespad=-5)plt.axis('equal')plt.title('721法则', y=-0.1,fontsize=18)plt.savefig("721法则.png")plt.show() 结论:我们不但要会画,还要学着画得尽可能美,实践是唯一的途径。 Python入门教程 如果你现在还是不会Python也没关系,下面我会给大家免费分享一份Python全套学习资料, 包含视频、源码、课件,希望能帮到那些不满现状,想提升自己却又没有方向的朋友,可以和我一起来学习交 流。 ① Python所有方向的学习路线图,清楚各个方向要学什么东西 ② 600多节Python课程视频,涵盖必备基础、爬虫和数据分析 ③ 100多个Python实战案例,含50个超大型项目详解,学习不再是只会理论 ④ 20款主流手游迫解 爬虫手游逆行迫解教程包 ⑤ 爬虫与反爬虫攻防教程包,含15个大型网站迫解 ⑥ 爬虫APP逆向实战教程包,含45项绝密技术详解 ⑦ 超300本Python电子好书,从入门到高阶应有尽有 ⑧ 华为出品独家Python漫画教程,手机也能学习 ⑨ 历年互联网企业Python面试真题,复习时非常方便 👉Python学习视频600合集👈 观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 👉实战案例👈 光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。 👉100道Python练习题👈 检查学习结果。 👉面试刷题👈 资料领取 上述这份完整版的Python全套学习资料已经上传CSDN官方,朋友们如果需要可以微信扫描下方CSDN官方认证二维码输入“领取资料” 即可领取 好文推荐 了解python的前景:https://blog.csdn.net/weixin_49891576/article/details/127187029 了解python的兼职:https://blog.csdn.net/weixin_49891576/article/details/127125308 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_49891576/article/details/130861900。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-04 23:38:21
105
转载
Mongo
...适的分区策略。 - 内存管理:MapReduce操作可能会消耗大量内存,特别是在处理大型数据集时。合理设置maxTimeMS选项,限制任务运行时间,避免内存溢出。 - 错误处理:在实际应用中,处理潜在的错误和异常情况非常重要。例如,使用try-catch块捕获并处理可能出现的异常。 4. 进阶技巧与高级应用 对于那些追求更高效率和更复杂数据处理场景的开发者来说,以下是一些进阶技巧: - 使用索引:在Map阶段,如果数据集中有大量的重复键值对,使用索引可以在键的查找过程中节省大量时间。 - 异步执行:对于高并发的应用场景,可以考虑将MapReduce操作异步化,利用MongoDB的复制集和分片集群特性,实现真正的分布式处理。 结语 MapReduce在MongoDB中的应用,为我们提供了一种高效处理大数据集的强大工具。哎呀,看完这篇文章后,你可不光是知道了啥是MapReduce,啥时候用,还能动手在自己的项目里把MapReduce用得溜溜的!就像是掌握了新魔法一样,你学会了怎么给这玩意儿加点料,让它在你的项目里发挥出最大效用,让工作效率蹭蹭往上涨!是不是感觉整个人都精神多了?这不就是咱们追求的效果嘛!嘿,兄弟!听好了,掌握新技能最有效的办法就是动手去做,尤其是像MapReduce这种技术。别光看书上理论,找一个你正在做的项目,大胆地将MapReduce实践起来。你会发现,通过实战,你的经验会大大增加,对这个技术的理解也会更加深入透彻。所以,行动起来吧,让自己的项目成为你学习路上的伙伴,你肯定能从中学到不少东西!让我们继续在数据处理的旅程中探索更多可能性!
2024-08-13 15:48:45
148
柳暗花明又一村
Kafka
...把消息写入磁盘而不是内存。 java Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("acks", "all"); props.put("retries", 0); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); Producer producer = new KafkaProducer<>(props); producer.send(new ProducerRecord<>("my-topic", "my-key", "my-value")); producer.close(); 这段代码展示了如何发送一条消息到Kafka主题。其中acks="all"参数表示生产者会等待所有副本确认收到消息后才认为发送成功。 2.2 分区与副本机制 Kafka通过分区(Partition)来分摊负载,同时通过副本(Replica)机制来提高可用性和容错性。每个分区可以有多个副本,其中一个为主副本,其余为从副本。 java AdminClient adminClient = AdminClient.create(props); ListTopicsOptions options = new ListTopicsOptions(); options.listInternal(true); Set topics = adminClient.listTopics(options).names().get(); System.out.println("Topics: " + topics); 这段代码用于列出Kafka集群中的所有主题及其副本信息。通过这种方式,你可以检查每个主题的副本分布情况。 3. 生产者端的可靠性保障 作为生产者,我们需要确保发送出去的消息能够安全到达Kafka集群。这涉及到一些关键配置: - acks:控制生产者的确认级别。设置为"all"时,意味着必须等待所有副本确认。 - retries:指定重试次数。如果网络抖动导致消息未送达,Kafka会自动重试。 - linger.ms:控制批量发送的时间间隔。默认值为0毫秒,即立即发送。 java Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("acks", "all"); props.put("retries", 3); props.put("linger.ms", 5); props.put("batch.size", 16384); Producer producer = new KafkaProducer<>(props); for (int i = 0; i < 100; i++) { producer.send(new ProducerRecord<>("my-topic", Integer.toString(i), Integer.toString(i))); } producer.close(); 在这个例子中,我们设置了retries=3和linger.ms=5,这意味着即使遇到短暂的网络问题,Kafka也会尝试最多三次重试,并且会在5毫秒内累积多条消息一起发送。 4. 消费者端的可靠性保障 消费者端同样需要关注可靠性问题。Kafka 有两种消费模式,一个叫 earliest,一个叫 latest。简单来说,earliest 就是从头开始补作业,把之前没看过的消息全都读一遍;而 latest 则是直接从最新的消息开始看,相当于跳过之前的存档,直接进入直播频道。 java Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("group.id", "test-group"); props.put("enable.auto.commit", "true"); props.put("auto.commit.interval.ms", "1000"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); KafkaConsumer consumer = new KafkaConsumer<>(props); consumer.subscribe(Arrays.asList("my-topic")); while (true) { ConsumerRecords records = consumer.poll(Duration.ofMillis(100)); for (ConsumerRecord record : records) { System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value()); } } 这段代码展示了如何订阅一个主题并持续拉取消息。注意这里启用了自动提交功能,这样就不需要手动管理偏移量了。 5. 总结与反思 通过今天的讨论,我相信大家对Kafka的消息可靠性有了更深的理解。Kafka能从一堆消息队列系统里脱颖而出,靠的就是它在设计的时候就脑补了各种“灾难片”场景,比如数据爆炸、服务器宕机啥的,然后还给配齐了神器,专门对付这些麻烦事儿。 然而,正如任何技术一样,Kafka也不是万能的。在实际应用中,我们还需要结合具体的业务需求来调整配置参数。比如说啊,在那种超级忙、好多请求同时涌过来的场景下,就得调整一下每次处理的任务量,别一下子搞太多,慢慢来可能更稳。但要是你干的事特别讲究速度,晚一秒钟都不行的那种,那就得想办法把发东西的时间间隔调短点,越快越好! 总之,Kafka的强大之处在于它允许我们灵活地调整策略以适应不同的工作负载。希望这篇文章能帮助你在实践中更好地利用Kafka的优势!如果你有任何疑问或想法,欢迎随时交流哦~
2025-04-11 16:10:34
95
幽谷听泉
转载文章
...参数,并可搭配示波器检测双振镜轨迹。 设置振镜轴运动,首先需要将轴类型配置成21振镜轴类型,并对应配置振镜轴的速度加减速等参数才可操作振镜进行运动。 通过ZDevelop软件的示波器监控双振镜运动运行轨迹。 视频演示。 开放式激光振镜+运动控制器(六)-双振镜运动 本次,正运动技术开放式激光振镜+运动控制器(六):双振镜运动,就分享到这里。 更多精彩内容请关注“正运动小助手”公众号,需要相关开发环境与例程代码,请咨询正运动技术销售工程师:400-089-8936。 本文由正运动技术原创,欢迎大家转载,共同学习,一起提高中国智能制造水平。文章版权归正运动技术所有,如有转载请注明文章来源。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_57350300/article/details/123402200。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-04 17:33:09
338
转载
Tornado
...Tornado 是 Python 中的一个高性能 Web 框架,它轻量级又灵活,适合构建实时应用或者需要高并发处理的应用场景。我以前用 Django 做过几个项目,感觉还挺不错的。不过一到几十万人同时在线的时候,服务器就开始“吭哧吭哧”地忙不过来了,感觉它都快撑不住了,哎哟,真是让人头大!后来听人说 Tornado 的异步非阻塞功能特别厉害,我心想不能落后啊,赶紧抽空研究了一下。结果发现,它的性能确实吊炸天,而且代码写起来也挺优雅。 然后是 Google Cloud Secret Manager,这是一个专门用来存储敏感信息(比如 API 密钥、数据库密码啥的)的服务。对开发者而言,安全这事得放首位,要是还用那种硬编码或者直接把密钥啥的写进配置文件的老办法,那简直就是在玩火自焚啊!Google Cloud Secret Manager 提供了加密存储、访问控制等功能,简直是保护秘钥的最佳选择之一。 所以,当我把这两者放在一起的时候,脑海里立刻浮现出一个画面:Tornado 快速响应前端请求,而 Secret Manager 在背后默默守护着那些珍贵的秘密。是不是很带感?接下来我们就一步步深入探索它们的合作方式吧! --- 2. 初识Tornado 搭建一个简单的Web服务 既然要玩转 Tornado,咱们得先搭个基础框架才行。好嘞,接下来我就简单搞个小网页服务,就让它回一句暖心的问候就行啦!虽然看起来简单,但这可是后续一切的基础哦! python import tornado.ioloop import tornado.web class MainHandler(tornado.web.RequestHandler): def get(self): self.write("Hello, Tornado!") def make_app(): return tornado.web.Application([ (r"/", MainHandler), ]) if __name__ == "__main__": app = make_app() app.listen(8888) print("Server started at http://localhost:8888") tornado.ioloop.IOLoop.current().start() 这段代码超级简单对不对?我们定义了一个 MainHandler 类继承自 tornado.web.RequestHandler,重写了它的 get 方法,当收到 GET 请求时就会执行这个方法,并向客户端返回 "Hello, Tornado!"。然后呢,就用 make_app 这个函数把路由和这个处理器绑在一起,最后再启动服务器,让它开始监听 8888 端口。 运行后打开浏览器输入 http://localhost:8888,就能看到页面显示 "Hello, Tornado!" 了。是不是特别爽?不过别急着高兴,这只是万里长征的第一步呢! --- 3. 引入Google Cloud Secret Manager:让秘密不再裸奔 现在我们知道如何用 Tornado 做点事情了,但问题是,如果我们的应用程序需要用到一些敏感信息(例如数据库连接字符串),该怎么办呢?直接写在代码里吗?当然不行!这就是为什么我们要引入 Google Cloud Secret Manager。 3.1 安装依赖库 首先需要安装 Google Cloud 的官方 Python SDK: bash pip install google-cloud-secret-manager 3.2 获取Secret Manager中的值 假设我们在 Google Cloud Console 上已经创建了一个名为 my-secret 的密钥,并且它里面保存了我们的数据库密码。我们可以这样从 Secret Manager 中读取这个值: python from google.cloud import secretmanager def access_secret_version(project_id, secret_id, version_id): client = secretmanager.SecretManagerServiceClient() name = f"projects/{project_id}/secrets/{secret_id}/versions/{version_id}" response = client.access_secret_version(name=name) payload = response.payload.data.decode('UTF-8') return payload 使用示例 db_password = access_secret_version("your-project-id", "my-secret", "latest") print(f"Database Password: {db_password}") 这段代码做了什么呢?很简单,它实例化了一个 SecretManagerServiceClient 对象,然后根据提供的项目 ID、密钥名称以及版本号去访问对应的密钥内容。注意这里的 version_id 参数可以设置为 "latest" 来获取最新的版本。 --- 4. 将两者结合起来 构建更安全的应用 那么问题来了,怎么才能让 Tornado 和 Google Cloud Secret Manager 协同工作呢?其实答案很简单——我们可以将从 Secret Manager 获取到的敏感数据注入到 Tornado 的配置对象中,从而在整个应用范围内使用这些信息。 4.1 修改Tornado应用以支持从Secret Manager加载配置 让我们修改之前的 MainHandler 类,让它从 Secret Manager 中加载数据库密码并用于某种操作(比如查询数据库)。为了简化演示,这里我们假设有一个 get_db_password 函数负责完成这项任务: python from google.cloud import secretmanager def get_db_password(): client = secretmanager.SecretManagerServiceClient() name = f"projects/{YOUR_PROJECT_ID}/secrets/my-secret/versions/latest" response = client.access_secret_version(name=name) return response.payload.data.decode('UTF-8') class MainHandler(tornado.web.RequestHandler): def initialize(self, db_password): self.db_password = db_password def get(self): self.write(f"Connected to database with password: {self.db_password}") def make_app(): db_password = get_db_password() return tornado.web.Application([ (r"/", MainHandler, {"db_password": db_password}), ]) 在这个例子中,我们在 make_app 函数中调用了 get_db_password() 来获取数据库密码,并将其传递给 MainHandler 的构造函数作为参数。这样一来,每个 MainHandler 实例都会拥有自己的数据库密码属性。 --- 5. 总结与展望 好了朋友们,今天的分享就到这里啦!通过这篇文章,我们了解了如何利用 Tornado 和 Google Cloud Secret Manager 来构建更加安全可靠的 Web 应用。虽然过程中遇到了不少挑战,但最终的效果还是让我感到非常满意。 未来的话,我还想尝试更多有趣的功能组合,比如结合 Redis 缓存提高性能,或者利用 Pub/Sub 实现消息队列机制。如果你也有类似的想法或者遇到什么问题,欢迎随时跟我交流呀! 最后祝大家 coding愉快,记得保护好自己的秘密哦~ 😊
2025-04-09 15:38:23
43
追梦人
转载文章
...s Explorer检测恶意进程”等实用教程,为IT专业人员提供即时、详尽的操作指导。 同时,在安全研究领域,Sysinternals工具被广泛应用于Rootkit检测和高级威胁分析中。例如,知名网络安全专家在最近的一次行业研讨会上分享了如何结合使用诸如Autoruns、Process Explorer和TCPView等Sysinternals工具来发现并应对新型网络攻击手段。 对于希望深入学习Sysinternals工具的用户,Mark Russinovich撰写的《Windows Internals》系列书籍是不可多得的权威资料,它不仅详细解析了Windows操作系统的内部工作原理,还包含许多关于如何有效利用Sysinternals工具进行问题排查的实际案例。 综上所述, Sysinternals作为Windows系统管理员和开发者的重要武器库,其价值和影响力随着技术进步和安全挑战的升级而不断提升。关注Sysinternals工具集的最新进展和应用实践,将有助于提升个人技能,更好地应对复杂的信息技术挑战。
2024-01-22 15:44:41
102
转载
Javascript
...了移动端设备的能耗和内存占用,得到了用户的普遍好评。 与此同时,Google Chrome团队也在最新版本中加强了对AbortError的支持,新增了一项名为“智能取消”的功能。这项功能可以根据用户的操作习惯动态调整未完成请求的优先级,从而提升整体浏览体验。例如,在用户快速切换页面时,系统会自动取消低优先级的任务,确保核心功能的流畅运行。这种技术不仅减少了资源浪费,还大幅缩短了页面加载时间。 从技术角度来看,AbortError的应用不仅仅局限于前端开发。在后端服务中,通过结合WebSocket和AbortSignal,开发者可以实现更高效的实时通信协议。例如,某知名在线教育平台利用这一特性,成功将课堂互动延迟从原来的500毫秒降低到100毫秒以下,极大改善了师生间的协作效率。 此外,随着《通用数据保护条例》(GDPR)在全球范围内的实施,AbortError也被赋予了新的法律意义。在涉及用户隐私的数据传输过程中,合理运用AbortError可以帮助企业更好地遵守法规要求,避免因违规操作而导致的巨额罚款。例如,某跨国科技公司在其云存储服务中引入了基于AbortError的权限管理系统,确保敏感信息在未经授权的情况下无法被访问或下载。 总之,AbortError作为现代Web开发的重要组成部分,正逐步渗透到各个领域。无论是提升用户体验、优化系统性能,还是保障数据安全,它都展现出了巨大的潜力。未来,随着更多创新应用场景的涌现,相信AbortError将在数字世界中发挥更大的作用。
2025-03-27 16:22:54
106
月影清风
Nacos
...,定期更新工具版本,修复已知漏洞,也是保障系统安全的重要措施。 在全球范围内,开源社区对这些技术的支持力度也在不断加大。比如GitHub上的Nacos项目,其活跃度非常高,每周都有大量的贡献者提交代码改进和修复问题。这种持续的技术迭代为企业提供了强大的技术支持,使得企业在面对复杂多变的技术挑战时能够更加从容应对。 总之,在选择合适的配置管理工具时,企业需要综合考量自身的业务需求和技术栈特点,同时也要密切关注最新的技术趋势和安全动态,以确保系统的稳定性和安全性。
2025-04-06 15:56:57
67
清风徐来
Go-Spring
...,咱们得花多少时间去修复,还能省下一大笔银子呢!更棒的是,还能让咱们团队里的小伙伴们,心往一处想,劲往一处使,互相理解,配合得天衣无缝。这感觉,就像是大家在一块儿打游戏,每个人都有自己的角色,但又都为了一个共同的目标而努力,多带劲啊!哎呀,你知道吗?当咱们的应用越做越大,用GoSpring的那些工具和好方法,简直就是如虎添翼啊!这样咱就能打造出一个既稳如泰山又快如闪电,还特别容易打理的系统。想象一下,就像给你的小花园施肥浇水,让每一朵花都长得茁壮又美丽,是不是感觉棒极了?所以啊,别小看了这些工具和最佳实践,它们可是你建大事业的得力助手!
2024-07-31 16:06:44
277
月下独酌
.net
...具体表现,还可以尝试修复一些常见的配置错误,如服务注册遗漏或生命周期设置不当等问题。 此外,微软近期更新了其官方文档,新增了关于ASP.NET Core中DI容器高级特性的章节。这部分内容详细介绍了如何自定义DI容器的行为,包括拦截器机制、动态代理生成以及跨模块的依赖解析策略。这对于构建大型分布式系统尤其有用,因为它允许开发者在不影响现有业务逻辑的前提下,实现更复杂的依赖关系管理。 值得注意的是,谷歌也在其开源项目中大力推广依赖注入的理念。例如,Flutter团队推出了一套名为GetIt的新一代DI库,它不仅支持多种平台(Web、Mobile、Desktop),还提供了更为简洁的API设计。相比传统的Dagger或Hilt,GetIt更适合小型项目或快速原型开发,其轻量化的特点使得开发者能够迅速上手并提升生产力。 与此同时,国内的一些技术社区也开始关注这一领域的发展趋势。例如,InfoQ最近发表了一篇深度解读文章,分析了国内企业在采用DI模式时面临的挑战,特别是如何平衡灵活性与稳定性之间的关系。文章指出,尽管DI能够显著改善代码结构,但在实际落地过程中仍需谨慎权衡,尤其是在高并发场景下,不恰当的配置可能导致资源浪费甚至系统崩溃。 综上所述,无论是国际巨头还是本土企业,都在积极拥抱依赖注入技术,并探索适合自身需求的最佳实践。对于开发者而言,持续关注行业动态和技术演进,及时调整学习方向,无疑是保持竞争力的关键所在。
2025-05-07 15:53:50
37
夜色朦胧
转载文章
...s , 一个开源的、内存中的数据结构存储系统,常被用作数据库、缓存和消息中间件。在该篇文章里,Redis被安装和配置,用来提高应用的数据读写性能,尤其是在高并发场景下提供快速响应的能力。
2023-11-15 19:14:44
54
转载
Hive
...服务,该服务能够自动检测并优化存储在S3中的数据,支持多种压缩算法,包括GZIP和BZIP2。这项服务不仅帮助企业减少了存储成本,还显著提高了数据检索的速度。与此同时,Google Cloud也宣布计划在未来版本中增强BigQuery对自定义压缩格式的支持,这将使得用户可以更灵活地选择适合自己业务需求的压缩策略。 在国内市场,阿里云也在积极探索数据压缩技术的应用。阿里云团队开发了一种名为“智能压缩”的新技术,可以根据数据特征动态调整压缩算法,以达到最佳的压缩效果。这一技术已经在多个企业的生产环境中得到了验证,结果显示,与传统的固定压缩方式相比,智能压缩可以将存储成本降低30%以上,同时提升查询性能约20%。 此外,开源社区也在不断推进相关技术的发展。例如,Apache Arrow项目最近发布了一个新版本,该版本引入了对多种压缩算法的原生支持,包括Zstandard(zstd)和LZ4。这些算法以其高效性和灵活性受到广泛关注,未来有望成为大数据处理领域的主流选择。 值得注意的是,尽管这些新技术带来了诸多好处,但在实际应用中仍需注意潜在的风险。例如,过度依赖压缩可能会影响数据的安全性,尤其是在涉及敏感信息的情况下。因此,在采用新的压缩技术时,企业需要仔细评估其安全性、兼容性和维护成本,确保技术的实际效益最大化。总之,随着技术的不断进步,数据压缩正成为大数据领域的一个重要研究方向,未来还有很大的发展空间。
2025-04-19 16:20:43
45
翡翠梦境
Apache Lucene
...目录存储实现,它使用内存而非磁盘来存储索引文件。在全文检索系统中,RAMDirectory提供了一种临时、快速的存储方式,适合用于构建索引或在内存中处理大量数据。这种实现方式有助于减少磁盘I/O操作带来的性能损耗,特别是在构建索引或处理实时数据流时,能够显著提升系统性能和响应速度。然而,一旦系统重启或关闭,RAMDirectory存储的数据会丢失,因此不适合长期持久化存储需求。
2024-07-25 00:52:37
391
青山绿水
转载文章
...各个方法、字段的最终内存布局信息,因此这些字段、方法的符号引用不经过运行期转换的话无法获得真正的内存入口地址,也就无法直接被虚拟机使用。当虚拟机运行时,需要从常量池获得对应的符号引用,再在类创建时或运行时解析、翻译到具体的内存地址之中。 常量池中每一项常量都是一张表,这里我只找到了JDK1.7之前的常量池项目类型表,见下图。 常量池项目类型表: 常量池常量项的结构总表: 比如我这里测试的class文件第一项常量,它的标志位是Ox0a,即十进制10,即表示tag为10的常量项,查表发现是CONSTANT_Methodref_info类型,和上面反编译之后的到的第一个常量是一致的,Methodref表示类中方法的符号引用。查上面《常量池常量项的结构总表》可以看到Methodref中含有3个项目,第一个tag就是上述的Ox0a,那么第二个项目就是Ox0006,第三个项目就是Ox000f,分别指向的CONSTANT_Class_info索引项和CONSTANT_NameAndType_info索引项为6和15,那么反编译的结果该项常量指向的应该是6和15,查看上面反编译的图应证我们的推测是对的。后面的常量项就以此类推。 这里需要特殊说明一下utf8常量项的内容,这里我以第29项常量项解释,也就是最后一项常量项。查《常量池常量项的结构总表》可以看到utf8项有三个内容:tag、length、bytes。tag表示常量项类型,这里是Ox01,表示是CONSTANT_Utf8_info类型,紧接着的是长度length,这里是Ox0015,即十进制21,那么再紧接着的21个字节都表示该项常量项的具体内容。特别注意length表示的最大值是65535,所以Java程序中仅能接收小于等于64KB英文字符的变量和变量名,否则将无法编译。 5.访问标志(Access Flags) 在常量池结束后,紧接着的两个字节代表访问标志(Access Flags),该标志用于识别一些类或者接口层次的访问信息,其中包括:Class是类还是接口、是否定义为public、是否定义为abstract类型、类是否被声明为final等。 访问标志表 标志位一共有16个,但是并不是所有的都用到,上表只列举了其中8个,没有使用的标志位统统置为0,access_flags只有2个字节表示,但是有这么多标志位怎么计算而来的呢?它是由标志位为true的标志位值取或运算而来,比如这里我演示的class文件是一个类并且是public的,所以对应的ACC_PUBLIC和ACC_SIPER标志应该置为true,其余标志不满足则为false,那么access_flags的计算过程就是:Ox0001 | Ox0020 = Ox0021 篇幅原因,未完待续...... 参考文献:《深入理解Java虚拟机》 END 本篇文章为转载内容。原文链接:https://javar.blog.csdn.net/article/details/97532925。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-09 17:46:36
645
转载
NodeJS
...像CPU用得多不多、内存占了百分之多少之类的。 首先,我们需要一个生成随机监控数据的函数: javascript function generateRandomMetrics() { return { cpuUsage: Math.random() 100, memoryUsage: Math.random() 100, diskUsage: Math.random() 100 }; } 然后,在 WebSocket 连接中定时向客户端推送这些数据: javascript wss.on('connection', (ws) => { console.log('A client connected!'); setInterval(() => { const metrics = generateRandomMetrics(); ws.send(JSON.stringify(metrics)); }, 1000); // 每秒发送一次 ws.on('close', () => { console.log('Client disconnected.'); }); }); 客户端需要解析接收到的数据,并动态更新页面上的信息。我们可以稍微改造一下 HTML 和 JavaScript: html CPU Usage: Memory Usage: Disk Usage: javascript socket.onmessage = (event) => { const metrics = JSON.parse(event.data); document.getElementById('cpuProgress').value = metrics.cpuUsage; document.getElementById('memoryProgress').value = metrics.memoryUsage; document.getElementById('diskProgress').value = metrics.diskUsage; const messagesDiv = document.getElementById('messages'); messagesDiv.innerHTML += Metrics updated. ; }; 这样,每秒钟都会从服务器获取一次监控数据,并在页面上以进度条的形式展示出来。是不是很酷? --- 5. 结尾 总结与展望 通过这篇文章,我们从零开始搭建了一个基于 Node.js 和 WebSocket 的实时监控面板。别看它现在功能挺朴素的,但这东西一出手就让人觉得,WebSocket 在实时互动这块儿真的大有可为啊!嘿,听我说!以后啊,你完全可以接着把这个项目捯饬得更酷一些。比如说,弄点新鲜玩意儿当监控指标,让用户用起来更爽,或者直接把它整到真正的生产环境里去,让它发挥大作用! 其实开发的过程就像拼图一样,有时候你会遇到困难,但只要一点点尝试和调整,总会找到答案。希望这篇文章能给你带来灵感,也欢迎你在评论区分享你的想法和经验! 最后,如果你觉得这篇文章对你有帮助,记得点个赞哦!😄 --- 完
2025-05-06 16:24:48
68
清风徐来
Hadoop
...的数据就会被暂时存到内存里,这样下次再用的时候就嗖的一下快多了! 启用步骤: bash hadoop dfsadmin -setSpaceQuota 100g /cachedir hadoop dfs -cache /inputfile /cachedir 四、总结与展望 通过今天的讨论,我相信大家都对HDFS读取速度慢的原因有了更深的理解。其实,无论是网络延迟、数据本地性还是磁盘I/O瓶颈,都不是不可克服的障碍。其实吧,只要咱们肯花点心思去琢磨、去试试,肯定能找出个适合自己情况的办法。 最后,我想说的是,作为一名技术人员,我们应该始终保持好奇心和探索精神。不要害怕失败,也不要急于求成,因为每一次挫折都是一次成长的机会。希望这篇文章能给大家带来启发,让我们一起努力,让Hadoop变得更加高效可靠吧! --- 以上就是我对“HDFS读取速度慢”的全部看法和建议。如果你还有其他想法或者遇到类似的问题,请随时留言交流。咱们共同进步,一起探索大数据世界的奥秘!
2025-05-04 16:24:39
102
月影清风
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
chmod +x script.sh
- 给脚本添加执行权限。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"